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Abstract
In this article, a special case of two coupled M/G/1-queues is considered, where two
servers are exposed to two types of jobs that are distributed among the servers via a ran-
dom switch. In this model, the asymptotic behavior of the workload buffer exceedance
probabilities for the two single servers/both servers together/one (unspecified) server
is determined. Hereby, one has to distinguish between jobs that are either heavy-tailed
or light-tailed. The results are derived via the dual risk model of the studied coupled
M/G/1-queues for which the asymptotic behavior of different ruin probabilities is
determined.

Keywords Bipartite network · Bivariate compound Poisson process · Hitting
probability · Coupled M/G/1-queues · Random switch · Regular variation · Ruin
theory · Queueing theory

Mathematics Subject Classification 60K25 · 94C11 (primary) · 60G10 · 91G05
(secondary)

1 Introduction

A general 2 × 2 switch is modeled by a two-server queueing system with two arrival
streams. A well-studied special case of such a switch is given by the 2 × 2 clocked
buffered switch, where in a unit time interval each arrival stream can generate only
one arrival and each server can serve only one customer; see, for example, [1,11,19]
and others. This switch is commonly used to model a device used in data-processing
networks for routing messages from one node to another.
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In this paper, we study a 2 × 2 switch that operates in continuous time, i.e., the
arrivals are modeled by two independent compound Poisson processes. Every incom-
ing job is of random size and it is then distributed to the two servers by a random
procedure. This leads to a pair of coupled M/G/1-queues. In this model, we study
the equilibrium probabilities of the resulting workload processes. In particular, we
determine the asymptotic behavior of the probabilities that the workloads exceed a
prespecified buffer. Hereby, we will distinguish between workload exceedance of a
specific single server, both servers, or one unspecified server. Aswewill see, the behav-
ior of these workload exceedance probabilities strongly depends on whether jobs are
heavy-tailed or light-tailed, and we will therefore consider both cases separately.

A related model to the one we study has been introduced in [10] where a pair of
coupled queues drivenby independent spectrally positiveLévyprocesses is introduced.
The coupling procedure, however, is completely different to the switch we shall use.
For this model, in [10], the joint transform of the stationary workload distribution in
terms of Wiener–Hopf factors is determined. Two parallel queues are also considered,
for example, in [23] for an M/M/2-queue where arriving customers simultaneously
place two demands handled independently by two servers. We refer to [2,22] and
references therein for more general information on Lévy-driven queueing systems.

As it is well-known, there are several connections between queueing and risk mod-
els. In particular, the workload (or waiting time) in an M/G/1 queue with compound
Poisson input is related to the ruin probability in the prominent Cramér–Lundberg risk
model, in which the arrival process of claims is defined to be just the same compound
Poisson process; see, for example, [2] or [31]. To be more precise, let

R(t) = u + ct −
N (t)∑

i=1

Xi , t ≥ 0,

be a Cramér–Lundberg risk process with initial capital u > 0, premium rate c > 0,
i.i.d. claims {Xi , i ∈ N} with cdf F such that X1 > 0 a.s. and E[X1] = μ < ∞, and
a claim number process (N (t))t≥0 which is a Poisson process with rate λ > 0. Then,
it is well-known that the ruin probability

�(u) = P(R(t) < 0 for some t ≥ 0)

tends to 0 as u → ∞, as long as the net-profit condition λμ < c holds, while
otherwise �(u) ≡ 1. In particular, if the claims sizes are light-tailed in the sense that
an adjustment coefficient κ > 0 exists, i.e.,

∃κ > 0 :
∫ ∞

0
eκx F(x) dx = c

λ
,

where F(x) = 1− F(x) is the tail function of the claim sizes, then the ruin probability
�(u) satisfies the famous Cramér–Lundberg inequality (cf. [2, Eq. XIII (5.2)], [3, Eq.
I.(4.7)])
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�(u) ≤ e−κu, u > 0.

Furthermore, in this case the Cramér–Lundberg approximation states that (cf. [2,
Thm. XIII.5.2], [3, Eq. I.(4.3)])

lim
u→∞ eκu�(u) = C,

for some known constant C ≥ 0 depending on the chosen parameters of the model.
On the contrary, for heavy-tailed claims with a subexponential integrated tail function
1
μ

∫ x
0 F(y) dy it is known that (cf. [3, Thm. X.2.1])

lim
u→∞

(
1

μ

∫ ∞

u
F(y) dy

)−1

�(u) = λμ

c − λμ
,

and in the special case of tail functions that are regularly varying this directly implies
that the ruin probability decreases polynomially.

Via the mentioned duality, these results can easily be translated into corresponding
results on the workload exceedance probability of an M/G/1-queue.

In this paper, we shall use an analogous duality between queueing and riskmodels in
amulti-dimensional setting, as introduced in [7]. This allows us to obtain results on the
workload exceedance probabilities of the 2× 2 switch by studying the corresponding
ruin probabilities in the two-dimensional dual risk model.

Bivariate risk models are a well-studied field of research. A prominent model in
the literature that can be interpreted as a special case of the dual risk model in this
paper has been introduced by Avram et al. [5]. In this so-called degenerate model, a
single claim process is shared via prespecified proportions between two insurers (see,
for example, [4–6,24,26]). The model allows for a rescaling of the bivariate process
that reduces the complexity to a one-dimensional ruin problem. Exact results and
sharp asymptotics for this model have been obtained in [4], where also the asymptotic
behavior of ruin probabilities of a general two-dimensional Lévy model under light-
tail assumptions is derived. In [24], the degenerate model is studied in the presence of
heavy tails; specifically asymptotic formulae for the finite time as well as the infinite
time ruin probabilities under the assumption of subexponential claims are provided.
In [26], the degenerate model is extended by a constant interest rate. In [6], another
generalization of the degenerate model is studied that introduces a second source of
claims only affecting one insurer. Our risk model defined in Sect. 2.2 can be seen
as a further generalization of the model in [6] because of the random sharing of
every single claim, compare also with Sect. 5.2. There exist plenty of other papers
concerning bivariate risk models of all types and several approaches to tackle the
problem. For example, [14,21] consider bivariate risk models of Cramér–Lundberg-
type with correlated claim-counting processes and derive partial integro-differential
equations for infinite-time ruin and survival probabilities in these models. Various
authors focus on finite time ruin probabilities under different assumptions; see, for
example, [15–17,29,32,37,38]. For example, in [38], the finite time survival probability
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is approximated using a so-called bivariate compound binomial model and bounds for
the infinite-time ruin probability are obtained using the concept of association.

In general dimensions, multivariate ruin is studied in [9,12,13,25,30,34]. In partic-
ular, in [9], a bipartite network induces the dependence between the risk processes,
and this model is in some sense similar to the dual risk model in this paper. Further,
in [20], multivariate risk processes with heavy-tailed claims are treated and so-called
ruin regions are studied, that is, sets in R

d which are hit by the risk process with small
probability. Multivariate regularly varying claims are also assumed in [27] and [30],
where in [27] several lines of business are considered that can balance out ruin, while
[30] focuses exclusively on simultaneous ruin of all business lines/agents. Further,
[36] introduces a notion of multivariate subexponentiality and applies this on a mul-
tivariate risk process. Note that [27,36] both consider rather general regions of ruin,
and some of the results from these papers will be applied on our dual risk model.

The paper is outlined as follows: In Sect. 2, we specify the random switch model
that we are interested in and introduce the corresponding dual risk model. Section 3 is
devoted to study both models under the assumption that jobs/claims are heavy-tailed,
and it is divided into two parts. First, in Sect. 3.1, we focus on subexponentiality. As
we shall rely on results from [36], we first concentrate on the risk model in Sect. 3.1.1,
and then transfer our findings to the switch model in Sect. 3.1.2. Second, we treat the
special case of regular variation in Sect. 3.2, where we start with results for the risk
model in Sect. 3.2.1, taking advantage of results given in [27], before we transfer our
findings to the switch model in Sect. 3.2.2. In Sect. 4, we assume all jobs/claims to be
light-tailed and again first consider the risk model in Sect. 4.1 before converting the
results to the switch context in Sect. 4.2. Two particular examples of the switch will
then be outlined in Sect. 5, where we also compare the behavior of the exceedance
probabilities for different specifications of the random switch via a short simulation
study in Sect. 5.3. The final Sect. 6 collects the proofs of all our findings.

2 The switchingmodel and its dual

2.1 The 2× 2 random switchingmodel

Let W1,W2 be servers (or workers) with work speeds c1, c2 > 0 and let J1,J2 be
two job generating objects. We assume that both objects generate jobs independently
with Poisson rates λ1, λ2 > 0, respectively, and that the workloads generated by one
object are i.i.d. positive random variables. More specifically, we identify the objects
J j , j = 1, 2, with two independent compound Poisson processes

N j (t)∑

k=1

X j,k, j = 1, 2,

with jumps {X j,k, k ∈ N} being i.i.d. copies of two random variables X j ∼ Fj such
that Fj (0) = 0 and E[X j ] < ∞, j = 1, 2.
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W1 W2

J1 J2

c1 c2

Ak

∑N1(t)
k=1 X1,k

∑N2(t)
k=1 X2,k

Fig. 1 The random switching model

The jobs shall be distributed to the two servers by a random switch that is modeled
by a random (2 × 2)-matrix A = (Ai j )i, j=1,2, independent of all other randomness
and satisfying the following conditions:

(i) Ai j ∈ [0, 1] for all i, j = 1, 2, meaning that a job cannot be assigned more than
totally or less than not at all to a certain server,

(ii)
∑2

i=1 Ai j = 1 for all j = 1, 2, i.e. every job must be assigned entirely to the
servers.

The switch matrix is triggered independently at every arrival of a job (Fig. 1).
We are interested in the coupled M/G/1-queues defined by the resulting storage

processes of the two servers, i.e.,

Wi (t) =
2∑

j=1

N j (t)∑

k=1

(Ai j )k X j,k −
∫ t

0
ci (Wi (s)) ds, (2.1)

where {Ak, k ∈ N} are i.i.d. copies of A and

ci (x) =
{
0, x ≤ 0,

ci , x > 0,
i = 1, 2.

In particular, we aim to study the stationary distribution of the multivariate storage
process W(t) = (W1(t), W2(t))
, that is, the distributional limit of W(t) as t → ∞
whenever it exists. In this case, we write

W := (W1, W2)

 (2.2)

for a generic random vector with this steady-state distribution. Note that here and in
the following (·)
 denotes the transpose of a vector or matrix.

