
Item usage in a multidimensional computerized adaptive test
(MCAT) measuring health-related quality of life

Muirne C. S. Paap1,2 • Karel A. Kroeze3 • Caroline B. Terwee4 • Job van der Palen3,5 •

Bernard P. Veldkamp3

Accepted: 13 June 2017 / Published online: 23 June 2017

� The Author(s) 2017. This article is an open access publication

Abstract

Purpose Examining item usage is an important step in

evaluating the performance of a computerized adaptive test

(CAT). We study item usage for a newly developed mul-

tidimensional CAT which draws items from three PROMIS

domains, as well as a disease-specific one.

Methods The multidimensional item bank used in the

current study contained 194 items from four domains: the

PROMIS domains fatigue, physical function, and ability to

participate in social roles and activities, and a disease-

specific domain (the COPD-SIB). The item bank was cal-

ibrated using the multidimensional graded response model

and data of 795 patients with chronic obstructive

pulmonary disease. To evaluate the item usage rates of all

individual items in our item bank, CAT simulations were

performed on responses generated based on a multivariate

uniform distribution. The outcome variables included

active bank size and item overuse (usage rate larger than

the expected item usage rate).

Results For average h-values, the overall active bank size

was 9–10%; this number quickly increased as h-values
became more extreme. For values of -2 and ?2, the

overall active bank size equaled 39–40%. There was 78%

overlap between overused items and active bank size for

average h-values. For more extreme h-values, the overused
items made up a much smaller part of the active bank size:

here the overlap was only 35%.

Conclusions Our results strengthen the claim that rela-

tively short item banks may suffice when using polytomous

items (and no content constraints/exposure control mech-

anisms), especially when using MCAT.

Keywords Item exposure � HRQL � IRT � Item response

theory � MCAT � CAT � MAT � Computerized adaptive test

Introduction

In the last decade, computerized adaptive tests (CATs) [1]

based on item response theory (IRT) [2] have become

increasingly popular in health measurement. A CAT can be

seen as a questionnaire that is tailored to the test-taker on

the fly: it continuously updates the estimate(s) of the

position on the construct of interest (latent trait) based on

answers given by the test-taker to the questions (items)

posed. The underlying algorithm then selects the item that

is most informative at that particular moment, given the

current estimate of the latent trait value. It is clear why
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CATs appeal to healthcare professionals (HCPs): by

selecting only those items that contribute most to the

reliable measurement of a patient’s latent trait value,

measurement efficiency is increased, which results in a

substantial decrease in response burden [3]. Furthermore,

CAT estimates can be used to generate automatic reports

instantly, providing the HCP with all necessary information

(latent trait estimate, standard error, norms, and graphic

display) to facilitate communication with the patient. These

properties make CATs excellent candidates for monitoring

patients’ physical and mental health routinely, be it on a

monthly or daily basis.

CATs draw their items from item banks: large collec-

tions of items that have been calibrated with an IRT model

using a large sample representative of the target popula-

tion. The quality of the CAT and the latent trait estimate it

generates depend to a large degree on the quality of the

item bank. A psychometrically sound item bank contains

items with location parameters that cover the whole range

of relevant latent trait values, while having adequate to

high discrimination parameters. A CAT drawing items

from such an item bank will result in efficient measurement

for all patients (irrespective of their latent trait score). Most

CATs currently used for health measurement are based on

item banks that were calibrated using unidimensional IRT

models (e.g., [4–7]). Although less frequently used, mul-

tidimensional IRT models are available as well, and can be

used to support multidimensional CAT (MCAT) (e.g.,

[8–10]). It has been shown that test length can be further

reduced by taking the correlation among constructs into

account during item selection and latent trait estimation,

while maintaining adequate levels of measurement preci-

sion [11, 12]. Perhaps equally important, patients often

experience quality-of-life (QoL) domains as interdepen-

dent; taking this into account allows a closer alignment

between psychometric modeling and patient perspective.

