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Abstract
We investigate the tail asymptotics of the response time distribution for the cancel-on-
start (c.o.s.) and cancel-on-completion (c.o.c.) variants of redundancy-d scheduling
and the fork–join model with heavy-tailed job sizes. We present bounds, which only
differ in the pre-factor, for the tail probability of the response time in the case of
the first-come first-served discipline. For the c.o.s. variant, we restrict ourselves to
redundancy-d scheduling, which is a special case of the fork–join model. In particular,
for regularly varying job sizeswith tail index-ν the tail indexof the response time for the
c.o.s. variant of redundancy-d equals -min{dcap(ν − 1), ν}, where dcap = min{d, N −
k}, N is the number of servers and k is the integer part of the load. This result indicates
that for dcap < ν

ν−1 the waiting time component is dominant, whereas for dcap > ν
ν−1

the job size component is dominant. Thus, having d = �min{ ν
ν−1 , N − k}� replicas

is sufficient to achieve the optimal asymptotic tail behavior of the response time. For
the c.o.c. variant of the fork–join (nF, nJ) model, the tail index of the response time,
under some assumptions on the load, equals 1−ν and 1− (nF +1−nJ)ν, for identical
and i.i.d. replicas, respectively; here, the waiting time component is always dominant.

Keywords Parallel-server systems · Fork–join · Redundancy · Heavy-tailed
distributions · Response time asymptotics
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1 Introduction

In recent years, the fork–join model has attracted strong interest. This model is a
theoretical abstraction of the popularMapReduce framework [8].MapReduce is a pro-
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gramming model for processing and generating big data sets with parallel algorithms
on clusters. In MapReduce, every job is divided into tasks which can be processed in
parallel in any order. For completion of the job, the completed tasks need to be joined
together.

Fork–join model

In the fork–join (nF, nJ) model, tasks (also referred to as replicas) of a job are assigned
to nF servers selected uniformly at random. Redundant tasks are abandoned as soon
as nJ of the nF tasks either enter service (‘cancel-on-start,’ c.o.s.) or finish service
(‘cancel-on-completion,’ c.o.c.). The job is completedwhen all these nJ tasks complete
service.

Note that in the c.o.s. variant of the fork–join (nF, nJ) model the dependency struc-
ture between the replicas does not play a role, since at all times there is only one replica
of the job in service. In contrast, in the c.o.c. variant several replicas of the same job
may be in service at the same time, and hence the dependency structure does matter.
Special cases of the dependency structure are: (1) perfect dependency between the
variables, so-called identical replicas, where the job size is preserved for all replicas
and (2) no dependency at all, so-called i.i.d. replicas.

Analytical results for the fork–join model are unfortunately scarce. Tight charac-
terizations of the response time are only known in the special case of nF = nJ = 2,
see [10]. For a survey on results in other special cases, we refer to [29]. Results for
the expectation of the response time are established when nF = nJ → ∞, see for
example [3, 22]. For a more detailed overview of the results and applications, we refer
to [17].

Redundancy scheduling

Redundancy-d scheduling is a special case within the fork–joinmodel. In redundancy-
d scheduling, replicas of a job are assigned to d servers selected uniformly at random.
Redundant replicas are abandoned as soon as one of the d replicas either enters service
(c.o.s.) or finishes service (c.o.s.). Thus, redundancy-d scheduling is equivalent to the
fork–joinmodelwithnF = d andnJ = 1.Observe that the c.o.s. variant of redundancy-
d is equivalent to the Join-the-Smallest-Workload-d (JSW-d) policy, which assigns
an arriving job to the server with the smallest workload among d servers selected
uniformly at random, see [2]. The c.o.c. variant of redundancy-d shares similarities
with a strategy that assigns the job to the server that provides the minimum response
time among d servers selected uniformly at random, but involves possibly concurrent
service of multiple replicas.

It has been empirically shown that redundancy scheduling can improve perfor-
mance in parallel-server systems [31], especially in case of highly variable job sizes.
More specifically, for large-scale applications such as Google search, the ability of
redundancy scheduling to reduce the expectation and the tail of the response time has
been demonstrated [7]. Our understanding of redundancy scheduling is growing, and
especially the stability condition for c.o.c. redundancy policies has received consider-
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able attention, however, expressions for performance metrics such as the expectation
or the distribution of the response time remain scarce. In [16], analytical expressions
for the expected response time are obtained for exponential job sizes and indepen-
dent and identically distributed (i.i.d.) replicas. Under the assumption of asymptotic
independence, a fixed-point equation characterizing the response time distribution for
identical and i.i.d. replicas is derived in [19].

In this paper, we examine the tail behavior of the response time when job sizes are
heavy-tailed, which is one of the most relevant scenarios in redundancy scheduling
and the fork–join model. Indeed, heavy tails in parallel processing are encountered
in conjunction with the MapReduce framework developed at Google and its Hadoop
open source implementation [9]. Moreover, measurement studies show that workload
characteristics such as file sizes, CPU times, and session lengths tend to be heavy-
tailed, see [17, 23, 32] and the references therein. The tail behavior of the waiting time
distribution of the single-server queue is well known, see for example [30] or [32,
Chapter 2]. Let WFCFS denote the waiting time for the single-server queue with the
FCFS discipline, for subexponential (see Definition 2 in Appendix A) residual job
sizes Bres,

P(WFCFS > x) ∼ ρ̃

1 − ρ̃
P(Bres > x) as x → ∞, (1)

where ρ̃ := E[B]
E[A] denotes the load with A the interarrival time and B the job size, and

P(Bres > x) = 1

E[B]
∫ ∞

y=x
P(B > y)dy.

In particular, for regularly varying (see Definition 6 in Appendix A) job size distribu-
tions with index −ν, i.e., P(B > x) = x−ν L(x) with L(·) a slowly varying function
at infinity,

P(WFCFS > x) ∼ ρ̃

1 − ρ̃

1

(ν − 1)E[B] L(x)x1−ν as x → ∞. (2)

One way to understand the tail index 1 − ν is the following. The workload (and
waiting time) in an M/G/1 queue is distributed as a geometric(ρ̃) sum of residual job
sizes Bres. According to the theory of regular variation [4], loosely speaking, regular
variation is preserved under integration, and asymptotically one can integrate as if
L(y) is kept outside the integral; so

P(Bres > x) = 1

E[B]
∫ ∞

y=x
L(y)y−νdy ∼ 1

(ν − 1)E[B] L(x)x1−ν as x → ∞, (3)

which implies that if B is regularly varying with index −ν, then Bres is regularly
varying with index 1 − ν.

The tail behavior in the single-server queue has also been studied for other service
disciplines. For regularly varying job sizes, the random order of service (ROS) disci-
pline has the same tail index as the FCFS discipline, but with a smaller pre-factor [6].
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For the last-come first-served with preemptive resume (LCFS-PR) discipline and the
processor-sharing (PS) discipline, the tail index of the response time for regularly
varying job sizes is the same as the tail index of the job size, see [33, 34], respectively.
Thus, from a tail perspective, these service disciplines perform better than the FCFS
discipline.

Closer related to the c.o.s. variant of redundancy scheduling are the results for the
tail behavior of the waiting time for the Join-the-Smallest-Workload (JSW) policy or
equivalently the G I/G/N queue, see [12, 13]. The key idea in [12, 13] to first consider
deterministic interarrival times made the derivation of the tail behavior substantially
more tractable. In [13], it is shown that for long-tailed residual job sizes and ρ̃ > k,
where k := �ρ̃� is the integer part of the load,

P(WJSW > x) ≥ ρ̃N−k + o(1)

(N − k)! P

(
Bres >

ρ̃ + δ

ρ̃ − k
x

)N−k

as x → ∞, (4)

for any δ > 0. For subexponential residual job sizes and ρ̃ < k + 1, it is shown that

P(WJSW > x) ≤
(

N

k

) (
(k + 1)ρ̃

(k + 1) − ρ̃
+ o(1)

)N−k
P

(
Bres > x(1 − δ)

)N−k as x → ∞.

(5)

A heuristic explanation for the exponent N −k in Eq. (4) is as follows. After the arrival
of N − k big jobs, N − k servers will be working on these big jobs for a very long
time. The other k servers form an unstable G I/G/k system, which implies that the
workload drifts linearly to infinity. Thus, eventually the workload at all N servers will
exceed level x , causing the waiting time of an arriving job to be larger than x .

