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Abstract
In this note, we prove that the speed of convergence of the workload of a Lévy-driven
queue to the quasi-stationary distribution is of order 1/t . We identify also the Laplace
transform of the measure giving this speed and provide some examples.
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1 Introduction

In this paper, we consider a storage system with Lévy netput. In other words, the
workload process {Q(t), t ≥ 0} is a spectrally one-sided Lévy process X(t) that is
reflected at 0:

Q(t) := X(t) − infs≤t (X(s))−, (1)
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where A− = min{A, 0}. We assume that the drift of the process X(t) is negative;
that is, we have EX(1) < 0. This stability condition guarantees the existence of a
stationary distribution π of Q, which by virtue of “Reich’s identity” can be expressed
in terms of the all-time supremum:

π(x) = P

(
sup
t≥0

X(t) ≤ x

)
. (2)

In the sequel, we consider the initial distribution Q(0) sampled from this steady-state
distribution, which is indicated by adding the subscript π to the probability measure
P and to the associated expectation E.

Now, let T denote the busy period; that is,

T = inf{t ≥ 0 : Q(t) = 0}.

We will further consider the Yaglom limit

μ(dx, dy) := lim
t→∞Pπ (Q(0) ∈ dx, Q(t) ∈ dy | T > t),

where the convergence is to be understood in the weak sense. Yaglom [30] limits form
a probability measure and a particular case of the quasi-stationary (QS) distribution,
which is an invariant distribution for the process conditioned on non-extinction; that
is, we condition on the event that the process survives some killing event (for example,
related to exiting from some subset of possible values).

Yaglom [30] was the first to explicitly identify QS distributions for the subcritical
Bienaymé–Galton–Watson branching process. This result has been generalized in the
context of the continuous-time branching process and the Fleming–Viot process; see
[1,9,18]. Similar results were also derived for Markov chains on positive integers with
an absorbing state at the origin; see Seneta and Vere-Jones [27], Tweedie [29], Jacka
and Roberts [13] and the bibliographic database of Pollet [25]. Recently, Foley and
McDonald showed that Yaglom limits may depend on the starting state [10].

The research on QS distributions has been very extensive. Martinez and San Mar-
tin [22] analyze the Brownian motion with drift exiting from the positive half-line,
complementing the result for random walks obtained by Iglehart [12]. In addition, QS
laws have been studied for various Lévy processes. Kyprianou [15] found the Laplace
transform of the QS distribution for the workload process of the stable M/G/1 queue
with service times that have a rational moment generating function. Kyprianou and
Palmowski [17] identified the QS distribution associated with a general light-tailed
Lévy process. Haas and Rivero [26] found (after appropriate scaling) the QS distribu-
tion when the Lévy process under study has a jump measure with a regularly varying
tail. The speed of convergence (in total variation) to the QS distribution for popula-
tion processes has been studied in [5]. Finally, Mandjes et al. [21] derived the QS
distribution of the workload process Q(t). This paper builds upon [21].

A contribution of this paper lies in proving that the speed of convergence to the
quasi-stationary distribution is surprisingly slow (of order 1/t). We also identify a
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measure ξ(dx, dy) (which we call the second-order quasi-stationary measure) such
that

lim
t→∞ t × |Pπ (Q(0) ∈ dx, Q(t) ∈ dy | T > t) − μ(dx, dy)| = ξ(dx, dy), (3)

where the above convergence is in theweak sense.Wehence prove the conjecture posed
in Polak and Rolski [24], which proved the above statement for a birth–death process
by using an asymptotic expansion of a transition function and certain properties of
Bessel functions. In this paper, we suggest a new method, which relies on a refined
Tauberian-type expansion of the Laplace transform. We also analyze in detail the
M/E(2, ν)/1 queue and a Brownian-driven queue.

If we want to simulate the quasi-stationary distribution directly from its definition
given in (3), then the result stated in (3) shows that the speed of such a simulation
is very slow. Still, in the literature there are papers giving other efficient algorithms
of simulation of quasi-stationary measures; see, for example, Blanchet et al. [4] and
references therein.

