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Abstract
We provide two examples of strictly subcritical multiclass queueing networks which
are unstable under the shortest remaining processing time (SRPT) service protocol.
Both of them are reentrant lines with two servers and eight customer classes. The
customer service times in our first system are deterministic, yielding an example of an
unstable shortest remaining expected processing time (SERPT) network. In the second
one, the service times in one customer class are randomized. Both our examples show
also system instability under the shortest job first (SJF) discipline. A simulation study
of robustness of our results with respect to changes in the customer interarrival and
service times is also provided. Our results indicate that size-based service policies may
not use the available resources efficiently in a multiserver network setting and in fact
cause instability effects. This is in sharp contrast with their satisfactory performance
for single-server queues.

Keywords Instability · Multiclass queueing networks · Simulation · Size-based
scheduling · SJF · SRPT

Mathematics Subject Classification 60K25 · 60K20 · 68M20 · 90B22 · 90B36

1 Introduction

Following Serfozo [40], by a stochastic networkwemean a system inwhich customers
move among stations where they receive services; there may be queueing for services,
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and customer routing and service times may be random. In many cases, we consider
so-called multiclass networks in which stations can process more than one class of
customers (jobs). Typical examples include computer and telecommunications net-
works, manufacturing and equipment maintenance networks, parallel simulation and
distributed processing systems or logistics and supply chain networks.

A fundamental question in the theory of multiclass queueing networks is whether
a given network is stable, i.e., the corresponding Markov process is positive Harris
recurrent. The intuitive meaning of network stability is that the system performs well
under reasonable workload: the queue lengths do not grow linearly with time and do
not oscillate; there is no mutual blocking and forced idleness of the servers when work
is present in the system. Stability of a network is a basic indicator of its proper design.
Apparently, there is no general criterion for this behavior. It iswell known that the usual
necessary condition that the network be strictly subcritical (i.e., the traffic intensity ρ j

be less than 1 at each station j) is not sufficient. However, the condition ρ j < 1 for all j
is sufficient for generalized Jackson networks [35] and multiclass networks with some
disciplines, including first-in-first-out (FIFO) in networks of Kelly type [11], head-
of-the-line proportional processor sharing (HLPPS) [12], first-buffer-first-served and
last-buffer-first-served [18,21], as well as earliest-deadline-first (EDF) [14,29,31]. Dai
[18], generalizing and systematizing earlier work of Rybko and Stolyar [37], provided
a general framework for proving such stability results by showing stability of the
corresponding fluid model, a deterministic analog of the network under consideration.

On the other side of the spectrum, we have unstable, strictly subcritical multiclass
networks. Following Bramson [15], p. 53, we say that a queueing system is unstable
if, for some initial state, the number of jobs in the network tends to infinity with
positive probability as the time parameter t → ∞. First examples of such systems
were given in a deterministic setting. Kumar and Seidman [33] showed instability of a
clearing policy in two nonacyclic networks. Lu and Kumar [34] provided an example
(suggested by Seidman) of an unstable reentrant line with a preemptive static buffer
priority (SBP) discipline. Recall that under an SBP protocol, customer classes are
assigned a strict ranking and jobs of higher ranked classes are always served before
tasks of lower ranked classes, while within a class, the jobs are served in the FIFO
order (see, for example, Bramson [15], p. 12). A random counterpart of the Lu–Kumar
network was later analyzed in Bramson [15], Sect. 3.1. To our knowledge, the first
example of an unstable stochastic networkwas a preemptive SBP system due to Rybko
and Stolyar [37], with the same topology as one of the clearing systems considered
by Kumar and Seidman [33]. Subsequently, it was found that even strictly subcritical
FIFO queueing networks might be unstable. Examples of such systems were given by
Seidman [39] and Bramson [9,10] in the deterministic and random case, respectively.
Further examples of unstable queueing networks may be found in Dai andWeiss [21],
Dumas [24], Bramson [13], Bacelli and Bonald [4] or Dai et al. [19,20].

So far, most of the work in this area has been concentrated on the investigation of
head-of-the-line (HL) disciplines, in which only the first job in each class may receive
service, and hence, the tasks are served in the FIFO order within each class. In partic-
ular, little attention has been devoted to stability of multiclass queueing networks with
size-based scheduling policies, in which the order of service is established on the basis
of the customer service times (either initial, remaining or attained). Service policies
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of this type have been investigated thoroughly in the single-server setting; see the last
three chapters in [28] and the references given there. Interest in such protocols stems
from the fact that a proper size-based scheduling policy can substantially improve
the performance of a queueing system. In particular, a classic result of Schrage [38]
assures that the shortest remaining processing time (SRPT) policy, giving preemp-
tive priority to the job which can be completed first, minimizes the queue length in a
single-server system at each point in time.

It is natural to ask howwell size-based disciplines perform inmulticlass,multiserver
networks. To our knowledge, there are few rigorous results in this area. Verloop et
al. [41] investigated this issue in resource sharing networks. An essential difference
between the latter systems and multiclass queueing networks is that jobs in a resource
sharing network need access to all the resources on their routes simultaneously, while
customers of a multiclass queueing network visit different servers along their routes
in succession. Verloop et al. [41] found that linear, strictly subcritical resource sharing
networks with Poisson arrivals and generally distributed document sizes, working
under the SRPT, shortest expected remaining processing time (SERPT) and the least
attained service (LAS) scheduling, may be unstable. Brown [16] investigated a packet
level model (as opposed to flow level models used in [41]) and obtained stability
conditions for some aged-based policies, including LAS, in data networks. Gieroba
and Kruk [25] investigated some pathwise minimality properties associated with the
SRPT protocol in resource sharing networks. Grosof et al. [27] provided bounds for
the mean response time in the M/G/k queue under the SRPT and showed asymptotic
optimality of this mean response time in the heavy-traffic limit. Recently, Dong and
Ibrahim [22] investigated the multiserver M/G/k+G queue with impatient customers
under the SRPT protocol and showed that, in the many-sever overloaded regime,
its performance is asymptotically equivalent in steady state to a preemptive two-class
priority queue. They also proved that in this setting, the SRPTdiscipline asymptotically
maximizes the system throughput.

In the context of multiclass queueing networks, Banks and Dai [5] provided a simu-
lation study demonstrating that a three station reentrant line with nine customer classes
can be unstable under the SERPT protocol. Moreover, their simulations suggested that
a variant of the Rybko–Stolyar (Kumar–Seidman) network may be unstable under
the shortest mean remaining processing time first discipline, an analog of SERPT in
which the priority of a customer class is established on the basis of the sum of the
mean remaining processing times along its path rather than the mean processing time
for this class. Chen and Yao [17], Section 8.6, presented a simulation indicating that
a variant of the Rybko-Stolyar (Kumar-Seidman) network may not be stable under
the preemptive SERPT discipline. They also stated, without providing any details,
that both the simulation and the analysis of Sections 8.1-8.3 in [17] indicated that
the above-mentioned network might not be stable under SRPT. Recently, Kruk [32]
provided an example of a strictly subcritical multiclass network unstable under the
LAS service protocol.

In this paper, we provide two examples of strictly subcritical multiclass queueing
networks which are unstable under the SRPT service protocol. The first of them is a
reentrant line with two servers and eight customer classes which may be regarded, in
a suitable sense, as a variant of the Lu–Kumar network [34]. The customer service
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times in this system are deterministic, yielding an example of an unstable SERPT
network. Moreover, we show that in this network no customer is ever preempted,
so this example shows also the system instability under the shortest job first (SJF)
discipline, a non-preemptive variant of SRPT.

Due to deterministic service times and the lack of preemption, in the network from
our first example, the SRPT protocol implies fixed priorities between classes. This
setup was chosen in order to maximally simplify our counterexample and the corre-
sponding arguments. It is clear that further examples of unstable multiclass queueing
networks in which SRPT does not coincide with fixed priorities may be given, at the
expense of increased proof complexity. As an illustration of this fact, we provide an
example of a similar unstable SRPT system, with the same network topology, in which
the service times in one of the customer classes are randomized. While the proof of
its instability proceeds along similar lines as in the previous case, additional techni-
cal difficulties arise, making the corresponding analysis notably more complicated.
In our latter system, preemption may occur with positive probability, and hence, the
SRPT and SJF service disciplines do not coincide. Nevertheless, a careful analysis of
our argument shows that the network under consideration is unstable under the SJF
protocol as well.

We conclude with a simulation study of the effects of changing the interarrival
and/or service time distributions, while keeping the arrival and service rates unaltered,
in the SRPT network from our first example and its more complex variant with two
servers and 122 customer classes. It turns out that while the network’s qualitative
behavior does not seem to be very sensitive to the distribution of the arrival process, it
can apparently change from instability to stability after the change of the underlying
service time distributions. This intriguing phenomenon does not seem to be easy to
analyze and it deserves further studies.

Together with the findings of [32,41], our results indicate that size-based service
policies may not use the available resources efficiently in amultiserver network setting
and in fact cause instability effects. This is in sharp contrast with their satisfactory
performance for single-server queues. Accordingly, an implementation of the idea of
Aalto and Ayesta [1] to use SRPT (or other size-based protocol) only within a single
customer class, with class priorities arbitrated by another discipline, known to be stable
in the multiclass network context (for example, HLPPS), might be advisable.

This paper is organized as follows: In Sect. 2, in order to motivate our further
developments, we briefly recall the Lu–Kumar network. In Sect. 3, we provide our
examples of unstable SRPT networks. The proofs of their instability are given in
Sects. 4 and 5, respectively. In Sect. 6, we describe the simulation study illustrating
our results. Section 7 concludes.