Since health-related quality of life (HRQL) has taken a

central role in the evaluation of treatment interventions in

patients with chronic obstructive pulmonary disease

(COPD), we recently developed a multidimensional CAT

(MCAT) to measure HRQL in patients with chronic

obstructive pulmonary disease (COPD) [13]. Following the

steps outlined by Paap et al. [14], we first established which

domains of HRQL are most important to patients with

COPD, using relevant literature (articles and existing

questionnaires), as well as interviews with patients and

HCPs [14, 15]. Based on these findings, three generic

domains/item banks from the PROMIS (Patient-Reported

Outcomes Measurement Information System) framework

were selected (fatigue, physical functioning, and ability to

participate in social roles and activities) and a new COPD-

specific domain/item bank (COPD-SIB) was developed

[16]. This approach ensures comparability with other

patient groups (generic domains), while providing addi-

tional sensitivity for measuring change within the specific

patient group (disease-specific domain). In this paper, we

aim to evaluate an important performance measure for our

CAT: item usage.

Due to the adaptive nature of a CAT, it can be expected

that certain items are used more frequently than others.

Successive items are typically chosen to optimize an

objective function [17], such as the Fisher information

function.1 Highly discriminating items, polytomous items

covering a wide range of the latent trait (denoted h), and
items targeting average h-values have a higher chance of

being selected, all else being equal. If items are selected

more frequently than could be expected based on chance or

a predefined threshold, these items are typically referred to

as being overexposed. Conversely, items selected less

frequently than could be expected are referred to as

underexposed. The terms item exposure and item usage

seem to be used interchangeably in the literature. In the

context of educational testing, item overexposure is seen as

a threat to test security (examinees may be able to

remember and share items with others) and receives a lot of

attention in the literature (see, e.g., [18, 20, 21]); in health

measurement, items do not need to be kept secret and

therefore item exposure has received less attention [22].

However, item usage is an important outcome measure in

evaluating CAT and item bank performance. Variability in

item usage rates indicates that the CAT is working as

intended (if the items were selected at random, the item

usage rate would be expected to be equal for all items).

However, if a number of items are not used at all, or very

rarely, the ‘‘real’’ (active) size of the item bank is smaller

than it was designed to be. The main aim of the current

study is to evaluate item usage for a newly developed

MCAT which draws items from the PROMIS domains

fatigue, physical function, and ability to participate in

social roles and activities, as well as the COPD-SIB. We

will report on both active bank size and item overuse/

overexposure.

1 In a unidimensional setting, Fisher information, which varies as a

function of the latent trait value, is often used. When the item location

parameter equals the latent trait value, Fisher information increases

monotonically as the value of the discrimination parameter increases;

therefore, the item selection rule based on Fisher information will

select an item with a location close to the current latent trait estimate

and a discrimination that is as large as possible (see, e.g., [18]). In

MCAT, item information is no longer expressed by a single value;

instead, item selection typically depends on the value of the

determinant of the posterior information matrix (this value is

computed and evaluated for each of the remaining items in the

multidimensional item bank, and the item for which the value is

largest is selected) [19].
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Methods

Multidimensional item bank

Adams et al. [23] divide multidimensional IRT models into

two subclasses: within-item and between-item multidi-

mensional models. Within-item multidimensional models

allow items to relate to more than one latent dimension.