The main result in (3) contrasts the typical results derived for the regular stationary
distribution of Markov processes where, in most of the cases, the rate is exponential.
More precisely, formanymodels the distance between the distribution of the stochastic
process at time t and its stationary distribution decays exponentially fast in t . The
typical distances used are the total variation distance, the separation distance, and the
L2 distance. The classical results concern mainly Markov chains and use Perron and
Frobenius theory, renewal equations or the coupling method; see, for example, [6,8,
14,19,20] and references therein. Another method concerns Harris recurrent Markov
processes, and it is based on the construction of a special Lyapunov function and then
the application of Foster-Lyapunov criteria; see, for example, [2,23,28]. All the above-
mentioned methods, though, are different from the one used in this paper, which is
based on expansions of Laplace transforms.

The paper is organized as follows: In next section, we introduce the notation and
basic facts that are used later. In Sect. 3, we present the main results. The central step
for the proof of the main results is given in Sect. 4. Finally, the last section provides
some examples.

2 Preliminaries

We follow [16] for definitions, notation and basic facts on Lévy processes. Let X ≡
(X(t))t be a Lévy process, which is defined on the filtered space (�,F , {Ft }t≥0,P)

with the natural filtration that satisfies the usual assumptions of right continuity and
completion. We define Px as Px (X(0) = x) = 1 and P0 = P; similarly, Ex is the
expectation with respect to Px . We denote by �(·) the jump measure of X . If X is
spectrally negative (resp. spectrally positive), then � is supported in the non-positive
half-line (resp. in the non-negative half-line); in other words, jumps are non-positive
(resp. non-negative). We define the Laplace exponent ψ(η) by

EeηX(t) = etψ(η), (4)
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for η ∈ R such that the left-hand side of (4) is well defined (which holds at least for
η ≥ 0). We denote by 	(s) := inf{η ≥ 0 : ψ(η) > s} the right inverse of ψ ; see [16]
for details.

Dual process We also consider the dual process X̂t = −Xt with jump measure
�̂ (0, y) = �(−y, 0). The characteristics of X̂ are indicated by using the same
symbols as for X , but with a ‘ ˆ ’ added. We will write

ψ̂(η) = t−1 logEeη X̂(t) = t−1 logEe−ηX(t) = ψ(−η). (5)

We skip the symbol ‘ ˆ ’ for Q(t) and hence for T and all quantities related to Q,
as it will be clear from the context if a statement concerns the spectrally negative or
the spectrally positive case.

Asymptotic expansions
Consider a function f : R → R such that f (x) = 0 for x < 0. Let f̃ (z) :=∫ ∞

0 e−zx f (x) dx for z ∈ C be its Laplace transform. Consider singularities of f̃ (z);
among these, let�(a0) < 0 be the one with the largest real part. Notice that this yields
the integrability of

∫ ∞
0 | f (x)| dx . The inversion formula reads

f (x) = 1

2π i

∫ a+i∞

a−i∞
f̃ (z)ezx dz

for some (and then any)�(a) > �(a0). In this paper, we need the following Tauberian
theorem, found in Doetsch [7, Theorem 37.1], where the behaviour of the Laplace
transform around the singularity a0 plays a crucial role.

First, recall the concept of the W-contour, centered at a0, with a half-angle of
opening π/2 < ψ ≤ π , as depicted in [7, Fig. 30, p. 240]; also, for the purposes
of our problem, Ga0(ψ) is the region between the contour W and the line �(z) = 0.
More precisely,

Ga0(ψ) ≡ {z ∈ C; �(z) < 0, z 	= a0, | arg(z − a0)| < ψ},

where arg z is the principal part of the argument of the complex number z. In the
following theorem, conditions are identified that provide an asymptotic expansion of
the Laplace transform.

Theorem 1 ([7, Theorem 37.1]) Suppose that for f̃ : C → C and �(a0) < 0 the
following three conditions hold:

(A1) f̃ (·) is analytic in a region Ga0(ψ) for some π/2 < ψ ≤ π ;
(A2) f̃ (z) → 0 as |z| → ∞ for z ∈ Ga0(ψ);
(A3) for some constants cν , f̃ (s) has in |arg(s − a0)| < ψ the asymptotic expansion

f̃ (s) ≈
∞∑

ν=0

cν(s − a0)
λν , (�(λ0) < �(λ1) < . . .) as s → a0. (6)
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Then we conclude that, as t → ∞, f (t) has the asymptotic expansion

f (t) ≈ ea0t
∞∑

ν=0

cν

�(−λν)

1

tλν+1 ,

(
1

�(−λν)
= 0 for λν = 0, 1, 2, . . .