In this paper, we investigate the tail behavior of the response time for both the c.o.s.
and c.o.c. variants of redundancy scheduling and the fork–joinmodelwhen job sizes are
heavy-tailed. Throughout the paper, we assume that the system under consideration
is in steady state. For regularly varying job sizes with tail index −ν and the FCFS
discipline, it is shown that the response time for the c.o.s. variant of redundancy-d
has tail index −min{dcap(ν − 1), ν}, where dcap = min{d, N − k} and k = �ρ̃�.
For small loads, this result indicates that for d < ν

ν−1 the waiting time component is
dominant, whereas for d > ν

ν−1 the job size component is dominant. Thus, having
d = �min{ ν

ν−1 }� replicas already achieves the optimal asymptotic tail behavior of the
response time and creating even more replicas yields no improvements in terms of
response time tail asymptotics. For high loads, the results indicate that creating many
replicas yields no benefits for the tail index of the response time. For the c.o.c. variant
of the more general fork–join (nF, nJ) model with identical and i.i.d. replicas, the tail
index of the response time is 1 − ν and 1 − (nF + 1 − nJ)ν, respectively, and the
waiting time component is always dominant. Note that in this case the tail index is
independent of the load of the system and for identical replicas even independent of
the number of replicas. In the special case of redundancy-d scheduling with identical
and i.i.d. replicas, it follows that the tail index of the response time is 1−ν and 1−dν,
respectively. All these results for the c.o.c. variant rely on the fact that the upper bound
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Table 1 Overview of the tail index for the c.o.s. and c.o.c. variant of redundancy scheduling with various
service disciplines where the job size is regularly varying with tail index −ν

c.o.s. c.o.c.

G I/G/N Red-d Red-d Red-d
(Red-N ) (identical) (i.i.d.)

FCFS −min{(N − k)(ν − 1), ν} [12, 13] −min{dcap(ν − 1), ν} 1 − ν (∗) 1 − dν (∗)

LCFS-PR −ν −ν (∗) −dν (∗)

PS −ν −ν [27] −dν [27]

The star indicates that for this scenario we obtained results for the more general fork–join (nF, nJ) model

system, which is used in the proof, is stable. The stability condition of this system does
not necessarily coincide with the stability condition of the original fork–join model.

For the LCFS-PR discipline in the fork–join model, we show that the response time
tail is just as heavy as the job size tail, implying that for the c.o.c. variant this discipline
achieves better tail asymptotics than the FCFS discipline. For the c.o.s. variant, the
LCFS-PR discipline has better tail asymptotics than the FCFS discipline for scenarios
with low load and a small number of replicas; in all other scenarios, both service
disciplines have similar tail asymptotics. In [27], it is shown that for the c.o.c. variant
of redundancy-d scheduling with the PS discipline the tail index of the response time
is −ν for identical replicas and −dν for i.i.d. replicas. Table 1 provides an overview
of the tail index for the various models and service disciplines.

The remainder of the paper is organized as follows. In Sect. 2, we provide a model
description and state preliminary results. In Sect. 3, we characterize the tail behavior
of the response time for the c.o.s. variant of redundancy scheduling and the c.o.c.
variant of the more general fork–join model with the FCFS discipline, with some
proofs deferred to Appendix B. In Sect. 4, we discuss the tail behavior in the fork–
join model with the LCFS-PR discipline. Section 5 provides numerical results on the
tail behavior of the response time in redundancy scheduling with Pareto distributed
job sizes. Section 6 contains conclusions and some suggestions for further research.
The paper ends with two appendices. Appendix A collects various definitions and
results for heavy-tailed random variables, which will be used in the paper. Appendix
B provides the proof of part of Theorem 1.

2 Model description and preliminaries

Consider a system of N parallel unit-speed servers. Jobs arrive at the epochs of a
renewal process, with successive interarrival times Ai , i ≥ 1, each distributed as a
generic random variable A. When a job arrives, a dispatcher assigns replicas of the job
to nF servers chosen uniformly at random (without replacement), where 1 ≤ nF ≤ N .
We consider two possible variants where redundant replicas are abandoned as soon
as nJ of the nF replicas either have entered service (c.o.s.) or have finished service
(c.o.c.). If in the c.o.s. variant multiple replicas enter service at exactly the same
time, then one of these replicas is chosen uniformly at random and starts service.
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A special case of the fork–join model is redundancy-d scheduling, where nF = d
and nJ = 1. As observed in the introduction, in the c.o.s. variant of redundancy-d
the dependency structure between the replicas does not play a role, but in the c.o.c.
variant of redundancy-d, and also in the fork–join model, the dependency structure
does matter. We thus allow the replica sizes B1, . . . , BnF of a job to be governed by
some joint distribution function FB(b1, . . . , bnF ), where Bi , i = 1, . . . , nF, are each
distributed as some random variable B, but not necessarily independent. Special cases
of the dependency structure are: (1) perfect dependency between the variables, so-
called identical replicas, where the job size is preserved for all replicas, i.e., Bi = B,
for all i = 1, . . . , nF, (2) no dependency at all, so-called i.i.d. replicas.

Finally, let us denote the steady-state waiting times of the replicas at their nF servers
(the time until their service starts if they are still in the system) by W1, . . . , WnF and
the steady-state response time by R. Let X(nJ) denote the nJth order statistic of a set
of random variables X1, . . . , X N and the real random variables Y1 and Y2 are equal in

distribution (denoted by Y1
d= Y2) if P(Y1 > x) = P(Y2 > x) for all x ∈ (−∞,∞).

3 FCFS discipline

In this section, we analyze the tail asymptotics of the response time with the FCFS
discipline. For the c.o.s. variant (Sect. 3.1), we restrict ourselves to redundancy-d
scheduling, whereas for the c.o.c. variant (Sect. 3.2) we allow for the more general
fork–join model.

3.1 Cancel-on-start

Observe that the steady-state response time in the c.o.s. variant of redundancy-d is
given by

R
d= min{W1, . . . , Wd} + B. (6)

We refer to the time between the arrival of a job and the moment the first replica goes
into service as the waiting time Wmin = min{W1, . . . , Wd} of a job. As mentioned
earlier, the c.o.s. variant of redundancy-d is equivalent to the Join-the-Smallest-
Workload-d (JSW-d) policy, which assigns each job to the server with the smallest
workload among d servers selected uniformly at random.

For general interarrival times and job sizes, the stability condition for the system
with the JSW-d policy and FCFS is given by ρ̃ = E[B]

E[A] < N , see [11].
In [13, Theorem 1.6], lower and upper bounds are derived for the tail probability of

the waiting time for the JSW policy. The same methodology can be used to find lower
and upper bounds for JSW-d, and hence for the c.o.s. variant of redundancy scheduling
with 1 ≤ d ≤ N replicas, resulting in Theorem 1. The two derived lower bounds in this
theorem hold for every value of ρ̃, but they are asymptotically dominant for different
regions of ρ̃, as explained after the theorem. Note that for d = N Theorem 1 recovers
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the results of [13] as captured in (4) and (5), whereas for d = 1 the system is equivalent
to a G I/G/1 queue for which the tail behavior is given by (2).

Theorem 1 Consider the c.o.s. variant of redundancy-d scheduling with the FCFS
discipline. Let k = �ρ̃� ∈ {0, 1, . . . , N − 1} be the integer part of the load and δ > 0.

i) If the residual job size Bres is long-tailed, then

P(Wmin > x) ≥ 1(N
d

) ρ̃d + o(1)

d!
(
B̄res ((1 + δ) x)

)d
. (7)

ii) If ρ̃ < N − d and the residual job size Bres is subexponential, then

P(Wmin > x) ≤
(

N

d

) (
(k + 1)ρ̃

k + 1 − ρ̃
+ o(1)

)d (
B̄res

(
x(1 − δ)

k + 1

))d

. (8)

iii) If the residual job size Bres is long-tailed, then

P(Wmin > x) ≥ ρ̃N−k + o(1)

(N − k)!
(

B̄res
(

ρ̃ + δ

ρ̃ − k
x

))N−k

. (9)

iv) If ρ̃ > N − d and the residual job size Bres is subexponential, then

P(Wmin > x) ≤
(

N

k

)(
(k + 1)ρ̃

k + 1 − ρ̃
+ o(1)

)N−k (
B̄res

(
(k + 1 − N + d)x(1 − δ)

k + 1

))N−k
.