When between-item multidimensional models are used, the

restriction is imposed that the items relate to one dimension

only; multidimensionality is expressed through the corre-

lations among the latent dimensions (these are estimated

jointly with the item parameters and latent trait values). In

this study, we chose to use a between-item multidimen-

sional model, since such models are useful when multiple

distinct latent dimensions are measured2 and relatively

high correlations are expected. The multidimensional item

bank used in the current study contained 194 items from

four domains: the PROMIS domains fatigue (example

item: ‘‘To what degree did you have to push yourself to get

things done because of your fatigue?’’), physical function

(example item: ‘‘Are you able to climb up five steps?’’),

and ability to participate in social roles and activities (ex-

ample item: ‘‘I have trouble doing all of the activities with

friends that are really important to me’’) [25, 26]; and the

COPD-SIB (example item: ‘‘It frustrated me that I couldn’t

do everything I wanted to do anymore’’) [16]. The PRO-

MIS ability to participate in social roles and activities item

bank was used in its entirety (35 items). We included a sub-

set of the other two PROMIS item banks: we selected 50

fatigue and 63 physical function items. Item selection was

performed by JP who has ample experience with COPD

patients and COPD research, and reviewed by an interna-

tional colleague of JP’s with comparable experience. The

COPD-SIB contains 46 items: both newly written items,

and (adapted versions of) items from the SGRQ-C, the

Quality of Life for Respiratory Illness Questionnaire (QoL-

RIQ), the COPD Assessment Test, the Maugeri Respiratory

Failure Questionnaire Reduced Form (MRF26), and the

VQ11 [27–30]. In our application, a higher latent trait score

indicated better HRQL for all domains.

Test design

Multidimensional calibrations are not currently available

for the PROMIS general population sample, and therefore

the PROMIS calibrations cannot be used in the current

study. In order to facilitate multidimensional calibration,

our test design needed to be constructed in a way that

would allow for item parameter estimation as well as

estimation of the covariance structure among the domains.

We used a booklet design, whereby the total number of

items was distributed among three booklets each contain-

ing around 100 items. The booklets were linked using ten

anchor items per domain (this type of linking is also known

as alternate form equating or common-item equating).

Each booklet contained items pertaining to at least two

domains.

Calibration sample

The following inclusion criteria were used: a medical

diagnosis of COPD; sufficient oral and written mastery of

the Dutch language; and being able to complete a ques-

tionnaire. HCPs (pulmonologists, general practitioners,

physiotherapists, and nurse practitioners) were recruited by

JP, through his professional network. HCPs distributed the

questionnaires accompanied by an information letter

among COPD patients attending their clinics from October

2014 through December 2015. Of the 1500 printed book-

lets, 795 were returned by the end of December 2015. Our

sample had a mean age of 67.2 years (SD = 10.08), and

consisted of 52.7% men. More detailed patient character-

istics are reported in Supplement 1.

Data preparation

All items in the item bank were scored on a 5-point Likert

scale ranging from 0 to 4. In total, 10 different types of

answer categories were used (depending on the domain and

item formulation), for example, without any difficulty, with

a little difficulty, with some difficulty, with much difficulty,

unable to do or never, rarely, sometimes, usually, always.

Twenty-eight percent of the items showed low endorse-

ment (fewer than 10 responses) for one or more of its

categories. Following Paap et al. [16], for 55 out of 194

items, item response categories that showed low endorse-

ment (fewer than 10 responses) were merged with adjacent

categories. Among these 55 items, 18 pertained to the

fatigue domain, 23 to physical function, 2 to ability to

participate in social roles and activities, and 12 to the

COPD-SIB. For the majority of these items (51), the lowest

two or highest two categories were collapsed. In the other

cases, either the lowest or highest three categories were

collapsed, or both the lowest two and the highest two. Note

that items having different numbers of response categories

due to merging does not constitute a problem for the IRT

model used (multidimensional GRM).

2 In interviews with healthcare professionals [24], the target group

that was to use our CAT, the majority indicated that they were not

interested in a global score, but instead favored separate scores for

each dimension (data not shown).
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Multidimensional IRT calibration

The multidimensional graded response model was used to

obtain item parameter estimates and estimates of the

covariance structure.