1.1 Notation

The following notation will be used throughout the paper: Let N = {1, 2, . . .} and
let R denote the set of real numbers. We write �a� for the largest integer less than or
equal to a. For a vector a = (a1, ..., an) ∈ R

n , let |a| �
∑n

i=1 |ai |. We also denote
the indicator of a measurable set B by IB .
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Fig. 1 Lu–Kumar network

2 The Lu–Kumar network

Consider the network depicted in Fig. 1, consisting of two single-server stations,
indexed by j = 1, 2, with two customer (job, call) classes, or buffers at each station.
It is a reentrant line. Customers follow a deterministic route, first visiting station 1
after entering the network, next visiting station 2 twice and then visiting station 1 a
second time, before exiting the network. We order the customer classes according to
their appearance along the route. The system evolves according to a preemptive SBP
discipline, where class 4 jobs have priority over class 1 at the first server and class 2
jobs have priority over class 3 at the second one.

To our knowledge, this network topology was first considered by Kumar and Sei-
dman [33], with a clearing service discipline. The SBP discipline defined above was
introduced in the paper by Lu and Kumar [34], and hence, following Bramson [15],
we call it the Lu–Kumar network.

It was shown in [34] that the Lu–Kumar network with periodic arrivals at the times
0, 1, 2, ... and deterministic service timesm1 = m3 = 0,m2 = m4 = 2/3 is unstable.
More generally, it may be shown that this network with rate-1 Poisson arrivals and
independent, exponentially distributed service times having means mk > 0, k =
1, ..., 4, satisfying

m2 + m4 > 1, (1)

is unstable ([15], Theorem 3.2).

3 Networks unstable under SRPT

3.1 Models

Wewill now define two somewhat different strictly subcritical multiclass networks,
with the same topology, which will be analyzed in the sequel. In the first one, the
customer service times are deterministic. In the second one, the service times in one
of the customer classes are randomized. Both of them turn out to be unstable under the
SRPT and SJF protocols, while the first one is also unstable under SERPT (coinciding
with SRPT for deterministic service times). Below, we first provide the information
that is common for both networks. In Sect. 3.2, we define the first network model,
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Fig. 2 Network unstable under
SRPT

while in Sect. 3.3, we describe the second one. Then, in Sect. 3.4, we state our main
results.

Let (�,F ,P) be a probability space on which all the random objects to follow will
be defined. Consider a network topology depicted in Fig. 2. As in the previous case,
it is a reentrant line consisting of two single-server stations, indexed by j = 1, 2, but
now with four classes at each station. Customers follow a deterministic route, first
visiting station 1 after entering the network, next visiting station 2 four times and then
finally visiting station 1 three more times, before exiting the network. We order the
customer classes according to their appearance along the route.

Intuitively, the above network topology is a variant of the Lu–Kumar system in
which both the second and the fourth services of each job are split into three subtasks,
executed by the same server. The number of jobs in the buffer k at time t ≥ 0,
k = 1, ..., 8, (including the one currently served, if any) will be denoted by Qk(t). In
particular, the numbers Qk(0), k = 1, ..., 8, specify the initial condition (state) of the
network.

The customer interarrival times are a sequence of strictly positive, independent,
identically distributed (i.i.d.) random variables u(n), n = 1, 2, . . . , with unit expecta-
tion and moment-generating function that is finite in some neighborhood of zero, i.e.,
such that, for each n ∈ N,

Eu(n) = 1, (2)

Eeβu(n) < ∞ for some β > 0. (3)

The arrival time of the n-th customer to the system (i.e., to the buffer 1) is given by
U (n) = ∑n

l=1 u(l), n = 1, 2, .... For convenience, put U (0) = 0. For i = 1, 2, let
N (t) = max{n ≥ 0 : U (n) ≤ t} be the number of external arrivals of customers in
the time interval (0, t]. By (2), the customer arrival rate equals α = 1/Eu(n) = 1.

Customers are served at each station according to the SRPT discipline. That is, the
customer with the shortest remaining processing time, regardless of class, is selected
for service at each station. Preemption occurs when a customer more urgent than the
customer in service arrives (we assume preempt–resume). There is no set up, switch-
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over or other type of overhead. As it is customary in the SRPT case, we assume that
in case of a tie, FIFO is used as a tie-breaking rule.

3.2 Network with deterministic service times

In addition to the assumptions already made in Sect. 3.1, we require that the customer
interarrival time distribution is supported on the set 0.3 ∗ N := {0.3 · i, i ∈ N}, i.e.,
such that, for each n ∈ N,

∞∑

i=1

P[u(n) = 0.3 · i] = 1. (4)

Simple examples of distributions satisfying (2), (4) are

P[u(n) = 0.9] = 2

3
, P[u(n) = 1.2] = 1

3
, n = 1, 2, . . . , (5)

and

P[u(n) = 0.3] = 5

12
, P[u(n) = 1.5] = 7

12
, n = 1, 2, . . . . (6)

Of course, many more examples may be given, including some distributions with
unbounded support.

We assume that the service time of each job at class k is deterministic, given by a
constant mk , k = 1, ..., 8. We take

m1 = m5 = 0.3, m2 = m6 = 0.21, (7)

m3 = m7 = 0.2, m4 = m8 = 0.19. (8)

In particular, the network is strictly subcritical, since

ρ1 = ρ2 = α(m1 + m6 + m7 + m8) = 0.9 < 1.

Note that if we put m2 := m2 +m3 +m4, m4 := m6 +m7 +m8, i.e., “glue together”
classes 2, 3, 4 (resp. 6, 7, 8) into a single class 2 (resp. 4), we get parameters satisfying
(1), providing further support for the idea that our network is, in some sense, the Lu–
Kumar system in which the second and the fourth services of each job are split into
three subtasks. This suggests that the qualitative behavior of these two networks should
be similar, so it is reasonable to expect that our system is unstable.

Inwhat follows, the queueing systemdefined abovewill be referred to asNetwork 1.

3.3 Network with randomized service times of one class

In addition to the assumptions already made in Sect. 3.1, here we require that the
customer interarrival time distribution is supported on the set 0.1∗N := {0.1·i, i ∈ N},
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i.e., such that for each n ∈ N,

∞∑

i=1

P[u(n) = 0.1 · i] = 1. (9)

Clearly, every distribution satisfying (4), satisfies (9) as well. We also assume that for
n ≥ 1,

P[u(n) ≥ 0.9] = 1. (10)

Note that, for example, the distribution (5) satisfies (10), while the distribution (6)
does not. Furthermore, the service time of each job at class k 
= 4 is deterministic,
given by a constant mk , k = 1, ..., 3, 5, ..., 8, defined by (7) and

m3 = m8 = 0.19, m7 = 0.2. (11)

The service timesof class 4 jobs, however, are i.i.d. randomvariablesv(n),n = 1, 2, ...,
with distribution

P[v(n) = 0.2] = 1 − δ, P[v(n) = 0.4] = δ, n = 1, 2, ..., (12)

where δ is small (say, δ = 0.00011). This is a small random perturbation of the
constant service time 0.2.We assume that the sequences {u(n)} and {v(n)} aremutually
independent. Under both the SRPT and SJF service protocols, class 4 jobs with service
times 0.2 have priority over class 5 customers who have not received any service, while
(unserved) class 4 jobs with service times 0.4 do not. Consequently, in general we do
not have fixed class priorities in this system, even between unserved tasks. Let

μ = Ev(n) = 0.2 + 0.2δ.

The network under consideration is again strictly subcritical, with ρ1 = 0.9 as before
and

ρ2 = α(m2 + m3 + m5 + μ) = 0.9 + 0.2δ.

The intuition here is that the system just defined is a small perturbation of Network 1,
so it should be unstable as well.

In what follows, the queueing system described in this subsection will be referred
to as Network 2.

1 This value of δ was chosen in order to simplify the corresponding arguments. Simulations suggest that
the qualitative system’s behavior is the same for larger values of δ, e.g., 0.01 or 0.1. See Sect. 6, to follow.
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3.4 Main results

The following theorems are the main results of this paper.

Theorem 1 The SRPT Network 1 is unstable.

Theorem 1 follows from the following induction step which is justified in Sect. 4.

Proposition 1 Suppose that, in the SRPT Network 1, we have

Q1(0) = M, Qk(0) = 0, k = 2, ..., 8. (13)

Then, for some ε > 0, the constant M large enough and an appropriate random time
T = T (M) < ∞, supported on 0.3 ∗ N,

P

[

Q1(T ) ≥ 7

5
M, Qk(T ) = 0, k = 2, ..., 8

]

≥ 1 − e−εM , (14)

P[|Q(t)| ≥ M ∀t ∈ [0, T ]] ≥ 1 − e−εM , (15)

and, moreover, none of the class 1 customers present in the system at time T has
received any service by that time.

Proof of Theorem 1 Consider the SRPT Network 1 with the initial condition (13),
where M is large enough for Proposition 1 to hold. Let T1 = T (M), where T (M) is
as in the statement of Proposition 1, and let

A1 =
[

Q1(T1) ≥ 7

5
M, Qk(T1) = 0, k = 2, ..., 8

]

∩ [|Q(t)| ≥ M ∀t ∈ [0, T1]].