(10)

Proof Let V = (V1, . . . , VN ) denote the vector of residual workloads of the servers.
Recall that V(i) denotes the i th-order statistic of the set V1, . . . , VN . The proof of i)
follows from the inequality

P(Wmin > x) ≥ 1(N
d

)P(V(1) > x, . . . , V(d) > x),

with 1
(N

d )
corresponding to the probability that the replicas of an arbitrary job are

assigned to the servers with the d largest workloads, and where

P(V(1) > x, . . . , V(d) > x) ≥ ρ̃d + o(1)

d!
(
B̄res ((1 + δ) x)

)d
,

by similar arguments as in the proof of Lemma 3.1 in [13]. The proof of iii) follows
from the inequality

P(Wmin > x) ≥ P(V1 > x, . . . , VN > x),

123



138 Queueing Systems (2023) 103:131–159

where

P(V1 > x, . . . , VN > x) ≥ ρ̃N−k + o(1)

(N − k)!
(

B̄res
(

ρ̃ + δ

ρ̃ − k
x

))N−k

,

by similar arguments as in the proof of Theorem 5.1 in [13]. The proof of ii) and iv)
can be found in Appendix B.

As reflected in the proof sketches, the asymptotic lower bounds in (7) and (9)
correspond to two different scenarios for a large value of Wmin to occur.

Scenario 1 involves the arrival of d jobs of size x or larger ‘overlapping in time.’ In
the JSW-d system, these jobs will be assigned to d different servers with overwhelm-
ing probability for large x , and thus the workload at these d servers will exceed x . A
newly arriving job that is so unfortunate as to sample exactly these d servers (which
happens with probability 1/

(N
d

)
) will experience a waiting time larger than x . Sce-

nario 2 involves the arrival of N −k sufficiently large jobs ‘overlapping in time,’ which
instantaneously causes the workloads at N − k servers to become large as described
above, assuming N −k ≤ d. This will also result in subsequent jobs all being assigned
to one of the other k servers and hence create overload, so that the workloads at these
servers will gradually start growing. Thus, eventually the workloads at all servers will
be large, and every arriving job will experience a large waiting time. Observe that this
scenario corresponds to that in the GI/G/N queue discussed in [13], as illustrated by
the match with Eq. (4).

Scenarios 1 and 2 are asymptotically dominant in case d ≤ N − k and d ≥ N − k,
respectively, reflecting that a large waiting time is most likely due to a minimum
number of dcap = min{d, N − k} large jobs. Note that in Scenario 1 the workloads
at all servers will in fact grow large as well when d ≥ N − k, but that Scenario 2
dominates in that case.

Scenarios with large workloads at l servers, with d < l < N , do not asymptotically
contribute to the probability of a large waiting time. This may be intuitively explained
by observing the following. (1) If such scenarios involve strictly more than d large
workloads without resulting in overload of all servers (so d < l < N − k) then they
are asymptotically much less likely than Scenario 1. (2) If such scenarios involve
l ≥ N − k large workloads, this will quickly result in overload of all servers, just like
in Scenario 2.

Extending these arguments and the results in [13] to the c.o.s. variant of the fork–
join (nF, nJ) model is complicated since in that model multiple replicas of the same
job may be in service simultaneously.

Corollary 1 (Analogous to Corollary 1.1 in [13]) Let the residual job size Bres be
long-tailed and dominated varying and k < ρ̃ < k + 1, i.e., ρ̃ not an integer value.
Then, there exist constants c1 and c2 such that, for all x,

c1
(
B̄res(x)

)dcap ≤ P(Wmin > x) ≤ c2
(
B̄res(x)

)dcap
,

where dcap = min{d, N − k}.
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Proof The result follows directly from Theorem 1, the last inclusion in (A.3) and the
definition of dominated variation (Definition 4 in Appendix A).

Remark 1 Note that in Corollary 1 we exclude integer values for the load. Most of the
results in the literature for heavy-tailed queueing systems focus on the case where the
load is not an integer, since the integer case is significantly more delicate to analyze.
For a detailed study on the integer case in the G I/G/2 queueing system we refer
to [5].

Corollary 2 For the c.o.s. variant of redundancy-d scheduling with the FCFS disci-
pline:

i) if B ∈ RV (−ν), then Wmin ∈ O RV (dcap(1 − ν)),
ii) if B ∈ RV (−ν), then R ∈ O RV (−min{dcap(ν − 1), ν}).
Proof It is well known that if B ∈ RV (−ν), then Bres ∈ RV (1 − ν), see (3). The
proof of i) follows by applying this result to Corollary 1 together with the inclusion
RV ⊂ L∩D from (A.3) and Lemma 6 in Appendix A (see Definition 5 in Appendix A
for the definition ofO-regularly varying; ORV). The proof of ii) follows by i), Eq. (6)
and Lemma 5 in Appendix A.

From Corollary 2, we conclude that the waiting time component is dominant in
the response time tail as long as dcap ≤ ν

ν−1 , but otherwise the job size component
is dominant. Better than that (x−ν tail behavior) is, obviously, not possible for the
response time. In other words, having more than ν

ν−1 replicas will not provide any
improvement in the tail behavior. For example, consider a system with a sufficiently
small load. If ν = 4/3, then d = 4 already yields R ∈ O RV (−ν), and from a tail
perspective choosing d > 4 yields no benefits. If ν = 3/2, then it does not pay to take
d larger than 3. If ν ≥ 2 (so B has a finite second moment), then it does not pay to
take d larger than 2. For high loads, the results indicate that creating many replicas
yields no benefits for the tail index of the response time.

3.2 Cancel-on-completion

In this section,we analyze the tail behavior for the c.o.c. variant of the fork–join(nF, nJ)
model.

The steady-state response time may be represented as

R
d= (W + B)(nJ), (11)

where (W + B)(nJ) denotes the nJth order statistic of the random variables W1 +
B1, . . . , WnF + BnF .

Our analysis is based on an upper and lower bound for thewaiting time and response
time via the workload in carefully chosen upper and lower bound systems.

We first introduce the upper bound system which is the same as the original system
except for two differences. In the upper bound system all jobs are assigned to the same
nF servers. The second difference is that in the upper bound system the sizes of the
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nJ smallest replicas are increased to B(nJ). This upper bound system is similar to the
system defined in [25, Lemma 1].

Let us define the workload as the amount of work a server needs to complete to
become idle in absence of any arrivals. Consider the scenario where all nF servers have
the same amount of workload. For the FCFS discipline, it follows from the cancel-on-
completion property that the nJth smallest replica will always be the nJth to complete,
after which the other remaining replicas are abandoned. Hence, the workload at these
nF servers stays equal at all times, and it follows that the upper bound system with
multiple servers is equivalent to a G I/G/1/FC F S queue with interarrival time A
and job size B(nJ).

Lemma 1 The maximum workload in the c.o.c. variant of the fork–join(nF, nJ) model
is sample-pathwise bounded from above by the workload in the upper bound system.

Proof Let ωi be the workload at server i in the c.o.c. variant of the fork–join(nF, nJ)
model, and let the maximum workload be defined as max j∈{1,...,N } ω j = ω(N ). Let
sl and bl denote the sampled server and the realized job size of the l-th replica,
respectively, for l = 1, . . . , nF. By induction, it can be shown that ωi is bounded
from above by the workload ωU in the upper bound system at all times. Assume that
ω(N ) ≤ ωU after the m-th arrival. Then, after the (m + 1)-th arrival the new workload,
denoted by ωnew,sl , is

ωnew,sl = max{(ωsl + bl)(nJ), ωsl } ≤ max{(ω(N ) + bl)(nJ), ω(N )} = ω(N ) + b(nJ),

for l = 1, . . . , nF, since ωi ≤ ω(N ) for all i = 1, . . . , N . Thus, the increase in
maximum workload is bounded by b(nJ), which is exactly the increase in workload in
a G I/G/1/FC F S queue with interarrival time A and job size B(nJ).

Corollary 3 The waiting time W(nJ) and the response time R in the c.o.c. variant of
the fork–join(nF, nJ) model with the FCFS discipline are stochastically bounded from
above by the waiting time WU and response time RU, respectively, in the upper bound
system.

Proof By Lemma 1, the maximum workload in the c.o.c. variant of the fork–
join(nF, nJ) model is bounded from above by the workload W 0

U in the upper bound
system. This bound implies Wi ≤ W 0

U for all i = 1, . . . , N , from which it follows

that W(nJ) ≤ W 0
U

d= WU and

R
d= (W + B)(nJ) ≤ W 0

U + B(nJ)
d= WU + B(nJ)

d= RU.

We now introduce a lower bound system. In the lower bound system, we only admit
jobs for which the nF replicas are assigned to servers 1, . . . , nF, and in addition the i th
smallest replica is assigned to server i , i = 1, . . . , nJ. Hence, we only admit a fraction
1/K of the jobs, where K = ( N

nF

) nF!
(nF−nJ+1)! and we do not alter the assignment of the

replicas.
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Lemma 2 The workload at each server in the c.o.c. variant of the fork–join(nF, nJ)
model is sample-pathwise bounded from below by the workload at the corresponding
server in the lower bound system.