The probability of a response in category j in item i with

m total response categories, PðXij ¼ 1jhÞ, is given by

Pij hð Þ ¼
1�W a

0
h� bi1

� �
if j ¼ 0;

W a
0
h� bij

� �
�W a

0
h� bi jþ1ð Þ

� �
if 0\j\m;

W a
0
h� bim

� �
if j ¼ m;

8
><

>:

where W(x) is the logistic function,

W xð Þ ¼ exp xð Þ
1þ exp xð Þ ;

and a
0
h denotes the dot product of the vector of discrimi-

nation parameters and latent traits. To ensure that the

probabilities are always positive, response categories must

be sorted by difficulty, bi jþ1ð Þ [ bij for 0\ j\m.

Up to five parameters were calculated for each item i:

one discrimination parameter (denoted ai) and several bij
parameters; the number of bij parameters equals the num-

ber of categories minus one. The bij parameter is related to

the difficulty with which a respondent will reach the jth

step of each item. Note that in unidimensional IRT, two

types of parametrization can be used for x: a h� bð Þ or

ah - b. In multidimensional IRT, a
0
is a vector containing

an a value for each dimension; here, only the ah - b
parametrization can be used. Some software packages,

such as IRTPRO, calculate ‘‘easiness’’ rather than ‘‘diffi-

culty’’ parameters. In IRTPRO, this parameter is denoted

as c. The bij parameter described above equals the negative

value of the c-parameter. The estimates of the item

parameters and covariance structure were obtained using

the software package IRTPRO [31].

A multivariate normal distribution was assumed for the

four latent traits, with variances fixed to 1 and the

covariances being estimated freely. The estimated corre-

lation matrix among the four domains U equalled

1 0:77 0:87 0:77
0:77 1 0:84 0:76
0:87 0:84 1 0:77
0:77 0:76 0:77 1

2

664

3

775;

with rows and columns representing fatigue, physical

function, ability to participate in social roles and activities,

and the COPD-SIB, respectively. The item parameters are

presented in Supplement 2. The discrimination parameters

were relatively high for all domains (range: 0.82–5.40),

which is quite common for clinical measures [32], and the bij
parameters showed a good spread (range: -7.57 to 7.67).

Measurement precision for h-estimates was excellent

(RMSE\ 0.3 for all domains). The direction of bias was in

line with the expected shrinkage (which is the result of the

implementation of a Bayesian estimator): positive h-values
tended to be slightly underestimated and low negative h-
values tended to be overestimated. See Supplement 3 for

RMSE and bias plots.

Data generation and CAT simulations

CAT simulations were run with the package ShadowCAT

[33] in R [34]. To evaluate the item usage rates of all

individual items in our item bank, responses were gener-

ated based on 21000 vectors of pre-specified h-values—
1000 for every increment of 0.2 on the multidimensional h-
scale between values -2 and 2. The Maximum A Posteriori

(MAP) estimator was used in all simulations to estimate h,
at all stages of the CAT. The covariance matrix U esti-

mated using the multidimensional GRM was used as a

prior. Following Segall [19], item selection was based on

the value of the determinant of the posterior information

matrix. Diao and Reckase [35] refer to this item selection

method as Bayesian Volume Decrease, whereas Yao [36]

simply abbreviates it as Volume or Vm. One random item

per domain was administered at the start in order to obtain

initial h-values to initialize the CAT. The CAT was ter-

minated, when the termination rule (threshold standard

error of measurement SE(h)\ 0.316)3 was met for all four

domains. Item selection for a particular dimension was

terminated, when the SE-threshold had been met for that

dimension.

Outcome variables

The outcome variables in this study were overuse and

active domain/bank size, all conditional on h. Each of the

outcome variables will be reported by domain as well as

across domains (i.e., at item bank level). An item was

considered overused when its usage rate was higher than

the expected item usage rate,4 defined as the average test

length for a given h-value divided by the total bank size

(194). Active domain/bank size was calculated as total

domain or bank size minus items that were never used in

the respective domain or overall bank.