Let u > 0 be some fixed buffer barrier for the system and b = (b1, b2)
 ∈ (0, 1)2

with b1+b2 = 1. Setu = bu, i.e. ui = bi u. Then, we are interested in the probabilities

123



32 Queueing Systems (2021) 99:27–64

that the single servers exceed their barriers

ϒi (ui ) = P (Wi − ui > 0) , i = 1, 2, (2.3)

the probability that at least one of the workloads exceeds the barrier u

ϒ∨(u) = P

(
max
i=1,2

(Wi − ui ) > 0

)
, (2.4)

and the probability that both of the workloads exceed the barrier u

ϒ∧(u) = P

(
min
i=1,2

(Wi − ui ) > 0

)
. (2.5)

2.2 The dual risk model

In the one-dimensional case, it is well-known that there exists a duality between risk
and queueing models; see, for example, [2]. The multivariate analogue shown in [7]
allows us to formulate the dual risk model to the above introduced random switching
model as follows:

Set N (t) := N1(t)+N2(t) such that N (t) is a Poisson processwith rateλ = λ1+λ2.
Define the multivariate risk process

R(t) :=
(

R1(t)
R2(t)

)
:=

N (t)∑

k=1

AkBk

(
X1,k
X2,k

)
− t

(
c1
c2

)
=:

N (t)∑

k=1

AkBkXk − tc, (2.6)

where Bk are i.i.d. random matrices, independent of all other randomness, such that

P

(
Bk =

(
1 0
0 0

))
= λ1

λ
and P

(
Bk =

(
0 0
0 1

))
= λ2

λ
for all k.

Note that the components of (R(t))t≥0 satisfy the net-profit condition if

c∗
i := −1

λ
E[Ri (1)] = 1

λ
(ci − λ1E[Ai1] · E[X1] − λ2E[Ai2] · E[X2]) > 0

for i = 1, 2. (2.7)

We will therefore assume (2.7) throughout the paper. Note that, as mentioned in [7],
(2.7) implies existence of the stationary distribution of W(t), i.e. W in (2.2) is well-
defined. For a proof of this fact in the univariate setting, see, for example, [31, Thm.
4.10].

For the buffer u > 0 in the risk model, we define the ruin probabilities of the single
components

�i (ui ) := P(Ri (t) − ui > 0 for some t > 0), i = 1, 2, (2.8)
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the ruin probability for at least one component

�∨(u) := P

(
max

i∈{1,2} (Ri (t) − ui ) > 0 for some t > 0

)
, (2.9)

and the ruin probability for all components

�∧(u) := P ((Ri (ti ) − ui ) > 0 for some ti > 0, i = 1, 2) , (2.10)

where, as before, u = bu for b ∈ (0, 1)2 with b1 + b2 = 1.
The following lemma allows us to gather information about the bivariate storage

process in the switching model by performing calculations on our dual risk model.

Lemma 2.1 Consider the distributional limit of the workload process W and the risk
process (R(t))t≥0 defined in (2.6) and assume (2.7). Then, the workload exceedance
probabilities (2.3), (2.4), and (2.5), and the ruin probabilities (2.8), (2.9), and (2.10)
satisfy

ϒi (ui ) = �i (ui ),

ϒ∨(u) = �∨(u),

and ϒ∧(u) = �∧(u), u > 0.

Proof This follows directly from [7, Lem. 1] letting N → ∞ and due to the so-called
PASTA property; see [2, Thm. 6.1].

Note that in the ruin context it is common (see, for example, [4] or [9]) to consider
also the simultaneous ruin probability for all components

�∧,sim(u) := P

(
min

i∈{1,2} (Ri (t) − ui ) > 0 for some t > 0

)
. (2.11)

As we will see, results on �∧,sim can sometimes be shown by analogy to those on �∨,
and we shall do so whenever it seems suitable. However, �∧,sim has no counterpart in
the switching model.

It is clear from the above definitions that for all u = bu ∈ (0,∞)2

�∧,sim(u) ≤ �∧(u) = �1(b1u) + �2(b2u) − �∨(u), (2.12)

and likewise

ϒ∧(u) = ϒ1(b1u) + ϒ2(b2u) − ϒ∨(u). (2.13)

We will therefore focus in our study on ϒ∨ and �∨ and then derive the corresponding
results for ϒ∧ and �∧ via (2.13) and (2.12).
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2.3 Further notation

To keep notation short, we write R≥0, and R≤0 for the positive/negative half line of
the real numbers, respectively, and likewise use the notation, R>0, and R<0 such that,
in particular, R

2
<0 = (−∞, 0) × (−∞, 0). Further, R = R ∪ {−∞,∞}. For any set

M ⊂ R
q , we write M for its closure, and ∂ M for its boundary, i.e., M = M ∪ ∂ M .

We write ∼ for asymptotic equivalence at infinity, i.e., f ∼ g if and only if
limx→∞ f (x)

g(x)
= 1, while � indicates that such a convergence does not hold. More-

over, we use the standard Landau symbols, i.e., f (x) = o(g(x)) if and only if
f (x)/g(x) → 0 as x → ∞.
Lastly, throughout the paper, we set 1

∞ := 0 and 1
0 =: ∞, which yields in particular

F( x
0 ) := 0 for any tail function F .

3 The heavy-tailed case

In this section, we will assume that the distribution of the arriving jobs is heavy-
tailed. A very general class of heavy-tailed distributions is given by the subexponential
distributions, and we will consider this case in Sect. 3.1. However, as we will see,
the asymptotics we obtain in this case are not very explicit, in the sense that in a
multivariate setting they do not allow for a direct statement about the speed of decay
of the exceedance probabilities. We will therefore proceed and treat the special case
of regularly varying distributions in Sect. 3.2, where speeds of decay can be derived
more easily.

3.1 The subexponential case

Recall first that a random variable X in R>0 with distribution function F is called
subexponential if

lim
x→∞

F∗2(x)

F(x)
= 2,

where F∗2 is the second convolution power of F , i.e., the distribution of X ′ + X ′′,
where X ′ and X ′′ are i.i.d. copies of X . In this case, we write F ∈ S or X ∈ S.

As we are considering a multivariate setting in this paper, our proofs use a concept
of multivariate subexponentiality. Several approaches for this exist, and we shall rely
here on the definition and results as given in [36], which also provides a comprehensive
overview of previous notions of multivariate subexponentiality as given in [18,33].

3.1.1 Results in the risk context

We start by presenting our main theorem in the subexponential setting, which we state
in terms of the risk process defined in Sect. 2.2. Its proof relies on the theory developed
in [36] and is given in Sect. 6.1.
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Theorem 3.1 For all u > 0, v ≥ 0 set

g(u, v) := λ1

λ
· E

[
F1

(
min

{
ub1+vc∗

1
A11

,
ub2+vc∗

2
A21

})]

+λ2

λ
· E

[
F2

(
min

{
ub1+vc∗

1
A12

,
ub2+vc∗

2
A22

})]
, (3.1)

and assume that

θ := λ1

λ
· E[X1] · E

[
min

{
A11

c∗
1

,
A21

c∗
2

}]

+λ2

λ
· E[X2] · E

[
min

{
A12

c∗
1

,
A22

c∗
2

}]
> 0. (3.2)

Further, define a cdf by

Fsubexp(u) := 1 − θ−1
∫ ∞

0
g(u, v) dv, u ≥ 0, (3.3)

and assume that Fsubexp ∈ S. Then

�∨(u) ∼
∫ ∞

0
g(u, v) dv, as u → ∞. (3.4)

The asymptotic behavior of the ruin probabilities for single components in the
subexponential setting as presented in the next lemma can be shown by classic results.
Again a proof is given in Sect. 6.1.

Lemma 3.2 Assume that

Fi
I (x) := 1

λ1 · E[Ai1] · E[X1] + λ2 · E[Ai2] · E[X2]
× E

[
λ1

∫ x

0
F1(

y
Ai1

) dy + λ2

∫ x

0
F2(

y
Ai2

) dy

]

is subexponential. Then, the ruin probability for a single component (2.8) satisfies

�i (u) ∼ 1

λ
E

[∫ ∞

0

(
λ1F1

(
u+vc∗

i
Ai1

)
+ λ2F2

(
u+vc∗

i
Ai2

))
dv

]
, as u → ∞. (3.5)

Lastly, we consider the joint ruin probability �∧ in the following proposition.

Proposition 3.3 Assume that Fsubexp as in (3.3), and F1
I , F2

I as in Lemma 3.2 are in
S. Recall u = bu with b1 + b2 = 1 and b = (b1, b2)
 ∈ (0, 1)2. Then, if

�1(b1u) + �2(b2u) � �∨(u), (3.6)
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we obtain, as u → ∞,

�∧(u) ∼ λ1

λ
E

[∫ ∞

0
F1

(
max

{
ub1+vc∗

1
A11

,
ub2+vc∗

2
A21

})
dv

]

+ λ2

λ
E

[∫ ∞

0
F2

(
max

{
ub1+vc∗

1
A12

,
ub2+vc∗

2
A22

})
dv

]
.

Conversely, if (3.6) fails, then with g(u, v) as in (3.1),

�∧(u) = o

(∫ ∞

0
g(u, v)dv

)
, as u → ∞. (3.7)

3.1.2 Results in the switch context

With the help of Lemma 2.1, we may now directly summarize our findings from the
last section to provide a rather explicit insight into the asymptotic behavior of the
workload barrier exceedance probabilities in the switching model defined in Sect. 2.1.

Corollary 3.4 (Asymptotics of the exceedance probabilities under subexponentiality)
Assume that Fsubexp as in (3.3), and F1

I , F2
I as in Lemma 3.2, are in S. Define the

resulting integrated tail functions for servers i = 1, 2 via

F I ,i (u,A) := λ1

∫ ∞

0
F1

(
u+vc∗

i
Ai1

)
dv + λ2

∫ ∞

0
F2

(
u+vc∗

i
Ai2

)
dv, u > 0. (3.8)

Then, the workload exceedance probabilities (2.3), (2.4), and (2.5) satisfy

ϒi (bi u) ∼ 1

λ
· E

[
F I ,i (bi u,A)

]
, i = 1, 2,

ϒ∨(u) ∼ λ1

λ
E

[∫ ∞

0
F1

(
min

{
ub1+vc∗

1
A11

,
ub2+vc∗

2
A21

})
dv

]

+ λ2

λ
E

[∫ ∞

0
F2

(
min

{
ub1+vc∗

1
A12

,
ub2+vc∗

2
A22

})
dv

]

and, assuming additionally that

ϒ1(b1u) + ϒ2(b2u) � ϒ∨(u), (3.9)

we obtain

ϒ∧(u) ∼ λ1

λ
E

[∫ ∞

0
F1

(
max

{
ub1+vc∗

1
A11

,
ub2+vc∗

2
A21

})
dv

]

+ λ2

λ
E

[∫ ∞

0
F2

(
max

{
ub1+vc∗

1
A12

,
ub2+vc∗

2
A22

})
dv

]
.
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If (3.9) fails, then

ϒ∧(u) = o
(
E
[
F I ,1(b1u,A) + F I ,2(b2u,A)

])
.

Proof This is clear from Lemma 2.1, Theorem 3.1, Lemma 3.2, and Proposition 3.3.