)
.

Assumptions For a spectrally negative Lévy process X(t), we impose the following
assumptions:
(SN)

(SN1) ψ(ϑ) attains its strictly negative minimum at ϑ∗ > 0 (and hence ψ ′(ϑ∗) = 0);
(SN1) 	 is analytic in Gζ ∗(φ) for π/2 < φ ≤ π , where

ζ ∗ := ψ(ϑ∗) < 0. (7)

Similar conditions are assumed for a spectrally positive Lévy process X(t), for
which X̂t is spectrally negative with Laplace exponent ψ̂ :

(SP)

(SP1) ψ̂(ϑ) attains its strictly negative minimum at ϑ∗ < 0 (and hence ψ̂ ′(ϑ∗) = 0);
(SP1) 	̂ is analytic in Gζ ∗(φ) for π/2 < φ ≤ π , where

ζ ∗ := ψ̂(ϑ∗) < 0. (8)

To check the above assumptions, we can use the concept of semiexponentiality of
a function f (see [11, p. 314]).

Definition 2 (Semiexponentiality) A function f is said to be semiexponential if, for
some 0 < φ ≤ π/2, there exists a finite and strictly negative function γ (ϑ), called
the indicator function, defined as the infimum of all a ∈ R such that∣∣∣ f (eiϑr)∣∣∣ < ear

for all sufficiently large r ; here −φ ≤ ϑ ≤ φ and sup γ (ϑ) < 0.

It was proved in [21] using [11, Thm. 10.9f] that if there exists a density of � (resp.
�̂) which is of semiexponential type, then	 (resp. 	̂) is analytic in Gζ ∗(φ) for π/2 <

φ ≤ π . In particular, this assumption holds, for example, for a Brownian motion
X(t) = σ B(t) − ct with linear drift, where c > 0 and B is the standard Brownian
motion.

Quasi-stationary distribution Denote by

μ̃(α, β) :=
∫ ∞

0

∫ ∞

0
e−αx e−β yμ(dx, dy)

the bivariate Laplace transform of the quasi-stationary measure. The quasi-stationary
distribution of the workload process Q(t) in the stationary regime was identified in
[21].
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Theorem 3 (Mandjes et al. [21])
(i) Under (SN),

μ̃(α, β) = −ψ(ϑ∗)
ψ(α + 	(0)) − ζ ∗

(ϑ∗)2

(ϑ∗ + β)2
.

(ii) Under (SP),

μ̃(α, β) = ψ̂2(ϑ∗) · ψ̂(α + ϑ∗) − (α + ϑ∗)ψ̂ ′(α + ϑ∗)
ψ̂2(α + ϑ∗)(ψ̂(ϑ∗) − ψ̂(β))

.

Note that conditions (SN) and (SP) are satisfied since we assumed that EX1 < 0.
The two key components of the proof of this result are based first on Wiener–Hopf
factorization, from which master formulas can be derived (given below), and second
on either some expansion theorems (see [3] and [17]) or on some Tauberian-type
theorems.

Master formulas Recall that Q(t) given in (1) is a workload process with station-
ary distribution (2) and busy period T . We define now the double Laplace–Stieltjes
transform:

L(ϑ;α, β) :=
∫ ∞

0
e−ϑ t

Eπ [e−αQ(0)−βQ(t), T > t] dt .

In [21], the following representations of L were derived.

Proposition 4 [Mandjes et al. [21]]

(i) Under (SN),

L(ϑ;α, β) = 	(ϑ) − α − 	(0)

	(ϑ) + β

	(0)

α + β + 	(0)

1

ϑ − ψ(α + 	(0))
.

(ii) Under (SP),

L(ϑ;α, β) = ψ̂ ′(0+)

ϑ − ψ̂(β)

(
α + β

ψ̂(α + β)
− α + 	̂(ϑ)

ψ̂(α + 	̂(ϑ))

)
.

From the proposition above, it follows that under assumptions (SN) or (SP) one can
extend analytically L(ϑ;α, β) into Gζ ∗(ψ) for some π/2 < ψ ≤ π .