3 In unidimensional models, an SE-value of 0.316 corresponds to a

local reliability of 0.90 when a variance of 1 for h is assumed (see,

e.g., [37]).
4 Note that usage was operationalized as selection in the adaptive

part of the CAT (items selected at random to be used as start items to

initialize the CAT were ignored in calculating the outcome variables).
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Results

The results of the CAT simulations are summarized in

Tables 1 and 2, Fig. 1, and Supplement 4. Table 1 illus-

trates that there was—as could be expected—quite some

diversity in active bank size across the different h-values.
For average h-values, the overall active bank size was

9–10%; this number quickly increased as h-values became

more extreme. For values of -2 and ?2, the overall active

bank size increased fourfold to 39–40%! Unsurprisingly,

CATs for more extreme h-values (-2 and ?2) were gen-

erally longer than for less extreme values (average length

of 20.5 and 18.9 versus 14.1, 13.3, and 13.0 for h-values;
-1, 0, and ?1, respectively). However, the active bank

size increased at a steeper rate than the test length, for

increasing absolute h-values. There was also considerable

diversity in active bank size across domains. For average h-
values, the active domain size for fatigue and physical

function was 5–6%, compared to 9–11% for ability to

participate in social roles and activities, and 17% for the

COPD-SIB. For extreme h-values, almost all ability to

participate in social roles and activities items were used;

this finding can be directly linked to the item parameter

distributions for this bank (high discrimination parameters

combined with broad coverage on the h-scale); see Fig. 1.

Comparing Table 2 (percentage of overused items) to

Table 1 (active bank size) shows that—for the total bank

and average h-values—overused items dominated the

active part of the multidimensional item bank; there was

78% overlap between overused items and active bank size.

For more extreme h-values, the overused items made up a

much smaller part of the active bank size: here the overlap

was only 35%.

Figures 1–4 in Supplement 4 illustrate that there are 12

items that have relatively high item usage rates over a wide

range of h-values: FATIMP1 (‘‘To what degree did you

have to push yourself to get things done because of your

fatigue?’’), FAMTIMP9 (‘‘How often did your fatigue

make it difficult to plan activities ahead of time?’’),

FATIMP29 (‘‘How often were you too tired to leave the

house?’’), PFB1 (‘‘Are you able to climb up five steps?’’),

PFB44 (‘‘Does your health now limit you in doing mod-

erate activities, such as moving a table, pushing a vacuum

cleaner, bowling, or playing golf?’’), SRPPER20 (‘‘I have

trouble doing all of the activities with friends that are really

important to me’’), SRPPER23 (‘‘I have trouble doing all of

my usual work (include work at home)’’), SGRQ12

(‘‘Please, indicate whether the following activity causes

shortness of breath. If the weather influences your com-

plaints, assume the weather conditions are favorable, when

Table 1 Active bank size

(expressed in %) for h-values
ranging between -2 and ?2

h Total bank Fatigue Physical function Social roles COPD-SIB

-2 40 26 33 71 39

-1.8 24 20 16 37 30

-1.6 24 20 17 34 28

-1.4 19 14 16 23 26

-1.2 17 10 13 23 26

-1 15 10 14 20 20

-0.8 13 8 13 14 20

-0.6 10 8 8 11 15

-0.4 9 6 6 11 15

-0.2 9 6 6 11 15

0 9 6 5 9 17

0.2 9 6 5 11 17

0.4 9 6 5 9 17

0.6 10 8 5 11 17

0.8 9 10 3 9 17

1 10 12 3 11 17

1.2 15 18 6 20 22

1.4 17 20 6 23 24

1.6 19 22 10 20 26

1.8 24 26 14 31 30

2 39 30 16 97 37

Full bank sizea 194 50 63 35 46

a Number of available calibrated items in each domain/the total bank
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you answer this question. Getting washed or dressed’’),

SGRQ13 (‘‘Please, indicate whether the following activity

causes shortness of breath. If the weather influences your

complaints, assume the weather conditions are favorable,

when you answer this question. Walking around the

home.’’), SGRQ26 (‘‘I get afraid or panic when I cannot get

my breath.’’), SGRQ42R1a (‘‘My breathing problems make

it difficult to do light gardening, such as weeding.’’), and

SGRQ42R1b (‘‘My breathing problems make it difficult to

do things such as dancing, playing golf, or playing bowls.’’).