Proof Since in the lower bound system we only allow arrivals to the first nF servers
for which in addition the i th smallest replica is assigned to server i , i = 1, . . . , nJ and
since we delete the other arrivals (which are not deleted in the original system), the
amount of work at each server in the lower bound system cannot be larger than the
amount of work at the corresponding server in the original system.

For the FCFSdiscipline, the nJth smallest replicawill always be the nJth to complete
in the lower bound system. Moreover, this replica is always assigned to server nJ.
Hence, this server acts as the bottleneck server since it dictates the waiting time and
the response time of all the admitted jobs, and can be viewed as the server of a
G I/G/1/FC F S queue with a random selection of the arrivals based on Bernoulli
experiments with probability 1/K , i.e., mean interarrival time KE[A], and with a job
size B(nJ).

Corollary 4 The waiting time W(nJ) and the response time R in the c.o.c. variant
of the fork–join(nF, nJ) model with the FCFS discipline are stochastically bounded
from below by the waiting time WL and response time RL, respectively, in the above-
mentioned G I/G/1/FC F S queue.

Proof By Lemma 2, the workload at each server in the c.o.c. variant of the fork–
join(nF, nJ) model is bounded from below by the workload at the corresponding server
in the lower bound system. Also, in the lower bound system, the workload W 0

L at
the bottleneck server nJ is no smaller than the workload at servers 1, . . . , nJ − 1,
and no larger than the workload at servers nJ + 1, . . . , nF. Thus, Wi ≥ W 0

L for all

i = nJ, . . . , nF, which implies W(nJ) ≥ W 0
L

d= WL. Since the replica sizes at servers
nJ + 1, . . . , nF are no smaller than at server nJ, it further follows that

R
d= (W + B)(nJ) ≥ W 0

L + B(nJ)
d= WL + B(nJ)

d= RL.

A sufficient stability condition for general interarrival times and job sizes is ρU :=
E[B(nJ)]
E[A] < 1, which can be proved via the upper bound system given in Corollary 3.

The exact stability condition for the c.o.c. variant of the fork–join(nF, nJ) model, and
also redundancy-d scheduling, with the FCFS discipline in such a general setting is
still unknown. Observe that it is hard to improve upon this sufficient stability condition
resulting from the upper bound system. Indeed, finding an upper bound system that
copes with multiple replicas, which may be in service concurrently and have different
starting times, while being analytically tractable is difficult, as is also reflected in the
scarcity of analytical results for the fork–join model in the literature.

Theorem 2 If ρU < 1 and the residual job size Bres
(nJ)

is subexponential, then for the
c.o.c. variant of the fork–join(nF, nJ) model with the FCFS scheduling discipline:

ρL

1 − ρL
B̄res

(nJ)(x) ≤ P(W(nJ) > x) ≤ ρU

1 − ρU
B̄res

(nJ)(x) as x → ∞,
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where ρL = E[B(nJ)]
KE[A] with K = (N

d

) nF!
(nF−nJ+1)! and ρU = E[B(nJ)]

E[A] .

Proof Upper bound: By Corollary 3, the waiting time of a job is bounded from above
by the waiting time WU in a G I/G/1/FC F S queue with interarrival time A and job
size B(nJ). Thus, by the subexponentiality of Bres

(nJ)
, we can apply known results for the

single-server queue, see (1), and obtain

P(WU > x) ∼ ρU

1 − ρU
B̄res

(nJ)(x) as x → ∞. (12)

Lower bound: By Corollary 4, the waiting time of a job is bounded from below by
the waiting time WL in a G I/G/1/FC F S queue with a random selection of the
arrivals based on Bernoulli experiments with probability 1/K , i.e., mean interarrival
time KE[A], and job size B(nJ). Again, by the subexponentiality of Bres

(nJ)
, by applying

known results for the single-server queue we obtain

P(WL > x) ∼ ρL

1 − ρL
B̄res

(nJ)(x) as x → ∞. (13)

By combining (12) and (13), we get the desired statement.

Note that the lower bound in Theorem 2 is valid even if ρU > 1, since the auxiliary
system in Corollary 4 is stable if the original system is stable.

The next corollary provides insight in the tail behavior when the distribution of the
nJth order statistic of the job size is regularly varying, i.e., B(nJ) ∈ RV (−ν̃). Observe
that, in the special case of identical replicas B(nJ) ∈ RV (−ν) when B ∈ RV (−ν),
thus in this case ν̃ = ν, whereas for i.i.d. replicas B(nJ) ∈ RV (−(nF +1−nJ)ν)when
B ∈ RV (−ν) (see [20]), thus in this case ν̃ = (nF + 1 − nJ)ν.

Corollary 5 For the c.o.c. variant of the fork–join(nF, nJ) model with the FCFS disci-
pline and ρU < 1:

i) if B(nJ) ∈ RV (−ν̃), then W(nJ) ∈ O RV (1 − ν̃),
ii) if B(nJ) ∈ RV (−ν̃), then R ∈ O RV (1 − ν̃).

Proof For regularly varying residual job sizes, we know that

P(Bres
(nJ) > x) ∼ 1

(ν̃ − 1)E[B(nJ)]
L(x)x1−ν̃ as x → ∞,

see (3). The proof of i) follows by Theorem 2 and Lemma 6. For the response time,
we can again use Corollaries 3 and 4 as in Theorem 2. Using the known result for the
tail behavior in the single-server queue, see (2), together with Lemma 4 we obtain that

P(R > x) ≥ P(RL > x) = P(WL + B(nJ) > x) ∼ ρL

1 − ρL

L(x)x1−ν̃

(ν̃ − 1)E[B(nJ)]
as x → ∞,
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and

P(R > x) ≤ P(RU > x) = P(WU + B(nJ) > x) ∼ ρU

1 − ρU

L(x)x1−ν̃

(ν̃ − 1)E[B(nJ)]
as x → ∞.

Now we can apply Lemma 6 in Appendix A and obtain the desired result.

Remark 2 For identical replicas, we can even find a better upper bound in Theorem 2.
Indeed, consider the system in which all replicas are completely served. This system is
equivalent to a G I/G/1/FC F S queue with a random selection of the arrivals based
on Bernoulli experiments with probability nF/N , i.e., mean interarrival time NE[A]

nF
,

and job size B, which is equal to B(nJ) in the case of identical replicas.

Observe that all the results for the tail index rely on the fact that the upper bound
system is stable. The stability condition of this system does not necessarily coincide
with the stability condition of the original fork–join model. We conjecture that these
tail index results are valid whenever the original fork–join model is stable. However,
note that constructing a tractable upper bound systemwith the same stability condition
as the original fork–join model is hard, because this stability condition is unknown.

Interestingly, in contrast to the c.o.s. variant of redundancy, we observe that the tail
index in the c.o.c. variant of the fork–join model does not depend on the load of the
system. The main difference between the two variants is that for the c.o.s. variant we
need multiple big jobs for a large value of Wmin to occur, whereas for the c.o.c. variant
we only need one big job. Moreover, note that a big job means that at least nF +1−nJ
replica sizes should be big since we cancel the redundant replicas as soon as the first
nJ replicas complete service. This is the reason why for i.i.d. replicas we get the tail
index 1 − (nF + 1 − nJ)ν and for identical replicas 1 − ν.

In the remainder of this subsection, we focus on two special cases of the dependency
structure, namely identical and i.i.d. replicas.

For the special case of identical replicas in the c.o.c. variant of the fork–join model
with the FCFS discipline, we have concluded: if B ∈ RV (−ν), then R ∈ O RV (1−ν)

which is independent of the number of replicas. We may conclude that the tail index
is the same as for the single-server queue, see (2). Moreover, if we compare the tail
index of the c.o.s. and c.o.c. variants of redundancy scheduling with identical replicas
it follows that the c.o.s. variant always performs better from a tail perspective.

For the special case of i.i.d. replicas in the c.o.c. variant of the fork–join model
with the FCFS discipline, we have concluded: if B ∈ RV (−ν), then R ∈ O RV (1 −
(nF + 1 − nJ)ν). If nF = nJ = 1, then R ∈ O RV (1 − ν) which is consistent with
the case of identical replicas. Moreover, if we compare the tail index of the c.o.s. and
c.o.c. variants of redundancy scheduling with i.i.d. replicas it follows that the c.o.c.
variant always performs better from a tail perspective. Observe that this statement is
in contrast with the case for identical replicas.