By Proposition 1, for a suitable ε > 0, we have

P(A1) ≥ 1 − 2e−εM . (16)

Using Proposition 1 again for the network restarted at the time T1 (i.e., with the
arrival process N ′(t) = N (t + T1) − N (T1) and the queue length process Q′(t) =
Q(t + T1), t ≥ 0, conditioned on the value M ′ = Q′

1(0) = Q1(T1) ≥ 7M/5, we get
the existence of a random time T ′

2 = T ′(M ′) supported on 0.3 ∗ N such that

P(A2|Q′
1(0) = M ′, Q′

k(0) = 0, k = 2, ..., 8] ≥ 1 − 2e−εM ′ ≥ 1 − 2e−ε7M/5,(17)

where

A2 =
[

Q′
1(T

′
2) ≥ 7

5
Q′

1(0), Q′
k(T

′
2) = 0, k = 2, ..., 8

]

∩ [|Q′(t)| ≥ Q′
1(0) ∀t ∈ [0, T ′

2]].

(Note that N ′ is, in general, a delayed renewal process, with the distribution of the
first arrival time u′(1) not necessarily equal to the distribution of u(n), although
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stochastically dominated by it. However, since P[T1 ∈ 0.3 ∗ N] = 1, the renewals
corresponding to N ′ are supported on 0.3 ∗ N and it may be checked that the
proof of Proposition 1 given below still works in this case). By (16), (17), we have
P(A1 ∩ A2) ≥ 1 − 2e−εM − 2e−ε7M/5. Moreover, conditioned on the set A1 ∩ A2,
we have

|Q(t)| ≥ M, t ∈ [0, T1], |Q(t)| ≥ 7M/5, t ∈ [T1, T2], (18)

where T2 = T1 + T ′
2 = T1 + T ′(Q1(T1)). By construction, T2 is supported on 0.3∗N.

Using Proposition 1 one more time for the network restarted at the time T2, we
obtain a random time T3 supported on 0.3 ∗ N and a set

A3 =
[

Q1(T3) ≥ 7

5
Q1(T2), Qk(T3) = 0, k = 2, ..., 8

]

∩ [|Q(t)| ≥ Q1(T2) ∀t ∈ [T2, T3]],

with P(A1∩ A2∩ A3) ≥ 1−2e−εM −2e−ε7M/5−2e−εM(7/5)2 , such that conditioned
on A1 ∩ A2 ∩ A3, we have (18) and |Q(t)| ≥ M(7/5)2 for t ∈ [T2, T3]. Proceeding
in this way, by repeated applications of Proposition 1 we get the estimate

P

[
lim
t→∞ |Q(t)| = ∞

]
≥ 1 − 2

∞∑

i=0

e−εM( 75 )i ,

with the right-hand side converging to 1 as M → ∞, and hence strictly positive for
M large enough. ��
Theorem 2 The SRPT Network 2 is unstable.

The proof of Theorem 2 is similar to the argument justifying Theorem 1, with Propo-
sition 1 replaced by

Proposition 2 Suppose that, in the SRPT Network 2, we have (13). Then, for some ε >

0, the constant M large enough and an appropriate random time T = T (M) < ∞,
supported on 0.1 ∗N, the inequalities (14), (15) hold and, moreover, none of the class
1 customers present in the system at time T has received any service by that time.

The proof of Proposition 2 is provided in Sect. 5.

4 Proof of Proposition 1

Throughout this section, Network 1 will be considered. In order to show Proposition
1, we need several lemmas. The first one says that, roughly speaking, we can treat
services of a customer at classes 2, 3 and 4 (resp., 6, 7 and 8) as one uninterrupted
service period at station 2 (resp., 1) of length 0.6.

Lemma 1 If a customer enters service at buffer 2 at time τ , then he finishes service at
buffer 4 at time τ + 0.6. Similarly, if a customer enters service at buffer 6 at time η,
then he finishes service at buffer 8 at time η + 0.6.
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Proof Suppose that a customer, labeled by n, previously not served (even partially)
by station 2, enters service at buffer 2 at time τ . By (7), his remaining service time at
this moment equals 0.21. Since the network protocol is SRPT, we must have Q3(τ ) =
Q4(τ ) = 0, because class 3 and 4 customers have service times less than 0.21, and
hence, they have priority over a new task of class 2. Similarly, if Q5(τ ) > 0, then the
customers present in the buffer 5 at time τ have remaining service times at least 0.21 at
this time, and hence, they cannot preempt any customer of classes 2, 3, 4. Finally, every
incoming class 2 customer has service time 0.21, so he cannot preempt any customer
of classes 2, 3, 4, either. These facts, together with the network topology, assure that
the customer n finishes service at buffer 2 at time τ +0.21, moving immediately to the
empty buffer 3, where his service time equals 0.2, while buffer 4 remains empty. By a
similar argument, he finishes uninterrupted service at 3 at the time τ + 0.41, moving
to the empty buffer 4, with the service time 0.19, and finally, he leaves buffer k at time
τ + 0.6. The proof of the second claim is similar. ��

Motivated by Lemma 1, we define a moving event as a time at which either an
external arrival to the system or a service completion at one of the buffers 1, 4, 5 or
8 takes place. Let us number consecutive moving events by l = 1, 2, 3, ..., and let θl
be the (random) time of the l-th event. In general, more than one moving event may
happen at the same time. If this is the case, to fix ideas, we list the external arrival (if
any) first and then the departure events in the order of the buffers left. Accordingly, it
may happen that θl = θl+1 for some l. The following lemma is a key to our analysis.

Lemma 2 Suppose that Qk(0) = 0 for k = 2, ..., 8. Then, for every l ≥ 1, we have

P[θl ∈ 0.3 ∗ N] = 1. (19)

Proof Fix ω ∈ �. For the remainder of the proof, all the random objects under con-
sideration are evaluated at this ω. We proceed by induction on l.

Let l = 1. If θ1 is an arrival event, then (19) follows from (4). Otherwise, it must
be the first service completion at buffer 1, so θ1 = m1 = 0.3, so again (19) holds.

Assume (19) for l = 1, ..., n. If the event n + 1 is an external arrival, then (19)
for l = n + 1 follows from (4). If it is a service completion at buffer 4 (and hence
arrival at buffer 5), then, by Lemma 1, the corresponding customer started his service
at station 2 at time τ = θn+1 − 0.6. However, by the network topology, τ is either the
arrival time of this customer at buffer 2 (i.e., its departure from 1), or a departure time
of a customer from class 4 or 5. In any case, τ = θl for some l ≤ n, so τ ∈ 0.3 ∗N by
the inductive assumption, and hence, θn+1 ∈ 0.3 ∗ N. The analysis for the case of the
event n + 1 being a service completion at buffer 8 is similar.

Suppose that the event n + 1 is a departure from buffer 1. If the service of the
corresponding customer at class 1 was uninterrupted, then θn+1 = m1 + τ = 0.3+ τ ,
where τ , the starting time of his service at buffer 1, is either the arrival of this customer
to the network, or a departure of a previous customer from buffer 1 or 8. In both cases,
τ = θl for some l ≤ n, so θn+1 ∈ 0.3 ∗ N by the inductive assumption.

Now assume that there was an interruption in the service of the customer departing
from buffer 1 at time θn+1. As before, let τ denote the time of his entering into service.
As before, we get τ ∈ 0.3 ∗ N. By the network topology, the only event that can
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result in a preemption of a class 1 customer is an arrival of a customer to buffer 6,
i.e., a departure from buffer 5. By the inductive assumption, this can only happen at
a time θl ∈ 0.3 ∗ N, τ < θl < θn+1. Hence, θl − τ ∈ 0.3 ∗ N, and consequently,
θl − τ ≥ 0.3 = m1. This means that there is no preemption and the class 1 customer
entering service at time τ finishes it at θn+1 = τ + m1 = τ + 0.3 ∈ 0.3 ∗ N.

Finally, the case of the event n + 1 being a service completion at buffer 5 is similar
to the latter one. ��
Corollary 1 Suppose that Qk(0) = 0 for k = 2, ..., 8. Then, no customer of our SRPT
network ever gets preempted.

Indeed, in the proof of Lemma 2 we have seen that a customer of class 1 (and
similarly 5) cannot experience preemption. By (7), (8) and Lemma 1, customers of
other classes do not get preempted, either.

Lemma 3 Let u1, u2, ... be i.i.d. random variables, with the same distribution as the
interarrival times u(n), and let Sn = ∑n

i=1 ui , n ≥ 1. Then, for every a > 0, there
exists ε = ε(a) > 0 such that, for all n ≥ 1,

P

[
1

n
|Sn − n| > a

]

≤ e−εn . (20)

This is an elementary large deviations estimate, following from (2), (3) by an appli-
cation of Markov’s inequality to the moment generating function of Sn .

We are now ready to showProposition 1. Themain idea of its proofmaybe described
as follows: By (7), (8), under the SRPT protocol, customers of classes 2, 3, 4 have
priority over unserved class 5 customers. Therefore, a customer of class 5 may get
into service only if the buffers 2, 3, 4 are empty. Accordingly, until the random time
τ1 defined by (25), to follow, queues 6, 7, 8 are empty and station 1 serves only class
1 customers. Consequently, under the initial condition (13), with high probability we
have more than 2.4M unserved class 5 customers at the time τ1. In the absence of
newcoming class 1 customers at (or just before) the time τ1, when class 5 customers
start receiving service, they get into classes 6-8, blocking service entry for fresh class
1 arrivals until they are served to completion and leave the system. When all of them
leave at a random time T , after at least (m6 + m7 + m8) · 2.4M = 1.44M time
units of work at server 2, with high probability we have at least 1.4M unserved class
1 customers and all the other buffers empty. This behavior is similar to that of the
unstable Lu–Kumar network from Sect. 2.

