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Abstract
Motivated by queueing applications, we study various reflected autoregressive pro-
cesses with dependencies. Among others, we study cases where the interarrival and
service times are proportionally dependent on additive and/or subtracting delay, as
well as cases where interarrival times depend on whether the service duration of the
previous arrival exceeds or not a random threshold. Moreover, we study cases where
the autoregressive parameter is constant as well as a discrete or a continuous random
variable. More general dependence structures are also discussed. Our primary aim is
to investigate a broad class of recursions of autoregressive type for which several inde-
pendence assumptions are lifted and for which a detailed exact analysis is provided.
We provide expressions for the Laplace transform of the waiting time distribution of a
customer in the system in terms of an infinite sum of products of known Laplace trans-
forms. An integer-valued reflected autoregressive process that can be used to model
a novel retrial queueing system with impatient customers and a general dependence
structure is also considered. For such a model, we provide expressions for the proba-
bility generating function of the stationary orbit queue length distribution in terms of
an infinite sum of products of known generating functions. A first attempt towards a
multidimensional setting is also considered.
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1 Introduction

This work focuses on various stochastic recursions of autoregressive type, such as:

Wn+1 = [VnWn + Bn − An]+, n = 0, 1, . . . , (1)

Wn+1 =
⎧
⎨

⎩

[
V (1)
n Wn + Bn − A(1)

n

]+
, Bn ≤ Tn,

[
V (2)
n Wn + Tn − A(2)

n

]+
, Bn > Tn,

(2)

Wn+1 =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

[
Wn + Bn − A(0)

n

]+
, with probability (w.p.) p,

⎧
⎨

⎩

[
V (1)
n Wn + B̂n − A(1)

n

]+
, B̂n ≤ Tn,

[
V (2)
n Wn + Tn − A(2)

n

]+
, B̂n > Tn,

, with probability (w.p.) q := 1 − p.
(3)

Note that in (3), we assume that with probability q := 1 − p, and when B̂n ≤ Tn ,
Wn+1 = [V (1)

n Wn + B̂n − A(1)
n ]+, while when B̂n > Tn , Wn+1 = [V (2)

n Wn + Tn −
A(2)
n ]+. Moreover, we also focus on:

Wn+1 =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

[
V (0)
n Wn + Bn − An

]+
, w.p. p1, V

(0)
n ∈ {a1, . . . , aM },

ak ∈ (0, 1), k = 1, . . . , M, n ∈ N0,[
V (1)
n Wn + Bn − An

]+
, w.p. p2, V

(1)
n ∈ [0, 1), n ∈ N0,

[
V (2)
n Wn + Bn − An

]+
, w.p. 1 − p1 − p2, V (2)

n < 0, n ∈ N0,

(4)

with N0 := N ∪ {0}. Finally, we also consider the integer-valued counterpart,

Xn+1 =
{∑Xn

k=1Uk,n + Zn − Qn+1, Xn > 0,
Yn − Q̃n+1, Xn = 0,

(5)

and a two-dimensional generalization of it, where x+ = max(0, x), x− = min(0, x).
Moreover, {Vn}n∈N0 and {Bn − An}n∈N0 (similarly {B̂n − A(1)

n }n∈N0 , {T̂n − A(2)
n }n∈N0 )

are sequences of independent and identically distributed (i.i.d.) random variables. For
the recursion (2), the thresholds Tn are assumed to be i.i.d. random variables with
cumulative distribution function (cdf) T (·) and Laplace–Stieltjes transform (LST)
τ(·). Moreover, Bn are i.i.d. random variables with cdf FB(·) and LST φB(·).

The ultimate goal of this work is to investigate classes of reflected autoregressive
processes described by recursions of the type given above, in which various indepen-
dence assumptions of {Bn}n∈N0 , {An}n∈N0 are lifted and for which a detailed exact
analysis can be also provided.

The stochastic recursion (1) where {Vn}n∈N0 are such that Vn = a a.s. (almost
surely) for every n, where a ∈ (0, 1), and where {Bn}n∈N0 , {An}n∈N0 are i.i.d.
sequences, and also independent on {Wn}n∈N0 has been treated in [8], i.e. the case
where Wn+1 = [aWn + Bn − An]+, n = 0, 1, . . ., with a ∈ (0, 1). The case where
a = 1 corresponds to the classical Lindley recursion describing the waiting time of the
classical G/G/1 queue [2, 11], while the case where a = −1 is covered in [15]. Further
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progress has been made in [6], where additional models described by recursion (1)
have been investigated. The work in [6, Section 3] is the closest to our case, where the
authors investigated a recursion where V is either a positive constant with probability
p, or a random variable taking negative values with probability 1 − p. The fact that
V is negative simplified considerably the analysis.

In [5], the authors considered the case where VnWn in (1) was replaced by S(Wn),
where {S(t)}t≥0 is a Levy subordinator (recovering also the case in [8], where
S(t) = at). Note that in [5, 6, 8] the sequences {Bn}n∈N0 , {An}n∈N0 are assumed
to be independent. Recently, in [7], the authors have considered Lindley-type recur-
sions that arise in queueing and insurance risk models, where the sequences {Bn}n∈N0 ,
{An}n∈N0 obey a semi-linear dependence. These recursions can also be treated as of
autoregressive type. This work is the closest to ours. Moreover, in [1], the authors
developed a method to study functional equations that arise in a wide range of queue-
ing, autoregressive and branching processes. Finally, the author in [12] considered a
generalized version of the model in [6], by assuming Vn to take values in (−∞, 1]. In
particular, in [12], the author investigated the recursion (4) for M = 1, a1 = 1.

The main contribution of this paper is to investigate the transient as well as the
stationary behaviour of a wide range of autoregressive processes described in (1)-(5),
by lifting various independence assumptions of the sequences {Bn}n∈N0 , {An}n∈N0 .
This is accomplished by using Liouville’s theorem [14, Theorem 10.52], and by stating
and solving a Wiener–Hopf boundary value problem [10], or by solving an integral
equation, depending on the nature of {Vn}n∈N0 . We have to point out here that to our
best knowledge, autoregressive recursions of the form (2)-(5) have not been considered
in the literature so far. We also investigate the stationary analysis of {Xn}n∈N0 in (5),
which represents a novel retrial queueing model. An extension to a two-dimensional
case that describes a retrial queue with priorities is also considered.

2 M/G/1-type autoregressive queues with interarrival times
randomly proportional to service/system times

In the following, we cope with some autoregressive M/G/1-type queueing systems
where the interarrival time between the nth and the (n + 1)th job, say An , depends on
the service time of the nth job, or on the system time after the arrival of the nth job.

2.1 Interarrival times randomly proportional to service times

Consider the following variant of the standard autoregressiveM/G/1 queue:When the
service time equals x ≥ 0, then the next interarrival time equals βi x (with probability
pi , i = 1, . . . , N+M) increased by an independent additive delay Jn . In the following,
we consider the recursion (1), where P(Vn = a) = 1, a ∈ (0, 1).

Let Wn be the workload in the queue just before the nth customer arrival. The
interarrival time between the nth and the (n + 1)th customer, say An , satisfies An =
GnBn + Jn , where Bn is the service time of the nth customer and Jn an additive delay
or random jitter. The random variable Gn has finite support. Let βi denote its i th value

123



70 Queueing Systems (2024) 106:67–127

and let pi = P(Gn = βi ) denote the corresponding probability, i = 1, . . . , N + M
(M, N ≥ 1), with

∑N+M
i=1 pi = 1. We further assume that the service times and jitter

are exponentially distributed: Bn ∼ exp(μ) and Jn ∼ exp(δ). Extensions to the case
where Jn has a rational transformwill be also discussed. Thus, the sequence {Wn}n∈N0

obeys the following recursion:

Wn+1 = [aWn + (1 − Gn)Bn − Jn]+, (6)

where a ∈ (0, 1). Without loss of generality and in order to avoid trivial solutions,
assume that 1 < β1 < β2 < . . . < βN , and βN+1 < βN+2 < . . . < βN+M < 1.

2.1.1 Transient analysis

Wefirst focus on the transient distribution, and following the lines in [8], let for |r | < 1,

Zw(r , s) =
∞∑

n=0

rn E(e−sWn+1 |W0 = w) , U−
w (r , s) =

∞∑

n=0

rn E(e−sU−
n |W0 = w),

where U−
n := [aWn + (1 − Gn)Bn − Jn]−. Then, using the property that 1 + ex =

e[x]+ + e[x]− , (6) leads to

E(e−sWn+1 |W0 = w)

= E(e−s(aWn+(1−Gn)Bn−Jn)|W0 = w) + 1 − E(e−sUn |W0 = w)

= E(e−saWn |W0 = w)E(es Jn )
N+M∑

i=1

pi E(e−s(1−βi )Bn ) + 1 − E(e−sUn |W0 = w)

= E(e−saWn |W0 = w)
δ

δ − s

N+M∑

i=1

piφB(β̄i s) + 1 − E(e−sUn |W0 = w),

where β̄i = 1 − βi , i = 1, . . . , N + M , and φB(s) being the LST of B. Multiplying
by rn and summing from n = 0 to infinity yield

Zw(r , s) − e−sw = r
δ

δ − s
Zw(r , as)

N+M∑

i=1

piφB(β̄i s) + r

1 − r
− rU−

w (r , s).

(7)

Assume hereon that B ∼ exp(μ). Then, φB(β̄i s) = μ

μ+β̄i s
= 1

1−γi s
, where γi =

βi−1
μ

, i = 1, . . . , N + M . Simple calculations imply that

N+M∑

i=1

pi
1 − γi s

=
∑N+M

i=1 pi
∏

j �=i (1 − γi s)
∏N+M

i=1 (1 − γi s)
:= f (s)

g(s)
.
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Note that g(s) = 0 has N + M distinct and real roots γ −1
i , i = 1, . . . , N + M, where

N of them are positive and M are negative. In particular, let s+
j = γ −1

j = μ
β j−1 ,

j = 1, . . . , N the positive roots, and s−
k = γ −1

k = μ
βk−1 , k = N + 1, . . . , N + M the

negative roots, respectively, of g(s) = 0. Note that

g(s) =
N+M∏

i=1

(1 − γi s) =
N+M∏

i=1

γi (γ
−1
i − s)

=
N+M∏

i=1

(−γi )

N∏

j=1

(s − s+
j )

N+M∏

k=N+1

(s − s−
k ) := g+(s)g−(s),

where g+(s) := ∏N
j=1(s − s+

j ), g−(s) := ∏N+M
i=1 (−γi )

∏N+M
k=N+1(s − s−

k ). Now (7)
becomes for Re(s) = 0:

(δ − s)g+(s)[Zw(r , s) − e−sw]
−rδ

f (s)

g−(s)
Zw(r , as) = (δ − s)g+(s)[ r

1 − r
− rUw(r , s)]. (8)

Now we make the following observations:

• The left-hand side is analytic in Re(s) > 0, and continuous in Re(s) ≥ 0.
• The right-hand side is analytic in Re(s) < 0, and continuous in Re(s) ≤ 0.
• Zw(r , s) (resp.Uw(r , s)) is for Re(s) ≥ 0 (resp. Re(s) ≤ 0) bounded by (1−r)−1.

Thus, (8) represents an entire function. Generalized Liouville’s theorem [14, Theorem
10.52] states that in their respective half-planes, both the left-hand side (LHS) and the
right-hand side (RHS) can be written as the same (N + 1)th-order polynomial in s,
for large s, i.e.

(δ − s)g+(s)[Zw(r , s) − e−sw] − rδ
f (s)

g−(s)
Kw(r , s)Zw(r , as)

=
N+1∑

i=0

siCi,w(r), Re(s) ≥ 0. (9)

Note that for s = 0 (9) yields

δ

N∏

i=1

(−s+
i )(

1

1 − r
− 1) − rδ

f (0)

g−(0)

1

1 − r
= C0,w(r).

Having in mind that f (0)
g(0) = 1, so that f (0)

g−(0) = ∏N
j=1(−s+

j ), we easily realize that

C0,w(r) = 0. Moreover, setting s = δ, and s = s+
j , j = 1, . . . , N , we obtain the

following system of equations for the remaining of unknown coefficients Ci,w(r),
i = 1, . . . , N :
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− rδ
f (s+

j )

g−(s+
j )

Zw(r , as+
j ) =

N+1∑

i=1

(s+
j )iCi,w(r), j = 1, . . . , N ,

−rδ
f (δ)

g−(δ)
Zw(r , aδ) =

N+1∑

i=1

δiCi,w(r). (10)

It remains to obtain Zw(r , as+
j ), j = 1, . . . , N , and Zw(r , aδ). These terms are

derived as follows: Expression (9) is now written as

Zw(r , s) = Kw(r , s)Zw(r , as) + Lw(r , s), (11)

where

Kw(r , s) := r
δ

δ − s

f (s)

g(s)
, Lw(r , s) :=

∑N+1
i=1 siCi,w(r)
(δ−s)g+(s) + e−sw.

Iterating (11) yields

Zw(r , s) =
∞∑

n=0

Lw(r , ans)
n−1∏

m=0

Kw(r , ams), (12)

with the convention that an empty product is defined to be 1. Setting s = αδ, and
s = as+

j in (12), we obtain expressions for the Zw(r , aδ), Zw(r , as+
j ), j = 1, . . . , N ,

respectively. Substituting back in (10), we obtain a system of N + 1 equations for the
unknown coefficients Ci,w(r), i = 1, . . . , N + 1.

Remark 1 It is easily realized in (12) that Zw(r , s) appears to have singularities in
s = δ/am , and s = s+

j /am , j = 1, . . . , N , m = 0, 1, . . .. We can show that these

are removable singularities. Let us show this for s = δ, and s = s+
j . We write (12) as

follows to isolate the singularities for s = δ and s = s+
j :

Zw(r , s) =
∑N+1

i=1 siCi,w(r)

(δ − s)g+(s)
+ e−sw +

∞∑

n=1

(

∑N+1
i=1 (ans)iCi,w(r)

(δ − ans)g+(ans)

+ e−sanw)rn
δ

δ − s

f (s)

g(s)

n−1∏

m=1

δ

δ − ams

f (ams)

g(ams)

=e−sw + 1

(δ − s)g+(s)

[
N+1∑

i=1

siCi,w(r) + rδ
f (s)

g−(s)

∞∑

n=1

(

∑N+1
i=1 (ans)iCi,w(r)

(δ − ans)g+(ans)

+ e−sanw)rn−1
n−1∏

m=1

δ

δ − ams

f (ams)

g(ams)

]

=e−sw + 1

(δ − s)g+(s)

[
N+1∑

i=1

siCi,w(r) + rδ
f (s)

g−(s)
Zw(r , as)

]

.

123



Queueing Systems (2024) 106:67–127 73

It is easily realized by using (10) that the term inside the brackets in the last line
vanishes for s = δ, and s = s+

j , confirming that s = δ, and s = s+
j , j = 1, . . . , N are

not poles of Zw(r , s). Similarly, we can show using (9) that Zw(r , s) has no singularity
at s = δ/a, s = s+

j /a, and so on.

2.1.2 Stationary analysis

We now focus on the steady-state counterpart of Wn , say W . By applying Abel’s
theorem on power series to (12), or by considering the relation W = [aW + (1 −
G)B− J ]+ (i.e. by focusing directly to the limiting random variableW ), and assuming
that Z(s) := E(e−sW ), we can obtain after some algebra:

Z(s) = Z(as)
δ

δ − s

f (s)

g(s)
+ 1 −U−(s). (13)

Since a ∈ (0, 1), the stability condition can be ensured as long as E(log(1 + (1 −
G)B)) < ∞; see also [6, 16].

Note also that

[aW + (1 − G)B − J ]− =
{
aW + (1 − G)B − J , aW + (1 − G)B − J < 0,
0, aW + (1 − G)B − J ≥ 0,

thus,

U−(s) = E(e−s(aW+(1−G)B−J )|aW + (1 − G)B − J < 0)

P(aW + (1 − G)B − J < 0) + P(aW + (1 − G)B − J ≥ 0)

= δ

δ − s
P(aW + (1 − G)B − J < 0) + P(aW + (1 − G)B − J ≥ 0)

= 1 + s

δ − s
P(aW + (1 − G)B − J < 0),

where we used the fact that E(e−s(aW+(1−G)B−J )|aW + (1 − G)B − J < 0) is the
LST of the probability distribution characterized by:

P(aW + (1 − G)B − J ≤ x |aW + (1 − G)B − J < 0)

= P(J ≥ aW + (1 − G)B − x |J > aW + (1 − G)B)

= P(J ≥ −x) = P(−J ≤ x),

and thus, E(e−s(aW+(1−G)B−J )|aW + (1−G)B− J < 0) = δ
δ−s . Let P := P(aW +

(1 − G)B − J < 0). Then, (13) is now written as

Z(s) = Z(as)
δ

δ − s

f (s)

g(s)
− s

δ − s
P

= − Ps

δ − s
+ δ

δ − s

f (s)

g(s)
[− Pas

δ − as
+ δ

δ − as

f (as)

g(as)
Z(a2s)]
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= . . .

= −
∞∑

n=0

Pans

δ − ans

n−1∏

j=0

f (a j s)δ

g(a j s)(δ − a j s)
+ lim

n→∞ Z(ans)
n−1∏

j=0

f (a j s)δ

g(a j s)(δ − a j s)

= −
∞∑

n=0

Pans

δ − ans

n−1∏

j=0

f (a j s)δ

g(a j s)(δ − a j s)
+

∞∏

j=0

f (a j s)δ

g(a j s)(δ − a j s)
, (14)

since limn→∞ Z(ans) = Z(0) = 1.Note that P = P(W = 0). Then, P can be derived
by multiplying (14) with δ − s (i.e. the functional equation before the iterations), and
setting s = δ, so that

P = Z(aδ)
f (δ)

g(δ)
.