3.2 The regularly varying case

In this section, we will restrict the class of considered heavy-tailed distributions and
assume that the tail functions of the arriving jobs are regularly varying. As we will see,
this restriction leads to a much more explicit description of the asymptotic behavior
of ruin and exceedance probabilities.

Let f : R → (0,∞) be a measurable function and recall that f is regularly varying
(at infinity) with index α ≥ 0 if, for all λ > 0, it holds that

lim
t→∞

f (λt)

f (t)
= λα,

with the case α = 0 typically being referred to as slowly varying. In this case, we write
f ∈ RV(α). A real-valued random variable X is called regularly varying with index
α ≥ 0, i.e., X ∈ RV(α), if its tail function F(·) = P(X > ·) is regularly varying with
index −α. It is well-known that RV(α) ⊂ S for all α ≥ 0, cf. [3, Prop. X.1.4].

Further, we follow [27] and call a random vector Z on R
q multivariate regularly

varying if there exists a non-null measure μ on R
q\{0} such that

(i) μ
(
R

q\R
q
)

= 0,

(ii) μ(M) < ∞ for all Borel sets M bounded away from 0,
(iii) for all Borel sets M satisfying μ(∂ M) = 0 it holds that

P(Z ∈ t M)

P(‖Z‖ > t)
→ μ(M). (3.10)

The norm ‖ · ‖ will typically be chosen to be the L1-norm in this article. If Z is
multivariate regularly varying, necessarily there exists α > 0 such that, for all M as
in (3.10) and t > 0,

μ(t M) = t−αμ(M).

Thus, we write Z ∈ MRV(α, μ).
Note that in the one-dimensional case, the above definitions coincide. We refer to
[8,35] for references of the above andmore detailed information onmultivariate regular
variation.
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3.2.1 Results in the risk context

We will now present our first main result in the regularly varying context. Note that
this is not obtained by an application of our above results in the special case of regular
variation, but instead we give an independent proof of Theorem 3.5 in Sect. 6.2 that
relies on results from [28]. This approach also allows as, to consider the simultaneous
ruin probability, which had not been possible with the methods used in Sect. 3.1 due
to stronger assumptions on the involved ruin sets.

Theorem 3.5 Assume the claim size variables X1, X2 are regularly varying, i.e., X1 ∈
RV(α1), and X2 ∈ RV(α2) for α1, α2 > 1. Then with A, B from Sect. 2 and X =
(X1, X2)


, it follows that there exists a measure μ∗ such that

ABX ∈ MRV(min{α1, α2}, μ∗).

Further,

lim
u→∞

�∨(u)

u · P(‖ABX‖ > u)
=

∫ ∞

0
μ∗(vc∗ + b + L∨) dv =: C∨ < ∞, (3.11)

and

lim
u→∞

�∧,sim(u)

u · P(‖ABX‖ > u)
=

∫ ∞
0

μ∗(vc∗ + b + L∧,sim) dv =: C∧,sim < ∞, (3.12)

with c∗ = (c∗
1, c∗

2)

, L∨ = R

2\R
2≤0, and L∧,sim = R

2
>0.

Note that, by conditioning on B, we have

P(‖ABX‖ > u) = λ1

λ
· P

(∥∥∥∥

(
A11X1
A21X1

)∥∥∥∥ > u

)
+ λ2

λ
· P

(∥∥∥∥

(
A12X2
A22X2

)∥∥∥∥ > u

)

= λ−1 (λ1F1(u) + λ2F2(u)
)
. (3.13)

Using the limiting-measure property of μ∗, it is further possible to explicitly com-
pute the constants C∨, and C∧,sim in Theorem 3.5. This then yields the following
proposition, whose proof is also postponed to Sect. 6.2.

Proposition 3.6 Assume X1 ∈ RV(α1) and X2 ∈ RV(α2) for α1, α2 > 1 and set

ζ := lim
t→∞

λ1F1(t)

λ2F2(t)
∈ [0,∞],

so that clearly ζ ∈ (0,∞) implies α1 = α2. Then

�∨(u) ∼ C∨
λ

· u
(
λ1F1(u) + λ2F2(u)

)
with (3.14)

123



Queueing Systems (2021) 99:27–64 39

C∨ := E

⎡

⎢⎣
∫ ∞

0

ζ ·
(
min

{
vc∗

1+b1
A11

,
vc∗

2+b2
A21

})−α1 +
(
min

{
vc∗

1+b1
A12

,
vc∗

2+b2
A22

})−α2

1 + ζ
dv

⎤

⎥⎦ ,

(3.15)

and

�∧,sim(u) ∼ C∧,sim

λ
· u

(
λ1F1(u) + λ2F2(u)

)
with

C∧,sim := E

⎡

⎢⎣
∫ ∞
0

ζ ·
(
max

{
vc∗

1+b1
A11

,
vc∗

2+b2
A21

})−α1 +
(
max

{
vc∗

1+b1
A12

,
vc∗

2+b2
A22

})−α2

1 + ζ
dv

⎤

⎥⎦ ,

(3.16)

where we interpret ∞·x
∞ := x.

We continue our study of the asymptotics of the risk model by determining the
asymptotic behavior of �∧. It is clear from Equations (2.12) and (3.14) that in order
to do this, we first have to determine the asymptotic behavior of the ruin probabilities
for single components (2.8), which will be given by the following lemma.

Lemma 3.7 Assume X1 ∈ RV(α1), and X2 ∈ RV(α2) for α1, α2 > 1. Then, the ruin
probability for a single component (2.8) satisfies (3.5).

With this the following proposition is straightforward. Again, the proof is given in
Sect. 6.2.

Proposition 3.8 Assume X1 ∈ RV(α1) and X2 ∈ RV(α2) for α1, α2 > 1. Recall
u = bu with b1 + b2 = 1 and b = (b1, b2)
 ∈ (0, 1)2. Then,if (3.6) holds,

�∧(u) ∼ 1

λ
·
(
λ1

(
E
[
F1,I (u,A)

] − C∨uF1(u)
)

+ λ2
(
E
[
F2,I (u,A)

] − C∨uF2(u)
) )

,

(3.17)

with C∨ as defined in (3.15) and with the weighted integrated tail functions

F j,I (u,A) :=
∫ ∞

0
F j

(
ub1 + vc∗

1

A1 j

)
dv +

∫ ∞

0
F j

(
ub2 + vc∗

2

A2 j

)
dv,

for u > 0, j = 1, 2.
Otherwise, if (3.6) fails, then

�∧(u) = o
(
u · (F1(u) + F2(u)

))
. (3.18)
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3.2.2 Results in the switch context

Again, we may now summarize our findings in the context of the switching model
defined in Sect. 2.1 as follows.

Corollary 3.9 (Asymptotics of the exceedance probabilities for regularly varying jobs)
Assume the workload variables X1, X2 are regularly varying, i.e., X1 ∈ RV(α1) and
X2 ∈ RV(α2) for α1, α2 > 1. Set

ζ := lim
t→∞

λ1F1(t)

λ2F2(t)
∈ [0,∞],

so that ζ ∈ (0,∞) implies α1 = α2. Recall C∨ from (3.15) and the integrated tail
functions for servers i = 1, 2 from (3.8). Then, the workload exceedance probabilities
(2.3) and (2.4) satisfy

ϒi (bi u) ∼ 1

λ
· E

[
F I ,i (bi u,A)

]
, i = 1, 2,

ϒ∨(u) ∼ C∨
λ

· u(λ1F1(u) + λ2F2(u)).

Assuming additionally (3.9), the workload exceedance probability (2.5) satisfies

ϒ∧(u) ∼ 1

λ
·
(
E
[
F I ,1(b1u,A)

] + E
[
F I ,2(b2u,A)

]

− (
λ1uF1(u) + λ2uF2(u)

)
C∨

)
.

If (3.9) fails, then

ϒ∧(u) = o
(
u · (F1(u) + F2(u)

))
.

Proof This is clear from Lemmas 2.1, 3.7, and Propositions 3.6 and 3.8.

Remark 3.10 At first sight the structure of the asymptotic formulae for �∨ and ϒ∨ in
the regularly varying and the subexponential case looks pretty similar, as both formulae
rely on a minimum inside an integral. However, in the case of regularly varying claims
the formulae immediately provide the principal behavior of the tail, only the constant
needsmore computation. On the contrary, in the subexponential case, the initial capital
u is involved strongly inside the integral and even to obtain the asymptotics up to a
constant, one has to calculate the integral explicitly.

Example 3.11 In the setting of Corollary 3.9, assume that α1 < α2. Then, in all asymp-
totics given in Corollary 3.9, the terms including F2 that are regularly varying with
index −α2 + 1 are dominated by the terms involving F1 which are regularly varying
with index −α1 + 1. This yields that in this case
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lim
u→∞

ϒi (bi u)

E

[∫ ∞
0 F1

(
ubi +vc∗

i
Ai1

)
dv

] = λ1

λ
, i = 1, 2,

as long as P(Ai1 = 0) < 1. Similarly, since ζ = ∞, we obtain

lim
u→∞

ϒ∨(u)

u · F1(u)
= λ1C∨

λ
= λ1

λ
E

[∫ ∞

0

(
min

{
vc∗

1+b1
A11

,
vc∗

2+b2
1−A11

})−α1
dv

]
.

With these observations at hand, we may conclude that (3.9) holds if and only if

lim
u→∞

E

[∫ ∞
0 F1

(
ub1+vc∗

1
A11

)
dv + ∫ ∞

0 F1

(
ub2+vc∗

2
1−A11

)
dv

]

E

[∫ ∞
0

(
min

{
vc∗

1+b1
A11

,
vc∗

2+b2
1−A11

})−α1
dv

]
u · F1(u)

�= 1. (3.19)

Thus, given (3.19), we get

lim
u→∞

ϒ∧(u)

E

[∫ ∞
0 F1

(
ub1+vc∗

1
A11

)
dv + ∫ ∞

0 F1

(
ub2+vc∗

2
1−A11

)
dv

]
− C∨u · F1(u)

= λ1

λ
,

while otherwise

ϒ∧(u) = o
(
u · F1(u)

)
.

Remark 3.12 The above example can be generalized in the sense that a regularly vary-
ing tail dominates any lighter tail, no matter whether this is regularly varying as well
or not.