Some items, such as CSIB13 (‘‘It frustrated me that I

couldn’t do everything I wanted to do anymore’’) and

SGRQ31 (‘‘Everything seems too much of an effort.’’),

show two peaks; something typical for polytomous data.

Polytomous items have more than one b parameter and

thus cover a wider h-range. A polytomous item can have

more than one peak in its item information function, which

would translate into more than one peak in the item usage

plot. Longer CATs are needed to obtain reliable estimates

of very low or high h-values, which explains why as many

as 38 items show relatively high item usage rates for low or

high h-values only.
In Fig. 1, the item step parameters are plotted against

the discrimination parameters for each domain. The fig-

ure clearly shows that within each domain, the items with

the highest discrimination values had the highest item

usage rates. These items typically covered a wide range of

h-values.

Discussion

In this study, we evaluated active bank size and item

overuse/overexposure in a recently developed MCAT

designed to measure HRQL in COPD patients using four

correlated domains. Three generic PROMIS domains were

used: the PROMIS domains fatigue, physical function, and

ability to participate in social roles and activities [25, 26];

as well as a COPD-specific item bank (the COPD-SIB)

which was recently developed [16]. We found that, for

average latent trait values, the overall active bank size was

9–10%; compared to 39–40% for more extreme latent trait

values (-2 and ?2). Furthermore, as expected, domains

with highly discriminating items were overrepresented in

the active part of the multidimensional bank. For average

latent trait values, the active part of the bank was almost

entirely populated by overused items. In contrast, for more

extreme latent trait values, the active part of the multidi-

mensional bank was dominated by underused items. The

number of items that showed good item usage and covered

Table 2 Overused items

(expressed in %) for h-values
ranging between -2 and ?2

h Total bank Fatigue Physical function Social roles COPD-SIB

-2 15 10 13 17 22

-1.8 14 8 13 17 20

-1.6 12 6 11 17 17

-1.4 11 6 8 17 17

-1.2 9 6 8 9 15

-1 8 6 6 6 15

-0.8 8 6 6 6 13

-0.6 7 6 5 6 13

-0.4 7 6 5 6 11

-0.2 7 6 5 6 11

0 7 6 5 6 11

0.2 7 6 3 9 13

0.4 8 6 3 9 15

0.6 7 6 3 6 15

0.8 7 6 3 6 15

1 8 8 3 6 17

1.2 9 10 3 6 17

1.4 10 12 3 9 17

1.6 11 12 6 11 17

1.8 13 12 8 20 15

2 14 14 8 17 20

Overused items are defined as items whose usage rate exceeded the expected usage rate (average test length

for a given h-value divided by the total bank size)
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almost the entire latent trait range varied between 2

(physical function) and 5 (COPD-SIB) per domain.

We used a multidimensional item bank consisting of 194

items (35–63 items per domain). Given that we developed

a MCAT without content constraints and with no exposure

control, our results indicate that the MCAT was working as

intended: for average latent trait values, a small number of

highly discriminating items was selected; for more extreme

values, the item bank usage was more balanced. However,

our results also showed that a relatively large part of the

multidimensional item bank was never used (60%). The

active part of the bank consisted of 77 items at most, across

the four domains. This may indicate that—if these findings

can be generalized—roughly 19 polytomous items per

domain might suffice, when developing a multidimensional

bank populated by items with high discrimination param-

eters that adequately cover the latent trait range of interest,

and with high correlations among domains. Research

focusing on unidimensional CATs has shown that CATs

based on polytomous rather than dichotomous items can be

performed with substantially smaller item banks; an item

bank of 30 items may be sufficient for polytomously scored

health outcomes [38, 39]. Our results suggest that MCAT

potentially requires smaller item banks than UCAT. It

would be interesting to study this further in a future study.