Setting s = aδ in (14) (so that to obtain Z(aδ)), and substituting back, yields,

P =
f (δ)
g(δ)

∏∞
j=0

f (a j+1δ)

g(a j+1δ)(1−a j+1)

1 + f (δ)
g(δ)

∑∞
n=0

an+1

1−an+1

∏n−1
j=0

f (a j+1δ)

g(a j+1δ)(1−a j+1)

.

Differentiating the expression in the first line in (14) with respect to s and setting
s = 0 yields after some algebra,

E(W ) := − d

ds
Z(s)|s=0 =

1
μ

∑K
i=1 pi β̄i − 1

δ
(1 − P)

1 − a
,

where P is given above.

Remark 2 Note that the analysis can be considerably adapted to consider the case
where the random variables Jn follow a hyperexponential distribution with L phases,
i.e. with density function f J (x) := ∑L

j=1 q jδ j e−δ j x , x ≥ 0,
∑L

j=1 q j = 1, as well
as to consider the case where the service times are arbitrarily distributed with density
function fB(.), and LST φB(.). For convenience, and in order to make the analysis
simpler, assume thatβi ∈ (0, 1), i = 1, . . . , K , with K = N+M (so that Re(sβ̄i ) ≥ 0
for Re(s) ≥ 0). In such a case, following similar arguments as above, we come up
with the following functional equation:

Z(s) = Z(as)
L∑

i=1

qi
δi

δi − s

K∑

i=1

piφB(sβ̄i )

−P(aW + (1 − �)B − J < 0)

(

1 −
L∑

i=1

qi
δi

δi − s

)

,

where

123



Queueing Systems (2024) 106:67–127 75

P(aW + (1 − �)B − J < 0)

=
K∑

i=1

pi

∫ ∞

0
fWn (w)dw

∫ ∞

0
fB(x)dx

∫ ∞

aw+β̄i x

L∑

j=1

q jδ j e
−δ j ydy

=
K∑

i=1

pi

L∑

j=1

q jφB(δ j β̄i )Z(αδ j ),

so that

Z(s) = Z(as)V (s)
K∑

i=1

piφB(sβ̄i ) −
K∑

i=1

pi

L∑

j=1

×q jφB(δ j β̄i )Z(αδ j )(1 − V (s)), (15)

or equivalently,

L∏

j=1

(δ j − s)Z(s) = Z(as)
L∑

j=1

q jδ j
∏

m �= j

(δm − s)
K∑

i=1

piφB(sβ̄i )

−
K∑

i=1

pi

L∑

j=1

q jφB(δ j β̄i )Z(αδ j )

×
⎡

⎣
L∏

j=1

(δ j − s) −
L∑

j=1

q jδ j
∏

m �= j

(δm − s)

⎤

⎦ , (16)

where

V (s) :=
∑L

j=1 q jδ j
∏

m �= j (δm − s)
∏L

j=1(δ j − s)
.

Note that we first have to derive expressions for the Z(αδ j ), j = 1, . . . , L . Iterating
(15) yields

Z(s) =
K∑

i=1

pi

L∑

j=1

q jφB(δ j β̄i )Z(aδ j )

∞∑

n=0

	(ans)
n−1∏

l=0


(als) +
∞∏

l=0


(als),

(17)

where


(s) :=
K∑

i=1

piφB(sβ̄i )V (s), 	(s) := V (s) − 1.

Setting in (17), s = aδp, p = 1, . . . , L,, we obtain a system of L equations for the
unknown terms Z(aδp), p = 1, . . . , L:
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Z(aδp)(1 −
K∑

i=1

piqpφB(δpβ̄i )

∞∑

n=0

	(ans)
n−1∏

l=0


(als))

−
K∑

i=1

pi
∑

j �=p

q jφB(δ j β̄i )Z(aδ j )

∞∑

n=0

	(an+1δp)

n−1∏

l=0


(al+1δp) =
∞∏

l=0


(al+1δp).

Remark 3 Consider the case of a reflected autoregressive M/G/1-type queue where
interarrival times are deterministic proportional dependent on service times with addi-
tive delay. We consider the case where An = bBn + Jn , where b ∈ (0, 1) and
Jn ∼ exp(δ). The sequence {Wn}n∈N0 obeys the following recursion:

Wn+1 = [aWn + (1 − b)Bn − Jn]+, (18)

where a ∈ (0, 1). Note for a = 1−b, the recursion (18) was investigated in [7, Section
2]. Here we cope with the general case (a �= 1− b), although the analysis follows the
lines in [8].

2.2 Proportional dependency with additive and subtracting delay

We now focus on the case where the interarrival times are such that An = [cBn+ Jn]+,
with

Jn :=
{
J̃n , with probability p,
− Ĵn , with probability q := 1 − p,

(19)

where J̃n ∼ exp(δ), Ĵn ∼ exp(ν). Now the sequence {Wn}n∈N0 obeys Wn+1 =
[aWn + Bn − [cBn + Jn]+]+. With probability p, Jn = J̃n , and thus, [cBn + Jn]+ =
cBn + J̃n , while with probability q, Jn = − Ĵn , and thus, [cBn + Jn]+ = [cBn − Ĵn]+.
Therefore,

E(e−sWn+1) = pE(e−s[aWn+c̄Bn− J̃n ]+) + qE(e−s[aWn+Bn−[cBn− Ĵn ]+]), (20)

where c̄ := 1−c. By focusing on the limiting randomvariableW with density function
fW (.), and LST Z(s) = E(e−sW ), we can obtain:

E(e−s[aWn+c̄Bn− J̃n ]+) =
∫ ∞

w=0
fW (w)dw

∫ ∞

x=0
fB(x)dx

{∫ aw+c̄x

y=0
δe−δye−s(aw+c̄x−y)dy +

∫ ∞

y=aw+c̄x
δe−δydy

}

=
∫ ∞

w=0
fW (w)

∫ ∞

x=0
fB(x)[δe

−s(aw+c̄x) − se−δ(aw+c̄x)

δ − s
]dwdx

= δ

δ − s
Z(as)φB(sc̄) − s

δ − s
Z(aδ)φB(δc̄).
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Now

E(e−s[aWn+Bn−[cBn− Ĵn ]+] = Z(as)E(e−s[Bn−[cBn− Ĵn ]+]

= Z(as)
∫ ∞

x=0
fB(x)

[∫ cx

y=0
e−s(aw+c̄x+y)νe−νydy

+
∫ ∞

y=cx
e−s(aw+x)νe−νydy

]

dx

= Z(as)

[
ν

ν + s
(φB(sc̄) − φB(s + νc)) + φB(s + νc)

]

= Z(as)

(
νφB(sc̄) + sφB(s + νc)

ν + s

)

.

Thus, (20) reads

Z(s) = H(s)Z(as) + L(s),

where

H(s) = φB(sc̄)(
pδ

δ − s
+ νq

ν + s
) + qs

ν + s
φB(s + νc),

L(s) = − s

δ − s
pZ(aδ)φB(δc̄) := − s

δ − s
P.

Iterating as in Sect. 2.1.2, and having in mind that limn→∞ Z(ans) = 1, we arrive at

Z(s) = −P
∞∑

n=0

ans

δ − ans

n−1∏

j=0

H(a j s) +
∞∏

j=0

H(a j s).

Setting s = aδ, and substituting back, we obtain

P = pφB(δc̄)
∏∞

j=0 H(a j+1δ)

1 + pφB(δc̄)
∑∞

n=0
an+1

1−an+1

∏n−1
j=0 H(a j+1δ)

.

Remark 4 Onemay also consider the casewhere the interarrival times are related to the
previous service time as follows: An = GnBn + Jn , where Jn , as given in (19), andGn

are i.i.d. random variables with probability mass function given by P(Gn = ck) = pk ,
ck ∈ (0, 1), k = 1, . . . , N ,

∑N
k=1 pk = 1. In particular, (20) now becomes

E(e−sWn+1) = pE(e−s[aWn+(1−Gn)Bn− J̃n ]+) + qE(e−s[aWn+Bn−(Gn Bn− Ĵn)+]),
(21)

and following the same arguments as above, we again have

Z(s) = H(s)Z(as) + L(s),
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where now

H(s) :=
N∑

k=1

pk

[

φB(sc̄k)

(
pδ

δ − s
+ νq

ν + s

)

+ qs

ν + s
φB(s + νck)

]

,

L(s) := − s

δ − s
pZ(aδ)

N∑

k=1

pkφB(δc̄k) := − s

δ − s
P.

Following the lines in Sect. 2.1.2, and having in mind that limn→∞ Z(ans) = 1, we
obtain the desired expression for Z(s).

Remark 5 The case where J̃n , Ĵn are i.i.d. random variables following a distribu-
tion with rational LST can also be treated similarly. In particular, assume that J̃n ,
Ĵn follow hyperexponential distributions, i.e. their density functions are f J̃ (x) :=
∑L

j=1 q jδ j e−δ j x , and f Ĵ (x) := ∑M
m=1 hmνme−νmx , respectively, with

∑L
j=1 q j = 1,

∑M
m=1 hm = 1. Then, following similar arguments as above, and assuming An =

GnBn + Jn , where Jn , as given in (19), we obtain after lengthy computations:

Z(s) = H(s)Z(as) + L(s), (22)

where now

H(s) :=
N∑

k=1

pk

⎡

⎣φB(sc̄k)

⎛

⎝p
L∑

j=1

δ j q j

δ j − s
+ q

M∑

m=1

νmhm
νm + s

⎞

⎠

+qs
M∑

m=1

hm
νm + s

φB(s + νmck)

]

,

L(s) := −sp
N∑

k=1

pk

L∑

j=1

q j

δ j − s
Z(aδ j )φB(δ j c̄k).

Iterating (22) as in Sect. 2.1.2, and having in mind that limn→∞ Z(ans) = 1, we
obtain the desired expression for Z(s).

2.3 Interarrival times randomly proportional to system time

Consider the following variant of the standard M/G/1 queue: When the workload
just after the nth arrival equals x ≥ 0, then the next interarrival time equals βi x (with
probability pi ) increased by a random jitter Jn ∼ exp(δ). Thus, An = Gn(Wn +
Bn) + Jn , where P(Gn = βi ) = pi , i = 1, . . . , K , βi ∈ (0, 1). Note that our model
generalizes the one in [7, Section 2], in which P(Gn = c) = 1, i.e. β1 = c ∈ (0, 1),
βi = 0, i �= 1. Then,

Wn+1 = [(1 − Gn)Wn + (1 − Gn)Bn − Jn]+. (23)
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Note that the recursion (23) is a special case of the recursion (1) with Vn := 1 − Gn .
By focusing on the limiting random variable W , we have,

Z(s) := E(e−sW ) =
K∑

i=1

pi

∫ ∞

0

∫ ∞

0
fBn (x)dx

[∫ β̄i (w+x)

0
e−s(β̄i (w+x)−y)δe−δydy

+
∫ ∞

β̄i (w+x)
δe−δydy

]

dP(W < w)

= δ

δ − s

K∑

i=1

piφB(sβ̄i )Z(sβ̄i ) − s

δ − s

K∑

i=1

piφB(δβ̄i )Z(δβ̄i ).

It is easy to show that P(J > β̄i (W + B)) = φB(δβ̄i )Z(δβ̄i ). Thus, P(W = 0) =∑K
i=1 pi P(J > β̄i (W + B)), and therefore,

Z(s) = δ

δ − s

K∑

i=1

piφB(sβ̄i )Z(sβ̄i ) − s

δ − s
P(W = 0). (24)

Following [1], we can obtain

Z(s) =
∞∑

k=0

∑

i1+...+iK=k

pi11 . . . piKK Li1,...,iK (s)K (β̄
i1
1 . . . β̄

iK
K s)

+ lim
k→∞

∑

i1+...+iK=k

pi11 . . . piKK Li1,...,iK (s),

where K (s) := − s
δ−s P(W = 0), L0,0,...,0,1,0,...,0(s) := φB(β̄ks), with 1 in position

k, k = 1, . . . , K , and

Li1,...,iK (s) := φB(β̄
i1
1 . . . β̄

iK
K s)

K∑

j=1

Li1,...,i j−1,...,iK (s).

Remark 6 A similar analysis can be applied in order to investigate recursions of the
formWn+1 = [VnWn + (1−Gn)Bn − Jn]+, where Vn are i.i.d. random variables with
P(Vn = γi ) = qi , γi ∈ (0, 1), i = 1, . . . , K .

2.3.1 Asymptotic expansions

In the following, we focus on deriving asymptotic expansions of the basic performance
metrics P(W = 0), E(Wl), l = 1, 2, . . ., by perturbing βi s, i.e. by letting in (24) βi

to be equal to βiε with ε very small. Then, (24) is written as:

(δ − s)Z(s) = δ

K∑

i=1

piφB(s(1 − βiε))Z(s(1 − βiε)) − sP(W = 0).
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Note that for ε = 0, the above equation provides the LST of the waiting time (say W̃ )
of the classical M/G/1 queue where arrivals occur according to a Poisson process
with rate δ. So, when ε → 0, there is a weak dependence between sojourn time and
the subsequent interarrival time. Following [7, subsection 2.3], consider the Taylor
series development of P(W = 0), E(Wl), l = 1, . . . , L up to εm terms for m ∈ N.
Thus, for ε → 0:

P(W = 0) = P(W̃ = 0) +∑m
h=1 R0,hε

m + o(em),

E(Wl) = E(W̃ l) +∑m
h=1 Rl,hε

m + o(em). (25)

Differentiating the functional equation with respect to s, setting s = 0 yields for
ρ = δE(B),

E(W ) = P(W = 0) − (1 − ρ) − ρε
∑K

i=1 piβi

δε
∑K

i=1 piβi
.

Simple calculations imply that

R0,1 = (δE(W̃ ) + ρ)

K∑

i=1

piβi ,

δ

K∑

i=1

piβi R1,h−1 = R0,h, h = 2, 3, . . . .

Assuming that the first Lmoments ofW arewell defined,we subsequently differentiate
the above functional equation l = 2, . . . , L times with respect to s, and set s = 0.
Then, for l = 2, 3, . . . , L, we have:

δ(1 −
K∑

i=1

pi (1 − βiε)
l)E(Wl)

= −l E(Wl−1) + δ

K∑

i=1

pi (1 − βiε)
l
l−1∑

j=0

(
l

j

)

E(W j )E(Bl− j ). (26)

Setting ε = 0, and having in mind that
∑K

i=1 pi = 1, we recover the recursive formula
to obtain the moments of the standard M/G/1 queue:

0 = −l E(W̃ l−1) + δ

l−1∑

j=0

(
l

j

)

E(W̃ j )E(Bl− j ), l = 2, 3, . . . , L.
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Then, substituting (25) in (26) we have

δ(1 −
K∑

i=1

pi (1 − βiε)
l)

m∑

h=1

Rl,hε
h

= −l
m∑

h=1

Rl−1,hε
h + δ

K∑

i=1

pi (1 − βiε)
l)

l−1∑

j=0

(
l

j

)

E(Bl− j )

m∑

h=1

R j,hε
h

+δ(

K∑

i=1

pi (1 − βiε)
l − 1)

l∑

j=0

(
l

j

)

E(W̃ j )E(Bl− j ). (27)

Equating ε factors on both sides, we obtain Rl−1,1 in terms of Rl−2,1, . . . , R0,1, as
well as in terms of E(W̃ n) obtained above. Since R0,1 is known, all Rl,1 can be derived
by:

Rl−1,1 = 1

1 − δE(B)
[ δ
l

l−2∑

n=0

(
l

n

)

E(Bl−n)Rn,1 − δ

K∑

i=1

piβi

l∑

n=0

(
l

n

)

E(W̃ n)E(Bl−n)].

Similarly, for h = 2,

Rl−1,2 = 1

1 − δE(B)
[δ
l

l−2∑

n=0

(
l

n

)

E(Bl−n)Rn,2 − δ

l

K∑

i=1

piβi

l∑

n=0

(
l

n

)

E(Bl−n)Rn,1

+ δ
l − 1

2

K∑

i=1

piβ
2
i

l∑

n=0

(
l

n

)

E(W̃ n)E(Bl−n)].

Similarly, we can obtain Rk−1,h in terms of Rk,h−1 and Rn,l , n + l ≤ l − 2 + h.
The procedure we follow to recursively obtain Rl,h is the same as the one given in [7,
subsection 2.3], so further details are omitted.

3 The single-server queue with service time randomly dependent on
waiting time

Consider now the following variant of the M/M/1 queue. Customers arrive according
to a Poisson process with rate λ, and assume that if the waiting time of the nth arriving
customer equalsWn , then her service time equals [Bn −�nWn]+, with P(�n = al) =
gl , al ∈ (0, 1), l = 1, . . . , K . Moreover, {Bn}n∈N0 is a sequence of independent,
exponentially distributed random variables with rate μ, independent of anything else.
Note that when the waiting time is very large the service requirement tends to zero,
which can be explained as an abandonment.
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We focus on the limiting random variable W , let Z(s) := E(e−sW ), and assume
that An are i.i.d. random variables from exp(λ). Then,

Z(s) := E(e−sW ) = E(e−s[W+[B−�W ]+−A]+)

= E(e−s[W+[B−�W ]+−A]) + 1 − E(e−s[W+[B−�W ]+−A]−)

= ∑K
l=1 gl E(esA)E(e−s[W+[B−alW ]+]) + 1 − E(e−sU ),

(28)

where U := [W + [B − �W ]+ − A]−. Note that,

E(e−s[W+[B−alW ]+])

=
∫ ∞

w=0

[∫ alw

x=0
μe−μx e−swdx +

∫ ∞

x=alw
e−s(x+(1−al )w)μe−μxdx

]

dP(W < w)

=
∫ ∞

w=0
(e−sw − e−(alμ+s)w)dP(W < w) + μ

μ + s

∫ ∞

w=0
e−w(s+alμ)dP(W < w)

= Z(s) − s

μ + s
Z(s + alμ).