If incoming class 1 customers enter the network close to the time τ1, the situation
is more complicated. Namely, this may introduce synchronized service at classes 1,
5 and 2-4, 6-8, respectively, leading to full utilization of both the servers. However,
we argue that this only delays the system’s clogging observed in the previous case for
some finite period of time, after which we have behavior analogous to that described
above.

Proof of Proposition 1 Consider the dynamics of the SRPT Network 1 with the initial
state (13), whereM is large. At the time t1 = m1 = 0, 3, the first type 1 customer, after
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being served to completion at station 1, leaves the buffer 1, moves to the empty buffer
2 and starts receiving service there immediately. Then, subsequent initial customers
receive service at class 1, after which they move to the second server, receiving service
at buffers 2, 3 and 4. At the time

t2 = t1 + (m2 + m3 + m4)M = 0.3 + 0.6M (21)

the last initial customer finishes service at the buffer 4 (see Lemma 1). Note that under
the SRPT service protocol, no class 5 customer gets service in the time interval [0, t2],
hence Q5(t2) = M and

Q6(t) = Q7(t) = Q8(t) = 0, t ∈ [0, t2]. (22)

By (21) and Lemma 3, for M large enough,

P[N (t2) ≤ 0.59M] = P[U (�0.59M� + 1) > t2]
≤ P

[ |U (�0.59M� + 1) − �0.59M� − 1|
�0.59M� + 1

>
1

100

]

≤ e−ε1M , (23)

where ε1 = ε(1/100)/2. Accordingly,

P[N (t2) > 0.59M] ≥ 1 − e−ε1M . (24)

The busy period of station 2 associated with the service of customers from buffers
2, 3, 4 starting at time t1 ends at the (random) time

τ1 = min{t ≥ t1 : Q2(t) + Q3(t) + Q4(t) = 0}. (25)

Under the SRPT service protocol, no class 5 customer gets service in the time interval
[0, τ1) so (22) can be generalized to

Q6(t) = Q7(t) = Q8(t) = 0, t ∈ [0, τ1]. (26)

In what follows, we will need the fact that Q5(τ1) > 2.4M with large probability, cf.
(33), (34). In order to demonstrate this, we use the following iterative argument.

The customers entering the network in the time interval (0, t2] get served at station
1, devoted exclusively to the buffer 1 in this period (see (22)), and move to the buffer
2. Their service at the buffers 2, 3, 4 of the second station starts at the time t2 and ends
at

t3 = t2 + (m2 + m3 + m4)N (t2) = t2 + 0.6N (t2). (27)

Now we shall prove the existence of a constant ε2 > 0 such that, for large M ,

P[N (t2) > 0.59M, N (t3) − N (t2) ≤ (0.59)2M] ≤ e−ε2M . (28)

123



70 Queueing Systems (2022) 101:57–92

To this end, first note that

N (t3) − N (t2) = N (t3) − N (U (N (t2))) ≥ N (U (N (t2)) + t3 − t2) − N (U (N (t2)))

= N (U (N (t2)) + 0.6N (t2)) − N (U (N (t2))).

Thus,

P[N (t2) > 0.59M, N (t3) − N (t2) ≤ (0.59)2M]
≤ P[N (U (N (t2)) + 0.6 · 0.59M) − N (U (N (t2))) ≤ (0.59)2M]
= P[N (0.6 · 0.59M) ≤ (0.59)2M], (29)

where the equality follows from the fact that a renewal process “starts afresh” after
each renewal. Proceeding similarly as in (23), we can find a constant ε2 > 0 such that,
for large M ,

P[N (0.6 · 0.59M) ≤ (0.59)2M] ≤ e−ε2M ,

which, together with (29), justifies (28).
From (24) and (28), for large M we get

P[N (t2) > 0.59M, N (t3) − N (t2) > (0.59)2M] ≥ 1 − e−ε1M − e−ε2M .

Iterating, for large M we get

P[N (t2) > 0.59M, N (ti+1) − N (ti ) > (0.59)i M, i = 2, ..., 7] ≥ 1 −
7∑

i=1

e−εi M ,

(30)

where εi > 0, i = 1, ..., 7, are constants and

ti+1 = ti + 0.6(N (ti ) − N (ti−1)), i = 3, ..., 8, (31)

is the time when the service at the buffers 2, 3, 4 of the customers entering the network
in the time interval (ti−1, ti ] ends. In particular, (30) implies that

P[N (t8) > (c − 1)M] ≥ 1 −
7∑

i=1

e−εi M , (32)

where

c =
7∑

i=0

(0.59)i = 2.403211514.... > 2.4. (33)
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Table 1 Key random times in the proof of Proposition 1

Random time Meaning

τ1 End of the service period for class 2, 3, 4 customers starting at t1
τ2 End of the service time of the first class 5 customer

τ3 First departure from the system

τ4 Departure from the system of all customers queued at 5 at time τ1

σ1 Departure from the system of at least �1.4M� customers (in case I)

σ2 Departure from the system of at least �1.8M� customers (in case I)

η End of the synchronization period (in case II)

Moreover, for τ1 defined by (25), we have τ1 ≥ t9, so the above construction implies
that Q5(τ1) ≥ M + N (t8). Consequently, for large M the estimate (32) yields

P[Q5(τ1) > cM] ≥ 1 −
7∑

i=1

e−εi M . (34)

At time τ1, the first customer enters service at buffer 5. He finishes it without interrup-
tion at time τ2 = τ1 + 0.3 (see Corollary 1), moving to the buffer 6, where his service
starts immediately. Indeed, even if Q1(τ2) ≥ 1, then, by Lemma 2, every residual ser-
vice time of a class 1 customer equalsm1 = 0.3, and hence, under the SRPT protocol,
class 6 has priority over class 1. Consequently, by Lemma 1, the first departure from
the system takes place at the time τ3 = τ2 + 0.6 = τ1 + 0.9. In particular, by (13),

|Q(t)| ≥ |Q(0)| = M, 0 ≤ t < τ3. (35)

For the reader’s convenience, the meanings of the random times τi , as well as the times
σi , η defined below, are collected in Table 1.

The definition of τ1 implies that Q1(τ1 − 0.3) = 0. Indeed, if Q1(τ1 − 0.3) ≥ 1,
then, by (26) and Lemma 2, at the time τ1 a customer leaves buffer 1 and arrives
into buffer 2, resulting in Q2(τ1) ≥ 1, which contradicts (25). Thus, by (4), we have
Q1(τ1) ≤ 1. Accordingly, the subsequent analysis is divided into two cases.

I. If Q1(τ1) = 0, then Q2(τ2) = Q3(τ2) = Q4(τ2) = 0, and hence, at time τ2 the
second customer from buffer 5 enters service, finishing it and moving to the buffer
6. Under the SRPT protocol, as long as Q6(t) + Q7(t) + Q8(t) > 0, the incoming
buffer 1 customers do not get any service. Accordingly, all the customers queued at
the buffer 5 at time τ1 are processed by the first server in the time interval [τ2, τ4],
where

τ4 = τ2 + (m6 + m7 + m8)Q5(τ1) = τ2 + 0.6Q5(τ1), (36)

leaving the system by that time. We have

Q1(τ4) = N (τ4) − N (τ1), Qk(τ4) = 0, k = 2, ..., 8. (37)
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By (34) and (36), for large M

P[τ4 − τ1 > 0.3 + 0.6cM] ≥ 1 −
7∑

i=1

e−εi M ,

so (37) and another application of Lemma 3 yield the existence of a constant ε8 > 0
such that

P[Q1(τ4) > 1.4M] ≥ 1 −
8∑

i=1

e−εi M

for M suitably large. Together with the second statement of (37), this implies (14) for
large M with T = τ4 and, say, ε = min{ε1, ..., ε8}/2. The relation P[T ∈ 0.3∗N] = 1
and the last claim of the proposition follow from the definition of T as a departure
time τ4 of a customer from server 1, together with Lemma 2 and (13), Corollary 1,
respectively.

It remains to establish (15). Until the time

σ1 = τ2 + 0.6 · 1.4M = τ2 + .84M, (38)

there are less than 1.4M customers which have already left the system. Similarly, until
the time

σ2 = τ2 + 0.6 · 1.8M = σ1 + .24M (39)

we have less than 1.8M customers which have already left the system. Conditioned
on the set [Q5(τ1) > cM],

|Q(t)| ≥ |Q(τ1)| − 1.4M > M, t ∈ [τ3, σ1). (40)

Two more applications of Lemma 3 yield the existence of constants ε9, ε10 > 0 such
that, for large M ,

P[N (σ1) − N (τ1) > 0.8M, N (σ2) − N (σ1) > 0.2M] ≥ 1 − e−ε9M − e−ε10M .

(41)

Conditioned on the set [Q5(τ1) > cM], for t ∈ [σ1, σ2), we have

|Q(t)| ≥ |Q(τ1)| − 1.8M + N (σ1) − N (τ1) > 0.6M + N (σ1) − N (τ1), (42)

while

|Q(t)| ≥ N (σ2) − N (τ1), t ∈ [σ2, τ4], (43)
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(the latter estimate follows from the fact that no customer coming to the system after
time τ1 gets service at the first buffer by time τ4; compare (37)). Let

A = [Q5(τ1) > cM, N (σ1) − N (τ1) > 0.8M, N (σ2) − N (σ1) > 0.2M]. (44)

By (34) and (41),

P(A) ≥ 1 −
10∑

i=1

e−εi M . (45)

Conditioned on the set A, we have |Q(t)| ≥ M for each t ∈ [0, τ4]. Indeed, this fact
follows from (35), (40), (42) and (43) for t belonging to [0, τ3), [τ3, σ1), [σ1, σ2) and
[σ2, τ4], respectively. This, together with (45), implies (15) for large M with T = τ4
and, say, ε = min{ε1, ..., ε10}/2.