Toprove themain resultwewill expand L(ϑ, α, β) aroundϑ = ζ ∗ usingTheorem3.
Then we will apply Theorem 1 to identify the expansion of Eπ [e−αQ(0)−βQ(t)|T > t]
for large values of t . In the last step we will use the definition of the quasi-stationary
distribution.
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3 Main results

We state now the main results of this paper. Define the constants

A1 :=
√

2

ψ ′′(ϑ∗)
, B1 :=

√
2

ψ̂ ′′(ϑ∗)
,

A2 := − ψ ′′′(ϑ∗)
3ψ ′′(ϑ∗)2

, B2 := − ψ̂ ′′′(ϑ∗)
3ψ̂ ′′(ϑ∗)2

,

A3 := 5ψ(3) (θ∗)2 − 3ψ(4) (θ∗) ψ ′′ (θ∗)
18

√
2ψ ′′ (θ∗)7/2

B3 := 5ψ̂(3) (θ∗)2 − 3ψ̂(4) (θ∗) ψ̂ ′′ (θ∗)
18

√
2ψ̂ ′′ (θ∗)7/2

.

We start with the following expansion for the double Laplace–Stieltjes transform.

Proposition 5 If (SN) or (SP) hold, then

L(ϑ; α, β)=C0(α, β)+C1(α, β)(ϑ−ζ∗)1/2+C2(α, β)(ϑ−ζ∗)+C3(α, β)(ϑ−ζ∗)3/2+o((ϑ−ζ∗)3/2),

for ζ ∗ < 0 defined in (7) and (8).

(i) Under (SN),

C0(α, β) = − 	(0)

α + β + 	(0)

α − ϑ∗ + 	(0)

(β + ϑ∗) (ζ ∗ − ψ(α + 	(0)))
,

C1(α, β) = A1	(0)

(β + ϑ∗)2 (ζ ∗ − ψ(α + 	(0)))
,

C2(α, β) =
	(0)

(
(β+ϑ∗)2(α−ϑ∗+	(0))

α+β+	(0) − (
A2 (β + ϑ∗) − A2

1

)
(ψ(α + 	(0)) − ζ ∗)

)
(β + ϑ∗)3 (ζ ∗ − ψ(α + 	(0)))2

,

C3(α, β) = 	(0)A3

(β + ϑ∗)2 (ζ ∗ − ψ(α + 	(0)))
− 	(0)

(β + ϑ∗)4 (ζ ∗ − ψ(α + 	(0)))2

· (
A1

(
β + ϑ∗) (

2A2
(
ζ ∗ − ψ(α + 	(0))

) + β + ϑ∗)
+A3

1

(
ψ(α + 	(0)) − ζ ∗)) .

(i i) Under (SP),

C0(α, β) =
(

α + β

ψ̂(α + β)
− α + ϑ∗

ψ̂ (α + ϑ∗)

)
ψ̂ ′(0)

ζ ∗ − ψ̂ (β)
,

C1(α, β) = −ψ̂ ′(0)B1
ψ̂ (α + ϑ∗) − (α + ϑ∗)ψ̂ ′ (α + ϑ∗)

ψ̂ (α + ϑ∗)2
(
ζ ∗ − ψ̂(β)

) ,

C2(α, β) = ψ̂ ′(0)
ζ ∗ − ψ̂(β)

[
B2
1 ψ̂ ′ (α + ϑ∗)
ψ̂ (α + ϑ∗)2

− B2

ψ̂ (α + ϑ∗)
−

α+β

ψ̂(α+β)
− α+ϑ∗

ψ̂(α+ϑ∗)

ζ ∗ − ψ̂(β)

+
(α + ϑ∗)

(
B2
1

(
ψ̂ (α + ϑ∗) ψ̂ ′′ (α + ϑ∗) − 2ψ̂ ′ (α + ϑ∗)2

)
+ 2B2ψ̂ (α + ϑ∗) ψ̂ ′ (α + ϑ∗)

)
2ψ̂ (α + ϑ∗)3

]
,
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C3(α, β) = ψ̂ ′(0)
[
B1

ψ̂(α + ϑ∗) − ψ̂ ′(α + ϑ∗)(α + ϑ∗)

ψ̂(α + ϑ∗)2
(
ζ ∗ − ψ̂(β)

)2
− 1

6ψ̂ (α + ϑ∗)4
(
ζ ∗ − ψ̂(β)