Indeed, assuming that w.l.o.g. X1 ∈ RV(α) for α > 1 and X2 is such that

F2(x) = o(F1(x)), (3.20)

one can prove in complete analogy to the results from the last subsection that the
workload exceedance probabilities (2.3), (2.4), and (2.5) satisfy

ϒi (bi u) ∼ λ1

λ
E

[∫ ∞

0
F1

(
bi u+vc∗

i
Ai1

)
dv

]
, i = 1, 2,

ϒ∨(u) ∼ λ1

λ
E

[∫ ∞

0

(
min

{
vc∗

1+b1
A11

,
vc∗

2+b2
A21

})−α

dv

]
· uF1(u),

and, assuming additionally that (3.9) holds,
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ϒ∧(u) ∼ λ1

λ

(
E

[∫ ∞

0
F1

(
b1u+vc∗

1
A11

)
dv

]
+ E

[∫ ∞

0
F1

(
b2u+vc∗

2
A21

)
dv

]

−E

[∫ ∞

0

(
min

{
vc∗

1+b1
A11

,
vc∗

2+b2
A21

})−α

dv

]
· uF1(u)

)
,

while otherwise

ϒ∧(u) = o
(
u · F1(u)

)
.

4 The light-tailed case

In this section, we will study the asymptotic behavior of ruin/workload exceedance
probabilities for claims/jobs that are typically small, i.e., we will assume throughout
this section that the moment generating functions ϕX j (x) = E[exp(x X j )], j = 1, 2,
are such that

ϕX j (x j ) < ∞ for some x j > 0, j = 1, 2. (4.1)

4.1 Results in the risk context

As in the heavy-tailed setting, we start by studying the dual risk model. Again, the ruin
probabilities for the single components are particularly easy to treat. The following
lemma is obtained by a direct application of Lundberg’s well-known inequality and
the Cramér–Lundberg approximation; see, for example, [3, Thms. IV.5.2 and IV.5.3].
In Sect. 6.3, a short proof is provided.

Lemma 4.1 Assume the claim size variables X1, X2 satisfy (4.1) and assume there
exist (unique) solutions κ1, κ2 > 0 to

ciκi = E
[
λ1(ϕX1(κi Ai1) − 1) + λ2(ϕX2(κi Ai2) − 1)

]
, i = 1, 2. (4.2)

Then, the ruin probabilities of the single components satisfy

�i (u) ≤ e−κi u for all u > 0, and �i (u) ∼ Ci e
−κi u, i = 1, 2,

where

Ci = λc∗
i

E[λ1Ai1ϕ
′
X1

(κi Ai1) + λ2Ai2ϕ
′
X2

(κi Ai2)] − ci
, i = 1, 2. (4.3)

Using (2.12) in the form �∨(u) ≤ �1(b1u) + �2(b2u), we easily derive the fol-
lowing Lundberg-type bound for �∨ from the above lemma.
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Corollary 4.2 Assume the claim size variables X1, X2 satisfy (4.1) and assume there
exist (unique) solutions κ1, κ2 > 0 to (4.2). Then the ruin probability for at least one
component satisfies

�∨(u) ≤ (e−κ1b1u + e−κ2b2u) ∧ 1 for all u > 0.

Remark 4.3 Similarly to what has been done in [9, Thm. 6.1], it is also possible to
derive a Lundberg bound for �∧,sim via classical martingale techniques. Indeed, one
can show that for any κ1, κ2 > 0 such that

κ1c1 + κ2c2 = λ1
(
E
[
ϕX1(κ1A11)ϕX1(κ2(1 − A11))

] − 1
)

+ λ2
(
E
[
ϕX2(κ1A12)ϕX2(κ2(1 − A12))

] − 1
)

it holds that

�∧,sim(u) ≤ e−(κ1b1+κ2b2)u, u > 0.

As this has no implications for the considered queueing model, we will not go into
further details here.

To derive the asymptotics of�∧,�∧,sim and�∨, we rely on results from [4], which
lead to the following theorem.

Theorem 4.4 Assume the claim size variables X1, X2 satisfy (4.1) and assume there
exist (unique) solutions κ1, κ2 > 0 to (4.2). Then,

�∨(u) ∼ C1 · e−κ1b1u + C2 · e−κ2b2u,

�∧(u) = o
(

C1 · e−κ1b1u + C2 · e−κ2b2u
)

,

and �∧,sim(u) = o
(

C1 · e−κ1b1u + C2 · e−κ2b2u
)

,

with C1, C2 given in (4.3).

4.2 Results in the switch context

Again, using Lemma 2.1, we summarize our findings from the last subsection to obtain
the following corollary on the asymptotic behavior of the workload barrier exceedance
probabilities in the switching model defined in Sect. 2.1.

Corollary 4.5 (Asymptotics and bounds of the exceedance probabilities for light-tailed
jobs) Assume the workload variables X1, X2 are light-tailed such that (4.1) holds
and assume there exist (unique) solutions κ1, κ2 > 0 to (4.2). Then, the workload
exceedance probabilities (2.3), (2.4), and (2.5) satisfy

ϒi (bi u) ≤ e−κi bi u for all ui > 0, i = 1, 2,
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and ϒ∨(u) ≤ (e−κ1b1u + e−κ2b2u) ∧ 1 for all u > 0.

Further, with Ci , i = 1, 2, as in (4.3), it holds that

ϒi (bi u) ∼ Ci e
−κi bi u, i = 1, 2,

ϒ∨(u) ∼ C1 · e−κ1b1u + C2 · e−κ2b2u, (4.4)

while the probability that both workloads exceed their barrier satisfies

ϒ∧(u) = o
(

C1 · e−κ1b1u + C2 · e−κ2b2u
)

.

Remark 4.6 Note that the light-tail assumption (4.1) does not necessarily imply exis-
tence of κ1, κ2 > 0 solving (4.2). Assuming for j = 1, 2, the slightly stronger
condition that

Either

ϕX j (x j ) < ∞ for all x j < ∞,

or there exists x∗
j < ∞ such that

ϕX j (x j ) < ∞ for all x j < x∗
j and ϕX j (x j ) = ∞ for all x j ≥ x∗

j .

however, is sufficient for existence of κ1, κ2 > 0.
In case that the above condition fails, i.e., for some j ∈ {1, 2} there exists x∗

j such
that ϕX j (x j ) < ∞ for all x j ≤ x∗

j and ϕX j (x j ) = ∞ for all x j > x∗
j , then existence

of κ1, κ2 depends on the chosen parameters of the model; see, for example, [3, Chapter
IV.6a] for a more thorough discussion of this.

Remark 4.7 If κ1b1 �= κ2b2, then the summand of lower order on the right-hand side of
(4.4) can be omitted in the asymptotic equivalence. Thus, in contrast to the regularly
varying case, the vector b here is crucial for the exact asymptotic behavior and to
contributes more than just the constant.

On the other hand, we immediately see that, given two job distributions and hence
given κ1, κ2 > 0, we can choose b1, b2 in order to minimize the joint exceedance
probabilities. The optimal b then solves

b1κ1 = b2κ2, i.e. b1 = κ2

κ1 + κ2
, and b2 = κ1

κ1 + κ2
,

which leads to

ϒ∨(u) ∼(C1 + C2)e
− κ1κ2

κ1+κ2
·u

,

while ϒ∧(u) =o
(
e
− κ1κ2

κ1+κ2
·u)

.
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5 Examples and simulation study

In this section, we consider two special choices of the random switch for whichwewill
evaluate the above results and compare to simulated data. The first part is dedicated
to the special case of the Bernoulli switch, where the queueing processes become
independent of each other. In the second part, we discuss the special case of a non-
random switch, where every job is shared between the servers with some predefined
deterministic proportions. We finish in Sect. 5.3 with a short comparison to study the
influence of the chosen type of randomness on the exceedance probabilities.

5.1 The Bernoulli switch

The Bernoulli switch does not split any jobs, but assigns the arriving jobs randomly
to one of the two servers. More precisely, we set

A11 = 1 − A21 ∼ Bernoulli(p), and A12 = 1 − A22 ∼ Bernoulli(q),

independent of each other with p, q ∈ [0, 1]. This yields independence of the com-
ponents of the process (R(t))t≥0 which can now be represented as

R1(t) =
N (1)
1 (t)∑

k=1

X ′
1,k +

N (1)
2 (t)∑

�=1

X ′
2,� − tc1 and R2(t) =

N (2)
1 (t)∑

k=1

X ′′
1,k +

N (2)
2 (t)∑

�=1

X ′′
2,� − tc2,

where X ′
j,k and X ′′

j,k are independent copies of X j,k , j = 1, 2, k ∈ N, and the counting

processes (N (1)
1 (t))t≥0, (N (2)

1 (t))t≥0, (N (1)
2 (t))t≥0, and (N (2)

2 (t))t≥0 are independent

Poisson processes with rates λ1 p
λ1+λ2

, λ1(1−p)
λ1+λ2

, λ2q
λ1+λ2

, and λ2(1−q)
λ1+λ2

, respectively. In par-
ticular, from (2.5) and (2.13) we obtain that in the Bernoulli switch

ϒ∧(u) = ϒ1(b1u)ϒ2(b2u) = ϒ1(b1u) + ϒ2(b2u) − ϒ∨(u), (5.1)

and henceϒ∧(u) andϒ∨(u) can be expressed in terms ofϒ1(b1u) andϒ2(b2u). Thus,
although the Bernoulli switch is not covered by Theorem 3.1 in the subexponential
setting, as (3.2) is not satisfied, via (5.1) one can still calculate the asymptotics using
Lemma 3.2.

Indeed, we obtain by direct application of Corollary 3.4 that if F1
I , F2

I ∈ S (which
holds in particular if X1 ∈ RV(α1), X2 ∈ RV(α2), α1, α2 > 1),

ϒ1(b1u) ∼ λ1 p
∫ ∞

b1u F1(y) dy + λ2q
∫ ∞

b1u F2(y) dy

c1 − λ1 pE[X1] − λ2qE[X2] ,

and ϒ2(b2u) ∼ λ1(1 − p)
∫ ∞

b2u F1(y) dy + λ2(1 − q)
∫ ∞

b2u F2(y) dy

c1 − λ1(1 − p)E[X1] − λ2(1 − q)E[X2] .