Moreover, since

[W + (B − alW ) − A]− =
{
W + (B − alW ) − A, W + (B − alW ) − A < 0,
0, W + (B − alW ) − A ≥ 0,

we have,

E(e−sU ) =E(e−s[W+[B−alW ]+−A]|A > W + [B − alW ]+)P(A > W + [B − alW ]+)

+ P(A ≤ W + [B − alW ]+)

= λ

λ − s
P(A > W + [B − alW ]+) + P(A ≤ W + [B − alW ]+)

=1 + s

λ − s
P(A > W + [B − alW ]+).

Note that,

P(A > W + [B − alW ]+) =
∫ ∞

w=0

(∫ alw

x=0
μe−μxdx

∫ ∞

y=w

λe−λydydx+
∫ ∞

x=alw
μe−μxdx

∫ ∞

y=x+(1−al )w
λe−λydydx

)

dP(W < w)

=
∫ ∞

w=0

(

e−λw(1 − e−μalw) + μ

μ + λ
e−(λ+μalw)

)

dP(W < w)

=Z(λ) − λ

μ + λ
Z(λ + μal).

Remark 7 Note that P(A > W + [B − �W ]+) = P(W = 0) := π0.
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Thus, substituting the last expression back in (28)we arrive after simple calculations
at:

Z(s) = λ

μ + s

K∑

l=1

gl Z(s + alμ) + C, (29)

where C := Z(λ) − λ
μ+λ

∑K
l=1 gl Z(λ + μal) = π0. For s = 0, (29) yields

∑K
l=1 gl Z(μal) = μ

λ
(1 − π0). Note also that Z(μal) = P(B > alW ), and

∑K
l=1 gl Z(μal) = P(B > �W ).
To solve (29), we need to iterate it and having in mind that as s → ∞, Z(s) → 0

(needs some work). Note that such kind of recursions were treated in [1], since the
commutativity of ζl(s) := s + alμ and ζm(s) := s + amμ, i.e. ζl(ζm(s)) = ζm(ζl(s))
makes the recursion (29) relatively easy to handle, although in each iteration, any
term gives rise to K new terms; see also [7, Remark 5.3]. Extensions to the case
where service time distributions have rational LST are relatively easy to handle, e.g.
a hyperexponential distribution.

4 Threshold-type dependence among interarrival and service times

4.1 The simple case

Customers arrivewith a service request at a single server. Service requests of successive
customers are i.i.d. random variables Bn , n = 1, 2, . . .with cdf FB(.), and LST φB(.).
Upon arrival, the service request is registered. If the service request Bn is less than a
threshold Tn , then the next interarrival interval, say J (0)

n , is exponentially distributed
with rate λ0; otherwise, the service time becomes exactly equal to Tn (is cut off at Tn),
and the next interarrival interval, say J (1)

n , is exponentially distributed with rate λ1.
We assume that an arrival makes obsolete a fixed fraction 1− a0 (resp. 1− a1) of the
work that is already present, with ak ∈ (0, 1), k = 0, 1. We assume the thresholds Tn
to be i.i.d. random variables with cdf T (·), with LST τ(·). Let also for Re(s) ≥ 0

χ(s) :=E(e−sB1(B < T )) =
∫ ∞

0
e−sx (1 − T (x))dFB(x),

ψ(s) :=E(e−sT 1(B ≥ T )) =
∫ ∞

0
e−sx (1 − FB(x))dT (x),

with

χ(s) + ψ(s) = E(e−smin(B,T )).
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Let Wn be the waiting time of the nth arriving customer, n = 1, 2, . . .. Then,

Wn+1 =
⎧
⎨

⎩

[
a0Wn + Bn − J (0)

n

]+
, Bn < Tn,

[
a1Wn + Tn − J (1)

n

]+
, Bn ≥ Tn,

(30)

with J (k)
n ∼ exp(λk), k = 0, 1. Assume that W0 = w, and let Ew(e−sWn ) :=

E(e−sWn |W0 = w). Then,

Ew(e−sWn+1 ) =Ew(e−s[a0Wn+Bn−J (0)
n ]+1(Bn < Tn)) + Ew(e−s[a1Wn+Tn−J (1)

n ]+1(Bn ≥ Tn))

=Ew(e−s[a0Wn+Bn−J (0)
n ]1(Bn < Tn) + Ew(e−s[a1Wn+Tn−J (1)

n ]1(Bn ≥ Tn)) + 1

− Ew(e−s[a0Wn+Bn−J (0)
n ]−1(Bn < Tn)) − Ew(e−s[a1Wn+Tn−J (1)

n ]−1(Bn ≥ Tn))

=Ew(e−sa0Wn )E(es J
(0)
n )E(e−sBn1(Bn < Tn))

+ Ew(e−sa1Wn )E(es J
(1)
n )E(e−sTn1(Bn ≥ Tn)) + 1 −U−

w,n(s), (31)

where U−
w,n(s) := Ew(e−s[a0Wn+Bn−J (0)

n ]−1(Bn < Tn)) + Ew(e−s[a1Wn+Tn−J (1)
n ]−1

(Bn ≥ Tn)). Note that U−
w,n(s) is analytic in Re(s) ≤ 0. Let

Zw(r , s) :=
∞∑

n=0

rn Ew(e−sWn ), Re(s) ≥ 0,

Mw(r , s) :=
∞∑

n=0

rnU−
w,n(s), Re(s) ≤ 0.

Then, (31) leads for Re(s) = 0 to:

Zw(r , s) − e−sw = r
λ0

λ0 − s
χ(s)Zw(r , a0s) + r

λ1

λ1 − s
ψ(s)Zw(r , a1s)

+ r

1 − r
− rMw(r , s). (32)

Multiplying (32) by
∏1

k=0(λk − s), we obtain

1∏

k=0

(λk − s)(Zw(r , s) − e−sw) − r(λ0(λ1 − s)χ(s)Zw(r , a0s)

+λ1(λ0 − s)ψ(s)Zw(r , a1s))

=
1∏

k=0

(λk − s)

(
r

1 − r
− rMw(r , s)

)

. (33)

Our objective is to obtain Zw(r , s), andMw(r , s)by formulating and solving aWiener–
Hopf boundary value problem. A few observations:
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• The LHS in (33) is analytic in Re(s) > 0 and continuous in Re(s) ≥ 0.
• The RHS in (33) is analytic in Re(s) < 0 and continuous in Re(s) ≤ 0.
• Zw(r , s) is for Re(s) ≥ 0 bounded by | 1

1−r |, so by the generalized Liouville’s
theorem [14, Theorem 10.52], the LHS is at most a quadratic polynomial in s
(dependent on r ) for large s, Re(s) > 0.

• Mw(r , s) is for Re(s) ≤ 0 bounded by | 1
1−r |, so by the generalized Liouville’s

theorem [14, Theorem 10.52], the RHS is at most a quadratic polynomial in s
(dependent on r ) for large s, Re(s) < 0.

Thus,

1∏

k=0

(λk − s)(Zw(r , s) − e−sw) − r(λ0(λ1 − s)χ(s)Zw(r , a0s)

+λ1(λ0 − s)ψ(s)Zw(r , a1s))

= C0,w(r) + sC1,w(r) + s2C2,w(r), Re(s) ≥ 0, (34)
1∏

k=0

(λk − s)

(
r

1 − r
− rMw(r , s)

)

= C0,w(r) + sC1,w(r) + s2C2,w(r), Re(s) ≤ 0, (35)

with Ci,w(r), i = 0, 1, 2, functions of r to be determined.
Taking s = 0 in (34) yields

λ0λ1

(
1

1 − r
− 1

)

− r(χ(0) + ψ(0))λ0λ1
r

1 − r
= C0,w(r),

and having in mind that χ(0) + ψ(0) = 1, C0,w(r) = 0. Substituting s = λ0 in (34)
leads to

− r(λ1 − λ0)χ(λ0)Zw(r , α0λ0) = C1,w(r) + λ0C2,w(r). (36)

Similarly, for s = λ1,

− r(λ0 − λ1)ψ(λ1)Zw(r , α1λ1) = C1,w(r) + λ1C2,w(r). (37)

To obtain C1,w(r), C2,w(r), we still need to derive expressions for Zw(r , αkλk), k =
0, 1. We accomplish this task by obtaining first Zw(r , s) after successive iterations of
(34). Note that (34) can be written as

Zw(r , s) = r
1∑

k=0

hk(s)Zw(r , aks) + Lw(r , s), (38)

where

Lw(r , s) = sC1,w(r) + s2C2,w(r)

(λ0 − s)(λ1 − s)
+ e−sw,
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hk(s) = λk

λk − s
(χ(s)1{k=0} + ψ(s)1{k=1}), k = 0, 1. (39)

After n − 1 iterations, we obtain

Zw(r , s) = rn
n∑

k=0

Kk,n−k(s)Zw(r , ak0a
n−k
1 s)

+
n−1∑

i=0

r i
i∑

k=0

Kk,i−k(s)Lw(r , ak0a
i−k
1 s), (40)

where Kk,n−k(s) are recursively defined as follows: K0,0(s) = 1, K.,−1(s) = 0 =
K−1,.(s), K1,0(s) = h0(s), K0,1(s) = h1(s) and

Kk+1,n−k(s) =Kk,n−k(s)h0(a
k
0a

n−k
1 s) + Kk+1,n−k−1(s)h1(a

k+1
0 an−k−1

1 s), n − k ≥ k + 1,

Kk,n−k+1(s) =Kk,n−k(s)h1(a
k
0a

n−k
1 s) + Kk−1,n−k+1(s)h0(a

k−1
0 an−k+1

1 s), n − k ≤ k − 1.

Therefore,

Zw(r , s) =
∞∑

i=0

r i
i∑

k=0

Kk,i−k(s)Lw(r , ak0a
i−k
1 s) + lim

n→∞ rn
n∑

k=0

Kk,n−k(s)Zw(r , ak0a
n−k
1 s).

(41)

The second term in the RHS of (41) converges to zero due to the fact that |r | < 1;
thus,

Zw(r , s) =
∞∑

i=0

r i
i∑

k=0

Kk,i−k(s)Lw(r , ak0a
i−k
1 s). (42)

Setting in (42) s = akλk weobtain expressions for the Zw(r , akλk), k = 0, 1.Note that
these expressions are given in terms of the unknowns Cl,w(r), l = 1, 2. Substituting
back in (36), (37), we obtain a linear system of two equations with two unknowns
Cl,w(r), l = 1, 2.

4.1.1 Stationary analysis

Using Abel’s theorem, or considering directly the limiting random variable W , which

satisfies the relation W =
{[

a0W + B − J (0)
]+

, B < T ,
[
a1W + T − J (1)

]+
, B ≥ T ,

leads for Re(s) = 0 to

E(e−sW ) = λ0
λ0−sχ(s)E(e−sa0W ) + λ1

λ1−sψ(s)E(e−sa1W ) + 1 − M(s), (43)
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where

M(s) := E(e−s[a0W+B−J (0)]−1(B < T )) + E(e−s[a1W+T−J (1)]−1(B ≥ T )).

Setting Z(s) = E(e−sW ), and following similar arguments as above, we obtain,

Z(s) =
1∑

k=0

hk(s)Z(aks) + L(s), (44)

where hk(s), k = 0, 1 as above and L(s) = sC1+s2C2
(λ0−s)(λ1−s) .

Note that L(0) = 0, and [1, Theorem 2] applies. Thus, iterating (44), we have

Z(s) = lim
n→∞

n∑

k=0

Kk,n−k(s) +
∞∑

i=0

i∑

k=0

Kk,i−k(s)L(ak0a
i−k
1 s), (45)

where Kk,n−k(s) as above. The coefficients C1, C2 can be obtained by deriving first
expressions for the terms Z(akλk) by setting s = akλk , k = 0, 1 in (45):

Z(a0λ0) = limn→∞
∑n

k=0 Kk,n−k(a0λ0) +∑∞
i=0

∑i
k=0 Kk,i−k(a0λ0)L(ak+1

0 ai−k
1 λ0),

Z(a1λ1) = limn→∞
∑n

k=0 Kk,n−k(a1λ1) +∑∞
i=0

∑i
k=0 Kk,i−k(a1λ1)L(ak0a

i−k+1
1 λ1).

(46)

Then, by substituting these expressions in the following equations (that are derived
similarly as those in (36), (37)):

− (λ1 − λ0)χ(λ0)Z(α0λ0) = C1 + λ0C2, (47)

−(λ0 − λ1)ψ(λ1)Z(α1λ1) = C1 + λ1C2, (48)

we derive a linear system of equations to obtain the unknown coefficients C1, C2.

Remark 8 It would be interesting to consider the performance measures P(W = 0)
and E(Wl), l = 1, 2, . . . , in the regime that ak → 1, k = 0, 1 (see also [7, Section
2.3]), i.e. a perturbation of the model in [9].

Differentiating (44) with respect to s and letting s = 0 yield after some algebra
that,

E(W ) := − d

ds
Z(s)|s=0 =

χ(0)
λ0

+ ψ(0)
λ0

+ χ ′(0) + ψ ′(0) − C1+2C2
λ0λ1

1 − a0χ(0) − a1ψ(0)
,

where f ′(.) denotes the derivative of a function f (.) and C1, C2 are derived as shown
above.
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4.1.2 The case a0 ∈ (0, 1), a1 = 1

We now consider the stationary version of the special case where a1 = 1, i.e. we
assume that when Bn ≥ Tn , the next arrival does not make obsolete a fixed fraction of
the already present work. This maybe seen natural if we think that in such a case the
service time is cut-off, since it exceeds the threshold Tn . Following similar arguments
as above, we obtain

Z(s) = λ0
λ0−s χ(s)Z(a0s) + λ1

λ1−sψ(s)Z(s) + M−(s) ⇔
(λ0 − s)Z(s) − λ0β(s)Z(a0s) = (λ0 − s) β(s)

χ(s) M
−(s),

(49)

where β(s) := χ(s)

1− λ1ψ(s)
λ1−s

, M−(s) := 1 − E(e−s[a0W+B−J (0)]−1(B < T )) −
E(e−s[W+T−J (1)]−1(B ≥ T )). Note that β(s) is the LST of the distribution of the
random variable B̃, which is the time elapsed from the epoch a service request arrives
until the epoch the registered service is of threshold type:

β(s) = E(e−sB1(B ≤ T )) + E(e−s(T−J (1))1(B ≥ T ))β(s) ⇔ β(s)

= E(e−sB1(B ≤ T ))

1 − E(e−s(T−J (1))1(B ≥ T ))
.

Thus, following the lines in [8], Liouville’s theorem [14, Theorem 10.52] states that

(λ0 − s)Z(s) − λ0β(s)Z(a0s) = C0 + sC1. (50)

For s = 0, (50) implies that C0 = 0. Thus,

Z(s) = λ0

λ0 − s
β(s)Z(a0s) + sC1

λ0 − s
, (51)

which has a solution similar to the one in [8, Theorem 2.2], so further details are
omitted.

4.1.3 The case a0 = a1 := a ∈ (0, 1)

Now consider the case where the fraction of work that becomes obsolete because
of an arrival is independent on whether B < T , or B ≥ T . In such a scenario, for
Re(s) = 0,

1∏

k=0

(λk − s)Z(s) − [λ0(λ1 − s)χ(s) + λ1(λ0 − s)ψ(s)]Z(as)

=
1∏

k=0

(λk − s)(1 − M(s)). (52)

Now we have:
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• The LHS of (52) is analytic in Re(s) > 0 and continuous in Re(s) ≥ 0.
• The RHS of (52) is analytic in Re(s) < 0 and continuous in Re(s) ≤ 0.
• Z(s) is for Re(s) ≥ 0 bounded by 1, and hence, the LHS of (52) behaves at most
as a quadratic polynomial in s for large s, with Re(s) > 0.

• M(s) is for Re(s) ≤ 0 bounded by 1, and hence, the RHS of (52) behaves at most
as a quadratic polynomial in s for large s, with Re(s) < 0.

Liouville’s theorem [14, Theorem 10.52] implies that both sides in (52) are equal
to the same quadratic polynomial in s, in their respective half-planes. Therefore, for
Re(s) ≥ 0,

1∏

k=0

(λk − s)Z(s) − [λ0(λ1 − s)χ(s) + λ1(λ0 − s)ψ(s)]Z(as) = C0 + sC1 + s2C2.

(53)

Setting s = 0 in (53), and having in mind that χ(0) + ψ(0) = 1, we obtain C0 = 0.
Setting s = λi , i = 0, 1, we obtain

− (λ1 − λ0)χ(λ0)Z(aλ0) = C1 + λ0C2,

−(λ0 − λ1)ψ(λ1)Z(aλ1) = C1 + λ1C2. (54)

We further need to obtain Z(aλi ), i = 0, 1. Note that Z(aλi ) = P(A(i) > aW ),
i = 0, 1. Now (53) is rewritten as

Z(s) = H(s)Z(as) + L(s), (55)

where H(s) := λ0
λ0−sχ(s) + λ1

λ1−sψ(s). Iterating (55) and having in mind that
Z(ans) → 1, as n → ∞, we obtain,

Z(s) =
∞∏

n=0

H(ans) +
∞∑

n=0

L(ans)
n−1∏

j=0

H(a j s). (56)

Note that in (56), Z(s) appears to have singularities in s = λk/a j , j = 0, 1, . . .,
k = 0, 1, but following [8, see Remark 2.5], it can be seen that these are removable
singularities.