)(
6B3ψ̂

(
α + ϑ∗)3

− 6B1
3 (

α + ϑ∗) ψ̂ ′ (α + ϑ∗)3
+ 6B1ψ̂

(
α + ϑ∗) ψ̂ ′ (α + ϑ∗)(

B2
1

(
α + ϑ∗) ψ̂ ′′ (α + ϑ∗) + ψ̂ ′ (α + ϑ∗) (

B2
1 + 2B2(α + ϑ∗)

))
− 6ψ̂(α + ϑ∗)2ψ̂ ′ (α + ϑ∗) (

2B1B2 + B3(α + ϑ∗)
)

− ψ̂(α + ϑ∗)2B1

(
3ψ̂ ′′ (α + ϑ∗) (

B2
1 + 2B2(α + ϑ∗)

)
+B2

1

(
α + ϑ∗) ψ̂(3) (

α + ϑ∗)))]
.

Theorem 6 If assumptions (SN) hold for a spectrally negative Lévy process X or
(SP) hold for a spectrally positive Lévy process X̂ , then the measure ξ(dx, dy)
defined formally in (3) exists. That is, the speed of convergence to the quasi-
stationary distribution is of order 1/t . Moreover, the Laplace transform ξ̃ (α, β) :=∫ ∞
0

∫ ∞
0 e−αx e−β yξ(dx, dy) equals

ξ̃ (α, β) = (−3)

2C1(0, 0)
(C3(α, β) − μ̃(α, β)C3(0, 0)) . (9)

Proof Recall that under the imposed assumptions (SN) or (SP), the Laplace exponent
L(ϑ;α, β) as a function of ϑ satisfies the assumptions of Theorem 1. Hence, from
Proposition 5 and Theorem 1 we have that, as t → ∞,

Eπ [e−αQ(0)−βQ(t), T > t]
= eζ ∗t

(
C1(α, β)

�(−1/2)
t−3/2 + C3(α, β)

�(−3/2)
t−5/2 + o(t−5/2)

)
. (10)

Further, note that by Theorem 3

μ̃(α, β) = C1(α, β)/C1(0, 0). (11)

Now, straightforward calculations give

Eπ [e−αQ(0)−βQ(t)|T > t]

= C1(α, β)

C1(0, 0)
+ �(−1/2)

�(−3/2)

(
C3(α, β)

C1(0, 0)
− C1(α, β)C3(0, 0)

C2
1 (0, 0)

)
t−1 + o(t−1),
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which completes the proof due to the definition of the measure ξ .

Remark 7 Formally starting from Proposition 4, then using a generalization of Propo-
sition 5 in the next step, combined with Theorem 1, will give more terms of the
expansion of Eπ [e−αQ(0)−βQ(t)|T > t], and hence a longer expansion of the measure
Pπ (Q(0) ∈ dx, Q(t) ∈ dy|T > t) as t → ∞.

4 Proof of Proposition 5

Presume now that assumptions (SP) hold. We start from deriving the expansion of
	̂(ϑ):

	̂(s) = ϑ∗ + B1(s − ζ ∗)1/2 + B2(s − ζ ∗) + B3(s − ζ ∗)3/2 + o((s − ζ ∗)3/2)(12)

as s ↓ ζ ∗. Indeed, from a Taylor series expansion of ψ̂ around ϑ∗ and the condition
that ψ̂ ′(ϑ∗) = 0, we have

ψ̂(ϑ) − ψ̂(ϑ∗)

= (ϑ − ϑ∗)2

2
ψ̂ ′′(ϑ∗)

+ (ϑ − ϑ∗)3

6
ψ̂(3)(ϑ∗)

+ (ϑ − ϑ∗)4

24
ψ̂(4)(ϑ∗) + o((ϑ − ϑ∗)4). (13)

From the above equation we can derive

ϑ − ϑ∗ = B1

√
ψ̂(ϑ) − ψ̂(ϑ∗) + B2

(
ψ̂(ϑ) − ψ̂(ϑ∗)

)
+ B3

(
ψ̂(ϑ) − ψ̂(ϑ∗)

)3/2
+ o((ϑ − ϑ∗)3/2). (14)

The main idea of getting (14) is to include this expansion (14) into (13) and to match
respective powers of ψ̂(ϑ)− ψ̂(ϑ∗). Indeed, let us start from the first-order expansion

ψ̂(ϑ) − ψ̂(ϑ∗) = (ϑ − ϑ∗)2

2
ψ̂ ′′(ϑ∗) + o((ϑ − ϑ∗)2) = (ϑ − ϑ∗)2

2
ψ̂ ′′(ϑ∗)(1 + o(1)).