(5.2)
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Fig. 2 Simulated exceedance probabilities in the Bernoulli switch in comparison with the obtained asymp-
totics in natural scaling (left) and as log–log plot (right). Here, job sizes are Pareto distributed with
F1(x) = x−3/2, x ≥ 1, and F2(x) = 4x−2, x ≥ 2. Further, λ1 = λ2 = 1, c1 = 5, c2 = 8, and
b1 = 0.8 = 1 − b2. The Bernoulli switch is characterized by p = 0.4 and q = 0.7. For these parameters
from (5.2), we derive ϒ1(u1) ∼ 0.8 · u−0.5

1 and ϒ2(u2) ∼ 0.24 · u−0.5
2 such that ϒ∧(u) ∼ 0.48 · u−1

and ϒ∨(u) ∼ 1.431 · u−0.5 via (5.1). Note that a direct evaluation of the asymptotics of ϒ∨ as given in
Corollary 3.9 yields the same result

Fig. 3 Simulated exceedance probabilities in the Bernoulli switch in comparison with the obtained asymp-
totics in natural scaling (left) and as log–linear plot (right). Here, jobs are exponentially distributed with
F1(x) = e−x/3, x ≥ 0, and F2(x) = e−x/4, x ≥ 0. Further, λ1 = λ2 = 1, c1 = 5, c2 = 8, and
b1 = 0.8 = 1 − b2. The Bernoulli switch is characterized by p = 0.4 and q = 0.7. For these parameters
from (5.4), we derive κ1 ≈ 0.054 and κ2 ≈ 0.178 and (5.3) yields ϒ1(u1) ∼ 0.796 · exp(−0.054u1)
and ϒ2(u2) ∼ 0.343 · exp(−0.178u2) from which ϒ∧(u) ∼ 0.273 · exp(−0.079u) and ϒ∨(u) ∼
0.796 ·exp(−0.043u)+0.343 ·exp(−0.036u) via (5.1). Note that in the latter case we keep both summands,
since the exponents are close together

In the light-tailed case, an application of Corollary 4.5 yields

ϒ1(b1u) ∼ c1 − λ1 pE[X1] − λ2qE[X2]
λ1 pϕ′

X1
(κ1) + λ2qϕ′

X2
(κ1)

e−κ1b1u

and ϒ2(b2u) ∼ c2 − λ1(1 − p)E[X1] − λ2(1 − q)E[X2]
λ1(1 − p)ϕ′

X1
(κ2) + λ2(1 − q)ϕ′

X2
(κ2)

e−κ2b2u,

(5.3)
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as long as there exist κ1, κ2 > 0 such that (4.2) holds, which in the Bernoulli switch
simplifies to

c1κ1 = λ1 p(ϕX1(κ1) − 1) + λ2q(ϕX2(κ1) − 1)

and c2κ2 = λ1(1 − p)(ϕX1(κ2) − 1) + λ2(1 − q)(ϕX2(κ2) − 1).
(5.4)

The asymptotic behavior of ϒ∨ and ϒ∧ can now be described via (5.1).
In Figs. 2 and 3, we compare the asymptotics in the Bernoulli switch obtained in

this way with data that has been simulated using standard Monte Carlo techniques.
As one can see in all cases, the obtained asymptotics fit the data very well for u large
enough.

5.2 The deterministic switch

The deterministic switch is characterized by setting

A11 = d1 = 1 − A21,

and A12 = d2 = 1 − A22,

for some predefined constants d1, d2 ∈ [0, 1].
Note that for λ2 = 0, meaning that we have only one source of claims, the corre-

sponding dual risk model coincides with the degenerate model considered in [4,5,24].
Allowing two sources of claims, but setting d1 ∈ (0, 1), d2 = 1 reduces our model to
the setting treated in [6].

Clearly, for any choice of d1, d2 in the deterministic switch one can easily evaluate
the asymptotics of the exceedance probabilities as given in Corollaries 3.4 , 3.9, and
4.5 since all appearing expectations disappear.

In Figs. 4, 5, and 6, we compare the asymptotics and bounds in the deterministic
switch obtained in this way with data that has been simulated using standard Monte
Carlo techniques. Again simulations and theoretical asymptotics fit well in all cases.
Note that in contrast to the cases with lighter tails, in the purely subexponential case
shown in Fig. 4, we observe that ϒ1 is close to ϒ∨ for small u, but close to ϒ∧ for
large u. This can be interpreted as follows: While, for small u, the net working speed
c∗

i determines the exceedance probabilities, for large u this becomes less relevant and
the workload exceedance is mainly influenced by the heavyness of the tails.

Example 5.1 Consider a deterministic switch with d1 ∈ (0, 1) and λ2 = 0, i.e., there is
only one source of jobs and the jobs are distributed deterministically to the two servers
with proportions d1 and 1 − d1, and assume that b1

d1
< b2

1−d1
, so that the resulting

dual risk model properly rescaled coincides with the degenerate model studied in
[4,5,24]. Then, applying Theorem 3.1 in this setting reproduces the tail behavior of
the probability of ruin of at least one component stated in [24, Cor. 2.2]. Interestingly,
also the ruin probability of both insurance companies one derives in this case from
Proposition 3.3 coincides with the asymptotics provided in [24, Eq. (2.9)], although
the latter corresponds to simultaneous ruin. This suggests that in this special setting
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Fig. 4 Simulated exceedance probabilities in the deterministic switch in comparison with the obtained
asymptotics as log–lin plot (left) and log(−log)–log plot (right), meaning the y-axis is scaled as
log(− log(y)), while the x-axis is scaled as log(x). This particular scaling of the axes is chosen in order

to get straight lines of ascent γ −1, for functions of the type e− γ√x . Job sizes are Weibull distributed with

F1(x) = 1 − exp((2x)
1
3 ), x ≥ 0, and F2(x) = 1 − exp((x/2)

1
2 ), x ≥ 0. Further, λ1 = λ2 = 1, c1 = 5,

c2 = 8, and b1 = 0.8 = 1 − b2. The deterministic switch is characterized by d1 = 0.4 and d2 = 0.7.

For these parameters, from Corollary 3.4, we derive ϒ2(b2u) ∼ ϒ∨(u) ∼ (0.1374 · u
2
3 + 0.31449 · u

1
3 +

0.36) · exp(−0.87358 · u
1
3 ), and ϒ1(b1u) ∼ (1.51191 · u

2
3 + 1.90488 · u

1
3 + 1.2) · exp(−1.58740 · u

1
3 ),

while for ϒ∧ no asymptotics are given as (3.9) fails

Fig. 5 Simulated exceedance probabilities in the deterministic switch in comparison with the obtained
asymptotics in natural scaling (left) and as log–log plot (right). Here—as in Fig. 2—job sizes are Pareto
distributed with F1(x) = x−3/2, x ≥ 1, and F2(x) = 4x−2, x ≥ 2. Further λ1 = λ2 = 1, c1 = 5, c2 = 8,
and b1 = 0.8 = 1 − b2. The deterministic switch is characterized by d1 = 0.4 and d2 = 0.7. For these
parameters, from Corollary 3.9, we derive ϒ1(u1) ∼ 0.506 · u−0.5

1 , and ϒ2(u2) ∼ 0.186 · u−0.5
2 , while

ϒ∨(u) ∼ 0.756 · u−0.5, and ϒ∧(u) ∼ 0.226 · u−0.5

the ruin probability of both components and the simultaneous ruin probability of both
components are asymptotically equivalent.

5.3 A comparison of different switches

In this section, we aim to compare the two above special cases of the Bernoulli switch
and the deterministic switch with a non-trivial random switch, which we chose to be
a Beta switch characterized by setting
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Fig. 6 Simulated exceedance probabilities in the deterministic switch in comparison with the obtained
asymptotics in natural scaling (left) and as log–linear plot (right).Here, jobs are—as in Fig. 3—exponentially
distributedwith F1(x) = e−x/3, x ≥ 0, and F2(x) = e−x/4, x ≥ 0. Further, λ1 = λ2 = 1, c1 = 5, c2 = 8,
and b1 = 0.8 = 1 − b2. The deterministic switch is characterized by d1 = 0.4 and d2 = 0.7. For these
parameters, from (4.2), we obtain κ1 ≈ 0.084 and κ2 ≈ 0.383, which yieldϒ1(u1) ∼ 0.78·exp(−0.084u1)
and ϒ2(u2) ∼ 0.341 · exp(−0.383u2), while ϒ∨(u) ∼ 0.78 · exp(−0.067u) + 0.341 · exp(−0.077u) and
ϒ∧(u) = o(exp(−0.067u)) by Corollary 3.9

A11 = 1 − A21 ∼ Beta(β1, γ1),

and A12 = 1 − A22 ∼ Beta(β2, γ2),

for some constants β1, β2, γ1, γ2 > 0, where Beta(β, γ ) is the Beta distribution with
density �(β+γ )

�(β)�(γ )
xβ−1(1 − x)γ−1, x ∈ [0, 1].

To keep all examples comparable, we fix λ1, λ2, E[X1], E[X2], E[A11] and E[A12]
such that the scenarios only differ in the behavior of the switch and the job sizes.
Figure 7 shows the approximate exceedance probabilities obtained by Monte Carlo
simulation for the Bernoulli switch, the deterministic switch and two different Beta
switches.

As we can see, in the regularly varying case the probability that at least one of
the workloads exceeds the barrier ϒ∨ tends to zero with the same index of regular
variation for all choices of the random switch. In case of the probability that both
components exceed their barrier ϒ∧, the Bernoulli switch yields a faster decay due to
the independence of the two workload processes in this model.

Further, the figure indicates the intuitive behavior: The more correlated the co-
ordinates of the workload process are, the closer together are ϒ∨ and ϒ∧. This leads
to a trade-off between the two probabilities: Changing the switch toward reducing one
probability raises the other and the Beta switches may serve here as a compromise to
control both probabilities.

In the light-tailed case, the trade-off betweenϒ∨ andϒ∧ cannot be observed. Quite
the contrary, themore correlated the co-ordinates of theworkload process are, the lower
tend to be the exceedance probabilities. Hence, in this case, the Bernoulli switch yields
the highest exceedance probabilities, while the deterministic switch obtains the best
results.

Thus, for keeping ϒ∨ small, in general the simple deterministic switch yields good
results. On the contrary, if one is interested in keeping ϒ∧ small, the tail-behavior of
the appearing jobs is crucial for the choice of the optimal switch. Here, again Beta
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Fig. 7 Simulated exceedance probabilities for different switches with heavy-tailed (left, log–log plot) and
light-tailed (right, log–linear plot) job sizes. Throughout λ1 = λ2 = 1, c1 = 5, c2 = 8, and b1 = 0.8 =
1 − b2. On the left—as in Figs. 2 and 5—job sizes are Pareto distributed with F1(x) = x−3/2, x ≥ 1,
and F2(x) = 4x−2, x ≥ 2. On the right jobs are—as in Figs. 3 and 6—exponentially distributed with
F1(x) = e−x/3, x ≥ 0, and F2(x) = e−x/4, x ≥ 0. The Bernoulli switch is characterized by p = 0.4
and q = 0.7, the deterministic switch is characterized by d1 = 0.4 and d2 = 0.7, the Beta switch 1 is
characterized by A11 = 1 − A21 ∼ Beta(0.4, 0.6) and A12 = 1 − A22 ∼ Beta(0.7, 0.3), and the Beta
switch 2 is characterized by A11 = 1 − A21 ∼ Beta(1.5, 2.25) and A12 = 1 − A22 ∼ Beta(3, 9/7)

switches or other non-trivial random switches may serve as a compromise in situations
where the tail behavior of the appearing jobs is unknown.

6 Proofs

6.1 Proofs for Sect. 3.1

To prove the asymptotic result for the ruin probability �∨ as given in Theorem 3.1,
we need some preliminary definitions and results.