Setting s = aλ0,

Z(aλ0) =
∞∏

n=0

(λ1 − an+1λ0)χ(an+1λ0) + λ1(1 − an+1)ψ(an+1λ0)

(λ1 − an+1λ0)(1 − an+1)

+
∞∑

n=0

an+1(C1 + C2λ0an+1)

(λ1 − an+1λ0)(1 − an+1)

n−1∏

j=0

(λ1 − a j+1λ0)χ(a j+1λ0) + λ1(1 − a j+1)ψ(a j+1λ0)

(λ1 − a j+1λ0)(1 − a j+1)
. (57)
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Similarly, for s = aλ1,

Z(aλ1) =
∞∏

n=0

(λ0 − an+1λ1)ψ(an+1λ1) + λ0(1 − an+1)χ(an+1λ1)

(λ0 − an+1λ1)(1 − an+1)

+
∞∑

n=0

an+1(C1 + C2λ1an+1)

(λ0 − an+1λ1)(1 − an+1)

n−1∏

j=0

(λ0 − a j+1λ1)ψ(a j+1λ1) + λ0(1 − a j+1)χ(a j+1λ1)

(λ0 − a j+1λ1)(1 − a j+1)
. (58)

Substituting (57), (58) in (54), we obtain a linear system of equations for the unknown
coefficients C1, C2.

Remark 9 Assume now that the interarrival times are deterministic proportionally
dependent on service times. More precisely, let J (k)

n = ckU
(k)
n + X (k)

n , ck ∈ (0, 1),
k = 0, 1, where U (0)

n := Bn , U
(1)
n := Tn , and X (k)

n ∼ exp(δk). Thus,

Wn+1 =
⎧
⎨

⎩

[
a0Wn + (1 − c0)Bn − X (0)

n

]+
, Bn < Tn,

[
a1Wn + (1 − c1)Tn − X (1)

n

]+
, Bn ≥ Tn .

Following similar arguments as in the previous section, we arrive, for Re(s) = 0, at,

Zw(r , s) − e−sw = r
δ0

δ0 − s
χ(s(1 − c0))Zw(r , a0s)

+ r
δ1

δ1 − s
ψ(s(1 − c1))Zw(r , a1s) + r

1 − r
− rMw(r , s),

where now Mw(r , s) = ∑∞
n=0 r

nU−
w,n(s) with

U−
w,n(s) := Ew(e−s[a0Wn+(1−c0)Bn−X (0)

n ]−1(Bn < Tn))

+ Ew(e−s[a1Wn+(1−c1)Tn−X (1)
n ]−1(Bn ≥ Tn)).

Using similar arguments as above, Liouville’s theorem [14, Theorem 10.52] implies
that

1∏

k=0

(δk − s)(Zw(r , s) − e−sw) − r(δ0(δ1 − s)χ(s(1 − c0))Zw(r , a0s)

+ δ1(δ0 − s)ψ(s(1 − c1))Zw(r , a1s))

= C0,w(r) + sC1,w(r) + s2C2,w(r), Re(s) ≥ 0.
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The rest of the analysis follows as the one in the previous section. Similar steps as
those in the previous section can be followed to cope with the stationary analysis, so
further details are omitted.

4.2 Interarrival times random proportionally dependent on service times

Assume that J (k)
n = G(k)

n U (k)
n + X (k)

n , k = 0, 1, where U (0)
n := Bn , U

(1)
n := Tn , and

X (k)
n are i.i.d. random variables with distribution that have rational LST:

φXk (s) = Nk(s)

Dk(s)
, k = 0, 1,

where Dk(s) := ∏Lk
i=1(s + t (k)i ) with Nk(s) is a polynomial of degree at most Lk − 1,

not sharing zeros with Dk(s), k = 0, 1. Moreover, assume that Re(t (k)i ) > 0, i =
1, . . . , Lk . Thus,

Wn+1 =
⎧
⎨

⎩

[
a0Wn + (1 − G(0)

n )Bn − X (0)
n

]+
, Bn < Tn,

[
a1Wn + (1 − G(1)

n )Tn − X (1)
n

]+
, Bn ≥ Tn,

(59)

where P(G(0)
n = βi ) = pi , i = 1, . . . , K , P(G(1)

n = γi ) = qi , i = 1, . . . , M .
Assume that βi ∈ (0, 1), i = 1, . . . , K , γi ∈ (0, 1), i = 1, . . . , M . Following similar
arguments as in the previous section, we arrive for Re(s) = 0, at

Zw(r , s) − e−sw = r
N0(−s)

D0(−s)

K∑

i=1

piχ(s(1 − βi ))Zw(r , a0s)

+r
N1(−s)

D1(−s)

M∑

i=1

qiψ(s(1 − γi ))Zw(r , a1s)

+ r

1 − r
− rMw(r , s), (60)

where now Mw(r , s) = ∑∞
n=0 r

nU−
w,n(s) with

U−
w,n(s) := Ew(e−s[a0Wn+(1−G(0)

n )Bn−X (0)
n ]−1(Bn < Tn))

+ Ew(e−s[a1Wn+(1−G(1)
n )Tn−X (1)

n ]−1(Bn ≥ Tn)).

Then, for Re(s) = 0,

D0(−s)D1(−s)[Zw(r , s) − re−sw] − r N0(−s)D1(−s)
∑K

i=1 piχ(s(1 − βi ))Zw(r , a0s)

−r N1(−s)D0(−s)
∑M

i=1 qiψ(s(1 − γi ))Zw(r , a1s) = D0(−s)D1(−s)[ r2
1−r − rMw(r , s)].

(61)
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Now we have:

• The LHS of (61) is analytic in Re(s) > 0 and continuous in Re(s) ≥ 0.
• The RHS of (61) is analytic in Re(s) < 0 and continuous in Re(s) ≤ 0.
• For large s, both sides in (61) are O(sL0+L1) in their respective half-planes.

Thus, Liouville’s theorem [14, Theorem 10.52] implies that for Re(s) ≥ 0,

D0(−s)D1(−s)[Zw(r , s) − e−sw] − r N0(−s)D1(−s)
K∑

i=1

piχ(s(1 − βi ))Zw(r , a0s)

−r N1(−s)D0(−s)
M∑

i=1

qiψ(s(1 − γi ))Zw(r , a1s) =
L1+L2∑

l=0

Cl(r)s
l ,

(62)

and for Re(s) ≤ 0,

D0(−s)D1(−s)

[
r

1 − r
− rMw(r , s)

]

=
L1+L2∑

l=0

Cl(r)s
l .

For s = 0, (62) implies after simple computations that C0(r) = 0. For s = t (0)j ,
j = 1, . . . , L0, (62) implies that

− r N0(−t (0)j )D1(−t (0)j )

K∑

i=1

piχ(t (0)j (1 − βi ))Zw(r , a0t
(0)
j ) =

L1+L2∑

l=1

Cl(r)(t
(0)
j )l .

(63)

Similarly, for s = t (1)j , j = 1, . . . , L1, we have,

− r N1(−t (1)j )D0(−t (1)j )

M∑

i=1

qiψ(t (1)j (1 − γi ))Zw(r , a1t
(1)
j ) =

L1+L2∑

l=0

Cl(r)(t
(1)
j )l ,

(64)

Note that Nk(−t (k)j ) �= 0, j = 1, . . . , Lk, k = 0, 1. Then, (63), (64) constitutes a
system of equations to obtain the remaining of the coefficients Cl(r), l = 1, . . . , L0 +
L1. However, we still need to obtain Zw(r , akt

(k)
j ), k = 0, 1, j = 1, . . . , Lk . Note

that (62) has the same form as in (38) but now,

Lw(r , s) =
∑L1+L2

l=1 slCl(r)

D0(−s)D1(−s)
+ e−sw,

hk(s) = Nk(−s)

Dk(−s)
(
∑K

i=1 piχ(s(1 − βi ))1{k=0} +∑M
i=1 qiψ(s(1 − γi ))1{k=1}), k = 0, 1.

(65)
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Thus, the expression for Zw(r , s) is the same as in (42), where the expressions
Kk,i−k(s), Lw(r , ak0a

i−k
1 s) are obtained analogously using (65). Having this expres-

sion, we can obtain Zw(r , akt
(k)
j ), j = 1, . . . , Lk , k = 0, 1. Substituting back in (63),

(64), we can derive the remaining coefficients Cl(r), l = 1, . . . , L0 + L1.

4.2.1 Amore general case

Wenow consider the casewhere the interarrival times are also dependent on the system
time. More precisely, we assume that J (k)

n = G(k)
n (U (k)

n + Wn) + X (k)
n , k = 0, 1.

Wn+1 =
⎧
⎨

⎩

[
(1 − G(0)

n )Wn + (1 − G(0)
n )Bn − X (0)

n

]+
, Bn < Tn,

[
(1 − G(1)

n )Wn + (1 − G(1)
n )Tn − X (1)

n

]+
, Bn ≥ Tn .

(66)

Thus,

Ew(e−sWn+1) = Ew(e−s[(1−G(0)
n )Wn+(1−G(0)

n )Bn−X (0)
n ]+1(Bn < Tn))

+Ew(e−s[(1−G(1)
n )Wn+(1−G(1)

n )Tn−X (1)
n ]+1(Bn ≥ Tn))

= E(es J
(0)
n )

∑K
i=1 pi Ew(e−sβ̄i Wn )E(e−sβ̄i Bn1(Bn < Tn))

+E(es J
(1)
n )

∑M
i=1 qi Ew(e−sγ̄i Wn )E(e−sγ̄i Tn1(Bn ≥ Tn)) + 1 −U−

w,n(s),

(67)

Then, by using (67), and similar arguments as above, we obtain for Re(s) = 0,

Zw(r , s) − e−sw = rφX0(−s)
K∑

i=1

piχ(sβ̄i )Zw(r , sβ̄i )

+ rφX1(−s)
M∑

i=1

qiψ(sγ̄i )Zw(r , sγ̄i )

+ r

1 − r
− rMw(r , s),

or equivalently,

D0(−s)D1(−s)[Zw(r , s) − e−sw] − r N0(−s)D1(−s)
K∑

i=1

piχ(sβ̄i )Zw(r , sβ̄i )

−r N1(−s)D0(−s)
M∑

i=1

qiψ(sγ̄i )Zw(r , sγ̄i ) = D0(−s)D1(−s)[ r

1 − r
− rMw(r , s)].

(68)

Now we have:

• The LHS of (68) is analytic in Re(s) > 0 and continuous in Re(s) ≥ 0.
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• The RHS of (68) is analytic in Re(s) < 0 and continuous in Re(s) ≤ 0.
• For large s, both sides in (61) are O(sL0+L1) in their respective half-planes.

Thus, Liouville’s theorem [14, Theorem 10.52] implies that for Re(s) ≥ 0,

D0(−s)D1(−s)[Zw(r , s) − e−sw] − r N0(−s)D1(−s)
K∑

i=1

piχ(sβ̄i )Zw(r , sβ̄i )

−r N1(−s)D0(−s)
M∑

i=1

qiψ(sγ̄i )Zw(r , sγ̄i ) =
L1+L2∑

l=0

Cl(r)s
l . (69)

For s = 0, C0(r) = 0. For convenience, set β̄i = ai , i = 1, . . . , K , γ̄i = aK+i ,
qi = pK+i , i = 1, . . . , M , and

f (ai s) :=
{

φX0(−s)χ(sai ), i = 1, . . . , K ,

φX1(−s)ψ(sai ), i = K + 1, . . . , K + M .

Then, (69) can be written as

Zw(r , s) = r
K+M∑

i=1

pi f (ai s)Zw(r , ai s) + Lw(r , s), (70)

where Lw(r , s) :=
∑L1+L2

l=1 slCl (r)
D0(−s)D1(−s) + e−sw. Therefore,

Zw(r , s) =
∞∑

i=0

r i
∑

i1+...+iK+M=i

pi11 . . . piK+M
K+MLi1,...,iK+M (s) + lim

n→∞ rn
∑

i1+...+iK+M=n

×pi11 . . . piK+M
K+MLi1,...,iK+M (s)Zw(r , ai11 . . . aiK+M

K+Ms), (71)

where L0,0,...,0,1,0,...,0(s) := f (aks), with 1 in position k, and k = 1, . . . , K + M ,

Li1,...,iK+M (s) = f (ai11 . . . aiK+M
K+Ms)

K+M∑

j=1

Li1,...,i j−1,...,iK+M (s).

The second term in the RHS of (71) converges to zero due to the fact that |r | < 1;
thus,

Zw(r , s) =
∞∑

i=0

r i
∑

i1+...+iK+M=i

pi11 . . . piK+M
K+MLi1,...,iK+M (s). (72)

Setting s = t (k)j , j = 1, . . . , Lk , k = 0, 1, in (69) we obtain a system of equations

for the remaining coefficients Cl(r), l = 1, . . . , L0 + L1. Specifically for s = t (0)j ,
j = 1, . . . , L0,
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− r N0(−t (0)j )D1(−t (0)j )

K∑

i=1

piχ(t (0)j β̄i )Zw(r , β̄i t
(0)
j ) =

L1+L2∑

l=1

Cl(r)(t
(0)
j )l ,

(73)

and for s = t (1)j , j = 1, . . . , L1, we have,

− r N1(−t (1)j )D0(−t (1)j )

M∑

i=1

qiψ(t (1)j γ̄i )Zw(r , γ̄i t
(1)
j ) =

L1+L2∑

l=0

Cl(r)(t
(1)
j )l ,

(74)

where we have further used the expression in (72).

4.3 Amixed case

Consider the following recursion:

Wn+1 =
⎧
⎨

⎩

[
aWn + (1 − G(0)

n )Bn − X (0)
n

]+
, Bn < Tn,

[
VnWn + (1 − G(1)

n )Tn − X (1)
n

]+
, Bn ≥ Tn,

(75)

where Vn < 0, a ∈ (0, 1), and βi ∈ (0, 1), i = 1, . . . , K , γi > 1, i = 1, . . . , M .
Then, following a similar procedure as above, we obtain for Re(s) = 0,

Zw(r , s) − e−sw = Zw(r , as)r
δ0

δ0 − s

K∑

i=1

piχ(sβ̄i ) +
∫ 0

−∞
Zw(r , sy)P(V ∈ dy)r

δ1

δ1 − s

M∑

i=1

qiψ(sγ̄i ) + r

1 − r
− rMw(r , s),

where Mw(r , s) = ∑∞
n=0 r

nU−
w,n(s) with

U−
w,n(s) := Ew(e−s[aWn+(1−G(0)

n )Bn−X (0)
n ]−1(Bn < Tn))

+ Ew(e−s[VnWn+(1−G(1)
n )Tn−X (1)

n ]−1(Bn ≥ Tn)).

Equivalently, we have

1∏

j=0

(δ j − s)(Zw(r , s) − e−sw) − Zw(r , as)rδ0(δ1 − s)
K∑

i=1

piχ(sβ̄i )

=
∫ 0

−∞
Zw(r , sy)P(V ∈ dy)rδ1(δ0 − s)

M∑

i=1

qiψ(sγ̄i ) +
1∏

j=0

(δ j − s)(
r

1 − r
− rMw(r , s)).

(76)
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Clearly,

• the LHS of (76) is analytic in Re(s) > 0 and continuous in Re(s) ≥ 0,
• the RHS of (76) is analytic in Re(s) < 0 and continuous in Re(s) ≤ 0,
• for large s, both sides are O(s2) in their respective half-planes.

Thus, Liouville’s theorem [14, Theorem 10.52] now states that

1∏

j=0

(δ j − s)(Zw(r , s) − e−sw) − Zw(r , as)rδ0(δ1 − s)

K∑

i=1

piχ(sβ̄i ) = C0 + C1s + C2s
2, Re(s) ≥ 0.

For s = 0, we haveC0 = rδ0δ1
1−r (1−χ(0)). Setting s = δ1, and s = δ0, we, respectively,

have the following linear system of equations:

C2δ
2
1 + C1δ1 = − C0,

C2δ
2
0 + C1δ0 = − C0 − rδ0(δ1 − δ0)χ(0)Zw(r , aδ0),

from which

C1 = − r
1−r ((δ0 + δ1)(1 − χ(0)) + δ1χ(δ0)(1 − r)Zw(r , aδ0)),

C2 = r
1−r (1 − χ(0) + χ(δ0)(1 − r)Zw(r , aδ0)).

(77)

It remains to find Zw(r , aδ0). This can be done by iteratively solving

Zw(r , s) = r
δ0

δ0 − s
χ(s)

K∑

i=1

piχ(sβ̄i )Zw(r , as) + C0 + sC1 + s2C2
∏1

j=0(δ j − s)
+ e−sw.

In particular,

Zw(r , s) =
∞∑

n=0

Lw(r , ans)
n−1∏

j=0

Kw(r , a j s), (78)

where Lw(r , s) := C0+sC1+s2C2∏1
j=0(δ j−s)

+ e−sw, Kw(r , s) := r δ0
δ0−sχ(s)

∑K
i=1 piχ(sβ̄i ).

Thus,

Zw(r , aδ0) =
∞∑

n=0

Lw(r , anδ0)
n−1∏

j=0

Kw(r , a jδ0). (79)

Substituting (79) in (77) we obtain a linear system of equations for the unknown
coefficients C1, C2.
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4.3.1 Amore general case

Assume the case where the Laplace–Stieltjes transforms of the distributions of X (k)
n ,

k = 0, 1, are rational and such that:

A0(s) = Â0(s)
∏L0

j=1(s + δ j )
, A1(s) = Â1(s)

∏L1
l=1(s + ζl)

,

with Âk(s) is a polynomial of degree at most Lk − 1, not sharing zeros with the
corresponding denominators of Ak(s), k = 0, 1. Moreover, assume that Re(δ j ) > 0,
j = 1, . . . , L0, and Re(ζl) < 0, l = 1, . . . , L1. Moreover, assume that βi ∈ (0, 1),
i = 1, . . . , K , γi > 1, i = 1, . . . , M . Then, (76) becomes now for Re(s) = 0:

L0∏

j=1

(δ j − s)
L1∏

l=1

(ζl − s)(Zw(r , s) − e−sw)

−Zw(r , as)r Â0(−s)
L1∏

j=1

(ζ j − s)
K∑

i=1

piχ(sβ̄i )

=
∫ 0

−∞
Zw(r , sy)P(V ∈ dy)r Â1(−s)

L0∏

j=1

(δ j − s)

M∑

i=1

qiψ(sγ̄i ) +
L0∏

j=1

(δ j − s)

L1∏

l=1

(ζl − s)

(
r

1 − r
− rMw(r , s)

)

. (80)

Again, we have that

• the LHS of (80) is analytic in Re(s) > 0 and continuous in Re(s) ≥ 0,
• the RHS of (80) is analytic in Re(s) < 0 and continuous in Re(s) ≤ 0,
• for large s, both sides are O(sL0+L1) in their respective half-planes.