(15)

Then

ϑ − ϑ∗ = B1

√
(ψ̂(ϑ) − ψ̂(ϑ∗))/(1 + o(1)) = B1

√
ψ̂(ϑ) − ψ̂(ϑ∗)

√
1 + o(1)

= B1

√
ψ̂(ϑ) − ψ̂(ϑ∗)(1 + o(1))
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= B1

√
ψ̂(ϑ) − ψ̂(ϑ∗) + o

(√
ψ̂(ϑ) − ψ̂(ϑ∗)

)
(16)

= B1

√
(ψ̂(ϑ) − ψ̂(ϑ∗)) + o(ϑ − ϑ∗). (17)

Note that in the last equation o

(√
ψ̂(ϑ) − ψ̂(ϑ∗)

)
= o(ϑ − ϑ∗) by (15). Now, we

continue with the second-order computation:

ψ̂(ϑ) − ψ̂(ϑ∗) = (ϑ − ϑ∗)2

2
ψ̂ ′′(ϑ∗) + (ϑ − ϑ∗)3

6
ψ̂(3)(ϑ∗) + o

(
(ϑ − ϑ∗)3

)
.

Then putting expression (16) in all powers ofϑ−ϑ∗ in the increments on the right-hand
side of the above equation, we can conclude that the last increment in (16) equals

o

(√
ψ̂(ϑ) − ψ̂(ϑ∗)

)
=

−
(
B1

√
ψ̂(ϑ) − ψ̂(ϑ∗)

)3

6B1

√
ψ̂(ϑ) − ψ̂(ϑ∗)ψ̂ ′′(ϑ∗)

ψ̂(3)(ϑ∗)

+ o
(
(ϑ − ϑ∗)3

)
+ o(ψ̂(ϑ) − ψ̂(ϑ∗))

= B2(ψ̂(ϑ) − ψ̂(ϑ∗)) + o(ψ̂(ϑ) − ψ̂(ϑ∗)),

where the last equality holds by observing that o
(
(ϑ − ϑ∗)3

) = o(ψ̂(ϑ) − ψ̂(ϑ∗)),
which follows from (15). Hence, plugging this back into (16) we derive

ϑ − ϑ∗ = B1

√
ψ̂(ϑ) − ψ̂(ϑ∗) + B2(ψ̂(ϑ) − ψ̂(ϑ∗)) + o(ψ̂(ϑ) − ψ̂(ϑ∗)). (18)

In the last step, we do the third-order computations required to identify o(ψ̂(ϑ) −
ψ̂(ϑ∗)) in (18) by again plugging (18) to (13). This produces (14). Substituting ϑ =
	̂(s) and using ψ̂(	̂(s)) = s completes the proof of (12).

Having proven (12), we plug it into Proposition 4 and order the outcome according
to powers of s − ζ ∗. This will complete the proof of the spectrally positive case (SP).
Similarly, when (SN) holds then

	(s) = ϑ∗ + A1(s − ζ ∗)1/2 + A2(s − ζ ∗) + A3(s − ζ ∗)3/2 + o((s − ζ ∗)3/2)

as s ↓ ζ ∗. Then, using Proposition 4 in the same way as before gives the required
assertion after some simple manipulations. ��

5 Examples

In this section, we illustrate our theory through two examples.
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Example 8 [The M/E(2, ν)/1 queue] In this case

X(t) =
N (t)∑
i=1

σi − t, (19)

where σi (where i = 1, 2, . . .) are i.i.d. service times that have an Erlang(2, ν) distri-
bution, i.e., with rate ν and two phases. The arrival process is a homogeneous Poisson
process N (t) with rate λ. We assume that � := 2λ/ν < 1. For the Laplace exponent,
we have that

ψ̂(η) = η − λ + λ

(
ν

η + ν

)2

,

which attains its minimum at

ϑ∗ = 3
√
2λν2 − ν

and it is equal to

ζ ∗ = 3
3
√

λν2

3
√
4

− ν − λ.