We studied two special structures for the dependency between replicas. The general
case, with a vector (B1, . . . , BnF) of possibly dependent and multivariate regularly
varying job sizes,will bemore involved. For further informationonmultivariate regular
variation, we refer to [28] or [4, Appendix A1.5] and the references therein.
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We determined the tail behavior for the c.o.s. variant of redundancy scheduling and
the c.o.c. variant of the more general fork–join model. It can be concluded that the
analysis of the c.o.s. variant is much more challenging than of the c.o.c. variant. One
of the reasons is that for the c.o.s. variant multiple big jobs might be needed for a large
waiting time to occur while for the c.o.c. variant only one big job is needed. In some
sense, this is remarkable, since for the stability condition it is the otherway around: The
stability condition for the c.o.s. variant of redundancy scheduling is known, whereas
for the c.o.c. variant of the fork–join model, and also redundancy-d scheduling, it is
still an open problem for non-exponential job size distributions.

4 LCFS-PR discipline

In this section, we study the tail behavior of the response time in the fork–join model
with the LCFS-PR discipline. First, we discuss known results for the single-server
queue and in Sects. 4.1 and 4.2 the tail behavior for the c.o.s. and c.o.c. variants of the
fork–join model is discussed, respectively.

For the G I/G/1 queue with regularly varying job sizes, the tail behavior of the
response time distribution is known

P(RLCFS-PR > x) ∼ E[Nbp](1 − ρ̃)−ν L(x)x−ν as x → ∞, (14)

where Nbp denotes the number of jobs completed during a busy period, see [33]. One
way to understand (14) is the following. First, observe that for the LCFS-PR discipline

RLCFS-PR
d= P,

where P is the busy period of a G I/G/1 queue. Let V (t) be the amount of work in
the system at time t and assume that the first job arrives in an empty system at time 0.
The busy period P is then defined as

P := inf{t > 0 : V (t) = 0}.

Let the cycle maximum Cmax be defined by

Cmax := sup{V (t), 0 ≤ t ≤ P}.

It is shown, see for example [18, Corollary 2.2], that subexponentiality of B implies
that P(Cmax > x) ∼ P(Wmax > x), where Wmax is the maximum waiting time during
a busy period, and from [1] we know that,

P(Wmax > x) ∼ E[Nbp]P(B > x) as x → ∞.

Combining both relations gives

P(Cmax > x) ∼ E[Nbp]P(B > x) as x → ∞.

123



Queueing Systems (2023) 103:131–159 145

A large maximum waiting time is most likely due to one large job. After this large
job, the system behaves normally and the workload goes to zero with negative drift
−(1 − ρ̃). Hence, if Cmax is large, then one would expect that

P ≈ Cmax

1 − ρ̃
,

from which it follows that

P(P > x) ∼ E[Nbp](1 − ρ̃)−ν L(x)x−ν as x → ∞.

Observing that the busy period coincides with the response time of a job for the
LCFS-PR discipline gives the desired result in (14).

4.1 Cancel-on-start

Note that for the LCFS-PR discipline the c.o.s. variant of the fork–join(nF, nJ) model
is equivalent to the system where replicas of each job are assigned to nJ servers
chosen uniformly at random (without replacement), since all replicas immediately go
into service. Thus, each queue is equivalent with a G I/G/1/LC F S-P R queue with
a random selection of the arrivals based on Bernoulli experiments with probability
nJ/N , i.e., mean interarrival time NE[A]/nJ and mean job size E[B]. Hence, the
stability condition is ρ̃ < N

nJ
. For regularly varying job sizes, the tail behavior of the

response time is given by

P(R > x) = P( max
i=1,...,nJ

RLCFS−PR > x) ∼ nJP(RLCFS−PR > x) as x → ∞,

see for example [21].
Observe that a similar reasoning is applicable for any service discipline in which all

replicas immediately go into service. Another example is the processor-sharing (PS)
discipline for which the tail behavior of the response time for the single-server queue
with regularly varying job sizes with index −ν is given by

P(RPS > x) ∼ (1 − ρ̃)−ν L(x)x−ν as x → ∞,

see for example [32, Chapter 3] or [34].

4.2 Cancel-on-completion

In this section, we analyze the tail asymptotics for the c.o.c. variant of the fork–
join(nF, nJ) model with the LCFS-PR discipline.

We use the same upper bound system as for the FCFS discipline, see Sect. 3.2.
Note that for the LCFS-PR discipline the servers wait with serving a new job until all
the nJ replicas are finished or the job is pre-empted. Hence, all nF replicas of a job
(if present) receive service simultaneously at all times. From this, it follows that for
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the LCFS-PR discipline the upper bound system with multiple servers is equivalent to
a G I/G/1/LC F S-P R queue with interarrival time A and job size B(nJ). However,
note that for the LCFS-PR discipline it is not sufficient that the upper bound system
provides an upper bound in terms of theworkload, since the response time in theLCFS-
PR discipline does not depend on the workload upon arrival of a job. In Lemma 3,
we prove that the upper bound system also provides an upper bound in terms of the
residual size of each replica.

Lemma 3 At any time, the residual size of each replica (possibly zero) is larger in the
upper bound system than in the c.o.c. variant of the fork–join(nF, nJ) model.

Proof The proof follows by contradiction. Let t0 be the first time such that the stated
inequality is about to be violated, and distinguish three cases depending on whether
this is caused by the arrival of a job, the departure of a replica, or by some other reason.

• In case of an arrival, the nF replicas of the arriving job in the upper bound system
are no smaller than in the original system by definition.

• In case of a departure in the upper bound system because there is a nJth replica
of a job that has residual size zero, nF − nJ replicas are abandoned. However,
according to the hypothesis this replica should also have residual size zero in the
original system. Now, in the upper bound system nF replicas of the job that arrived
the latest resume service (if present), but in the original system these replicas also
resume service or are already receiving service, since they arrived the latest at their
corresponding server.

• In the absence of any arrival or departure, the inequality can only be violated if
the replica in question receives service in the upper bound system but not in the
original system, and has the same residual size in both systems at time t0. Recall
that in the upper bound system all nF replicas of the same job always receive service
simultaneously. Thus, replicas of jobs that arrived later than this job already fully
completed service because of the LCFS-PR discipline. However, according to
the hypothesis these replicas also fully completed service in the original system.
Hence, it follows that the replica of interest also receives service in the original
system (if present).

Thus, the statement is still true at time t0 in all cases.

Corollary 6 The response time R in the c.o.c. variant of the fork–join(nF, nJ) model
with the LCFS-PR discipline is stochastically bounded from above by the response
time RU in a G I/G/1/LC F S-P R queue with interarrival time A and job size B(nJ).

Proof By Lemma 3, at any time the residual size of each replica (possibly zero) is
larger in the upper bound system than in the c.o.c. variant of the fork–join(nF, nJ)
model. The departure time of a job is the moment at which the nJth replica of a job
has residual size zero. Hence, it follows that R ≤ RU.

A sufficient stability condition for general interarrival times and job sizes is ρU =
E[B(nJ)]
E[A] < 1, which can be proved via the upper bound system given in Corollary 6.

The exact stability condition of the c.o.c. variant of the fork–join(nF, nJ) model, and
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also redundancy-d scheduling, with the LCFS-PR discipline in such a general setting
is still unknown.

The next theorem provides insight in the tail behavior when the distribution of the
nJth order statistic of the job size is regularly varying, i.e., B(nJ) ∈ RV (−ν̃). Similarly
to the FCFS discipline, it includes the special cases of identical replicas (ν̃ = ν) and
i.i.d. replicas (ν̃ = (nF + 1 − nJ)ν).

Theorem 3 For the c.o.c. variant of the fork–join(nF, nJ) model with the LCFS-PR
discipline and ρU < 1: if B(nJ) ∈ RV (−ν̃), then R ∈ O RV (−ν̃).

Proof Upper bound: By Corollary 6, the response time is bounded from above by the
response time in a G I/G/1/LC F S-P R queue with interarrival time A and job size
B(nJ). Let RU denote the response time in this upper bound system. Since B(nJ) is
regularly varying, we can apply known results for the single-server queue, see (14),
and obtain

P(RU > x) ∼ E[Nbp](1 − ρU)−ν̃ L(x)x−ν̃ as x → ∞,

where ρU = E[B(nJ)]
E[A] .

Lower bound: One could argue that R cannot have a heavier tail than RU, but also
not a lighter tail, since

P(R > x) ≥ P(B(nJ) > x) = L(x)x−ν̃ , x > 0.