Thus, Liouville’s theorem [14, Theorem 10.52] states that for Re(s) ≥ 0,

L0∏

j=1

(δ j − s)
L1∏

l=1

(ζl − s)(Zw(r , s) − e−sw) − Zw(r , as)r Â0(−s)
L1∏

l=1

(ζl − s)

K∑

i=1

piχ(sβ̄i ) =
L0+L1∑

k=0

Ck(r)s
k, (81)
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and for Re(s) ≤ 0,

∫ 0

−∞
Zw(r , sy)P(V ∈ dy)r Â1(−s)

L0∏

j=1

(δ j − s)
M∑

i=1

qiψ(sγ̄i )

+
L0∏

j=1

(δ j − s)
L1∏

l=1

(ζl − s)

(
r

1 − r
− rMw(r , s)

)

=
L0+L1∑

k=0

Ck(r)s
k . (82)

Setting s = 0, and using either (81), or (82), we get after straightforward computations
that

C0(r) = r2(1 − χ(0))

1 − r

L0∏

j=1

δ j

L1∏

l=1

ζl .

For s = δ j , j = 1, . . . , L0, (81) gives,

L0+L1∑

k=1

Ck(r)δ
k
j = −r Â0(−δ j )

L1∏

l=1

(ζl − δ j )

K∑

i=1

piχ(δl β̄i )Zw(r , aδ j ). (83)

We further need other L1 equations to obtain all the coefficients Ck(r). Note that for
s = ζl , l = 1, . . . , L1, the expression (82) gives:

L0+L1∑

k=1

Ck(r)ζ
k
l = −r Â1(−ζl)

L0∏

j=1

(δ j − ζl)

M∑

i=1

qiψ(ζl γ̄i )

∫ 0

−∞
Zw(r , sy)P(V ∈ dy).

(84)

It is readily seen that (81) can be rewritten as

Zw(r , s) = K (r , s)Zw(r , as) + Lw(r , s), (85)

with

K (r , s) = r
A0(s)

∏L1
l=1(ζl − s)

K∑

i=1

piχ(sβ̄i ),

Lw(r , s) =
∑L0+L1

k=0 Ck(r)sk
∏L1

l=1(ζl − s)
∏L0

j=1(δ j − s)
+ e−sw.
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Iterating (85) implies that

Zw(r , s) =
∞∑

n=0

Lw(r , ans)
n−1∏

m=0

K (r , ams), (86)

where the convergence of the infinite sum can be proved with the aid of D’Alembert’s
test, since a ∈ (0, 1), and

lim
n→∞

∣
∣
∣
∣

Lw(r , ans)

Lw(r , an+1s)K (r , ans)

∣
∣
∣
∣ =

∣
∣
∣
∣
∣

∏L1
l=1 ζl

rχ(0)

∣
∣
∣
∣
∣
.

Setting s = aδ j , j = 1, . . . , L0 in (86), we obtain Zw(r , aδ j ) that can be used in
(83). Moreover, expression (86) can be used in (84). Thus, we can construct a system
of L0 + L1 equations for the unknown coefficients Ck(r), k = 1, . . . , L0 + L1.

5 The uniform proportional case with dependence

In the following, we consider recursions of the form

Wn+1 = [VnWn + Bn − An]+, (87)

with Vn ∼ U (0, 1), and dependence among the sequences {Bn}n∈N0 , {An}n∈N0 . The
case of independent {An}n∈N0 , {Bn}n∈N0 was treated in [6].

5.1 Deterministic proportional dependency with additive and subtracting delay

We consider the case where

Wn+1 = [VnWn + Bn − An]+,

with Vn ∼ U (0, 1) and for c0, c1 ∈ (0, 1), J̃n ∼ exp(δ), Ĵn ∼ exp(ν):

An =
{
A(0)
n := c0Bn + J̃n, w.p. p,

A(1)
n := [c1Bn − Ĵn]+, w.p. q := 1 − p.

Stability is ensured when E(log |V |) < 0; see [16]. Note that

E(e−s A(0)
n |Bn = t) = δ

δ − s
e−sc0t ,

E(e−s A(1)
n |Bn = t) =νe−sc1t − se−νc1t

ν + s
,
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and thus,

E(e−s A(0)
n −zBn ) = δ

δ + s
φB(z + sc0), Re(z + sc0) > 0,

E(e−s A(1)
n −zBn ) =νφB(z + sc1) − sφB(z + νc1)

ν − s
, Re(z + sc1) > 0.

Then,

Zn+1(s) =E(e−sWn+1) = E(e−s[VnWn+Bn−An ]+)

=pE(e−s[VnWn+Bn−A(0)
n ]+) + qE(e−s[VnWn+Bn−A(1)

n ]+).

Note that,

[VnWn + Bn − A(1)
n ]+ = [VnWn + Bn − [c1Bn − Ĵn]+]+

= VnWn + Bn − [cBn − Ĵn]+.

Therefore, for n ∈ N:

Zn+1(s) =p
(
E(e−sVnWn )E(e−sBn+s A(0)

n ) + 1 − E(e−s[VnWn+Bn−A(0)
n ]−)

)

+ qE(e−sVnWn )E(e−sBn+s A(1)
n )

=E(e−sVnWn )

(

p
δ

δ − s
φB(sc̄0) + q

νφB(sc̄1) + sφB(s + νc1)

ν + s

)

+ p
(
1 −

[
P(VnWn + Bn − A(0)

n ≥ 0)

+P(VnWn + Bn − A(0)
n < 0)

δ

δ − s

])

=1

s

∫ s

0
Zn(y)dy

(

p
δ

δ − s
φB(sc̄0) + q

νφB(sc̄1) + sφB(s + νc1)

ν + s

)

− spdn+1

δ − s
,

where dn := P(Wn = 0) and we have used the fact that:

E(e−sVnWn ) =
∫ 1

0
E(e−svWn )dv = 1

s

∫ s

0
E(e−yWn )dy = 1

s

∫ s

0
Zn(y)dy.

If W0 = w, then E(e−sW0) = e−sw0 , and the last expression allows to recursively
determine all the transforms Zn(s), n ∈ N. Multiplying with δ − s, and setting s = δ:

dn+1 = φB(δc̄0)

δ

∫ δ

0
Zn(y)dy.
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Let UW (r , s) := ∑∞
n=0 r

n Zn(s), |r | < 1, then:

UW (r , s) = r
	(s)

s(δ − s)

∫ s

0
UW (r , y)dy + K (s), (88)

where

	(s) =pδφB(sc̄0) + q(δ − s)
νφB(sc̄1) + sφB(s + νc1)

ν + s
,

K (s) =e−sw0 − sp

δ − s
(UW (r ,∞) − p0).

Letting I (s) = ∫ s
0 UW (r , y)dy, (88) becomes:

I ′(s) = r
	(s)

s(δ − s)
I (s) + K (s).

The solution of such kind of first-order differential equation is obtained by following
the lines in [6, Section 5]. Note that solving this kind of differential equation with a
singularity is tricky.

5.2 Randomly proportional dependency with additive delay

In the following, we consider the case where An = GnBn + Jn , with P(Gn = βi ) =
pi , i = 1, . . . , K , and Jn are i.i.d. random variables that follow a hyperexponential
distribution with density function f (x) = ∑L

j=1 q jδ j e−δ j x . (The analysis can be
further generalized to the case of a distribution with a rational Laplace transform.)
Then,

Zn+1(s) = E(e−sWn+1) = E(e−s[VnWn+(1−Gn)Bn−Jn ]+)

=
L∑

j=1

q j

K∑

l=1

pl

∫ 1

v=0

∫ ∞

w=0

∫ ∞

x=0
fB(x)

[∫ vw+β̄l x

y=0
e−s(vw+β̄l x−y)δ j e

−δ j y +
∫ ∞

y=vw+β̄l x
δ j e

−δ j ydy

]

dxdP(W < w)dv

=
L∑

j=1

q j

K∑

l=1

pl

∫ 1

v=0

∫ ∞

w=0

∫ ∞

x=0
fB(x)

[
δ j e−s(vw+β̄l x) − se−δ j (vw+β̄l x)

δ j − s

]

dxdP(W < w)dv

=
L∑

j=1

q j (
δ j

δ j − s
)

K∑

l=1

plφB(sβ̄l)
1

s

∫ s

0
Zn(y)dy

− s
L∑

j=1

(
q j

δ j − s
)

K∑

l=1

plφB(δ j β̄l)
1

δ j

∫ δ j

0
Zn(y)dy
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=
∑L

j=1 q jδ j
∏

m �= j (δm − s)
∑K

l=1 plφB(sβ̄l)

s
∏L

m=1(δm − s)

∫ s

0
Zn(y)dy

− s
L∑

j=1

q j

δ j − s
c j,n+1,

where β̄l := 1 − βl , l = 1, . . . , K , and

c j,n+1 :=
∑K

l=1 plφB(δ j β̄l)

δ j

∫ δ j

0
Zn(y)dy = P(Wn+1 = 0|Q = j), j = 1, . . . , L,

where Q denotes the type of the arrival process. Then, multiplying with rn+1 and
summing over n (with W0 = w) results in

UW (r , s) = r
N (s)

sD(s)

K∑

l=1

plφB(sβ̄l)
∫ s

0
UW (r , y)dy + e−sw

− s
L∑

j=1

q j

δ j − s
[U ( j)

W (r ,∞) − c j,0],

where UW (r , s) := ∑∞
n=0 r

n Zn(s), N (s) := ∑L
j=1 q jδ j

∏
m �= j (δm − s), D(s) :=

∏L
j=1(δ j − s), and U ( j)

W (r , s) := ∑∞
n=0 r

n E(e−sWn |Q = j), j = 1, . . . , L . Letting

I (s) = ∫ s
0 UW (r , y)dy, we have,

I ′(s) = r
N (s)

sD(s)

K∑

l=1

plφB(sβ̄l)I (s) + K (r , s), (89)

where

K (r , s) := e−sw − s
L∑

j=1

q j

δ j − s
[U ( j)

W (r ,∞) − c j,0].

The form of (89) is the same as the one in [6, Section 5, eq. (50)], and the analysis can
be performed similarly, although it would be somewhat more tricky, due to the zeros
of D(s).

5.3 Interarrival times proportionally dependent on system time

We now consider the case where An = c(Wn + Bn) + Jn , c ∈ (0, 1). We assume that
(Bn, Jn) are i.i.d. sequences of randomvectors. Thus, the quantities (c̄Bn−Jn) are i.i.d.
random variables; however, within a pair Bn , Jn are dependent. Here, we assume that
a non-negative random vector (B, J ) has a bivariate matrix-exponential distribution
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with LST E(e−sB−z J ) := G(s,z)
D(s,z) , whereG(s, z) and D(s, z) are polynomial functions

in s and z. A consequence of this definition is that the LST of the distribution of
Y := c̄B− J is also a rational function; the distribution of Y is called a bilateralmatrix-
exponential distribution [3, Theorem 3.1]. This class of distributions, under which we
model the dependence structure, belongs to the class ofmultivariatematrix-exponential
distributions, whichwas introduced in [4]. For ease of notation, let E(e−sY ) := h(s) =
f (s)
g(s) , and assume that g(s) has L zeros, say t j such that Re(t j ) > 0, j = 1, . . . , L , and
M zeros, say ζm , such that Re(ζm) < 0,m = 1, . . . , M , whereas f (s) is a polynomial
of degree at most M + L − 1, not sharing the same zeros with g(s).

Then, the recursion (87) becomes

Wn+1 = [(Vn − c)Wn + c̄Bn − Jn]+,

so that Vn − c ∼ U (−c, c̄). For Hn = [(Vn − c)Wn + c̄Bn − Jn]−, and Re(s) = 0
we have,

E(e−sWn+1 |W0 = w) = f (s)

g(s)

[∫ 0

−c
E(e−svWn |W0 = w)dv

+
∫ c̄

0
E(e−svWn |W0 = w)dv

]

+ 1 − E(e−sHn |W0 = w).

Multiplying with rn+1 (0 < r < 1) and summing from n = 0 to infinity, we obtain

g(s)(Zw(r , s) − e−sw) − r f (s)
∫ c̄

0
Zw(r , sy1)dy1

= r f (s)
∫ 0

−c
Zw(r , sy1)dy1 + rg(s)(

1

1 − r
− H(r , s)), (90)

where Zw(r , s) := ∑∞
n=0 r

n E(e−sWn |W0 = w), H(r , s) := ∑∞
n=0 r

n E(e−sHn |W0 =
w). We now have that

1. the LHS of (90) is analytic in Re(s) > 0 and continuous in Re(s) ≥ 0,
2. the RHS of (90) is analytic in Re(s) < 0 and continuous in Re(s) ≤ 0,
3. for large s, both sides are O(sM+L) in their respective half-planes.

Thus, Liouville’s theorem [14, Theorem 10.52] states that for Re(s) ≥ 0,

g(s)(Zw(r , s) − e−sw) − r f (s)
∫ c̄

0
Zw(r , sy1)dy1 =

M+L∑

l=0

Cl(r)s
l , (91)

and for Re(s) ≤ 0,

r f (s)
∫ 0

−c
Zw(r , sy1)dy1 + rg(s)(

1

1 − r
− H(r , s)) =

M+L∑

l=0

Cl(r)s
l . (92)
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For s = 0, (91) yields

C0(r) = g(0)(
1

1 − r
− 1) − r f (0)

∫ c̄

0

dy1
1 − r

= rc

1 − r
g(0),

where we have taken into account that f (0) = g(0). The same value for C0(r) can
be derived from (92) by setting s = 0. We can also obtain L other equations for the
remaining coefficients. Setting s = t j , j = 1, . . . , L, in (91), we obtain:

− r f (t j )
∫ c̄

0
Zw(r , t j y1)dy1 =

M+L∑

l=0

Cl(r)t
l
j . (93)

Proceeding similarly as in [6, 12],

Zw(r , s) = r
f (s)

g(s)

∫ c̄

0
Zw(r , sy1)dy1 + L(r , s), Re(s) ≥ 0, (94)

where L(r , s) := e−sw +
∑M+L

l=0 Cl (r)sl

g(s) . Next, we follow the lines in [12]. Note that for

r ∈ [0, 1), |K (r , s)| := |r f (s)
g(s) | ≤ r < 1 as s → 0. Iterating (94) n times, we obtain

Zw(r , s) =
∫

. . .

∫

[0,c̄]n+1
K (r , s)

n∏

h=1

K (r , sy1 . . . yh)Zw(r , sy1 . . . yn+1)dy1 . . . dyn+1

+ L(r , s) +
n∑

j=1

∫

. . .

∫

[0,c̄] j
K (r , s)

j−1∏

h=1

K (r , sy1 . . . yh)L(r , sy1 . . . y j )dy1 . . . dy j .

Since we will let n tend to∞, we are interested in investigating the convergence of the
summation in the previous expression, as well as in obtaining the limit of the first term
in the right-hand side of the previous expression. Since the expressions of K (r , s),
L(r , s) share the same properties as those in [12], we can show that

Zw(r , s) = L(r , s) +
∞∑

n=1

∫

. . .

∫

[0,c̄]n
K (r , s)

n−1∏

j=1

K

×(r , sy1 . . . y j )L(r , sy1 . . . yn)dy1 . . . dyn . (95)

We still need M more equations to obtain a system of equations for the coefficients
Cl(r). Substituting s = ζm , m = 1, . . . , M, in (92) and using (95), we obtain

r f (ζm)

∫ 0

−c
Zw(r , ζm y1)dy1 =

M+L∑

l=0

Cl(r)ζ
l
m . (96)

Finally, by using (93), and (96), we can derive the remaining coefficients Cl(r), l =
1, . . . , L + M .
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Remark 10 An alternative way to solve (94) is by performing the transformation v1 =
sy1, so that (94) becomes:

Zw(r , s) = r
∫ c̄s

0
h(s)Zw(r , v1)dv1 + L(r , s), Re(s) ≥ 0. (97)

Note that (97) is a Fredholm equation [13]; therefore, a natural way to proceed is by
successive substitutions. Define now iteratively the function

Li∗(r , s) := r
∫ c̄s

0
h(s)L(i−1)∗(r , v)dv, i ≥ 1,

with L0∗
(r , s) := L(r , s). Then, after n iterations we have that

Zw(r , s) =
n+1∑

i=0

Li∗(r , s) + rn+1
∫ c̄s

v1=0

∫ c̄v1

v2=0
. . .

∫ c̄vn

vn+1=0
h(s)

n∏

j=1

h(v j )Zw(r , vn+1)dvn+1 . . . dv2dv1.

Note that

lim
n→∞ rn+1

∫ c̄s

v1=0

∫ c̄v1

v2=0
. . .

∫ c̄vn

vn+1=0
h(s)

n∏

j=1

h(v j )Zw(r , vn+1)dvn+1 . . . dv2dv1 = 0.

To see this, observe that

|h(vn)

∫ c̄vn

vn+1=0
Zw(r , vn+1)dvn+1| <

|
∫ 1

vn+1=0
Zw(r , vn+1)dvn+1| ≤ 1

1 − r
.