One can easily check that all assumptions (SP) are satisfied. In particular, 	̂(z) is
analytic in C \ (−∞, ζ ∗]. Then, Proposition 5 gives for C1(α, β) that

C1(α, β)

=
25/3λ(β + ν)2(2λ − ν)

√
3
√

λν2/3
(
α + 3

√
2 3
√

λν2/3
) (

α + 3
√
2 3
√

λν2/3 + 2ν
)

√
3ν

(
α2 + 2 3

√
2α 3

√
λν2/3 − λ(α + ν) + 22/3λ2/3ν4/3 − 3

√
2λ4/3ν2/3

)2
× 1(

2β3 − 3 3
√
2β2 3

√
λν2/3 + 6β2ν − 6 3

√
2β 3

√
λν5/3 + 2ν2(3β + λ) − 3 3

√
2 3
√

λν8/3 + 2ν3
) ,

which is sufficient to compute the bivariate Laplace transform of the quasi-stationary
measure given in (11). As a numerical illustration, if λ = 1 and ν = 4, then

μ̃(α, β)

= C1(α, β)

C1(0, 0)
=

{ (
10 − 3 ∗ 25/3

)2 (
α + 25/3

) (
α + 25/3 + 8

)
(β + 4)2

}
/{

2
(
2β3 − 6 ∗ 22/3β2 + 24β2 − 3 ∗ 214/3β + 32(3β + 1) − 3 ∗ 217/3 + 27

)

×
(
α2 + (28/3 − 1)α − 25/3 + 210/3 − 4

)2 }
.
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To identify the bivariate Laplace transform of the second-order quasi-stationary
measure ξ given in Theorem 6, we need to find C3(α, β). Its expression is rather
complex:

C3(α, β) = 1 − 2λ
ν

6

(
− λν2

(β+ν)2
− β + 3 3√

λν2/3

22/3
− ν

) (
λν2

(α+θ∗+ν)2
+ α + θ∗ − λ

)4

×
{ 25/3

√
3λ

(
α + θ∗)2 √

3√
λν2/3

(
α + θ∗ + 3ν

) (
λ

(
ν2

(α+θ∗+ν)2
− 1

)
+ α + θ∗

)2

(α + θ∗ + ν)3
(

λν2

(β+ν)2
+ β − 3 3√

λν2/3

22/3
+ ν

)

+ 2

37/3

[
36

(
α + θ∗) (

3√
λν2/3

)3/2 (
1 − 2λν2

(α + θ∗ + ν)3

)3

− 27 ∗ 22/3
√

3√
λν2/3

(
1 − 2λν2

(α + θ∗ + ν)3

)

×
[
27/2λ4/3ν8/3

(
α + θ∗)

(α + θ∗ + ν)4
+

[ 8 (
α + θ∗)
9

+ 2

3
3√2 3√

λν2/3

(
1 − 2λν2

(α + θ∗ + ν)3

) ]]

×
(

λ

(
ν2

(α + θ∗ + ν)2
− 1

)
+ α + θ∗

)
+ 3

√
2

λν2

(
5(α + θ∗) + 3

3√
210λν2

)(
1 − 2λν2

(α + θ∗ + ν)3

)

×
(

λ

(
ν2

(α + θ∗ + ν)2
− 1

)
+ α + θ∗

)2

−
5 3√2

(
λ

(
ν2

(α+θ∗+ν)2
− 1

)
+ α + θ∗

)3

λν2
(

1
3√

λν2/3

)5/2
+ 9 22/3λν2

√
3√

λν2/3

(α + θ∗ + ν)5

×
(
2

(
α + θ∗ + ν

) (
4α + 4θ∗ + 3 3√2 3√

λν2/3
)

− 8 3√2 3√
λν2/3

(
α + θ∗)) (

λ

(
ν2

(α + θ∗ + ν)2
− 1

)
+ α + θ∗

)2 ]}
.