Item usage has received little attention in the field of

clinical (psychological/health) measurement so far. One

exception concerns developing IRT/CAT-based short

forms. Several authors have suggested that CAT simula-

tions can be used to select the most appropriate items for

inclusion in a short form [40–42]. In these studies, typically

the entire item pool is administered, after which the rank

order in which the items were administered is calculated

and averaged over all simulees. The ‘‘best’’ items (items

with the lowest average CAT presentation ranks) would

then be selected for the short form [41]. Items for the

newest PROMIS short forms were selected based on the

maximum interval information and CAT simulations

(highest average administration rank) [43], making their

measures easily accessible in situations where CAT may

not be feasible. Because static short forms will be typically

targeted at a relatively wide latent trait range, they are

Fig. 1 Scatterplot with

discrimination values on the x-

axis and b-parameter values

(related to difficulty) on the y-

axis. Dots represent item steps.

The size of the dots increases as

a function of item usage rate.

See online for color version
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relatively long compared to CATs, especially for respon-

dents with average latent trait values. Furthermore,

although a short form may achieve adequate measurement

precision for average to moderately high latent trait scores,

CATs provide much better precision at the extremes

[41, 42]. Our results showed how active bank size and the

rate of overused items also depended on latent trait values.

In other words, which items are the ‘‘best’’ items (in terms

of administration rank/usage) depends largely on the

respondent’s latent trait values. This is not something that

can be satisfactorily addressed in a short form.

Another topic which has received little attention in our

field is the influence of capitalization on item calibration

error. Since the item selection criterion most frequently

used is a direct function of the discrimination parameter,

item selection is sensitive to large standard errors of dis-

crimination parameters [44, 45]. Typically, extreme dis-

crimination parameter estimates tend to be associated with

larger standard errors [46]. Furthermore, the smaller the

selection ratio (CAT length divided by total item bank), the

larger the danger of capitalization on chance [47]. Capi-

talization on item calibration error may lead to overesti-

mation of test information and underestimation of the

standard errors of latent trait estimates [46]. In this light,

having a small set of items with very high item usage rates

(and a large set not being used at all) may be worrying,

regardless of the issue of test security. In this study, we did

find a strong correlation (0.82) between estimated dis-

crimination parameters and their respective standard errors.

However, penalizing items with the highest discrimination

parameter estimates (for example, by increasing the esti-

mates by 1 or 2 times their corresponding standard error),

would have had a very insubstantial effect on their ranking

(data not shown). This being said, if we would have

penalized items with relatively high standard errors during

the CATs, test length would most likely have been some-

what longer, and subsequently the active size of the item

bank would also have been larger. Since estimates are

typically (also in our case; data not shown) more precise

when using a multidimensional rather than unidimensional

IRT models to calibrate the items, the impact of item cal-

ibration error can be expected to be smaller than if we had

used separate unidimensional CATs. Research investigat-

ing the potential protective effect of multidimensional IRT

and CAT on the consequences of capitalization on item

calibration error is needed.

Conclusion

With this study, we extended the literature on item usage

rates to multidimensional health measurement. We showed

what happens when realistic CAT settings (typical for

health measurement) are used: a relatively small number of

highly discriminating items is selected. Currently, PRO-

MIS item banks differ widely in length. Our results

strengthen the claim that relatively short item banks may

suffice when using polytomous items (and no content

constraints/exposure control mechanisms), especially when

using MCAT. This may be particularly relevant to item

bank developers. However, if researchers or clinicians want

to be able to influence the content (to ensure validity),

different item selection procedures are necessary; in such

instances, a larger item bank will be needed.
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