The proof follows by Lemma 6 in Appendix A.

Remark 3 For identical replicas, we can even find a better upper bound in Theorem 3.
Indeed, consider the system in which all replicas are completely served. This system
is equivalent to a G I/G/1/LC F S-P R queue with a random selection of the arrivals
based on Bernoulli experiments with probability nF/N , i.e., mean interarrival time
NE[A]

nF
, and job size B, which is equal to B(nJ) in the case of identical replicas.

Theorem 3 indicates that for the LCFS-PR discipline the tail of the response time
is just as heavy as the tail of the job size. Comparing the tail behavior in redundancy-
d scheduling with the LCFS-PR discipline and with the FCFS discipline we can
conclude that, for the c.o.s. variant, the LCFS-PR discipline has better tail behavior
than (or equally good as) the FCFS discipline. Loosely speaking, the tail behavior of
the LCFS-PR discipline is better in scenarios with small load and a small number of
replicas d and the tail behavior of the two service disciplines is similar in all other
scenarios. For the c.o.c. variant of the fork–joinmodel, the LCFS-PR discipline always
has better tail behavior than the FCFS discipline for all dependency structures between
the replicas.

5 Numerical results

In the previous sections, we determined the tail behavior of the response time for
heavy-tailed job sizes. In this section, we provide simulation results for redundancy-d
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Fig. 1 Tail behavior for the response time in the c.o.s. variant of redundancy-d scheduling with Pareto(ν =
1.5, xm = 1/3) job sizes, E[B] = 1, N = 3, ρ̃ = 2.5 and the FCFS discipline. The dashed line depicts the
function y = x−0.5
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Fig. 2 Tail behavior for the response time in the c.o.c. variant of redundancy-d scheduling with identical
Pareto(ν = 1.5, xm = 1/3) job sizes, E[B] = 1, N = 3, ρ̃ = 0.5 and the FCFS discipline. The dashed
lines depict the tail behavior for the response time in the lower bound (P(RL > x)) and in the upper bound
(P(RU > x)) given in Corollary 5. Note that the system with d = 1 and d = 3 = N is equivalent to the
lower and upper bound system, respectively

scheduling that illustrate this tail behavior in various scenarios. All the simulation
experiments are conducted with 109 number of jobs. The figures are in log–log scale
and we consider Pareto distributed job sizes with shape value ν = 1.5, which means
that B ∈ RV (−1.5). Note that in the simulation P(R > x) = 0 for x big enough,
which explains the steep drop in all the figures.

In Fig. 1, the tail behavior of the response time for the c.o.s. variant of redundancy
is depicted, see Corollary 2 for the corresponding asymptotic bound. It can be seen
that especially the lines for d = 2 and d = N = 3 are following the line representing
tail index −0.5 quite well. For d = 1, it can be seen that at first it diverges, but after
x > 10 it also runs parallel to the line representing tail index −0.5.

Figure 2 shows the tail behavior for the response time in the c.o.c. variant of redun-
dancy with identical Pareto job sizes, see Corollary 5 for the asymptotic bound. It
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Fig. 3 Tail behavior for the c.o.c. variant of redundancy-d scheduling with i.i.d. Pareto(ν = 1.5/d, xm =
1/3) job sizes, E[Bmin] = 1, N = 3, ρ̃ = 0.5 and the FCFS discipline. The dashed lines depict the tail
behavior for the response time in the lower bound (P(RL > x)) and in the upper bound (P(RU > x)) given
in Corollary 5. Note that the system with d = 1 and d = 3 = N is equivalent to the lower and upper bound
system, respectively
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Fig. 4 Tail behavior for the response time in the c.o.c. variant of redundancy-d scheduling with identical
Pareto(ν = 1.5, xm = 1/3) job sizes, E[B] = 1, N = 3, ρ̃ = 0.5 and the LCFS discipline. The dashed
lines depict the tail behavior for the response time in the lower bound (P(RL > x)) and in the upper bound
(P(RU > x)) given in Theorem 3. Note that the system with d = 1 and d = 3 = N is equivalent to the
lower and upper bound system, respectively

can be seen that for every number of replicas the tail index is equivalent to the value
identified in Corollary 5. Interestingly, this figure shows that for d = 2 the asymptotic
lower bound represents the exact tail behavior better than the upper bound.

Figure 3 depicts the tail behavior for the response time in the c.o.c. variant of
redundancy with i.i.d. Pareto job sizes. Note that according to Corollary 5 the tail
index is given by 1− dν. To get the same tail behavior for all the numbers of replicas
in Fig. 3, we scaled the job size with d.

So far, we only considered the FCFS discipline. Figure 4 shows the tail behavior
of the response time for the c.o.c. variant of redundancy with the LCFS discipline.
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6 Conclusion and suggestions for further research

In this paper,we studied the tail behavior of the response time in redundancy-d schedul-
ing and the fork–joinmodel for heavy-tailed job sizes. In particular, for the c.o.s. variant
of redundancy-d with the FCFS discipline and subexponential job sizes we determined
the tail behavior of the response time and showed that it depends on the load of the
system. For the c.o.c. variant of the fork–join model, we observed that the tail behavior
of the response time depends on the dependency structure between the replicas. For
job sizes B ∈ RV (−ν), our results indicate that for the c.o.s. variant of redundancy
scheduling in the scenario of sufficiently small load having d = � ν

ν−1� replicas already
achieves the optimal asymptotic tail behavior of the response time. For high loads, the
results indicate that creating many replicas yields no benefits for the tail index of the
response time. For the c.o.c. variant of the fork–join(nF, nJ) model with identical and
i.i.d. replicas, the tail index of the response time is 1 − ν and 1 − (nF + 1 − nJ)ν,
respectively. Thus, the tail index is independent of the load of the system and for
identical replicas even independent of the number of replicas.

Observe that all the results on the tail index for the c.o.c. variant of the fork–join
model rely on the fact that the upper bound system is stable. The stability condition of
this system does not necessarily coincide with the stability condition of the original
fork–join model. It would also be interesting to study the tail index for values of the
load for which the original fork–join model is stable but the upper bound system is
unstable.

A natural topic for further researchwould be to extend our analysis to heterogeneous
servers or evenmore generally to job types that can have different speeds at the various
servers, see for example the model in [24].

Another extension would be to analyze the tail behavior of the response time for
the ROS service discipline. As mentioned in the introduction, for the single-server
queue this discipline has the same tail index as the FCFS discipline. Simulation exper-
iments (not included in this paper) suggest that this statement extends to redundancy-d
scheduling.
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123

http://creativecommons.org/licenses/by/4.0/


Queueing Systems (2023) 103:131–159 151

Appendix A: Preliminary results

In this appendix, we introduce several classes of heavy-tailed distributions that are
considered for the job size in this paper, see also [4, 14]. Let the complementary
cumulative distribution function be defined as F̄B(x) := 1 − FB(x) = P(B > x).

Definition 1 B is heavy-tailed if, for all ε > 0,

E[eεB] = ∞,

or equivalently (see for example [14, Theorem 2.6]), if for all ε > 0,

P(B > x)eεx → ∞ as x → ∞.

Let Fn∗
B (x) be the n-fold convolution of FB(x) for n = 2, 3, . . . , with F1∗

B (x) ≡
FB(x).

Definition 2 B is subexponential, denoted by B ∈ S, if

F̄2∗
B (x)

F̄B(x)
= P(B1 + B2 > x)

P(B > x)
→ 2 as x → ∞.

Examples of well-known subexponential distributions are Pareto, Lognormal and
Weibull with a shape parameter between 0 and 1.

Definition 3 B is long-tailed, denoted by B ∈ L, if F̄B(x + 1) ∼ F̄B(x) as x → ∞.

Here, f (x) ∼ g(x) means f (x)
g(x)

→ 1 as x → ∞.

Definition 4 B is dominated varying, denoted by B ∈ D, if F̄B(2x) ≥ cF̄B(x) for
some c > 0 and for all x .

Definition 5 B is O-regularly varying, denoted by B ∈ O RV , if

0 < lim inf
x→∞

F̄B(αx)

F̄B(x)
≤ lim sup

x→∞
F̄B(αx)

F̄B(x)
< ∞, ∀α ≥ 1.

Furthermore, B ∈ O RV (−ν) if

c1α
−ν < lim inf

x→∞
F̄B(αx)

F̄B(x)
≤ lim sup

x→∞
F̄B(αx)

F̄B(x)
< c2α

−ν, ∀α ≥ 1, (A.1)

with positive constants c1 and c2.