II. The case of Q1(τ1) = 1 is slightly more delicate. Under this assumption, the
customer at buffer 1 enters service at the time τ1 and moves to class 2 at time τ2.
Recall that the first class 5 customer receives service in the time interval [τ1, τ2) and
moves to the buffer 6 at time τ2. Next, the former class 1 customer gets service at
buffers 2, 3, 4, while class 5 customers are blocked, and then, he moves to class 5 at
time τ3. In this time period, the customer of class 6 gets served, moving to buffers 7, 8,
and finally leaving the network at time τ3. Note that the entry of newcoming class 1
customers into service is blocked in the time interval [τ2, τ3]. Summarizing, the first
customers of classes 1 and 5 at time τ1 get synchronized in the time interval [τ1, τ3],
fully utilizing both servers. Note that

Q5(τ3) = Q5(τ1), Qk(τ3) = 0, k 
= 1, 5. (46)

If Q1(τ3) = 0, then the above “synchronization period” ends and the subsequent
network dynamics follow those from case I (with time shifted by 0.9). Otherwise, the
next two customers of classes 1 and 5 enter service at time τ3 and get service, perfectly
synchronized, until the first one gets to class 5 and the other one leaves the network.
This synchronization period finally ends at the time

η = min{t ≥ τ1 : Q1(t) + Q2(t) + Q3(t) + Q4(t) = 0}.

It is easy to see that P[η < ∞] = 1. Indeed, let ζ = η − τ1 be the length of the
synchronization period. Clearly, ζ = 0.9n0, where n0 is the number of synchronized
customer pairs served in this time period and 0.9 = τ3 − τ1 is the service time of one
such pair. In particular, for each 0 ≤ n ≤ n0 − 1, in the time interval (τ1, τ1 + 0.9n]
of length 0.9n we have at least n external arrivals. Hence, for n ≥ 1,

P[ζ > 0.9n] = P[n0 > n] ≤ P[N (τ1 + 0.9n) − N (τ1) ≥ n]. (47)

By (25), τ1 is a departure time of a customer from class 4, so P[τ1 ∈ 0.3 ∗ N] = 1 by
Lemma 2.On the other hand, Q1(τ1−0.3) = 0 < 1 = Q1(τ1) by the case assumption.

123



74 Queueing Systems (2022) 101:57–92

Consequently, by (4), τ1 is an external arrival time, so the process N “starts afresh”
after τ1, and hence, by (47) and Lemma 3,

P[ζ > 0.9n] ≤ P[N (0.9n) ≥ n] = P[U (n) ≤ 0.9n] ≤ e−εn, n ≥ 1, (48)

with ε = ε(0.05), so P[η < ∞] = P[ζ < ∞] = 1.
The display (46) generalizes to

Q5(η) = Q5(τ1), Qk(η) = 0, k 
= 5, (49)

compare (25), (26). From this point, we follow the analysis of the first case, with η

in place of τ1. For the proof of (15), we additionally note that |Q(t)| ≥ Q5(τ1) for
t ∈ [τ1, η), due to the synchronization process described above. ��
Remark 1 Probably the easiest way of showing instability of the random Lu–Kumar
network satisfying (1) is the observation, going back to Botvich and Zamyatin [8], that
after a suitable random time, jobs in the classes 2 and 4 are almost surely not served
simultaneously (see [15], Lemma 3.3). This approach cannot be adapted directly to
our SRPT network because of the “synchronization periods,” described in the case II,
which may occur for arbitrarily large times.

Corollary 2 The Network 1 is unstable under the SERPT and SJF service protocols.

This follows immediately from Theorem 1, Corollary 1 and the fact that the service
times in our network are deterministic.

5 Proof of Proposition 2

Throughout this section, the Network 2 will be considered. For the sake of the proof of
Proposition 2, we introduce the following additional notation: Recall the distribution
(12) of the class 4 service times. For t ≥ 0, the number of jobs in the buffer 4 with
service times equal to 0.2 (0.4) will be denoted by Qq

4(t) (resp., Q
s
4(t)). Here, the

superscripts q and s stand for “quick” and “slow” class 4 customers, respectively, and
this is how we shall refer to these two customer types in the sequel. In particular,
if v(n) = 0.2 (0.4), the customer n will be called a “quick” (resp., “slow”) class 4
customer even if he is currently not at the buffer 4.

Due to the presence of “slow” class 4 customers, Lemma 1 does not hold for the
system under consideration. However, its weaker version, to follow, holds, with a
similar proof.

Lemma 4 If a “quick” class 4 customer enters service at buffer 2 at time τ , then he
finishes service at buffer 4 at time τ + 0.6. Similarly, if a customer enters service at
buffer 6 at time η, then he finishes service at buffer 8 at time η + 0.6. Finally, if a
“slow” class 4 customer enters service at buffer 2 at time τ , then he finishes service
at buffer 3 at time τ + 0.4.
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Motivated by Lemma 4, we now define a moving event as a time at which either an
external arrival to the system, or a service completion at one of the buffers 1, 3, 4, 5
or 8 takes place. As in the previous sections, we number consecutive moving events
by l = 1, 2, 3, ..., and we denote by θl the (random) time of the l-th event. By Lemma
4, if a customer enters service at buffer 2 at time τ , then he finishes service at buffer 3
at time τ + 0.4, so Lemma 2 no longer holds in our current setting. However, due to
(7), (9) and (11), (12), the following natural counterpart of Lemma 2 is valid.

Lemma 5 Suppose that Qk(0) = 0 for k = 2, ..., 8. Then, for every l ≥ 1, we have

P[θl ∈ 0.1 ∗ N] = 1.

Proof We follow the proof of Lemma 2, with obvious modifications. The only case
that requires additional attention is the event n + 1 being a departure of a “slow”
customer from buffer 4. As before, let τ denote the starting time of his service. Note
that Q2(τ ) = Q3(τ ) = Qq

4(τ ) = Q5(τ ) = 0. By the network topology, τ is either
a departure from 3 of a “slow” class 4 customer, or a departure from 5. Hence, by
the inductive assumption, τ ∈ 0.1 ∗ N. If the customer under consideration is served
without preemption, then θn+1 = τ + 0.4 ∈ 0.1 ∗ N. On the other hand, the only
event that can result in his preemption is an arrival of a customer to buffer 2, i.e.,
a departure from buffer 1. By the inductive assumption, this can only happen at a
time θl ∈ 0.1 ∗ N, τ < θl < θn+1. Hence, θl − τ ∈ 0.1 ∗ N, and consequently,
the residual service time of the “slow” class 4 customer upon preemption equals
0.4 − (θl − τ) ∈ {0.1, 0.2, 0.3}. However, the service time of the incoming class 2
customer equals m2 = 0.21. This means that under the SRPT protocol, the residual
service time of the preempted “slow” class 4 customer equals 0.3. Let τ ′ be the time
of his service resumption. Repeating the above argument, with τ ′ and 0.3 in the place
of τ and 0.4, respectively, we conclude that τ ′ ∈ 0.1 ∗ N and our customer does not
get preempted again, so θn+1 = τ ′ + 0.3 ∈ 0.1 ∗ N. ��

FromLemmas 4, 5 and the proof of the latter result, we get the following counterpart
of Corollary 1.

Corollary 3 Suppose that Qk(0) = 0 for k = 2, ..., 8. Then, only “slow” class 4
customers may experience preemption in the SRPT Network 2. Moreover, each such
customer gets preempted at most once and preemption does not take place in classes
other than 4.

We will also need the following variant of Lemma 3, which can be justified by the
same argument.

Lemma 6 Let v1, v2, ... be i.i.d. random variables, with the same distribution as the
class 4 service times v(n), and let Sn = ∑n

i=1 I[vi=0.2], n ≥ 1. Then, for every a > 0,
there exists ε = ε(a) > 0 such that, for all n ≥ 1,

P

[
1

n
|Sn − (1 − δ)n| > a

]

≤ e−εn . (50)
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Corollary 4 Under the assumptions of Lemma 6, for every a > 0, there exist ε̃ =
ε̃(a) > 0 such that, for M sufficiently large,

P

( ∞⋃

n=M

[|Sn − (1 − δ)n| > an]
)

≤ e−ε̃M . (51)

Proof Let ε = ε(a) be as in the statement of Lemma 6. Then, by (50),

P

( ∞⋃

n=M

[|Sn − (1 − δ)n| > an]
)

≤
∞∑

n=M

P[|Sn − (1 − δ)n| > an]

≤
∞∑

n=M

e−εn = e−εM

1 − e−ε
.

Taking ε̃ = ε/2 and M satisfying the inequality e−εM/2 ≤ 1 − e−ε , we get (51). ��
We shall now prove Proposition 2. The main idea here is that the Network 2 is a

small random perturbation of the Network 1, and hence, with high probability, the
behavior of these two networks should be similar. Indeed, the proof of Proposition 2
follows the outline analogous to that for Proposition 1, although technical details of
the argument are unavoidably more complicated.