Thus, the above limit is less than or equal to

lim
n→∞ rn+1 1

1 − r
= 0.

Therefore,

Zw(r , s) =
∞∑

i=0

Li∗(r , s). (98)
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Now for Re(s) ≥ 0, we have M2(r , s) = maxv∈[0,c̄s] |L(r , s)| < ∞. Then,

|Li∗(r , s)| < |
∫ c̄s

0
L(i−1)∗(r , s)| ≤ c̄s max

v∈[0,c̄s] |L(r , s)| = c̄sM2(r , s) < ∞,

which ensures the convergence of the infinite sum in (98).

5.4 A Bernoulli dependent structure

Consider the following (simpler) case of recursion in (2) where V (1)
n < 0 a.s., and

V (2)
n = U 1/a

n , with Un ∼ U (0, 1), a ≥ 2:

Wn+1 =
⎧
⎨

⎩

[
V (1)
n Wn + Bn − A(1)

n

]+
, w.p. p,

[
U 1/a
n Wn + Tn − A(2)

n

]+
, w.p. q := 1 − p,

(99)

where the LST of Bn , say φB(s) := NB (s)
DB (s) is rational with poles at s1, . . . , sl , with

Re(s j ) < 0, j = 1, . . . , l. Then, for Re(s) = 0,

E(e−sWn+1 |W0 = w) = pE(e−sV (1)
n Wn |W0 = w)φB(s)φA1(−s)

+ qE(e−sU1/a
n Wn |W0 = w)φT (s)φA2(−s) + 1 − Jn(s),

where for n = 0, 1, . . .,

Jn(s) := pE(e
−s
[
V (1)
n Wn+Bn−A(1)

n

]−
|W0 = w) + qE(e

−s
[
U1/a
n Wn+Tn−A(2)

n

]−
|W0 = w).

Note that for u = sv1/a , we have,

E(e−sU1/a
n Wn |W0 = w)

=
∫ 1

0
E(e−sv1/aWn |W0 = w)dv = a

sa

∫ s

0
ua−1E(e−uWn |W0 = w)du.

Setting Z (a)
w (r , s) := sa−1Zw(r , s) and proceeding as in [6], we obtain,

DB(s)[Z (a)
w (r , s) − sa−1e−sw − rq a

s φT (s)φA2 (−s)
∫ s
0 Z (a)

w (r , u)du]
= rsa−1[pNB(s)φA1(−s)

∫ 0
−∞ Zw(r , sv)P(V (1) ∈ dy) + DB(s)( 1

1−r − Mw(r , s))],
(100)

where Mw(r , s) := ∑∞
n=0 r

n Jn(s). Note that:

• The LHS in (100) is analytic for Re(s) > 0 and continuous for Re(s) ≥ 0.
• The RHS in (100) is analytic for Re(s) < 0 and continuous for Re(s) ≤ 0.
• For large s, both sides are O(sl) in their respective half-planes.
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It follows by Liouville’s theorem [14, Theorem 10.52] that

DB(s)[Z (a)
w (r , s) − sa−1e−sw − rq

a

s
φT (s)φA2 (−s)

∫ s

0
Z (a)

w (r , u)du]

=
l∑

k=0

Ck(r)s
k , Re(s) ≥ 0, (101)

rsa−1[pNB(s)φA1(−s)
∫ 0

−∞
Zw(r , sv)P(V (1) ∈ dy) + DB(s)(

1

1 − r
− Mw(r , s))]

=
l∑

k=0

Ck(r)s
k , Re(s) ≤ 0. (102)

Setting s = 0 in either (101), or (102) yields C0(r) = 0. Note that for s = s j , we
have DB(s j ) = 0, j = 1, . . . , l. Substituting in (102) yields

rsa−1
j [pNB(s j )φA1(−s j )

∫ 0

−∞
Zw(r , s jv)P(V (1) ∈ dy) =

l∑

k=1

Ck(r)s
k
j . (103)

Note that from (101)

Z (a)
w (r , s) = rq

a

s
φT (s)φA2(−s)

∫ s

0
Z (a)

w (r , u)du + sa−1e−sw +
∑l

k=1 Ck(r)sk

DB(s)
,

or equivalently, if I (a)(s) := ∫ s
0 Z (a)

w (r , u)du, we have

I (a)′(s) = rq
a

s
φT (s)φA2(−s)I (a)(s) +

∑l
k=1 Ck(r)sk

DB(s)
+ sa−1e−sw. (104)

Thus, following standard techniques from the theory of ordinary differential equa-
tions, we have for a positive number c, such that c ≤ s,

I (a)(s) = e
∫ s
c rq a

u φT (u)φA2 (−u)du

(

I (a)(c) +
∫ s

c
e− ∫ t

c rq
a
u φT (u)φA2 (−u)du

(∑l
k=1 Ck(r)tk

DB(t)
+ ta−1e−tw

)

dt

)

.

Note that
∫ s

c
rq

a

u
φT (u)φA2(−u)du = −(1 + o(1))rqa ln(c), as c → 0.

Since I (a)′(s) = sa−1Zw(r , s), we have I (a)′(0) = 0, and thus,

I (a)(s) =
∫ s

0
e
∫ s
t rq a

u φT (u)φA2 (−u)du

(∑l
k=1 ck(r)t

k

DB(t)
+ ta−1e−tw

)

dt .
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Combining the above with (104), and having in mind that I (a)′(s) = Z (a)
w (r , s) =

sa−1Zw(r , s), we have that

Zw(r , s) =
∑l

k=1 Ck(r)sk

sa−1DB(s)
+ e−sw + rq

a

sa
φT (s)φA2(−s)

∫ s

0
e
∫ s
t rq a

u φT (u)φA2 (−u)du

(∑l
k=1 Ck(r)tk

DB(t)
+ ta−1e−tw

)

dt .

By substituting the derived expression for Zw(r , s) in (102), we can obtain a system
of equations to obtain the remaining unknown coefficients Ck(r), k = 1, . . . , l.

5.5 Another generalization

We now consider the case where

Wn+1 = [VnWn + Bn − An]+,

with Vn ∼ U (0, 1), and E(e−s An |Bn = t) = χ(s)e−ψ(s)t , and Bn ∼ exp(μ). Thus,
the interarrival times depend on the service time of the previous customer, so that

E(e−s An−zBn ) =
∫ ∞

0
μe−μt e−ztχ(s)e−ψ(s)tdt = μχ(s)

μ + ψ(s) + z
,

when Re(μ + ψ(s) + z) > 0. Since for s = 0 the E(e−s An |Bn = t) should be equal
to one, we have to implicitly assume that ψ(0) = 0 and χ(0) = 1. Therefore, by
denoting Zn(s) = E(e−sWn ) we have:

Zn+1(s) := E(e−sWn+1) =E(e−s(VnWn+Bn−An)) + 1 − E(e−s[VnWn+Bn−An ]−)

=E(e−sVnWn )E(e−s(Bn−An)) + 1 −U−
VnWn

(s)

=E(e−sVnWn )
μχ(−s)

μ + ψ(−s) + s
+ 1 −U−

VnWn
(s),

whereU−
VnWn

(s) := E(e−s[VnWn+Bn−An ]−). Clearly, under the transformation v = su,
we have:

E(e−sVnWn ) =
∫ 1

0
E(e−suWn )du = 1

s

∫ s

0
Zn(v)dv.

Thus, assuming that χ(s) := P1(s)
Q1(s)

, ψ(s) := P2(s)
Q2(s)

, with P2(s), Q1(s), Q2(s) poly-
nomials of degrees L , M , and N , respectively:
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Zn+1(s) = P1(−s)

sQ1(−s)

μQ2(−s)

(μ + s)Q2(−s) + P2(−s)

∫ s

0
Zn(v)dv + 1 −U−

VnWn
(s)

=μNY (s)

sDY (s)

∫ s

0
Zn(v)dv + 1 −U−

VnWn
(s).

Multiplying with rn+1 (having in mind that W0 = w), and summing from zero to
infinity, we obtain

sDY (s)[Zw(r , s) − e−sw] − rμNY (s)
∫ s

0
Zw(r , v)dv = rsDY (s)

(
1

1 − r
− Mw(r , s)

)

,

where Mw(r , s) := ∑∞
n=0 r

nU−
VnWn

(s). Note that DY (s) := Q1(−s)((μ +
s)Q2(−s) + P2(−s)) is a polynomial of degree M + N + 1. Thus, following similar
arguments and Liouville’s theorem [14, Theorem 10.52], we have

sDY (s)[Zw(r , s) − e−sw] − rμNY (s)
∫ s

0
Zw(r , v)dv

=
M+N+L+2∑

l=0

Cl(r)s
l , Re(s) ≥ 0,

rsDY (s)

(
1

1 − r
− Mw(r , s)

)

=
M+N+L+2∑

l=0

Cl(r)s
l , Re(s) ≤ 0.

For s = 0, we can easily derive C0(r) = 0. Assuming that all the zeros of DY (s), say
t j , j = 1, . . . , M + N + 1 are in the positive half-plane, we can derive a system of
equations for the remaining coefficients Cl(r):

−rμNY (t j )
∫ t j

0
Zw(r , v)dv =

M+N+L+2∑

l=1

Cl(r)t
l
j , j = 1, . . . , M + N + 1.

Now for Re(s) ≥ 0, we have,

Zw(r , s) = rμ
NY (s)

DY (s)

∫ s

0
Zw(r , v)dv + e−sw −

∑M+N+L+2
l=1 Cl(r)sl

DY (s)
.

The form of the above equation is the same as in [6, eq. (48), p. 239], so it can be
solved similarly.

6 Onmodified versions of a multiplicative Lindley recursion with
dependencies

In the following, we focus on the recursion (3), which generalizes the model in [12].
More precisely, we assume that V (1)

n are such that P(V (1)
n ∈ [0, 1)) = 1, and V (2)

n

123



110 Queueing Systems (2024) 106:67–127

such that P(V (2)
n < 0) = 1. We further use μ to denote the probability measure on

[0, 1), i.e. μ(A) := P(V (1)
n ∈ A) for every Borel set A on [0, 1).

Assume also that {Y (0)
n := Bn−A(0)

n }n∈N0 are i.i.d. random variables and their LST,

say φY0(s) := E(e−sY (0)
n ) := N0(s)

D0(s)
, with D0(s) := ∏L

i=1(s + mi )
∏K0

j=1(s + t (0)j0
),

with Re(mi ) < 0, i = 1, . . . , L , Re(t (0)j0
) > 0, j0 = 1, . . . , K0. Assume also that

{A(k)
n }n∈N0 , k = 1, 2, are independent sequences of i.i.d. random variables with LST

φAk (s) := E(e−s A(k)
n ) := Nk (s)

Dk (s)
, Dk(s) := ∏Kk

jk=1(s + t (k)jk
), with Nk(s) polynomial

of degree at most Kk − 1, not sharing same zeros with Dk(s), and Re(t (1)j1
) > 0,

j1 = 1, . . . , K1, Re(t
(2)
j2

) < 0, j2 = 1, . . . , K2. We assume that W0 = w. Then,

E(e−sWn+1) = pE(e−s[Wn+Bn−A(0)
n ]+) + q

[
E(e−s[V (1)

n Wn+B̂n−A(1)
n ]1(B̂n ≤ Tn))

+ E(e−s[V (2)
n Wn+Tn−A(2)

n ]1(B̂n > Tn)) + 1 − E(e−s[V (1)
n Wn+B̂n−A(1)

n ]−1

× (B̂n ≤ Tn)) − E(e−s[V (2)
n Wn+Tn−A(2)

n ]−1(B̂n > Tn))
]

= pE(e−sWn )
N0(s)

D0(s)
+ qE(e−sV (1)

n Wn )χ(s)
N1(−s)

D1(−s)

+ qE(e−sV (2)
n Wn )ψ(s)

N2(−s)

D2(−s)
+ 1 − J−

n (s),

where

J−
n (s) :=pE(e−s[Wn+Bn−A(0)

n ]−) + q[E(e−s[V (1)
n Wn+B̂n−A(1)

n ]−1(B̂n ≤ Tn))

+ E(e−s[V (2)
n Wn+Tn−A(2)

n ]−1(B̂n > Tn))],
χ(s) :=E(e−s B̂n1(B̂n ≤ Tn)) =

∫ ∞

0
e−sx (1 − T (x))d B̂(x),

ψ(s) :=E(e−sTn1(B̂n > Tn)) =
∫ ∞

0
e−sx (1 − B̂(x))dT (x).

Letting Zw(r , s) := ∑∞
n=0 r

n E(e−sWn ), r ∈ [0, 1), we have for Re(s) = 0 that

D1(−s)D2(−s)
[
Zw(r , s)(D0(s) − rpN0(s)) − D0(s)e

−sw]

−rqχ(s)D0(s)D2(−s)N1(−s)
∫

[0,1)
Zw(r , sy)P(V (1) ∈ dy)

= D0(s)

[

rqψ(s)N2(−s)
∫

(−∞,0)
Zw(r , sy)P(V (2) ∈ dy)

+r D1(−s)D2(−s)

(
1

1 − r
− J−(r , s)

)]

, (105)

where J−(r , s) = ∑∞
n=0 r

n J−
n (s). It is readily seen that:
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• The LHS in (105) is analytic for Re(s) > 0 and continuous for Re(s) ≥ 0.
• The RHS in (105) is analytic for Re(s) < 0 and continuous for Re(s) ≤ 0.
• For large s, both sides are O(sL+K0+K1+K2) in their respective half-planes.

Thus, Liouville’s theorem [14, Theorem 10.52] implies that

D1(−s)D2(−s)
[
Zw(r , s)(D0(s) − rpN0(s)) − D0(s)e

−sw]

− rqχ(s)D0(s)D2(−s)N1(−s)
∫

[0,1)
Zw(r , sy)P(V (1) ∈ dy)

=
L+K0+K1+K2∑

l=0

Cl(r)s
l , Re(s) ≥ 0,

D0(s)D1(−s)[rqψ(s)N2(−s)
∫

(−∞,0)
Zw(r , sy)P(V (2) ∈ dy)

+ r D2(−s)(
1

1 − r
− J−(r , s))]

=
L+K0+K1+K2∑

l=0

Cl(r)s
l , Re(s) ≤ 0,

whereCl(r), l = 0, 1, . . . , L+K0+K1+K2, are unknown coefficients to be derived.
For s = 0, simple computations imply that

C0(r) = r

1 − r
(1 − p − qχ(0))

L∏

j=1

m j

K0∏

j0=1

t (0)j0

K1∏

j1=1

t (1)j1

K2∏

j2=1

t (2)j2
.

Thus, for Re(s) ≥ 0, we have

Zw(r , s) = K (r , s)
∫

[0,1)
Zw(r , sy1)μ(dy1) + L(r , s), (106)

where

K (r , s) := rqχ(s)D0(s)N1(−s)

D1(−s)(D0(s) − rpN0(s))
,

L(r , s) := D0(s)e−sw +∑L+K0+K1+K2
l=0 Cl(r)sl

D0(s) − rpN0(s)
.

The functional equation in (106) has the same form as the one in [12, eq. (13)] and
can be treated similarly. Note that in our case, for r ∈ [0, 1),

|K (r , s)| ≤ rq|χ(s)||D0(s)||N1(−s)|
|D1(−s)|(|D0(s)| − rp|N0(s)|) → rqχ(0)

1 − rp
<

rq

1 − rp
≤ r < 1,
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as s → 0. Thus, there is a positive constant ε such that for s satisfying |s| ≤ ε, we
have |K (r , s)| ≤ r̄ := 1+r

2 . Note that K (r , s), L(r , s) satisfy the same properties as
those in [12], thus, proceeding similarly and iterating n times (106) we obtain

Zw(r , s) = L(r , s) +
n∑

j=1

∫

. . .

∫

[0,1) j
K (r , s)

j−1∏

h=1

K (r , sy1 . . . yh)L(r , sy1 . . . y j )μ(dy1) . . . μ(dy j )

+
∫

. . .

∫

[0,1)n+1
K (r , s)

n∏

h=1

K (r , sy1 . . . yh)

Z(r , sy1 . . . yn+1)μ(dy1) . . . μ(dyn+1). (107)

We will let n → ∞ to obtain Zw(r , s), so we need to verify the convergence of the
summation in the second term in (107), as well as to obtain the limit of the third term
in (107). Following the lines in [12, pp. 9-10], we can finally obtain,

Zw(r , s) = L(r , s) +
∞∑

j=1

∫

. . .

∫

[0,1) j
K (r , s)

j−1∏

h=1

K (r , sy1 . . . yh)L(r , sy1 . . . y j )μ(dy1) . . . μ(dy j ). (108)

We still need to derive the remaining coefficients Cl(r), l = 1, . . . , L + ∑2
k=0 Kk :

First, by usingRouché’s theorem [14, Theorem3.42, p. 116],we can show that D0(s)−
rpN0(s) = 0has K0 roots, say δ1(r), . . . , δK0(r),with Re(δ j (r)) ≥ 0, j = 1, . . . , K0.
Thus, we can obtain K0 equations:

− rqχ(δ j (r))D0(δ j (r))D2(−δ j (r))N1(−δ j (r))
∫

[0,1)
Zw(r , δ j (r)y)P(V (1) ∈ dy)

= D1(−δ j (r))D2(−δ j (r))D0(δ j (r))e
−δ j (r)w

+
L+K0+K1+K2∑

l=0

Cl(r)(δ j (r))
l .