Let

R := {M ⊂ R
2 : M open, increasing, Mc convex, 0 /∈ M}

be a family of open sets, where increasing means that for each x ∈ M and d ≥ 0 we
have x + d ∈ M . Let �(dx) be a probability measure on R

2≥0. For M ∈ R we define
a cdf on [0,∞) by setting

FM (t) := 1 − �(t M), t ≥ 0.

Then, following [36, Def. 4.6], if FM ∈ S we say that � ∈ SM . Furthermore, � is
multivariate subexponential if � ∈ SR := ⋂

M∈R SM .
Throughout this section we consider the specific sets

L := R
2\R

2≥0 and M := b − L. (6.1)

Then clearly M ∈ R and by [36, Rem. 4.1] also uM ∈ R for all u > 0.
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Moreover, we specify � to be the probability measure of the claims ABX in the
dual risk model described in Sect. 2.2. Then, we can prove some basic relationships
in the upcoming lemma.

Lemma 6.1 Consider the probability measure � as just defined, the set M as in (6.1),
and the constant θ given in (3.2). Then,

�(uM + vc∗) = g(u, v),

with g(u, v) defined in (3.1), and

�(R2≥0 + vc∗) = λ1

λ
· E

[
F1

(
v · max

{
c∗
1

A11
,

c∗
2

A21

})]

+ λ2

λ
· E

[
F2

(
v · max

{
c∗
1

A12
,

c∗
2

A22

})]
,

for all u > 0, v ≥ 0 and c∗ ∈ R
2
>0. Moreover,

θ =
∫ ∞

0
�

(
R
2≥0 + vc∗) dv < ∞.

Proof By the definitions of M , L and �, and conditioning on B,

�(uM + vc∗) = P
(
ABX ∈ ub + vc∗ − uL

) = P

(
ABX ∈ ub + vc∗ + R

2\R
2≤0

)

= λ1

λ
P

((
A11
A21

)
X1 ∈ ub + vc∗ + R

2\R
2≤0

)

+ λ2

λ
P

((
A12
A22

)
X2 ∈ ub + vc∗ + R

2\R
2≤0

)
,

where, for j = 1, 2,

P

((
A1 j

A2 j

)
X j ∈ ub + vc∗ + R

d\R
d
≤0

)

= P
(
(A1 j X j > ub1 + vc∗

1) or (A2 j X j > ub2 + vc∗
2)
)

= P

(
X j > min

{
ub1+vc∗

1
A1 j

,
ub2+vc∗

2
A2 j

})

= E

[
F j

(
min

{
ub1+vc∗

1
A1 j

,
ub2+vc∗

2
A2 j

})]
,

which proves the first equation. The second equation follows by an analogous com-
putation.

Lastly, using the obtained expression for �(R2≥0 + vc∗), we may compute using
Tonelli’s theorem that

∫ ∞

0
�(R2≥0 + v · c∗)dv = λ1

λ
E

[∫ ∞

0
F1

(
v · max

{
c∗
1

A11
,

c∗
2

A21

})
dv

]

123



52 Queueing Systems (2021) 99:27–64

+ λ2

λ
E

[∫ ∞

0
F2

(
v · max

{
c∗
1

A12
,

c∗
2

A22

})
dv

]
,

where, for j = 1, 2,

E

[∫ ∞

0
F j

(
v · max

{
c∗
1

A1 j
,

c∗
2

A2 j

})
dv

]
= E

[(
max

{
c∗
1

A1 j
,

c∗
2

A2 j

})−1
∫ ∞

0
F1 (y) dy

]

= E

[
min

{
A1 j
c∗
1

,
A2 j
c∗
2

}]
E[X j ].

This proves
∫ ∞
0 �(R2≥0 + vc∗)dv = θ . Moreover, we note that the finite mean of the

claim sizes X j implies finiteness of
∫ ∞
0 �

(
R
2≥0 + vc∗

)
dv.

Proof of Theorem 3.1 Recall the definition of the set L in (6.1) and note that obviously
L satisfies [36, Assumption 5.1]. Furthermore note that ub − R(t) ∈ L if and only if
maxi=1,2(Ri (t) − ubi ) > 0, which immediately implies that

�∨(u) = P(ub − R(t) ∈ L for some t ≥ 0)

= P(R(t) ∈ uM for some t ≥ 0), u > 0.

Thus, by [36, Thm. 5.2] we obtain

�∨(u) ∼
∫ ∞

0
�(uM + vc∗) dv, (6.2)

as soon as we can guarantee that the probability measure on R
2 defined by

�I (D) = θ−1
∫ ∞

0
�(D + vc∗) dv, for any Borel set D ⊂ R

2≥0,

and �I (R2\R
2≥0) = 0, is in SM . This, however, is by definition equivalent to the

assumption that the cdf FM (u) = 1 − �I (uM), u ≥ 0, is in S. Since by Lemma 6.1
FM (u) = Fsubexp(u) with Fsubexp as given in (3.3), this is assumed in the theorem.
Lastly, observe that the right-hand side of (6.2) equals

∫ ∞
0 g(u, v) dv as shown in

Lemma 6.1.

Remark 6.2 Naively one could guess that subexponentiality of the claims X1 and X2
should be enough to obtain subexponentiality of at least �. However, as noted in [36,
Remark 4.9], this is not true in general, because randommixing of two subexponential
distributions (as done by our matrix B) leads to a subexponential distribution if and
only if the sum of the mixed distributions is subexponential. This again is not true in
general.

Proof of Lemma 3.2 Fix i ∈ {1, 2} and assume that P(Ai1 + Ai2 = 0) < 1. Otherwise
Ri (t) is monotonely decreasing, �i (u) = 0, and the statement is proven. Note that by
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definition

�i (u) = P

( N (t)∑

k=1

(
(B11)k(Ai1)k X1,k + (B22)k(Ai2)k X2,k

) − tci > u for some t > 0

)

=: P

( N (t)∑

k=1

Yi,k − tci > u for some t > 0

)
, i = 1, 2,

where the random variables {Yi,k, k ∈ N} are i.i.d. copies of two generic random
variables Yi , i = 1, 2. The corresponding integrated tail function is defined as

FYi
I (x) := E[Yi ]−1

∫ x

0
P(Yi > y) dy, x ≥ 0.

From [3, Thm. X.2.1] we obtain that, if FYi
I ∈ S,

lim
u→∞

�i (u)

FYi I (u)
= λE[Yi ]

ci − λE[Yi ] , (6.3)

where

E[Yi ] = λ1

λ
E[Ai1]E[X1] + λ2

λ
E[Ai2]E[X2], (6.4)

so that

λE[Yi ]
ci − λE[Yi ] = λ1E[Ai1]E[X1] + λ2E[Ai2]E[X2]

ci − λ1E[Ai1]E[X1] − λ2E[Ai2]E[X2]
= λ1E[Ai1]E[X1] + λ2E[Ai2]E[X2]

λc∗
i

.

Further

∫ x

0
P(Yi > y) dy = λ1

λ

∫ x

0
P(Ai1X1 > y) dy + λ2

λ

∫ x

0
P(Ai2X2 > y) dy,

and since, by Tonelli’s theorem for all i, j ∈ {1, 2},
∫ x

0
P(Ai j X j > y) dy =

∫ x

0
E

[
F j (

y
Ai j

)
]
dy = E

[∫ x

0
F j (

y
Ai j

) dy

]
,

this proves FYi
I = Fi

I ∈ S. Inserting everything in (6.3) we obtain

�i (u) ∼ λ1E[Ai1]E[X1] + λ2E[Ai2]E[X2]
ci − λ1E[Ai1]E[X1] + λ2E[Ai2]E[X2] Fi

I (u),
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which immediately yields the result by (2.7) via substitution with v = y−bi u
c∗

i
.

Proof of Proposition 3.3 Combining the asymptotics obtained in Theorem 3.1 and
Lemma 3.2 via (2.13) we obtain, due to (3.9),

ϒ∧(u) ∼ λ1

λ
E

[∫ ∞

0
F1

(
b1u+vc∗

1
A11

)
+ F1

(
b2u+vc∗

2
A21

)
− F1

(
min

{
ub1+vc∗

1
A11

,
ub2+vc∗

2
A21

})
dv

]

+ λ2

λ
E

[∫ ∞

0
F2

(
b1u+vc∗

1
A12

)
+ F2

(
b2u+vc∗

2
A22

)
− F2

(
min

{
ub1+vc∗

1
A12

,
ub2+vc∗

2
A22

})
dv

]
,

where

Fi ( f1(v)) + Fi ( f2(v)) − Fi (min{ f1(v), f2(v)})
= Fi ( f1(v)) + Fi ( f2(v)) − max{Fi ( f1(v)), Fi ( f2(v))}
= min{Fi ( f1(v)), Fi ( f2(v))}
= Fi (max{ f1(v), f2(v)})

as Fi is monotonely decreasing. This implies the given asymptotics for �∧.
If (3.6) fails, then�1(b1u)+�2(b2u) ∼ �∨(u). Therefore, we immediately obtain

from (2.12) that

lim
u→∞

�∧(u)

�∨(u)
= lim

u→∞
�1(b1u) + �2(b2u)

�∨(u)
− 1 = 0.

Thus Theorem 3.1 implies (3.7), which finishes the proof.

6.2 Proofs for Sect. 3.2

We start to prove the first statement of Theorem 3.5 which we restate below as Lemma
6.4.

Proposition 6.3 Let Z ∈ MRV(α, μ) be a random vector in R
d and let M be a random

(q × d)-matrix independent of Z. Let

μ̃( · ) := E[μ ◦ M−1( · )],

where M−1(·) denotes the preimage under M. If E[‖M‖γ ] < ∞ for some γ > α and
μ̃(Bc

1) > 0 then MZ ∈ MRV(α, μ∗) with

μ∗( · ) := 1

μ̃(Bc
1)

· μ̃( · ),

where Bc
1 := {x ∈ R

q : ‖x‖ > 1} denotes the complement of the unit sphere in R
q .
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Proof First note that our definition of regular variation corresponds to Definition 2.16
(Theorem 2.1.4 (i)) in [8], setting E = Bc

1, which implies P(Z ∈ t E) = P(‖Z‖ > t).
Now, double application of [8, Proposition 2.1.18] implies the statement, since for
M ⊆ R

2 measurable and bounded away from 0

P(MZ ∈ t M)

P(‖MZ‖ > t)
= P(MZ ∈ t M)

P(‖Z‖ > t)︸ ︷︷ ︸
→μ̃(M)

· P(‖Z‖ > t)

P(MZ ∈ tBc
1)︸ ︷︷ ︸

→μ̃(Bc
1)

−1

.

Lemma 6.4 Consider the notation of Sect. 2. If X1 and X2 are regularly varying in the
univariate sense with indices α1, α2, then there exists a measure μ∗ as in Proposition
6.3 such that ABX ∈ MRV(min{α1, α2}, μ∗).