Proof of Proposition 2 Consider the dynamics of the SRPT Network 2 with the initial
state (13), where M is large. At the time t1 = m1 = 0.3, the first type 1 customer, after
being served to completion at station 1, leaves the buffer 1, moving to the empty buffer
2 and beginning to receive service there immediately. At the timem1+m2+m3 = 0.7,
he finishes service at the buffer 3, moving to the class 4. If v(1) = 0.2, he immediately
starts receiving service there, moving to the class 5 at the time 0.9, otherwise he waits
at class 4, while the next class 2 customer starts receiving service.

The busy period of station 2 associated with the service of customers from buffers
2, 3 and “quick” buffer 4 customers starting at time m1 ends at the random time

τ1 = min{t ≥ m1 : Q2(t) + Q3(t) + Qq
4(t) = 0}. (52)

Due to the SRPT service protocol, in the time interval [t1, τ1), “slow” class 4 customers
and class 5 customers do not get any service. In particular, (26) holds.

For the reader’s convenience, the meanings of the key random times appearing in
this proof are collected in Table 2.

Our first aim is to show that

P[N (τ1) > (c − 1)M] ≥ 1 −
7∑

i=1

e−εi M , (53)

with c given by (33) and suitable ε1, ..., ε7 > 0. To this end, we will use a modification
of the argument leading to (32) from the proof of Proposition 1.
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Table 2 Key random times in the proof of Proposition 2

Random time Meaning

τ1 End of the service period for class 2, 3 and “quick” class 4 customers starting at m1

τ2 End of the service time of the first class 5 customer

τ3 First departure from the system

τ4 Departure from the system of all customers queued at 5 at time τ1

τ5 Departure from the system of “slow” customers queued at 4 at time τ1

ϑ1 End of service of the initial class 2, 3 and “quick” class 4 customers

ϑi , i = 2, ..., 7 End of service of class 2, 3 and “quick” class 4 customers entering the network

in the time interval (ti−1, ti ]
γ1 End of service of class 5 customers present in the buffer at time τ1

γ2 End of service at buffers 4, 5 of “slow” class 4 customers present in buffer 4 at τ1
σ1 Departure from the system of at least �1.4M� customers (in case I)

σ2 Departure from the system of at least �1.8M� customers (in case I)

η End of the synchronization period (in case III)

In case II, the times τ4, τ5, γ1, γ2 are adjusted to include the service of an external arrival in (τ1, τ2)

In what follows, we use δ = 0.0001. Let

t2 = 0.3 + 0.4M + 0.2(1 − 2δ)M = 0.3 + (0.6 − 0.4δ)M . (54)

Using the time t2 given by (54), rather than (21), and proceeding as in (23), we get
(24). Next, take

t3 = t2 + 0.4N (t2) + 0.2(1 − 2δ)N (t2) = t2 + (0.6 − 0.4δ)N (t2). (55)

Using the time t3 given by (55), rather than (27), and proceeding as in the proof
of Proposition 1, we get (28). Iterating, for large M we get (30), where εi > 0,
i = 1, ..., 7, are constants and

ti+1 = ti + (0.6 − 0.4δ)(N (ti ) − N (ti−1)), i = 3, ..., 7, (56)

compare (31), (55). Relabeling εi as ε′
i , we rewrite (30) as

P(A) ≥ 1 −
7∑

i=1

e−ε′
i M , (57)

where

A = [N (t2) > 0.59M, N (ti+1) − N (ti ) > (0.59)i M, i = 2, ..., 7]. (58)

For n ≥ 1, let Sq(n) = ∑n
i=1 I[v(n)=0.2] denote the number of “quick” class 4 tasks

associated with the first n customers in the network. The initial customers finish their
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service in the buffers 2, 3, 4 prior to time τ1 (i.e., excluding the service at class 4 of
“slow” initial customers) at the (random) time

ϑ1 = m1 + (m2 + m3)M + 0.2Sq(M) = 0.3 + 0.4M + 0.2Sq(M). (59)

Letting a = δ in Lemma 6 and using independence of the interarrival times and the
service times, we get

P[Sq(M) ≥ (1 − 2δ)M |A] = P[Sq(M) ≥ (1 − 2δ)M] ≥ 1 − e−ε̃1M ,

and hence,

P[ϑ1 ≥ t2|A] ≥ 1 − e−ε̃1M , (60)

with t2, A given by (54), (58), respectively, and ε̃1 = ε(δ).
If t2 ≤ ϑ1 (and hence t2 ≤ τ1), then the customers entering the network in the time

interval (0, t2] get served at station 1, devoted exclusively to the buffer 1 in this period,
and move to the buffer 2. Their service at the buffers 2, 3, 4, excluding the service at
class 4 of “slow” customers, starts at the time ϑ1 and ends at

ϑ2 = ϑ1 + 0.4N (t2) + 0.2(Sq(M + N (t2)) − Sq(M)), (61)

compare (59). Conditioning on the set A, on which N (t2) > 0.59M , and using Corol-
lary 4, we get

P[ϑ2 − ϑ1 ≥ t3 − t2|A] ≥ 1 − e−ε̃2M , (62)

for M large enough, where ε̃2 = ε̃(δ). Similarly, for

ϑi = ϑi−1 + 0.4(N (ti ) − N (ti−1)) + 0.2(Sq(M + N (ti )) − Sq(M + N (ti−1))),

i = 3, ..., 7,

by Corollary 4, we get

P[ϑi − ϑi−1 ≥ ti+1 − ti |A] ≥ 1 − e−ε̃2M , i = 3, ..., 7, (63)

(compare (61), (62)). Note that ϑi is the ending time of service at the buffers 2, 3, 4
of customers entering the network in the time interval (ti−1, ti ], excluding the service
at class 4 of the corresponding “slow” tasks, provided that tl ≤ ϑl−1, l = 2, ..., i .
Consequently, if ti+1 ≤ ϑi , i = 1, ..., 7, then ϑ7 ≤ τ1, and hence t8 ≤ τ1. Using this
observation, together with (33), (57), (58), (60) and (62), (63), for large M we get

P[N (τ1) > (c − 1)M] ≥ P[N (t8) > (c − 1)M, τ1 > t8]
≥ P[A ∩ [ϑi ≥ ti+1, i = 1, ..., 7]]
= P[[ϑi ≥ ti+1, i = 1, ..., 7]|A] P(A)
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≥
(
1 − e−ε̃1M − 6e−ε̃2M

)(
1 −

7∑

i=1

e−ε′
i M

)

≥ 1 −
7∑

i=1

e−εi M ,

with ε1 = min{ε̃1, ε′
1}/2, εi = min{ε̃2, ε′

i }/2, i = 2, ..., 7, and (53) follows.
As in the proof of Proposition 1, at the time τ1, the first customer enters service at

buffer 5, finishes it at time τ2 = τ1 + 0.3 and moves to the buffer 6.
The definition of τ1 implies that Q1(τ1 − 0.3) = 0. Indeed, if Q1(τ1 − 0.3) ≥ 1,

then, because of (26), by the time τ1 a customer leaves buffer 1 arriving into buffer
2, resulting in Q2(τ1) + Q3(τ1) ≥ 1, which contradicts (52). Thus, by (10), we have
Q1(τ1) ≤ 1. The following analysis is divided into several cases.

I. If Q1(τ1) = 0, then Q2(τ2) = Q3(τ2) = Qq
4(τ2) = 0, and hence, at time τ2 the

second customer from buffer 5 enters service, finishing it and moving to the buffer
6. If, additionally, N (τ1 + 0.2) = N (τ1) (i.e., there are no external arrivals to the
system after the time τ1, but before τ2), then the service of the first customer at buffer
6 starts immediately at the time τ2 of his arrival to the buffer. Thus, by Lemma 4, the
first departure from the system takes place at the time τ3 = τ2 + 0.6 = τ1 + 0.9 and
(35) holds. Recall that as long as Q6(t) + Q7(t) + Q8(t) > 0, the incoming buffer 1
customers do not get any service. Accordingly, all the customers in class 5 at time τ1
are served there in the time interval [τ1, γ1), where

γ1 = τ1 + 0.3Q5(τ1). (64)

After moving to classes 6, and subsequently to 7, 8, these customers are processed by
the first server in the time interval [τ2, τ4], where τ4 is defined by (36), leaving the
system by that time. Between the times τ2 and τ4, no class 1 customers get service,
and hence, there are no arrivals to class 2.

If Qs
4(τ1) = Qs

4(τ2) = Qs
4(γ1) > 0 then, starting at time γ1, consecutive “slow”

class 4 customers are processed by the second server, first at class 4, and then at 5,
finally moving to class 6. Let

γ2 = γ1 + (0.4 + m5)Q
s
4(τ1) = γ1 + 0.7Qs

4(τ1). (65)

Note that if γ2 ≤ τ4, then all the former “ slow” class 4 customers who entered the
network by the time τ1 enter class 6 by the time τ4 and then leave the network by the
time

τ5 = τ4 + 0.6Qs
4(τ1). (66)

In the meantime, no service is allotted to class 1, so still no arrivals to class 2 take
place.