Similarly, for s = t (1)j1
, j1 = 1, . . . , K1,

− rqχ(t (1)j1
)D0(t

(1)
j1

)D2(−t (1)j1
)N1(−t (1)j1

)

∫

[0,1)
Zw(r , t (1)j1

y)P(V (1) ∈ dy)

=
L+K0+K1+K2∑

l=0

Cl(r)(t
(1)
j1

)l .
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For s = t (2)j2
, j2 = 1, . . . , K2,

− rqψ(t (2)j2
)D0(t

(2)
j2

)D1(−t (2)j2
)N2(−t (2)j2

)

∫

(−∞,0)
Zw(r , t (2)j2

y)P(V (2) ∈ dy)

=
L+K0+K1+K2∑

l=0

Cl(r)(t
(2)
j2

)l ,

while for s = m j , j = 1, . . . , L ,

L+K0+K1+K2∑

l=0

Cl(r)(m j )
l = 0.

By inserting where is needed the expression in (108), we obtain a system of L + K0 +
K1 + K2 equations to obtain Cl(r), l = 1, . . . , L + K0 + K1 + K2.

6.1 Amixed-autoregressive case

Consider first a simple version of the recursion (4), i.e.Wn+1 = [VnWn + Bn − An]+,
where now P(Vn = a) = p1, P(Vn ∈ [0, 1)) = p2, and P(Vn < 0) = 1 − p1 − p2,
with a ∈ (0, 1), 0 ≤ p1 ≤ 1, 0 ≤ p2 ≤ 1, p1 + p2 ≤ 1. (The general version of
(4) will be considered in Remark 11.) Note that the case where a = 1 was analysed
in [12]. In the following, we fill the gap in the literature, by analysing the case where
a ∈ (0, 1), which we call mixed-autoregressive, in the sense that in the obtained
functional equationwewill have the terms: Zw(r , as), and

∫

[0,1) Zw(r , sy)P(V ∈ dy).

Assume that V+ def= (V |V ∈ [0, 1)), V− def= (V |V < 0). Then, for Re(s) = 0,
r ∈ [0, 1) we have

Zw(r , s) − e−sw = rp1φY (s)Zw(r , as) + rp2φY (s)
∫

[0,1)
Zw(r , sy)P(V+ ∈ dy)

+r(1 − p1 − p2)φY (s)
∫

(−∞,0)
Zw(r , sy)P(V− ∈ dy)

+r

(
1

1 − r
− J−(r , s)

)

, (109)

where {Yn = Bn − An}n∈N0 are i.i.d. random variables with LST φY (s) := NY (s)
DY (s) ,

with DY (s) := ∏L
i=1(s − ti )

∏M
j=1(s − s j ). Without loss of generality, we assume

that Re(ti ) > 0, i = 1, . . . , L , Re(s j ) < 0, j = 1, . . . , M . Thus, (109) becomes

DY (s)(Zw(r , s) − e−sw) − rp1NY (s)Zw(r , as) − rp2NY (s)
∫

[0,1) Zw(r , sy)P(V+ ∈ dy)

= r(1 − p1 − p2)NY (s)
∫

(−∞,0) Zw(r , sy)P(V− ∈ dy) + r DY (s)
(

1
1−r − J−(r , s)

)
.

(110)
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It is readily seen that:

• The LHS in (110) is analytic for Re(s) > 0 and continuous for Re(s) ≥ 0.
• The RHS in (110) is analytic for Re(s) < 0 and continuous for Re(s) ≤ 0.
• For large s, both sides are O(sL+M ) in their respective half-planes.

Thus, Liouville’s theorem [14, Theorem 10.52] implies that for Re(s) ≥ 0,

DY (s)(Zw(r , s) − e−sw) − rp1NY (s)Zw(r , as) − rp2NY (s)
∫

[0,1)

Zw(r , sy)P(V+ ∈ dy) =
M+L∑

l=0

Cl(r)s
l , (111)

and for Re(s) ≤ 0,

r(1 − p1 − p2)N (s)
∫

(−∞,0)
Zw(r , sy)P(V− ∈ dy) + r DY (s)(

1

1 − r
− J−(r , s))

=
M+L∑

l=0

Cl(r)s
l . (112)

By using either (111) or (112) for s = 0, we obtain,

C0(r) = r(1 − p1 − p2)

1 − r

L∏

i=1

ti

M∏

j=1

s j .

Denoting by μ the probability measure on [0, 1) induced by V+, the expression (111)
is written as

Zw(r , s) = p1K (r , s)Zw(r , as) + p2K (r , s)
∫

[0,1)
Zw(r , sy1)μ(dy1) + Lw(r , s),

(113)

where

K (r , s) := rφY (s), Lw(r , s) := e−sw +
∑M+L

l=0 Cl(r)sl

DY (s)
.

Our aim is to solve (113), which combines the model in [8], with those in [5, 12], i.e.
in the functional equation the unknown function Zw(r , s) arises also as Zw(r , as) as
well as in

∫

[0,1) Zw(r , sy)μ(dy). Let for i, j = 0, 1, . . . ,

fi, j (s) :=ai
j∏

k=1

yks, yk ∈ [0, 1), k = 1, . . . , j,
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F(r , fi, j (s)) :=
{
Zw(r , ai s), j = 0,∫

. . .
∫

[0,1) j Zw(r , fi, j (s))μ(dy1) . . . μ(dy j ), j ≥ 1,

where fi,0(s) = ai s (i.e.
∏0

k=1 yk := 1). Moreover, fi, j ( fk,l(s)) = fi+k, j+l(s) =
fk,l( fi, j (s)). Then, (113) becomes

F(r , s) = p1K (r , s)F(r , f1,0(s)) + p2K (r , s)F(r , f0,1(s)) + Lw(r , s), (114)

where F(r , s) = F(r , f0,0(s)) = Zw(r , s). Iterating (114) n − 1 times yields,

F(r , s) =
n∑

k=0

pk1 p
n−k
2 Gk,n−k(s)F(r , fk,n−k(s))

+
n−1∑

k=0

k∑

m=0

pm1 pk−m
2 Gm,k−m(s)L̃(r , fm,k−m(s)), (115)

whereGk,n−k(r , s) are recursively defined as follows (withG−1,.(s) = G .,−1(s) ≡ 0,
G0,0(s) = 1):

G1,0(s) :=K (r , s), G0,1(s) := K (r , s),

Gk+1,n−k(s) =Gk,n−k(s)K̃ (r , fk,n−k(s)) + Gk+1,n−1−k(s)K̃ (r , fk+1,n−1−k(s)),

Gk,n+1−k(s) =Gk−1,n+1−k(s)K̃ (r , fk−1,n+1−k(s)) + Gk,n−k(s)K̃ (r , fk,n−k(s)),

where also

K̃ (r , fi, j (s)) :=
{
K (r , ai s), j = 0,∫

. . .
∫

[0,1) j K (r , fi, j (s))μ(dy1) . . . μ(dy j ), j ≥ 1,

and

L̃(r , fi, j (s)) :=
{
Lw(r , ai s), j = 0,∫

. . .
∫

[0,1) j Lw(r , fi, j (s))μ(dy1) . . . μ(dy j ), j ≥ 1.

It can be easily verified that Gk,n−k(r , s) is a sum of
(n
k

)
terms, and each of them is a

product of n terms of values of K̃ (r , f.,.(.)), which are related to the LST φY (.). We
have to mention that our framework is related to the one developed in [1] with the
difference that the functions fi, j (s) (for j > 0) are more complicated compared to
the corresponding ai (z) in [1], and inherit difficulties in solving (114).

In what follows, we will let n → ∞ in (115) so as to obtain an expression for
F(r , s). In doing that, we have to verify the convergence of the summation in the
second term in the right-hand side of (115), as well as to estimate the limit of the
corresponding first term in the right-hand side of (115). The key ingredient is to show
that Gk,n−k(s) is bounded. Similarly to [1, p. 8], Gk,n−k(s) can be interpreted as the
total weight of all

(n
k

)
paths from (0, 0) to (k, n − k). Let Ck,n−k the set of all paths

leading from (0, 0) to (k, n − k), where a path from (0, 0) to (k, n − k) is defined as

123



116 Queueing Systems (2024) 106:67–127

a sequence of grid points starting from (0, 0) and ending to (k, n − k) by only taking
unit steps (1, 0), (0, 1). Then, a typical term (one of the

(n
k

)
terms) ofGk,n−k(s) should

be the following:

∫

. . .

∫

[0,1)m
∏

(l,m)∈Ck,n−k

K̃ (r , al y1 . . . yms)μ(dy1) . . . μ(dyn−k),

for m = 0, . . . , n − k, and l = 0, . . . , k with (l,m) �= (k, n − k). For Re(s) ≥ 0,
M1(r , s) := supy∈[0,1] |K (r , sy)| < ∞, M2(r , s) := supy∈[0,1] |L(r , sy)| < ∞, and
|K (r , s)| ≤ r < 1. Then, for a ∈ (0, 1), Ml(r , ai s) < Ml(r , s), i ≥ 1, l = 1, 2.
Following [12],

∣
∣
∣
∣
∣
∣

∫

. . .

∫

[0,1)m
∏

(l,m)∈Ck,n−k

K̃ (r , al y1 . . . yms)μ(dy1) . . . μ(dyn−k)

∣
∣
∣
∣
∣
∣

≤ E

⎡

⎣
∏

(l,m)∈Ck,n−k

|K̃ (r , al Z1 . . . Zms)|
⎤

⎦ ,

where Z1, Z2, . . . is a sequence of i.i.d. random variables with the same distribution
as V+. Following the same procedure as in [12, pp. 8-9], we can show that each of the
weights of the path is bounded, implying that Gk,n−k(s) is also bounded. This result
will imply as n → ∞ that the first term in the right-hand side of (115) vanishes. Thus,

F(r , s) =
∞∑

k=0

k∑

m=0

pm1 pk−m
2 Gm,k−m(s)L̃(r , fm,k−m(s)). (116)

We are now ready to obtain the coefficients Cl(r), l = 1, . . . , M + L . For s = ti ,
i = 1, . . . , L , in (111), we have

− rp1NY (ti )Zw(r , ati ) − rp2NY (ti )
∫

[0,1)
Zw(r , ti y)μ(dy) =

M+L∑

l=0

Cl(r)t
l
i .

(117)

Setting s = s j , j = 1, . . . , M , in (112) yields

r(1 − p1 − p2)N (s j )
∫

(−∞,0)
Zw(r , s j y)P(V− ∈ dy) =

M+L∑

l=0

Cl(r)s
l
j . (118)

Equations (117), (118) constitute a system of equations to obtain the unknown coef-
ficients Cl(r), l = 1, . . . , M + L .

Remark 11 We now return to the general case of recursion (4). The analysis is still
applicable when we assume that with probability p1, V

(0)
n ∈ {a1, . . . , aM }, with
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ak ∈ (0, 1), and P(V (0)
n = ak) = qk , k = 1, . . . , M . Then, (113) takes the following

form

Zw(r , s) = p1K (r , s)
M∑

k=1

qk Zw(r , aks) + p2K (r , s)
∫

[0,1)
Zw(r , sy1)μ(dy1) + Lw(r , s).

(119)

Then, by setting h j := p1q j , j = 1, . . . , M , hM+1 := p2, fi1,...,iM ,iM+1(s) :=
ai11 . . . aiMM

∏iM+1
j=1 y j s, and e

(M+1)
j an 1× (M+1) row vector with 1 at the j th position

and all the other entries equal to zero, (119) becomes

F(r , s) = K (r , s)
M+1∑

j=1

h j F(r , f
e(M+1)
j

(s)) + Lw(r , s). (120)

Note that (120) has the same form as the functional equations treated in [1, eq. (2)].
After n iterations (120) becomes

F(r , s) =
∑

i1+...+iM+iM+1=n+1

hi11 . . . hiMM hiM+1
M+1Gi1,...,iM ,iM+1(s)F(r , fi1,...,iM ,iM+1(s))

+
n∑

k=0

∑

i1+...+iM+iM+1=k

hi11 . . . hiMM hiM+1
M+1Gi1,...,iM ,iM+1(s)L̃(r , fi1,...,iM ,iM+1(s)),

where now

Gi1,...,iM ,iM+1(s) =
M+1∑

j=1

K̃ (r , fi1,...,i j−1,...,iM+1(s))Gi1,...,i j−1,...,iM+1(s),

K̃ (r , fi1,...,iM+1(s)) :=
{
K (r , ai11 . . . aiMM s), iM+1 = 0,∫

. . .
∫

[0,1) j K (r , fi1,...,iM+1(s))μ(dy1) . . . μ(dyiM+1), iM+1 ≥ 1,

L̃(r , fi1,...,iM+1(s)) :=
{
L(r , ai11 . . . aiMM s), iM+1 = 0,∫

. . .
∫

[0,1) j L(r , fi1,...,iM+1(s))μ(dy1) . . . μ(dyiM+1), iM+1 ≥ 1,

with G0,...,0,0(s) := 1, Gi1,...,iM ,iM+1(s) = 0, in case one of the indices becomes −1.
Following the above approach and having in mind that the functions fi1,...,iM+1(s) are
commutative contraction mappings on {s ∈ C; Re(s) ≥ 0}, F(r , s) := Zw(r , s) can
be derived by using [1, Theorem 3].

Remark 12 Note that in this subsection we have not considered any dependence
framework among Bn , An , since our major focus was on introducing this mixed-
autoregressive concept, and generalizing the work in [12], by assuming a ∈ (0, 1),
instead of a = 1. However, the analysis is still applicable even when we lift the
independence assumption. For example, assume the simple scenario where now with
probability p1, we further assume An = cBn + Jn , i.e. the interarrival time is linearly
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dependent on the service time of the previous customer, with c ∈ (0, 1), Jn ∼ exp(δ).
Then, (113) becomes

Zw(r , s) = p1K1(r , s)Zw(r , as)

+p2K (r , s)
∫

[0,1)
Zw(r , sy1)μ(dy1) + Lw(r , s), (121)

where now K1(r , s) := r δ
δ−sφB(c̄s). The rest of the analysis can be pursued similarly

as above. Clearly, the analysis is still applicable either if we consider Jn to have
distribution with rational LST, or a more general dependence structure, e.g. An =
Gn(Wn + Bn) + Jn , P(Gn = βi ) = qi , i = 1, . . . , M , or the (random) threshold
dependence structure analysed in Sect. 4. Clearly, we can also apply the same steps
when lifting independence assumptions for the general case analysed in Remark 11.

7 Amore general dependence framework

In the following, we consider a more general dependence structure among {Bn}n∈N0 ,{An}n∈N0 . More precisely, assume that

E(e−s An |Bn = t) = χ(s)
N∑

i=1

pi e
−ψi (s)t , (122)

thus, the interarrival times depend on the service time of the previous customer, so
that

E(e−s An−zBn ) =
∫ ∞

0
e−ztχ(s)

N∑

i=1

pi e
−ψi (s)tdFB(t) = χ(s)

N∑

i=1

piφB(z + ψi (s)),

with Re(ψi (s)+ z) > 0. Clearly χ(0) = 1,ψi (0) = 0, i = 1, . . . , N . The component
e−ψi (s)t depends on the previous service time. The component χ(s) does not depend
on the service time.

Note that with the above framework we can recover some of the cases analysed
above. In particular, the case An = cBn + Jn with N = 1, so that p1 = 1,

E(e−s An |Bn = t) = E(e−s(cBn+Jn)|Bn = t) = E(e−s Jn )e−cst ,

with χ(s) := E(e−s Jn ), ψ(s) = cs.
The case An = GnBn + Jn , with P(Gn = βi ) = pi , i = 1, . . . , N . Then:

χ(s) = E(e−s Jn ), ψi (s) = βi s, i = 1, . . . , N .

Another interesting scenario: Given B = t , A = ∑Ni (t)
k=1 Hi,k , with probability

pi , Ni (t) ∼ Poisson(γi t), i = 1, . . . , N , and {Hi,k} are sequences of i.i.d. random
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variables with a rational LST, each of them distributed like Hi . Then,

E(e−s An |Bn = t) = ∑N
i=1 pi E(e−s

∑Ni (t)
k=1 Hi,k |Bn = t) =

= ∑N
i=1 pi

∑∞
li=0 E(e−s

∑li
k=1 Hi,k |Bn = t) e

−γi t (γi t)li
li !

= ∑N
i=1 pi e

−γi (1−E(e−sHi )),

and thus, χ(s) = 1, ψi (s) = γi (1 − E(e−sHi )), i = 1, . . . , N .
So, returning to the simpler general scenario for the stochastic recursion in (1):

Wn+1 = [aWn + Bn − An]+, where the interarrival times depend on the service time
of the previous customer based on (122), we have:

E(e−sWn+1) = E(e−s(aWn+Bn−An)) + 1 − E(e−s[aWn+Bn−An ]−)

= E(e−saWn )E(e−s(Bn−An)) + 1 −Un(s)
= E(e−saWn )χ(−s)

∑N
i=1 piφB(s + ψi (−s)) + 1 −Un(s).

Assuming that the limit as n → ∞ exists, by focusing on the limiting random variable
W , and setting Z(s) = E(e−sW ), we come up with the following functional equation:

Z(s) = Z(as)χ(−s)
∑N

i=1 piφB(s + ψi (−s)) + 1 −U (s).

Let χ(s) := A1(s)∏K
k=1(s+λk )

, ψi (s) := Bi (s)
∏Li

l=1(s+νl )
, with A1(s) a polynomial of degree at

most K − 1, not sharing the same zeros with the denominator of χ(s), and similarly,
Bi (s) polynomial of degree at most Li − 1, not sharing the same zeros with the
denominator of ψi (s), for i = 1, . . . , N . Then, for Re(s) = 0,

∏K
k=1(λk − s)Z(s) − A1(−s)Z(as)

∑N
i=1 piφB(s + ψi (−s)) = 1 −U (s).

By using similar arguments as above, Liouville’ theorem [14, Theorem 10.52] implies
that,

K∏

k=1

(λk − s)Z(s) − A1(−s)Z(as)
N∑

i=1

piφB(s + ψi (−s)) =
K∑

j=0

C j s
j , Re(s) ≥ 0.