Definition 6 B is regularly varying of index −ν, denoted by B ∈ RV (−ν), if

F̄B(x) = L(x)x−ν, x > 0, (A.2)

with L(x) a slowly varying function, i.e., L(αx)/L(x) → 1 for any α > 0.
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Observe that we have the following relations, see for example [4, Theorem 2.1.8]
or [32, Chapter 2],

RV ⊂ D ⊂ O RV and RV ⊂ L ∩ D ⊂ S. (A.3)

We will analyze the tail asymptotics of the response time of an arbitrary job in
steady state. For this, we need some preliminary results that are stated in the lemmas
below. The next lemma states that the minimum and the sum of two independent
regularly varying random variables is again regularly varying.

Lemma 4 Let X and Y be two independent regularly varying random variables with
P(X > x) = L1(x)x−ν1 and P(Y > x) = L2(x)x−ν2 . Then,

i) min (X , Y ) ∈ RV (−(ν1 + ν2)),
ii) X + Y ∈ RV (−min{ν1, ν2}).
Proof See [4, Proposition 1.5.7].

A similar lemma as Lemma 4 can be proved for O-regularly varying random vari-
ables.

Lemma 5 Let X and Y be two independent O-regularly varying random variables
with index −ν1 and −ν2, respectively, then

i) min (X , Y ) ∈ O RV (−(ν1 + ν2)),
ii) X + Y ∈ O RV (−min{ν1, ν2}).
Proof By definition of O RV (−ν), there exist ci , i = 1, . . . , 4, such that

c1α
−ν1 < lim inf

x→∞
F̄X (αx)

F̄X (x)
≤ lim sup

x→∞
F̄X (αx)

F̄X (x)
< c2α

−ν1 , ∀α ≥ 1,

and

c3α
−ν2 < lim inf

x→∞
F̄Y (αx)

F̄Y (x)
≤ lim sup

x→∞
F̄Y (αx)

F̄Y (x)
< c4α

−ν2 , ∀α ≥ 1.

Observe that by independence we have

P(min (X , Y ) > x) = P(X > x)P(Y > x),

and therefore

c1c3α
−(ν1+ν2) < lim inf

x→∞
F̄min(X ,Y )(αx)

F̄min(X ,Y )(x)
≤ lim sup

x→∞
F̄min(X ,Y )(αx)

F̄min(X ,Y )(x)
< c2c4α

−(ν1+ν2), ∀α ≥ 1.

The proof of i) follows by the definition of O RV (−ν).
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The proof of ii) is similar to the proof of the convolution closure for regularly
varying distributions, see for example [21]. Since {X +Y > x} ⊃ {X > x}∪ {Y > x}
it follows that

P(X + Y > x) ≥ P(X > x) + P(Y > x) − P(X > x)P(Y > x).

For 0 < δ < 1
2 , we have that

{X + Y > x} ⊂ {X > (1 − δ)x} ∪ {Y > (1 − δ)x} ∪ {X > δx, Y > δx},

and therefore

P(X + Y > x) ≤ P(X > (1 − δ)x) + P(Y > (1 − δ)x) + P(X > δx)P(Y > δx).

Now if ν1 = min{v1, v2},
P(X + Y > αx)

P(X + Y > x)
≥ c1

c2
(1 − δ)ν1α−ν1(1 + o(1)),

and

P(X + Y > αx)

P(X + Y > x)
≤ c2

c1
(1 − δ)−ν1α−ν1(1 + o(1)).

The case for ν2 = min{v1, v2} follows by an analogous argument. By definition,
see (A.1), we get that X + Y ∈ O RV (−min{ν1, ν2}).

Observe that these results could also be obtained by applying the principle of a
single big jump, see for example [15].

Next we give an auxiliary lemmawhich states that a random variable isO-regularly
varying with index −ν under the condition c1L(x)x−ν ≤ P(X > x) ≤ c2L(x)x−ν .

Lemma 6 If c1L(x)x−ν ≤ P(X > x) ≤ c2L(x)x−ν , then X ∈ O RV (−ν).

Proof From c1L(x)x−ν ≤ P(X > x) ≤ c2L(x)x−ν , we get

c1
c2

α−ν < lim inf
x→∞

F̄X (αx)

F̄X (x)
≤ lim sup

x→∞
F̄X (αx)

F̄X (x)
<

c2
c1

α−ν, ∀α ≥ 1.

The proof follows by definition of O RV (−ν).

Appendix B: Proof of the upper bounds in Theorem 1

In this appendix, we will prove the upper bounds (8) and (10) on the tail of the waiting
time for the c.o.s. variant of redundancy-d with the FCFS discipline. Our proof is
based on the proof in [13] for the G I/G/N queue, which corresponds to a system
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of N queues with the JSW-N policy. While the JSW-d policy with 1 ≤ d ≤ N
requires essential and sometimes subtle adaptations, overall we follow the main line
of reasoning of [13] and indicate for each lemma and theorem its counterpart in [13].

In most heavy-tailed queueing systems, the interarrival time distribution does not
have an effect on the waiting time tail behavior. With this in mind, similar to [12,
13], we first consider deterministic interarrival times, making the derivations more
tractable, and thereafter prove Lemma 10 which allows us to extend the proof for
deterministic interarrival times to generally distributed interarrival times. The idea
behind the proof of the upper bounds is that we compare the system with the JSW-d
policy to N auxiliary single-server queueing systems which work in parallel.

Let sn denote the vector of d servers which are sampled for the nth job. For n =
1, 2, . . . , let V n = (Vn1, . . . , VnN ) be the vector of residual workloads at the arrival
epoch of the nth job. The waiting time that the nth job experiences is Wmin,n :=
min{Vnj , j ∈ sn} and it joins server in , where in = min{i ∈ sn : Vni = Wmin,n}. Also,

Vn+1,i =
{

(Vni + bn − an+1)
+ if i = in,

(Vni − an+1)
+ if i �= in,

with job sizes bn and interarrival times an Let R(x) = (R1(x), . . . , RN (x)) be the
operator on R

N that orders the coordinates of x ∈ R
N in nondecreasing order, i.e.,

R1(x) ≤ · · · ≤ RN (x). Moreover, let fR : R → R be the function that maps
the server number to the number ordered by workload as in the operator R(·). For
n = 1, 2, . . . , put Dn = R(V n). Then, Wmin,n = Dni , where i = fR(in) and similar
to the Kiefer–Wolfowitz recursion for the JSW policy, we get

Dn+1 = R((Dn1 − an+1)
+, . . . , (Dni + bn − an+1)

+, . . . , (DnN − an+1)
+).

(B.1)

Observe that the operator R(·) is monotone, thus the sequence Dn satisfying Equa-
tion (B.1) satisfies the two monotonicity properties of Lemma 4.1 in [13] as well.

Hereafter, we continue to assume deterministic interarrival times a′ ≡ E[A] for the
original system.

In Lemma 8, we upper bound the sum of waiting times by the sum of waiting
times in auxiliary D/G/1 queues (defined after Lemma 7) and a light-tailed random
variable. The proof of Lemma 8 uses the auxiliary Lemma 7 that provides an upper
bound on the expected difference of the total workload at all the servers seen by the
first and (s + 1)th job when the workload at one of the servers is large. Note that the
choice of this large workload is different from that used in [13].

Lemma 7 (Counterpart of Lemma 4.3 in [13]) Consider a system with k + 1 servers
and assume E[B] > ka′. For any ε > 0, there exist Vlarge < ∞ and an integer s ≥ 1
such that, for any initial value D1 with D1,k+1 ≥ Vlarge,

E

⎡
⎣k+1∑

j=1

D1+s, j −
k+1∑
j=1

D1 j

⎤
⎦ ≤ s(E[B] − (k + 1)a′ + ε).
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Proof By property (2) of Lemma 4.1 in [13], it is enough to prove the result for
initial values D11 = · · · = D1k = 0, D1,k+1 = Vlarge only. Choose C such that
E[min{a′, C}] ≥ a′ − ε/2. By property (1) of Lemma 4.1 in [13], we may prove the
lemma with interarrival times min{a′, C} instead of a′.