The expression is easy to evaluate numerically. Taking λ = 1 and ν = 4 gives

ξ̃ (α, β) = I1(α, β) + I2(α, β),

where

I1(α, β) = 1(−β3 + 3
(
22/3 − 4

)
β2 + 24

(
22/3 − 2

)
β + 48 22/3 − 80

)

×
(
186 + 25 3

√
2
) (

α + 2 22/3
) (

α + 2 22/3 + 8
)
(β + 4)2

162 22/3
(
3 22/3 − 5

)7 (
−α2 − 4 22/3α + α + 2 22/3 − 8 3

√
2 + 4

)2
and

I2(α, β) =
((

β − 3 22/3 + 4
)
(β + 4)2 + 16

)−2

324
(
5 − 3 ∗ 22/3

)6 (
α + 25/3

) ((
α + 25/3 − 5

) (
α + 25/3

)2 + 16
)4

×
{[

5 22/3α11 +
(
3127/3 − 52 25/3

)
α10 + (

848 − 95 ∗ 213/3 − 115 22/3
)
α9

+4
(
−4680 + 1269 3

√
2 + 56 ∗ 22/3

)
α8 − 16

(
−11412 + 4400 3

√
2 + 4185 ∗ 22/3

)
α7

+64
(
−24304 − 1215 3

√
2 + 17476 ∗ 22/3

)
α6 − 768

(
−4875 − 8765 3

√
2 + 9871 ∗ 22/3

)
α5
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+29
(
40674 − 75618 3

√
2 + 33715 22/3

)
α4 + 211

(
−54132 + 32065 3

√
2 + 8540 22/3

)
α3

−3 ∗ 213
(
−4625 − 1418 3

√
2 + 4002 22/3

)
α2 + 3 ∗ 214

(
2155 − 2742 3

√
2 + 805 22/3

)
α

+215
(
−3780 + 450 3

√
2 + 2029 22/3

) ]
(β + 4)2

(−β3 + 3
(
22/3 − 4

)
β2 + 24

(
22/3 − 2

)
β + 48 22/3 − 80

)

−108 3
√
2

(
α + 25/3 − 4

)4 (
α + 25/3

)2 (
α + 25/3 + 8

) (
−α2 − (28/3 − 1)α + 25/3 − 210/3 + 4

)2
(β + 4)4

}
.

Observe that the Laplace transforms μ̃(α, β) and ξ̃ (α, β) can be inverted as they can
be written as linear combinations of powers of 1/(constα + α) and 1/(constβ + β)

for various constants constα and constβ .

Example 9 [Brownian motion with linear drift] In this case, X(t) = B(t) − t, where
B(t) is a standard Brownian motion. Note that this process is spectrally positive and
spectrally negative. We apply the spectrally positive results. It is not hard to check
that

ψ̂(ϑ) = ϑ + ϑ2

2
,

so that ϑ∗ = −1 and ζ ∗ = −1/2. Furthermore, assumptions (SP) are satisfied and

	̂(s) = −
(
1 + √

1 + 2s
)

.

It is a matter of straightforward computations now to obtain that

C1(α, β) = − 4
√
2

(α + 1)2(β + 1)2

and thus

μ̃(α, β) = C1(α, β)

C1(0, 0)
=

(
1

1 + α

)2 (
1

1 + β

)2

.

In conclusion, the quasi-stationary distributions of Q(0) and Q(t) (conditioned that
the busy period lasts longer than t , for large t) are both Erlang(2,1) with mean 2,
whereas the stationary workload itself has an exponential distribution with mean 1/2;
see [12,21,22]. Moreover, simple calculations lead to

C3(α, β) = −8
√
2(2 + α(2 + α) + β(2 + β))

(1 + α)4(1 + β)4
.

Hence,

ξ̃ (α, β) = 3
(
2β2 + 4β + 1

)
(α + 1)2(β + 1)4

− 3

(α + 1)4(β + 1)2
.
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One can observe that the second-order quasi-stationary measure ξ is given by

ξ(dx, dy)/dxdy = 1

2
xye−(x+y)

(
12 − x2 − y2

)
.

It is worth noting that ξ may be negative (as is the case here), since it pertains to the
speed of convergence to the Yaglom limit.

6 Conclusions

In this paper we proved that the speed of convergence of Yaglom limits is very slow,
namely of order 1/t . We also identified the prefactor in front of this speed, called the
second-order quasi-stationary law. Additionally, we analysed in detail two examples.

Future research directions lie in Markov additive processes or affine processes. It
is also interesting to analyse the Yaglom limit for multivariate Lévy processes where
instead of the busy period one considers the first exit time from a positive quadrant in
R
d for d > 1.
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