(123)

Setting s = 0, yields C0 = 0. The other C j s are found by using the K zeros s = λk ,
k = 1, . . . , K . Indeed, set s = λk , k = 1, . . . , K in (123) to obtain the following
system:

− A1(−λk)Z(aλk)

N∑

i=1

piφB(λk + ψi (−λk)) =
K∑

j=1

C jλ
j
k . (124)

123



120 Queueing Systems (2024) 106:67–127

However, we still need to find Z(aλk), k = 1, . . . , K . This can be done by iterating

Z(s) = Z(as)A(−s)
N∑

i=1

piφB(s + ψi (−s)) +
∑K

j=1 C js j
∏K

k=1(λk − s)
.

Thiswill result in expressions containing infinite products of the form
∏∞

m=0 A(−ams)
φB(ams + ψi (−ams)). Indeed, after the iterations we get:

Z(s) =
K∑

j=1

∞∑

n=0

C j (ans) j
∏K

k=1(λk − ans)

n−1∏

m=0

A(−ams)
N∑

i=1

piφB(ams + ψi (−ams))

+
∞∏

m=0

A(−ams)
N∑

i=1

piφB(ams + ψi (−ams)). (125)

Note that for largem,φB(ams+ψi (−ams)) approaches 1, sinceams+ψi (−ams) → 0.
Substituting s = aλk , k = 1, . . . , K in (125), we obtain Z(aλk). Finally, by

substituting the derived expression in (124), we get a system of equations for the
unknown coefficients C j , j = 1, . . . , K .

Remark 13 Note that in the independent case, i.e. ψ(s) = 0, the situation is easy. In
the linear dependent case, i.e. An = βi Bn + Jn , ψi (s) = βi s, the analysis is also easy
to handle. If we additionally assume that Jn ∼ exp(δ), then we are interested in the

convergence of
∏∞

m=0
δφB (am β̄i s)

δ−ams , which is also easy to handle.

7.1 Interarrival times dependent on system time

Assume now that

E(e−s An |Wn + Bn = t) = χ(s)e−ψ(s)t ,

and thus, the interarrival time depends on the workload present after the arrival of the
previous customer. Therefore,

E(e−s An−z(Wn+Bn)) = χ(s)φB(z + ψ(s))Z(z + ψ(s)),

with Re(z + ψ(s)) > 0. Then, for Re(s) = 0, the functional equation becomes

Z(s) − χ(−s)φB(s + ψ(−s))Z(s + ψ(−s)) = 1 −U (s). (126)

Note that the case where An = c(Wn + Bn) + Jn , c ∈ (0, 1), Jn ∼ exp(λ) was
recently treated in [7, Section 2]. For that case, χ(s) = λ

λ+s , and ψ(s) = sc. For the
general case, the functional equation (126) can be treated by following the lines in [1],
when g(s) := s + ψ(−s) is a contraction mapping on the closed positive half-plane.
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A more interesting case arises when we assume that the next interarrival time
randomly depends on the workload present right after the arrival of the previous
customer. More precisely,

E(e−s An |Wn + Bn = t) = χ(s)
N∑

i=1

pi e
−ψi (s)t . (127)

In such a case,

E(e−s An−z(Wn+Bn)) = χ(s)
N∑

i=1

piφB(z + ψi (s))Z(z + ψi (s)),

with Re(z + ψi (s)) > 0, i = 1, . . . , N . Then, for Re(s) ≥ 0, we have

K∏

k=1

(λk − s)Z(s) − A1(−s)
N∑

i=1

piφB(s + ψi (−s))Z(s + ψi (−s)) =
K∑

j=0

C j s
j .

(128)

A special case of the dependence relation (127) arises when An = Gn(Wn + Bn)+
Jn , P(Gn = βi ) = pi , i = 1, . . . , N ; see Sect. 2.3. For such a case, χ(s) = δ

δ+s ,
ψi (s) = βi s, i = 1, . . . , N . In general, if gi (s) = s + ψi (−s), i = 1, . . . , N , are
commutative contraction mappings on the closed positive half-plane, then following
the lines in [1], the functional equation (128) can be handled.

8 An integer-valued reflected autoregressive process and a novel
retrial queueing systemwith dependencies

In this section, we consider the following integer-valued stochastic process {Xn; n =
0, 1, . . .} that is determined by the recursion (5):

Xn+1 =
{∑Xn

k=1Uk,n + Zn − Qn+1, Xn > 0,
Yn − Q̃n+1, Xn = 0,

(129)

where Z1, Z2, . . ., Y1,Y2, . . ., are i.i.d. non-negative integer-valued random variables
with probability generating function (pgf) C(z), and G(z), respectively, and Qn , Q̃n

are i.i.d. random variables such that

P(Qn = 0|
Xn∑

k=1

Uk,n + Zn = l, Xn > 0) := λ1

λ1 + α1(1 − δ0,l)
,

P(Qn = 1|
Xn∑

k=1

Uk,n + Zn = l, Xn > 0) := α1(1 − δ0,l)

λ1 + α1(1 − δ0,l)
,
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P(Q̃n = 0|Yn = l, Xn = 0) := λ0

λ0 + α0(1 − δ0,l)
,

P(Q̃n = 1|Yn = l, Xn = 0) := α0(1 − δ0,l)

λ0 + α0(1 − δ0,l)
,

where δ0,l denotes theKronecker’s delta function, i.e. δ0,l = 1, if l = 0, and δ0,l = 0, if
l �= 0. Moreover,Uk,n are i.i.d. Bernoulli distributed random variables with parameter
ξn , i.e. P(Uk,n = 1) = ξn , P(Uk,n = 0) = 1 − ξn . It is also assumed that ξn are also
i.i.d. random variables with P(ξn = ai ) = pi , i = 1, . . . , M , and

∑M
i=1 pi = 1. As

usual, it is assumed that for all n, Zn , Yn ,Uk,n , Qn , Q̃n are independent of each other
and of all preceding Xr .

Note that (129) can be interpreted as follows: Let Xn be the number of waiting
customers in an orbit queue just after the beginning of the nth service, Qn+1 (resp.
Q̃n+1) be the number of orbiting customers that initiate the (n + 1)th service when
Xn > 0 (resp. Xn = 0). Note that when Xn > 0 (resp. Xn = 0), the first primary
customer arrives according to a Poisson process with rate λ1 (resp. λ0). Zn (resp.
Yn) denotes the number of arriving customers during the nth service when Xn > 0
with pgf E(zZn ) := C(z) (resp. with pgf E(zYn ) := G(z), if Xn = 0). The orbiting
customers become impatient during the nth service. In particular, with probability
pi , each of the Xn customers in orbit becomes impatient with probability 1 − ai ,
i = 1, . . . , M , i.e. there are M schemes that model the impatience behaviour of the
customers in orbit during a service time, and with probability pi , i = 1, . . . , M , the
i th scheme is assigned at the beginning of a service. Under the i th impatience scheme,
each orbiting customer becomes impatient and leaves the system with probability
1 − ai , i = 1, . . . , M . Therefore, with probability pi , i = 1, . . . , M , Uk,n equals 1
with probability ai , and 0 with probability 1 − ai .

Under such a setting, the service time and/or the rate of the Poisson arriving process
of the number of customers that join the orbit queue during a service time depend on
the orbit size at the beginning of the service. Moreover, the retrieving times depend
also on whether the orbit queue is empty or not at the beginning of the last service (i.e.
the are exponentially distributed with rate α0 (resp. α1) when Xn = 0 (resp. Xn > 0)).
We have to note that to our best knowledge it is the first time that such a retrial model
is considered in the related literature.

Then,

E(zXn+1 ) =E(z
∑Xn

k=1 Uk,n+Zn−Qn+11(Xn > 0)) + E(zYn−Q̃n+11(Xn = 0))

=E(zZn )(
α1

z(λ1 + α1)
+ λ1

λ1 + α1
)E(z

∑Xn
k=1 Uk,n (1 − 1(Xn = 0)))

+ E(zYn−Q̃n+1(1(Xn = 0, Yn > 0) + 1(Xn = 0, Yn = 0)))

=E(zZn )
α1 + zλ1
z(λ + α1)

[E(z
∑Xn

k=1 Uk,n ) − E(1(Xn=0))]

+ E(zYn1(Yn > 0))E(1(Xn = 0))[ α0

z(λ0 + α0)
+ λ0

λ0 + α0
]

+ E(1(Yn = 0))E(1(Xn = 0))
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=E(zZn )
α1 + zλ1
z(λ + α1)

[E(z
∑Xn

k=1 Uk,n ) − E(1(Xn = 0))]

+ E(1(Xn = 0))[ α0 + zλ0
z(λ0 + α0)

E(zYn ) + a0(z − 1)

z(λ0 + α0)
E(1(Yn = 0))],

where in the third equality we used the fact that when Yn = 0, then Q̃n+1 = 0 with
certainty. Let f (z) be the pgf of the steady-state distribution of {Xn}n∈N0 we have
after some algebra,

f (z) = Ĉ(z)

z

M∑

i=1

pi f (āi + ai z) + f (0)

z

[

G(0)
α0(z − 1)

α0 + λ0
+ Ĝ(z) − Ĉ(z)

]

,

(130)

where Ĉ(z) = C(z)α1+λ1z
λ1+α1

, Ĝ(z) = G(z)α0+λ0z
λ0+α0

. After multiplying (130) with z and
letting z = 0, we obtain

f (0) = C(0)
M∑

i=1

pi f (āi ). (131)

Set g(z) = Ĉ(z)
z , K (z) = f (0)

z [G(0)α0(z−1)
α0+λ0

+ Ĝ(z) − Ĉ(z)], so that (130) is now
written as

f (z) = g(z)
M∑

i=1

pi f (āi + ai z) + K (z),

which has the same form as the one in [1, Section 5, p. 19]. Note that g(1) = 1,
K (1) = 0, thus, the functional equation in (130) can be solved by following [1,
Theorem 2]:

Theorem 14 The generating function f (z) is given by

f (z) = limn→∞
∑

i1+...+iM=n+1 p
i1
1 . . . piMM Li1,...,iM (z)

+∑∞
k=0

∑
i1+...+iM=k p

i1
1 . . . piMM Li1,...,iM (z)K (1 − ai11 . . . aiMM (1 − z)),

(132)

where Li1,...,iM (z) are recursively obtained by the relation (5) in [1]. The term f (0) is
determined by substituting āi , i = 1, . . . , M, in (132), multiplying both sides by pi ,
summing over i , and using (131).

Remark 15 Note that Ĉ(z) (resp. Ĝ(z)) refers to the pgf of the number of primary
customers that arrive between successive service initiations when Xn > 0 (resp.
Xn = 0). Moreover, we can further assume class-dependent service times, i.e. when
an orbiting (resp. primary) customer is the one that occupies the server, the pgf of
the number of arriving customers during his/her service time equals Co(z) (resp.
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Cp(z)). In such a case, Ĉ(z) = α1Co(z)+λ1zCp(z)
λ1+α1

when Xn > 0. Similarly, Ĝ(z) =
α0Go(z)+λ0zG p(z)

λ0+α0
when Xn = 0.

Remark 16 Moreover, some very interesting special casesmay be deduced from (130).
In particular, when αk → ∞, k = 0, 1, then Ĉ(z) = C(z), and Ĝ(z) = G(z),
since αk+λk z

λk+αk
→ 1 as αk → ∞. Thus, (130) reduces to the functional equation that

corresponds to the standard M/G/1 queue generalization in [1, Section 5]. Moreover,
one can further assume that one of αks tend to infinity, e.g. α0 → ∞ and a1 > 0. In
such a scenario, the server has the flexibility to treat the orbit queue as a typical queue,
when at the beginning of the last service the orbit queue was empty.

8.1 An extension to a two-dimensional case: a priority retrial queue

In the following, we go one step further towards amultidimensional case. In particular,
we consider the two-dimensional discrete-time process {(X1,n, X2,n); n = 0, 1, . . .},
and assume that only the component {X2,n; n = 0, 1, . . .} is subject to the autore-
gressive concept, i.e. we generalize the previous model to incorporate two classes of
customers (primary and orbiting customers) and priorities, where orbiting customers
are impatient.

Primary customers arrive according to a Poisson processwith rateλ1 and if they find
the server busy form a queuewaiting to be served. Retrial customers arrive according to
a Poisson process with rate λ2, and upon finding a busy server join an infinite capacity
orbit queue, from where they retry according to the constant retrial policy, i.e. only the
first in orbit queue attempts to connectwith the server after an exponentially distributed
time with rate α.

Let Xi,n be the number of customers in queue i (i.e. type i customers) just after the
beginning of the nth service, where with i = 1 (resp. i = 2) we refer to the primary
(resp. orbit) queue. As usual, the server becomes available to the orbiting customers
only when there are no customers at the primary queue upon a service completion.
We further assume that orbiting customers become impatient during the service of an
orbiting customer, according to the machinery described above.

Let also Ai,n , i = 1, 2, be the number of customers of type i that join the
system during the nth service, with pgf A(z1, z2), and set λ := λ1 + λ2. Then
Xn := {(X1,n, X2,n); n = 0, 1, . . .} satisfies the following recursions:

{
X1,n+1 = X1,n + A1,n − 1, if X1,n > 0, A1,n ≥ 0,
X2,n+1 = X1,n + A1,n, if X2,n ≥ 0, A2,n ≥ 0,

{
X1,n+1 = A1,n − 1, if X1,n > 0, A1,n > 0,
X2,n+1 = X1,n + A1,n, if X2,n ≥ 0,

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

X1,n+1 = 0, if X1,n = A1,n = 0,
with probability λ

λ+α
,

X2,n+1 = X2,n + A2,n, if X2,n > 0, A2,n ≥ 0,
X1,n+1 = 0, if X1,n = A1,n = 0,

with probability α
λ+α

.

X2,n+1 = ∑X2,n
k=1 Yk,n + A2,n − 1, if X2,n > 0, A2,n ≥ 0,
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More precisely, the value of the impatience probability equals āi := 1 − ai with
probability pi , i = 1, . . . , M , i.e. P(ξn = ai ) = pi , and P(Yk,n = 1) = ξn ,
P(Yk,n = 0) = 1 − ξn . Moreover,

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

X1,n+1 = 0, if X1,n = A1,n = 0,
with probability λ

λ+α
,

X2,n+1 = X2,n + A2,n, if X2,n = 0, A2,n > 0,
X1,n+1 = 0, if X1,n = A1,n = 0,

with probability α
λ+α

,

X2,n+1 = A2,n − 1, if X2,n = 0, A2,n > 0,

{
X1,n+1 = 0, if X1,n = A1,n = 0,
X2,n+1 = 0, if X2,n = A2,n = 0.

To our best knowledge, it is the first time that such a priority retrial model is considered
in the related literature.

Let F(z1, z2) := E(z
X1,n
1 z

X2,n
2 ). Then, using the above recursions, and after lengthy

but straightforward calculations we come up with the following functional equation:

F(z1, z2)[z1 − A(z1, z2)] = αA(0, z2)z1
z2(λ + α)

M∑

i=1

pi F(0, āi + ai z2)

− F(0, z2)A(0, z2)(α + λ(1 − z1))

λ + α

+ F(0, 0)A(0, 0)α(z2 − 1)z1
z2(λ + α)

. (133)

Then, it is readily seen by using Rouché’s theorem [14, Theorem 3.42, p. 116] that
z1 − A(z1, z2) has for fixed |z2| ≤ 1, exactly one zero, say z1 = q(z2) in |z1| < 1.
Substitute z1 = q(z2) in (133) to obtain:

F(0, z2)
A(0, z2)(α + λ(1 − q(z2)))

λ + α

= αA(0, z2)q(z2)

z2(λ + α)

M∑

i=1

pi F(0, āi + ai z2) + F(0, 0)A(0, 0)α(z2 − 1)q(z2)

z2(λ + α)
,

or equivalently, by setting F̃(z2) := F(0, z2), g(z2) := αq(z2)
z2(α+λ(1−q(z2)))

, l(z2) :=
A(0,0)α(z2−1)q(z2)

A(0,z2)(α+λ(1−q(z2)))z2
,

F̃(z2) = g(z2)
M∑

i=1

pi F̃(āi + ai z2) + l(z2). (134)
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Note that (134) has the same form as the one in [1, Section 5, p. 19], and g(1) = 1,
l(1) = 0. Thus, from [1, Theorem 2], or equivalently by using Theorem 14 we can
solve (134) and get an expression for F̃(z2) := F(0, z2). Using that expression in
(133), we can finally get F(z1, z2). Note also that from (134), for z2 = 0,

F(0, 0) =
M∑

i=1

pi F(0, āi ).

By substituting z2 = āi , i = 1, . . . , M , in the derived expression for F(0, z2) (i.e. the
expression that is obtained by using Theorem 14), we can finally get F(0, 0). Then, by
setting āi + ai z2 instead of z2, in the expression for F(0, z2), the function F(z1, z2)
is derived through (133).

9 Conclusion

In this work, we investigated the transient and/or the stationary behaviour of various
reflected autoregressive processes. These types of processes are described by stochastic
recursions where various independence assumptions among the sequences of random
variables that are involved there are lifted and for which a detailed exact analysis can
be also provided. This is accomplished by using Liouville’s theorem [14, Theorem
10.52], as well as by stating and solving aWiener–Hopf boundary value problem [10],
or an integral equation. Various options for follow-up research arise. One of them is
to consider multivariate extensions of the processes that we introduced. Such vector-
valued counterparts are anticipated to be highly challenging. In Sect. 8.1, we cope
with a simple two-dimensional case; however, the autoregressive concept was used
only in one component. Another possible line of research concerns scaling limits and
asymptotics. One also anticipates that, under certain appropriate scalings, a diffusion
analysis similar to the one presented in [8] can be applied.
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