We will now show that, for a suitable ε8 > 0,

P[γ2 ≤ τ4] ≥ 1 − e−ε8M . (67)
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Indeed, by (36) and (64), (65), we have

[3Qs
4(τ1) ≤ Q5(τ1)] ⊆ [γ2 ≤ τ4]. (68)

By (26), (52) and the case assumption, we have

Qs
4(τ1) + Q5(τ1) = M + N (τ1). (69)

This, together with (53), implies that

P[Qs
4(τ1) + Q5(τ1) > cM] ≥ 1 −

7∑

i=1

e−εi M . (70)

Moreover,

Q5(τ1) = Sq(M + N (τ1)), (71)

because all the “slow” customers who have entered the network by the time τ1 are still
at class 4 by time τ1, while all the “quick” customers are already at class 5 by that
time. By Corollary 4, for ε8 = ε̃(δ), we have

P[Sq(M + N (τ1)) ≥ (1 − 2δ)(M + N (τ1))] ≥ 1 − e−ε8M . (72)

The relations (69) and (71), (72) imply that

P

[

Q5(τ1)≥ 1 − 2δ

2δ
Qs

4(τ1)

]

=P[Q5(τ1)≥(1 − 2δ)(Qs
4(τ1)+Q5(τ1))]≥1−e−ε8M .

From this, recalling that δ = 0.0001, we get P[Q5(τ1) ≥ 3Qs
4(τ1)] ≥ 1 − e−ε8M ,

which, together with (68), implies (67).
In the following argument, we condition on the set [γ2 ≤ τ4]. As was mentioned

below (64) and (66), there is no service for class 1 customers in the time interval
[τ2, τ5]. This, together with the case assumption, yields

Q1(τ5) = N (τ5) − N (τ1), (73)

while, by the above discussion,

Qk(τ5) = 0, k = 2, ..., 8, (74)

compare (37) from the proof of Proposition 1. By (66), (36) and (69),

τ5 = τ4 + 0.6Qs
4(τ1) = τ2 + 0.6Q5(τ1) + 0.6Qs

4(τ1) = τ2 + 0.6(M + N (τ1)).
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This, together with (53) and (67), yields

P[τ5 − τ1 > 0.3 + 0.6cM] ≥ 1 −
8∑

i=1

e−εi M ,

so (73) and another application of Lemma 3 yield the existence of a constant ε9 > 0
such that

P[Q1(τ5) > 1.4M] ≥ 1 −
9∑

i=1

e−εi M

for M suitably large. Together with (74), this implies (14) for large M with T = τ5
and, say, ε = min{ε1, ..., ε9}/2. The relation P[T ∈ 0.1 ∗ N] = 1 and the last claim
of the proposition follow similarly as in the proof of Proposition 1.

The justification of (15) is similar to the corresponding argument from the proof
of Proposition 1, with σ1, σ2 defined by (38), (39) as before, (70) in place of (34),
relabeling of ε9 there as ε11, conditioning on the set [Qs

4(τ1)+ Q5(τ1) > cM] instead
of [Q5(τ1) > cM], the set A from (44) replaced by

[Qs
4(τ1) + Q5(τ1) > cM, N (σ1) − N (τ1) > 0.8M, N (σ2) − N (σ1) > 0.2M],

the counterpart of (43) valid for all t ∈ [σ2, τ5] and ε = min{ε1, ..., ε11}/2.
II. If Q1(τ1) = 0, but N (τ1 + 0.2) > N (τ1) (i.e., we have an external arrival to

the system after the time τ1, but before τ2), only a minor adjustment to the above
analysis is required. By (52), τ1 is a service completion time at either the buffer 3, or
4, and hence, by Lemma 5, P[τ1 ∈ 0.1 ∗ N] = 1. By (10) and the case assumption,
there is a single arrival to the system at a time t̃ ∈ (τ1, τ1 + 0.2], so by (9) we have
t̃ ∈ {τ1 + 0.1, τ1 + 0.2}. Because the first server is empty before the time t̃ , this
arrival is processed immediately and the corresponding customer moves to class 2 at
the time t̃+0.3 > τ2. Accordingly, the first class 6 customer waits until the newcomer
leaves station 1, and then, he enters service at the first station, finishing it at the time
τ3 = (t̃ + 0.3) + 0.6 = t̃ + 0.9 and leaving the system. In particular, (35) holds.

As in the previous case, at time τ2 the second customer from buffer 5 enters service,
finishing it and moving to the buffer 6 at time τ2 + 0.3. He starts service there at the
time τ3, leaving the system at τ3 + 0.6. Between the times t̃ + 0.3 and τ3 + 0.6, the
service for incoming class 1 customers is blocked.

The customer coming to class 2 at time t̃ + 0.3 enters service there at the time
τ2 + 0.3. Accordingly, at the time τ2 + 0.7 he moves to class 4. If he is a “slow” class
4 customer, he stays at this class; otherwise, he enters service at class 4 immediately,
finishing it and moving to class 5 at the time τ2 + 0.9. Note that

τ2 + 0.9 = τ1 + 1.2 < t̃ + 1.2 = τ3 + 0.3,

so by the time τ2 + 0.9, the third class 5 customer enters service, finishing it by the
time τ2 + 1.2 < τ3 + 0.6 and moving to class 6. This extends the blocking period for
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class 1 customers by an additional 0.6 time units, while the next class 5 customers are
being processed and move to class 6, and so on.

From this moment, we can follow the proof for the case I, with only minor changes.
For example, we replace (64) by

γ1 = τ1 + 0.3Q5(τ1) + 0.4 + 0.5I[v(N (τ1+0.2))=0.2],

where 0.4 = m2 + m3 is the sum of the service times of the customer coming to
the network at the time t̃ in classes 2, 3 and the last term is the sum of his service
times in classes 4 and 5, added when this customer is “quick.” Similarly, we now have
τ4 = τ2+0.6(Q5(τ1)+I[v(N (τ1+0.2))=0.2]),γ2 = γ1+0.7(Qs

4(τ1)+I[v(N (τ1+0.2))=0.4]),
τ5 = τ4 + 0.6(Qs

4(τ1) + I[v(N (τ1+0.2))=0.4]); the relation (68) should be replaced, for
example, by [3Qs

4(τ1) + 6 ≤ Q5(τ1)] ⊆ [γ2 ≤ τ4], etc..
III. If Q1(τ1) = 1, we have a synchronization period in the work of both servers,

similar to the one from case II in the proof of Proposition 1, but somewhat more
involved, due to the presence of “slow” class 4 customers.

Suppose that v(N (τ1)) = 0.2, i.e., the customer in the first queue at time τ1 is
“quick.” If τ1 is his arrival time to the system, then he gets synchronized with the first
class 5 customer in the time interval [τ1, τ3], where τ3 = τ1 + 0.9, as described in the
proof of Proposition 1. If he arrived at the time τ1 − 0.1 (τ1 − 0.2), his service in class
1 starts immediately and ends at the time τ1 + 0.2 (τ1 + 0.1). He then goes to class
2, where he waits 0.1 (resp. 0.2) time units for the end of service of the first class 5
customer at the time τ2. Then, since Q1(τ2) = 0 by (10), the customers in classes 2
and 6 get synchronized again as before. In particular, we get the following counterpart
of (46):

Qs
4(τ3) = Qs

4(τ1), Q5(τ3) = Q5(τ1), Qq
4(τ3) = 0, Qk(τ3) = 0, k 
= 1, 4, 5.

(75)

If Q1(τ3) = 0, the synchronization period ends and we proceed further as in the case
I or II. Otherwise, the next two customers from classes 1, 5 get synchronized.

The synchronization with a “slow” arriving customer is somewhat more compli-
cated. Assume that v(N (τ1)) = 0.4. If the corresponding customer arrived at the
system at time τ1, we have a synchronization as before until the time τ1 + 0.7 when
the “slow” customer joins the queue at class 4 and the next class 5 customer enters
service. As in the previous case, if the new “slow” customer arrived at the time τ1−0.1
(τ1−0.2), then his service in class 1 starts immediately and ends at τ1+0.2 (τ1+0.1).
He then goes to class 2, where he waits 0.1 (resp. 0.2) time units for the end of service
of the first class 5 customer, and then they get synchronized again as before, until
τ1 + 0.7. At the time τ3 = τ1 + 0.9, the first class 8 customer leaves the system.
However, instead of (75), we now have

Qs
4(τ3) = Qs

4(τ1) + 1, Q5(τ3) = Q5(τ1) − 1, Qq
4 (τ3) = Qk(τ3) = 0, k 
= 1, 4, 5.

(76)

The customer of class 5 who has entered service at τ1 + 0.7 goes to class 6 at time
τ1 + 1 = τ3 + 0.1. If Q1(τ3) = 0, he starts service at the second server immediately
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(even if there is an external arrival at the time τ1 + 1) and the synchronization period
ends.Otherwise, the next class 1 customer enters service at time τ3, ending it at τ3+0.3,
when he goes to class 2 and the customer at class 6 enters service, so that we have
another synchronized pair of customers, and so on.

Let

η = min{t ≥ m1 : Q1(t) + Q2(t) + Q3(t) + Qq
4(t) = 0}

be the end of the synchronization period and let ζ = η − τ1 be its length. It is clear
from the above analysis that ζ = 0.9n0, where n0 is the number of synchronized
customer pairs served in this time period and 0.9 = τ3 − τ1 is the service time of one
such pair. If there are no “slow” arrivals in the period [τ1 − 0.2, η], then, by iterating
the above analysis for a “quick” arrival, (75) can be generalized to

Qs
4(η) = Qs

4(τ1), Q5(η) = Q5(τ1), Qq
4(η) = 0, Qk(η) = 0, k 
= 4, 5.