Proof Obviously, X = (X1, X2) ∈ MRV(α, μ) for some non-null measure μ con-
centrated on the axes, and α = min(α1, α2) since the random variables X1, X2 are
independent and both regularly varying with indices α1, α2. To prove the lemma, it is
thus enough to check the prerequisites of Proposition 6.3. Clearly, using the properties
of A and B, we compute E[‖AB‖γ ] = 1 < ∞ for any γ . Further, for M ⊆ R

2

measurable and bounded away from 0,

μ̃(M) =E[μ ◦ (AB)−1(M)] = E

[
μ
({

x ∈ R
2 : ABx ∈ M

})]

=λ1

λ
· E

[
μ

({
x = (x1, x2) ∈ R

2 :
(

A11x1
A21x1

)
∈ M

})]

+ λ2

λ
· E

[
μ

({
x = (x1, x2) ∈ R

2 :
(

A12x2
A22x2

)
∈ M

})]
.

Thus for M = Bc
1, and recalling property (ii) of the matrix A, we obtain

μ̃(Bc
1) = λ1

λ
· E[μ({x = (x1, x2) ∈ R

2 : |x1| > 1})]

+ λ2

λ
· E[μ({x = (x1, x2) ∈ R

2 : |x2| > 1})]

= λ1

λ
· μ((1,∞) × R) + λ2

λ
· μ(R × (1,∞)) > 0,

where we have used that, due to positivity of X, μ is zero on R
2\R

2
>0. This finishes

the proof.

To prove the remainder of Theorem 3.5, we will use a result from [28]. To do so,
first recall the bivariate compound Poisson process R from our dual risk model from
Sect. 2.2. Let (Tk)k∈N be the independent identically Exp(λ)-distributed interarrival
times of the Poisson process N (t), i.e.,

N (t) =
∞∑

n=1

1{∑n
k=1 Tk≤t}.

123



56 Queueing Systems (2021) 99:27–64

We define the random walk

Sn :=
n∑

k=1

(AkBkXk − Tkc) + n · (E[T1]c − E[ABX]) , (6.5)

and directly observe that (Sn)n∈N is compensated, i.e., for all n ∈ N,

E[Sn] =
n∑

k=1

(E[AkBkXk] − E[Tkc]) + n · E[T1]c − n · E[ABX] = 0. (6.6)

The following lemma explains the relationship between the risk process (R(t))t≥0
and the random walk (Sn)n∈N.

Lemma 6.5 Let L ⊆ R
2 be a ruin set, i.e., assume that

(i) L\R
2
<0 = L, i.e., L ∩ R

2
<0 = ∅, and

(ii) uL = L for all u > 0.

Then

�L(u) := P
(
Sn − n

(
λ−1c − E[ABX]

)
∈ u(b + L) for some n ∈ N

)

= P
(
R(t) − ub ∈ L for some t ≥ 0

)
.

Proof Recall from (2.6) thatR(t) = ∑N (t)
k=1 AkBkXk −tc, where c = (c1, c2)
 ∈ R

2≥0.

Thus, by assumption (i) R(t) may enter L only by a jump and since N (t)
t↗∞−→ ∞ a.s.

we get

{R(t) − ub ∈ L for some t ≥ 0}

=
⎧
⎨

⎩

N (t)∑

k=1

AkBkXk − tc ∈ ub + L for some t ≥ 0

⎫
⎬

⎭

=
{

n∑

k=1

(AkBkXk − Tkc) ∈ u(b + L) for some n ∈ N

}

=
{

n∑

k=1

(AkBkXk − Tkc) + (n − n)
(
λ−1c − E[ABX]

)
∈ u(b + L) for some n ∈ N

}

=
{
Sn − n

(
λ−1c − E[ABX]

)
∈ u(b + L) for some n ∈ N

}
,

which yields the claim.

We proceed with a lemma that specifies the ruin sets that we are interested in.
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Lemma 6.6 Let

L∨ := {(x1, x2) ∈ R
2 : x1 > 0 ∨ x2 > 0} = R

2\R
2≤0 and

L∧,sim := {(x1, x2) ∈ R
2 : x1 > 0 ∧ x2 > 0} = R

2
>0,

then

�L∨(u) = �∨(u), and �L∧,sim(u) = �∧,sim(u), u > 0.

Proof Clearly

P
(
R(t) − ub ∈ L∨ for some t ≥ 0

) = P

(
max
i=1,2

(Ri (t) − ui ) > 0 for some t ≥ 0

)

which is �L∨(u) = �∨(u). The second equality follows analogously.

Proposition 6.7 Let the claim size variables X1, X2 be regularly varying, i.e. X j ∈
RV(α j ) for α j > 1. Then ABX ∈ MRV(min(α1, α2), μ

∗) for a suitable measure μ∗.
Further, recall c∗ = (c∗

1, c∗
2)


 ∈ R
2
>0 from (2.7). Let L ⊆ R

2 be a ruin set in the sense
of Lemma 6.5 and assume additionally:

(iii) For all a ∈ R
2
>0

μ∗(∂(a + L)) = 0.

(iv) The set b + L is p-increasing for all p ∈ R
2
>0, i.e., for all v ≥ 0 it holds that

x ∈ b + L implies x + vp ∈ b + L.

Then

lim
u→∞

�L(u)

u · P(‖ABX‖ > u)
=

∫ ∞

0
μ∗(vc∗ + b + L) dv.

Proof That ABX ∈ RV(min(α1, α2), μ
∗) has been shown in Lemma 6.4. Recalling

the definitions of Sn and �L(u), we may write

�L(u) = P

(
Sn − n

(
λ−1c − E[ABX]

)
∈ u(b + L) for some n ∈ N

)

= P

(
n∑

k=1

Yk − nc∗ ∈ u(b + L) for some n ∈ N

)
,

for i.i.d. random vectors

Yk = AkBkXk − Tkc + λ−1c − E[ABX].

All the other prerequisites ensure that we may apply [28, Thm. 3.1 and Rem. 3.2] to
obtain the desired asymptotics.
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The following lemma justifies the usage of Proposition 6.7 for our problem.

Lemma 6.8 The sets L∨ and L∧,sim from Lemma 6.6 satisfy conditions (i)-(iv) of
Lemma 6.5 and Proposition 6.7.

Proof Properties (i), (ii) and (iv) are obvious. Consider (iii). Fix an arbitrary a =
(a1, a2)
 ∈ R

2
>0. It holds that

∂(a + L) = a + ∂(L)

and we have

∂(L∨) = {x ∈ R
2 : (x1 = 0 ∧ x2 ≤ 0) ∨ (x1 ≤ 0 ∧ x2 = 0)},

∂(L∧,sim) = {x ∈ R
2 : (x1 = 0 ∧ x2 ≥ 0) ∨ (x1 ≥ 0 ∧ x2 = 0)}.

Set

M1(a) := {(x1, x2) ∈ R
2 : x1 ≤ a1 ∧ x2 = a2},

M2(a) := {(x1, x2) ∈ R
2 : x1 = a1 ∧ x2 ≤ a2},

so that a+ ∂L∨ = M1(a) ∪ M2(a). Now consider the set M1(a). Let t ∈ (1,∞) ∩ Q,
then

t M1(a) = {(x1, x2) ∈ R
2 : x1 ≤ ta1 ∧ x2 = ta2}.

Thus, for t1 �= t2, we have t1M1(a)∩t2M1(a) = ∅. Further, the set⋃t∈(1,∞)∩Q t M1(a)
is obviously bounded away from zero, since (a1, a2) > 0. We thus obtain

∞ > μ∗
⎛

⎝
⋃

t∈(1,∞)∩Q
t M1(a)

⎞

⎠ =
∑

t∈(1,∞)∩Q
μ∗(t M1(a))

=
∑

t∈(1,∞)∩Q
t−min{α1,α2}μ∗(M1(a))

= μ∗(M1(a))
∑

t∈(1,∞)∩Q
t−min{α1,α2}.

Since the last sum is infinite, μ∗(M1(a)) must be zero. The same argument applied to
M2(a) thus yields the result for L∨. The proof for L∧,sim is analogous.

Proof of Theorem 3.5 The first statement has been shown in Lemma 6.4. The asymp-
totics for �∨ and �∧,sim are direct consequences of Lemma 6.8 and Proposition 6.7.

For the proof of Proposition 3.6, we will use the following lemma.
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Lemma 6.9 Let f , g be regularly varying with indices α, β > 0 and set

ζ := lim
t→∞

λ1 f (t)

λ2g(t)
∈ [0,∞],

for λ1, λ2 > 0, so that ζ ∈ (0,∞) clearly implies α = β. Then for any constants
γ1, γ2 > 0,

lim
t→∞

λ1 f (γ1t) + λ2g(γ2t)

λ1 f (t) + λ2g(t)
= ζγ α

1 + γ
β
2

1 + ζ
,

where we interpret ∞·x
∞ := x.

Proof Obviously it holds that

λ1 f (γ1t) + λ2g(γ2t)

λ1 f (t) + λ2g(t)
=

f (γ1t)
f (t)

1 + λ2g(t)
λ1 f (t)

+
g(γ2t)
g(t)

1 + λ1 f (t)
λ2g(t)

−→
t→∞

γ α
1

1 + ζ−1 + γ
β
2

1 + ζ
= ζγ α

1 + γ
β
2

1 + ζ
.

Proof of Proposition 3.6 We concentrate first on the ∨-case and start by determining
the constant C∨. Using the limiting-measure property of μ∗, (3.13) and the properties
of A and B we obtain
∫ ∞
0

μ∗(vc∗ + b + L∨) dv

=
∫ ∞
0

lim
t→∞

P(ABX ∈ t(vc∗ + b + L∨))

P(‖ABX‖ > t)
dv

=
∫ ∞
0

lim
t→∞

⎛

⎝
λ1
λ P

(( A11X1
A21X1

) ∈ t(vc∗ + b + L∨)
)

λ1
λ · P(X1 > t) + λ2

λ · P(X2 > t)
+

λ2
λ P

(( A12X2
A22X2

) ∈ t(vc∗ + b + L∨)
)

λ1
λ · P(X1 > t) + λ2

λ · P(X2 > t)

⎞

⎠ dv.

Now recall that L∨ = {(x1, x2) ∈ R
2 : x1 > 0 ∨ x2 > 0}, which yields

t(vc∗ + b + L∨) =
{
(x1, x2) ∈ R

2 : (x1 > tvc∗
1 + tb1) ∨ (x2 > tvc∗

2 + tb2)
}

.