For d ≥ k + 1, the proof follows from Lemma 4.3 in [13], since the JSW-d and
JSW policy are equivalent in the system with k +1 servers. For d < k +1, consider an
auxiliary unstable G I/G/k system that assigns the job to the server with the smallest
workload among d − 1 servers selected uniformly at random with probability d

k+1

and d servers selected uniformly at random with probability 1 − d
k+1 . Observe that

d
k+1 (respectively, 1 − d

k+1 ) equals the probability that server k + 1 is (not) sampled

in the original system. The auxiliary system has initial value D̂1 = 0. Find s such

that E

[∑k
i=1 D̂1+s,i

]
≤ s(E[B] − ka′ + ε/2). For an unstable system with workload

vector D̂n , we have that D̂ni → ∞ as n → ∞ for i = 1, . . . , k.
Take Vlarge = max{(s+1)C, V ∗

large}, where V ∗
large is defined as follows. Consider the

system with initial values D11 = · · · = D1k = 0, D1,k+1 = V ∗
large and let the n∗th job

be thefirst job that is assigned to the (k+1)th server, i.e.,n∗ := min{n ≥ 1 : in = k+1}
which clearly depends on the initial workload V ∗

large. Then, take V ∗
large such that

min
i=1,...,k+1

Dn∗i ≥ (
s + 1 − n∗) C .

Note that such V ∗
large exists, since increasing V ∗

large leads, loosely speaking, to increas-
ing workloads at the other k servers as well (because they are unstable). This definition
of V ∗

large ensures that the first time a job is assigned to server k + 1 the workload at
the other servers is large enough so that, without any additional work, these servers
are not empty before the (s + 1)th job. We cannot simply take Vlarge = (s + 1)C
as in [13], because this does not guarantee that Dni > 0 and D̂ni > 0, for all
n ∈ [min{s + 1, n∗}, s + 1] and i = 1, . . . , k, which is needed in the proof. Indeed,
without additional constraints on Vlarge it may be that the job is allocated to the (k+1)th
server, which has the smallest workload out of the d sampled servers, while at least
one of the other k + 1 − d servers is empty.

By the exact same steps as in Lemma 4.3 in [13], we can prove that

k+1∑
j=1

D1+s, j −
k+1∑
j=1

D1, j =
k∑

j=1

D̂1+s, j −
s∑

j=1

min{a′, C}

≤ s(E[B] − ka′ + ε

2
) − s(a′ − ε

2
) a.s., (B.2)

and the result follows.

We now introduce the auxiliary D/G/1 queues used in Lemma 8. Consider N
auxiliary D/G/1 queueing systems which work in parallel and with interarrival times
a′ ≡ E[A]. At every time instant Tn , n = 1, 2, . . . , a batch of N jobs arrives, one
job per server. Denote by Uni , i = 1, . . . , N , the waiting times in the i th D/G/1
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queue and let bni , n ≥ 1 and i = 1, . . . , N , be independent random variables with
common distribution that of B. We couple the job sizes of the D/G/N redundancy-d
system with job sizes at the N auxiliary D/G/1 queues: we let bn = bn,in , where
in = min{i ∈ sn : Vni = Wmin,n} as defined earlier. The deterministic interarrival
times are Tn = n(k + 1)(a′ − h), with

k

k + 1

(
a′ − E[B]

k + 1

)
< h < a′ − E[B]

k + 1
, (B.3)

so that the auxiliary queueing systems are stable.

Lemma 8 (Counterpart of Lemma 6.2 in [13]) There exists β > 0 such that, for any
set of k + 1 indices I = {i(1), . . . , i(k + 1)}, there is a random variable ηI such that
E[eβηI ] < ∞ and, for any n, with probability 1,

∑
i∈I

Vni ≤
∑
i∈I

Uni + ηI . (B.4)

Proof Fix some i∗ ∈ I . Observe that for d ≥ k + 1 the proof directly follows from
Lemma 6.2 in [13], since the JSW-d and JSW policy are equivalent in the system with
k+1 servers. For d < k+1, consider an auxiliary G I/G/(k+1) redundancy-d system
as in Lemma 7 with workloads V ∗

n = (V ∗
ni , i ∈ I ) with the same interarrival times

equal to a′, but whose service times b∗
n are chosen in a special manner. At any time n,

if in ∈ I , then put b∗
n = bn,in and i∗n = in . If i∗n /∈ I , then put b∗

n = bn,i∗ and i∗n = i∗.
Applying property (1) of Lemma 4.1 in [13], we get that R(Vni , i ∈ I ) ≤ R(V ∗

n)

coordinate-wise, for any n. Therefore,

∑
i∈I

Vni ≤
∑
i∈I

V ∗
ni .

By the exact same steps as in Lemma 6.2 in [13] using Lemma 7 (the counterpart of
Lemma 4.3 in [13]), we can prove Equation (B.4).

Just like a crucial step in [13], Lemma 8 can be used to upper bound the waiting
time in the N -server system by the waiting time in the corresponding system with
deterministic interarrival times minus a negligible term. Note that the upper bounds
are not as sharp as in [13] since, unlike [13], Wmin,n �

1
k+1

∑
i∈I Vni for every

collection I .

Lemma 9 (Counterpart of Lemma 6.1 in [13]) There exists a number β > 0 and a
random variable η such that E[eβη] < ∞ and, for all n, with probability 1

i) if k ≥ N − d,

Wmin,n ≤ k + 1

k + 1 − N + d
Un,(k+1) + η,

where Un,(k+1) is the (k + 1)th order statistic of vector (Un1, . . . , UnN ),
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ii) if k ≤ N − d,

Wmin,n ≤ (k + 1)Un,(N−d+1) + η.

Proof i) For k ≥ N − d, we have for every collection I of k + 1 coordinates,

Wmin,n ≤ 1

k + 1 − N + d

∑
i∈I

Vni , (B.5)

since Wmin,n is no larger than the (N − d + 1)th smallest value of Vni , i ∈ I . Then, it
follows from Lemma 8 that

Wmin,n ≤ 1

k + 1 − N + d

∑
i∈I

Uni + η, (B.6)

where η := maxI :|I |=k+1 ηI . Take I such that {Uni , i ∈ I } are the k + 1 smallest
coordinates of the vector (Un1, . . . , UnN ). Then, Uni ≤ Un,(k+1) for every i ∈ I .

ii) For k ≤ N − d, we take the collection I of k + 1 coordinates such that
ĩn = argmini {Uni : i ∈ sn} ∈ I . Hence, I ∩ sn �= ∅ and again Eqs. (B.5)
and (B.6) hold. Take the remaining coordinates of I such that {Uni , i ∈ I \ ĩn} are
the k smallest coordinates of the vector (Un1, . . . , Un,ĩn−1, Un,ĩn+1, . . . , UnN ). Then,
Uni ≤ Un,(N−d+1) for every i ∈ I . Indeed, in the worst case {Uni : i ∈ sn} are
the d largest coordinates of the vector (Un1, . . . , UnN ), but ĩn is defined as the argu-
ment that achieves the minimum of the set {Uni : i ∈ sn} from which it follows that
Unĩn

≤ Un,(N−d+1).

Theorem 4 (Analogous to Theorem 7.1 in [13]) Let ρ̃ < k + 1 for some k ∈
{0, . . . , N − 1}. Then, for any fixed h satisfying Eq. (B.3) there exists β > 0 such
that

i) if k ≥ N − d,

P(Wmin > x + y) ≤
(

N

k

)(
F̄Mrw

(
(k + 1 − N + d)x

k + 1

))N−k

+ const · e−β y,

for all x, y > 0,
ii) if k ≤ N − d,

P(Wmin > x + y) ≤
(

N

d

) (
F̄Mrw

(
x

k + 1

))d

+ const · e−β y,

for all x, y > 0, where FMrw is the cumulative distribution function of the random
variable

Mrw := sup
n≥1

⎧⎨
⎩0,

n∑
j=1

(b j − (k + 1)(a′ − h))

⎫⎬
⎭ .
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Proof The proof follows along the same lines of Theorem 7.1 in [13] relying on
Lemma 9, which upper bounds the waiting time of the nth job in the two cases k ≥
N − d and k ≤ N − d. For the full proof, we refer to [26].

The proof of the upper bounds (8) and (10) follows by taking the same steps as in
the proof of the upper bound in Theorem 1.6 in [13]. Again, we refer to [26] for the
exact steps.

So far, we assumed deterministic interarrival times; the following lemma allows us
to extend the proof to the case of generally distributed interarrival times. For clarity,
we highlight the metrics that correspond to the system with deterministic interarrival
times by an apostrophe.

Lemma 10 (Counterpart of Lemma 1 in [12]) If P(W ′
min > x) ≤ Ḡ(x) for some

long-tailed distribution G, where W ′
min denotes the waiting time in the system with

deterministic interarrival times a′ ≡ E[A], then

lim sup
x→∞

P(Wmin > x)

Ḡ(x)
≤ 1.

Proof The proof follows along the same lines as Lemma 1 in [12]. For the full proof,
we refer to [26].
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