From this point, we proceed further as in the case I or II, with η in place of τ1. However,
as it is clear from (76), any “slow” arrival in the time period [τ1 − 0.2, η] changes
the proportion between the numbers of “slow” class 4 and class 5 customers in the
system, which is important in the above proof for the cases I and II; see (68). Hence,
in general, to conclude this argument as in the previous cases, an upper bound on
ζ or, equivalently, on n0 (and hence on the number of “slow” arrivals in the period
[τ1 − 0.2, η]) is necessary. It can be derived similarly as in the proof of Proposition
1; see (48). However, due to our additional assumption (10), we can now provide a
simpler, more direct bound; see (78) below.

It follows from the above analysis that for 0 ≤ n ≤ n0 − 1, there is an external
arrival between τ1 + 0.9(n − 1) and τ1 + 0.9n, so that Q1(τ1 + 0.9n) = 1 and there
is a class 1 job at the beginning of the synchronization period of the n + 1-th pair of
customers. In particular, by (2) and (10), n0 is stochastically dominated by a random
variable which is geometrically distributed with parameter p = P[u(n) > 0.9] > 0.
Let ns be the number of “slow” arrivals in the time period [τ1 − 0.2, η]. Clearly,
0 ≤ ns ≤ n0. Reasoning as in (75), (76), we get

Qs
4(η) = Qs

4(τ1) + ns, Q5(η) = Q5(τ1) − ns,

Qq
4(η) = 0, Qk(η) = 0, k 
= 4, 5. (77)

Moreover, for large M ,

P[ns > δM] ≤ P[n0 > δM] ≤
∑

i≥�δM�+1

(1 − p)i−1 p = (1 − p)�δM� ≤ e−ε12M ,

(78)
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Fig. 3 A simulated sample path of the unstable SRPT Network 1

Fig. 4 A simulated sample path of the unstable SRPT Network 2 with δ = 0.01

with, say, ε12 = −δ log(1 − p)/2. (One can easily improve this estimate to ε12 =
− log(1 − p)/2, since ns ≈ δn0, but any ε12 > 0 is sufficient for our purposes).

From this point, we follow the proofs for the cases I and II, with η in place of τ1,
subject to suitable minor changes, additionally conditioning on the set [ns ≤ δM],
using (77), (78) and finally letting ε = min{ε1, ..., ε12}/2. ��

Remark 2 Corollary 3, together with a careful examination of the above proof, shows
that, with probability at least 1 − e−εM , there is no preemption up to time T in the
system under consideration, where M, T , ε are as in the statement of Proposition 2.
Therefore, the Network 2 is unstable also under the SJF service discipline.
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Fig. 5 A simulated sample path of the unstable SRPT Network 2 with δ = 0.1

Fig. 6 Asimulated sample path of an unstable SRPT networkwith Poisson arrivals and deterministic service
times

6 Simulation

The customer interarrival and service times in our models, satisfying either (4), (7),
(8), or (7), (9), (12), are rather special. They have been chosen in this way in order
to simplify the corresponding arguments, for example, to assure validity of Corollary
1. It is natural to ask about robustness of our results when the interarrival and service
time distributions are altered.

In order to get some insight into this issue, we have conducted a simulation study.
First, we have simulated the SRPT Network 1, with the customer interarrival distribu-
tion given by (5). The initial condition was set to (13) with M = 100. We have found
that the queue lengths in this system oscillate with increasing magnitude; see Fig. 3.
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Fig. 7 A simulated sample path of an unstable SRPT network with Poisson arrivals and uniform service
times

Fig. 8 A simulated sample path of an apparently stable SRPT network with Poisson arrivals and exponential
service times

This qualitative behavior is typical for unstable multiclass networks, confirming and
illustrating Theorem 1.

We have also simulated the SRPT Network 2, with the customer interarrival dis-
tribution given by (5) and the initial condition (13) with M = 200. In (12), we took
δ = 0.01, instead of 0.0001 used in our proofs, in order to increase the impact of
the service time variability. The qualitative image of the queue length dynamics is the
same as before, in line with Theorem 2; see Fig. 4. Moreover, enlarging δ to 0.1 does
not seem to stabilize the network, either; see Fig. 5.

We repeated our simulation of the Network 1 with the constant service times given
by (7), (8), changing the interarrival time distribution to the exponential one with unit
rate, making N (·) the standard Poisson process. In this case, the observed system
behavior is qualitatively similar to the previous ones; see Fig. 6. This suggests that
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Fig. 9 A simulated sample path of an apparently unstable SRPT networkwith 122 customer classes, Poisson
arrivals and exponential service times

Fig. 10 A simulated sample path of an apparently stable SRPT network with Poisson arrivals and Pareto
service times

altering the arrival process to a nonlattice one might not notably change the system’s
performance.

Next, retaining Poisson arrivals from the previous case, we have changed the deter-
ministic customer service times for each class to i.i.d. uniform random variables with
means given by (7), (8) and the support [mk − 0.03,mk + 0.03] for the class k service
time distribution for each k. Again, the simulated network appears to be unstable; see
Fig. 7. This suggests that small oscillations of the service times around their means
might not significantly change the system’s long time behavior, at least if the sup-
ports of class 1 (5) service time distributions are disjoint with the supports of the
corresponding distributions for classes 6, 7, 8 (resp. 2, 3, 4).

Then, retaining Poisson arrivals from the previous two cases, we have altered the
customer service times for each class to i.i.d. exponential random variables withmeans
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Fig. 11 A simulated sample path of an apparently stable SRPT network with 122 customer classes, Poisson
arrivals and Pareto service times

Fig. 12 A simulated sample path of an apparently stable SRPT network with Poisson arrivals and Weibull
service times

Fig. 13 A simulated sample path of an apparently stable SRPT network with 122 customer classes, Poisson
arrivals and Weibull service times
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given by (7), (8). Somewhat surprisingly, the latter system appears to be stable; see
Fig. 8. It seems that stochastic variability of the exponential service times “smooths
out” the underlying SRPT network’s performance to the point of stabilizing its long
time behavior. This finding is in line with existing results showing that even in the
G/G/1 case, the asymptotic SRPT system’s performance is very sensitive to variations
in the underlying service time distributions (compare, for example, the limits in [6,26,
36]). If our simulated network is indeed unstable, we have a phenomenon opposite,
in some sense, to the one reported in [20], where a deterministic two-station reentrant
line with static buffer priorities was stable, while its exponential counterpart was not.
In order to start seeing numerical indications of the SRPT network instability in the
case of exponential interarrival and service times, we had to “split the second and the
fourth server in the Lu–Kumar system into sixty parts,” i.e., simulate a reentrant line
with two stations, 122 customer classes and mean service times m1 = m62 = 0.3,
m2 = ... = m61 = m63 = ... = m102 = 0.01, with classes 1, 63, ..., 102 served at the
first station and 2, ..., 62 at the second one (see Fig. 9).

Finally, we have repeated the latter two experiments with the same interarrival
distribution and mean service times, but with i.i.d. Pareto and Weibull service time
distributions, respectively, instead of the exponential ones. Somewhat surprisingly,
we have not found convincing indications of the resulting system instability, even in
the case of 102 customer classes, although the network with 102 classes and Pareto
service times exhibits much more queue length variability than the remaining ones
(see Figs. 10, 11, 12, 13).

Summarizing, the issue of multiclass SRPT network stability/instability seems to
depend heavily on the corresponding service time distributions (rather than merely
on the interarrival and service rates), as well as on the underlying network topology.
Consequently, providing general results addressing this issue and characterizing the
corresponding fluid limits is likely to be challenging.

7 Discussion and conclusion

We have provided two examples of strictly subcritical multiclass queueing networks,
with the same topology, which are unstable under both the SRPT and SJF service
protocols. The service times in the first of them are deterministic, making it unstable
also under the SERPT discipline. In the second one, the service times in one customer
class are randomized.

It is natural to expect that the service times in other customer classes of our network
can be (moderately) randomized as well, without changing its qualitative behavior, at
the expense of further increase in the proof complexity.Wewould like to note, however,
that randomizing service times in some customer classes seems to introduce more
difficulties to the corresponding arguments than randomizing others. For instance, if
wemodify the second example by randomizing the service times in class 2, rather than
4, then the counterpart of the random time τ1 defined by (52) can actually be of the
order O(1), rather than O(M), with non-negligible probability. To proceed as before,
one would have to additionally argue that, with large probability, at least one of the
network “work cycles,” similar to [0, T ] from our Propositions 1, 2, has length O(M).
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Since the main goal of the present paper is to present counterexamples for stability of
SRPT, SERPT and SJF multiclass queueing networks, we have not complicated our
systems (and our analysis) any further.

Our findings are in sharp contrast with stability of EDF multiclass queueing net-
works, with or without preemption [14,29,31]. In a single-server queue setting, there is
a deep relation between the EDF and SRPT scheduling strategies. To our knowledge,
their similarity was first noticed byBender et al. [7] and then, more explicitly, byDown
et al. [23]. Atar et al. [2] proposed a unified framework for the analysis of single-server
systems with various scheduling disciplines, including EDF, SJF and SRPT. Recently,
Atar and Shadmi [3] extended the scope of this method to generalized Jackson net-
works working under the EDF protocol with hard or soft deadlines. Our instability
results, together with different behavior of linear strictly subcritical resource sharing
networks under the SRPT and EDF service disciplines [30,41], suggest that it might
be difficult to further extend the approach of [2] to the general multiserver setting.
On the other hand, the above-mentioned EDF stability results suggest using the EDF
protocols, with the customer initial lead times equal to large multiples of their service
times, as stable proxies of SRPT and SJF in multiserver networks. See [30], Section
8 for more details.
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