Hence

P

(( A11X1
A21X1

) ∈ t(vc∗ + b + L∨)
)

= P
(

A11X1 > t(vc∗
1 + b1) ∨ A21X1 > t(vc∗

2 + b2)
)

= P

(
X1 > min

{
t(vc∗

1+b1)
A11

,
t(vc∗

2+b2)
A21

})

= P

(
X1 > t · min

{
vc∗

1+b1
A11

,
vc∗

2+b2
A21

})
.
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A similar computation for
( A12X2

A22X2

)
thus leads to

μ∗(vc∗ + b + L∨)

= lim
t→∞

⎛

⎜⎜⎝

λ1P

(
X1 > t · min

{
vc∗

1+b1
A11

,
vc∗

2+b2
A21

})

λ1P(X1 > t) + λ2P(X2 > t)
+

λ2P

(
X2 > t · min

{
vc∗

1+b1
A12

,
vc∗

2+b2
A22

})

λ1P(X1 > t) + λ2P(X2 > t)

⎞

⎟⎟⎠

= lim
t→∞

∫

a∈A

λ1P

(
X1> t · min

{
vc∗

1+b1
a11

,
vc∗

2+b2
a21

})
+λ2P

(
X2> t · min

{
vc∗

1+b1
a12

,
vc∗

2+b2
a22

})

λ1P(X1> t)+λ2P(X2 > t)
dPA

=
∫

a∈A
lim

t→∞

λ1P

(
X1> t · min

{
vc∗

1+b1
a11

,
vc∗

2+b2
a21

})
+λ2P

(
X2> t · min

{
vc∗

1+b1
a12

,
vc∗

2+b2
a22

})

λ1P(X1 > t)+λ2P(X2 > t)
dPA,

where PA( · ) denotes the probability measure induced by A and A denotes the set
of all possible realisation of A. Hereby, the second equality has been obtained by
conditioning on A = a, while the last equality follows from Lebesgue’s theorem of
dominated convergence. Note that Lebesgue’s theorem is applicable since

λ1P
(

X1 > t min
{

vc∗
1+b1
a11 ,

vc∗
2+b2
a21

})
+ λ2P

(
X2 > t min

{
vc∗

1+b1
a12 ,

vc∗
2+b2
a22

})

λ1P(X1 > t) + λ2P(X2 > t)

≤ λ1P
(
X1 > t min

{
vc∗

1 + b1, vc∗
2 + b2

}) + λ2P
(
X2 > t min

{
vc∗

1 + b1, vc∗
2 + b2

})

λ1P(X1 > t) + λ2P(X2 > t)

≤ λ1P
(
X1 > t min

{
vc∗

1 + b1, vc∗
2 + b2

})

λ1 · P(X1 > t)
+ λ2P

(
X2 > t min

{
vc∗

1 + b1, vc∗
2 + b2

})

λ2 · P(X2 > t)

→ (
min{vc∗

1 + b1, vc∗
2 + b2}

)−α1 + (
min{vc∗

1 + b1, vc∗
2 + b2}

)−α2

and thus there exists t0 > 0 independent of the realisation a such that for all t > t0
the integrand is smaller than

2
((
min{vc∗

1 + b1, vc∗
2 + b2}

)−α1 + (
min{vc∗

1 + b1, vc∗
2 + b2}

)−α2
)

,

which, as a constant (with respect to A), is clearly PA-integrable.
By Tonelli’s theorem we thus obtain

C∨ =
∫ ∞
0

μ∗(vc∗ + b + L∨) dv

= E

⎡

⎢⎣
∫ ∞
0

lim
t→∞

λ1F1

(
t min

{
vc∗

1+b1
A11

,
vc∗

2+b2
A21

})
+ λ2F2

(
t min

{
vc∗

1+b1
A12

,
vc∗

2+b2
A22

})

λ1 · F1(t) + λ2 · F2(t)
dv

⎤

⎥⎦ .

Applying Lemma 6.9 now yields (3.14).
The proof of (3.16) can be carried out in complete analogy.

Proof of Lemma 3.7 It is enough to prove that under the present assumptions also the
assumptionofLemma3.2 is fulfilled.Hence,weneed to show that X1 ∈ RV(α1), X2 ∈

123



Queueing Systems (2021) 99:27–64 61

RV(α2) for α1, α2 > 1 implies that Fi
I ∈ S. Recall Yi and FYi

I = Fi
I from the proof

of Lemma 3.2 and assume for the moment that neither Ai1 = 0 a.s., nor Ai2 = 0 a.s.
Then, using Proposition 6.3 and the same argumentation as in the proof of Lemma 6.4
we obtain that Yi ∈ RV(min{α1, α2}). Thus, the corresponding tail functions of the
integrated tail functions FYi I are regularly varying aswell, with index−min{α1, α2}+
1, which implies Fi

I ∈ S. If Ai1 = 0 a.s. then Yi = Ai21B22=1X2 and clearly
Yi ∈ RV(α2) which again implies Fi

I ∈ S.
Proof of Proposition 3.8 Assume (3.6) holds true. From Lemma 3.7 and its proof, we
obtain directly that, as u = u1 + u2 → ∞,

�1(b1u) + �2(b2u) ∼ 1

λ

(
λ1

(
1

c∗
1

∫ ∞
b1u

P(A11X1 > y) dy + 1

c∗
2

∫ ∞
b2u

P(A21X1 > y) dy

)

+ λ2

(
1

c∗
1

∫ ∞
b1u

P(A12X2 > y) dy + 1

c∗
2

∫ ∞
b2u

P(A22X2 > y) dy

))
,

where the first two terms on the right-hand side are regularly varying with index
−α1 + 1, while the latter two terms are regularly varying with index −α2 + 1.

Together with (3.11), (3.13) we thus obtain that, as u → ∞,

�∧(u) = �1(b1u) + �2(b2u) − �∨(u)

∼ 1

λ

(
λ1

(
1

c∗
1

∫ ∞
b1u

P(A11X1 > y) dy + 1

c∗
2

∫ ∞
b2u

P(A21X1 > y) dy − C∨uF1(u)

)

+ λ2

(
1

c∗
1

∫ ∞
b1u

P(A12X2 > y) dy + 1

c∗
2

∫ ∞
b2u

P(A22X2 > y) dy − C∨uF2(u)

))
,

where (3.6) ensures that terms with the same index of regular variation do not cancel
out asymptotically. Using Tonelli’s theorem as in the proof of Lemma 3.7 this yields

�∧(u) ∼ 1

λ

(
λ1

(
1

c∗
1
E

[∫ ∞

b1u
F1(

y
A11

) dy

]
+ 1

c∗
2
E

[∫ ∞

b2u
F1(

y
A21

) dy

]
− C∨F1(u)

)

+ λ2

(
1

c∗
1
E

[∫ ∞

b1u
F2(

y
A12

) dy

]
+ 1

c∗
2
E

[∫ ∞

b2u
F2(

y
A22

) dy

]
− C∨F2(u)

))

and hence (3.17) by substituting v = y−bi u
c∗

i
. If (3.6) fails, then the statement follows

in analogy to the proof of Proposition 3.3.

6.3 Proofs for Sect. 4

Proof of Lemma 4.1 We take up the notation used in the proof of Lemma 3.7 and denote
the jumps of the resulting one-dimensional risk processes by {Yi,k, k ∈ N}, i = 1, 2.
Then the given bound for �i (u) follows from [3, Thm. IV.5.2] with κi > 0 such
that ciκi = λ(ϕYi (κi ) − 1). (Note that in [3] the constants c and λ are combined as
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β = λ/c.) But since, by conditioning,

ϕYi (y) = E
[
ey(B11 Ai1X1+B22 Ai2X2)

] = λ1

λ
E

[
ey Ai1X1

]
+ λ2

λ
E

[
ey Ai2X2

]

= λ1

λ
E
[
ϕX1(y Ai1)

] + λ2

λ
E
[
ϕX2(y Ai2)

]
, i = 1, 2,

this is equivalent to (4.2).
Further, by [3, Thm. IV.5.3], it holds that

lim
u→∞ eκi u�i (u) = ci − λE[Yi ]

λϕ′
Yi

(κi ) − ci
,

with E[Yi ] as given in (6.4) and

ϕ′
Yi

(y) = λ1

λ

d

dy
E

[
ey Ai1X1

]
+ λ2

λ

d

dy
E

[
ey Ai2X2

]
= λ1

λ
ϕ′

Ai1Xi
(y) + λ2

λ
ϕ′

Ai2X2
(y),

where, again by conditioning,

ϕ′
Ai j X j

(y) = E

[
Ai j X j ey Ai j X j

]
= E

[
E

[
Ai j X j ey Ai j X j |Ai j

]]

= E

[
Ai j

∂

∂(y Ai j )
E[ey Ai j X j |Ai j ]

]
= E

[
Ai j ϕ

′
X j

(y Ai j )
]
,

which yields the given asymptotics.

Proof of Theorem 4.4 Recall from Sect. 2.2 that

Ri (t) =
N (t)∑

k=1

(
(Ai1)k(B11)k X1,k + (Ai2)k(B22)k X2,k

) − tci ,

so that the joint cumulant exponent of the two-dimensional Lévy process (−R1(t1),
−R2(t2)) can be determined via conditioning first on (Bk)k∈N, then on the components
of A, as

k(t1, t2) = logE[exp(−t1R1(1) − t2R2(1))]

= logE

[
exp

(
−

N (1)∑

k=1

((
t1(A11)k(B11)k + t2(1 − (A11)k)(B11)k

)
X1,k

+ (t1(A12)k(B22)k + t2(1 − (A12)k)(B22)k) X2,k

)
+ t1c1 + t2c2

)]

= logE

⎡

⎣exp

⎛

⎝−
N1(1)∑

�=1

(t1(A11)� + t2(1 − (A11)�)X1,�

⎞

⎠

⎤

⎦

+ logE

⎡

⎣exp

⎛

⎝−
N2(1)∑

�=1

(t1(A12)� + t2(1 − (A12)�)X2,�

⎞

⎠

⎤

⎦ + t1c1 + t2c2
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= λ1
(
ϕ(t1 A11+t2(1−A11))X1 (1) − 1

) + λ2
(
ϕ(t1 A12+t2(1−A12))X2 (1) − 1

)

+ t1c1 + t2c2

= E
[
λ1(ϕX1 (−t1 A11 − t2(1 − A11)) − 1)

]

+ E
[
λ2(ϕX2 (−t1 A12 − t2(1 − A12)) − 1)

] + t1c1 + t2c2,

which is, by assumption (4.1), well defined on some set � � [0,∞)2. The first
two statements thus follow from [4, Thm. 3], as long as there exist γ1, γ2 such that
k(−γ1, 0) = k(0,−γ2) = 0 and (−γ1, 0), (0,−γ2) ∈ �◦, the interior of �. But since

k(−x, 0) = exp
(
λ1(E[ϕX1(x A11)] − 1) + λ2(E[ϕX2(x A12)] − 1)

) − xc1,

we observe that γ1 = κ1 which exists and is such that (−κ1, 0) ∈ �◦ by assumption.
Likewise, we obtain γ2 = κ2 with (0,−κ2) ∈ �◦.

The last equation now follows directly from the fact that �∧,sim(u) ≤ �∧(u).
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