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Abstract We investigate the transient and stationary queue length distributions of a
class of service systems with correlated service times. The classical MX/G/1 queue
with semi-Markov service times is the most prominent example in this class and
serves as a vehicle to display our results. The sequence of service times is governed
by a modulating process J (t). The state of J (·) at a service initiation time determines
the joint distribution of the subsequent service duration and the state of J (·) at the
next service initiation. Several earlier works have imposed technical conditions, on
the zeros of a matrix determinant arising in the analysis, that are required in the
computation of the stationary queue length probabilities. The imposed conditions in
several of these articles are difficult or impossible to verify.Without such assumptions,
we determine both the transient and the steady-state joint distribution of the number
of customers immediately after a departure and the state of the process J (t) at the
start of the next service. We numerically investigate how the mean queue length is
affected by variability in the number of customers that arrive during a single service
time. Our main observations here are that increasing variability may reduce the mean
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queue length, and that the Markovian dependence of service times can lead to large
queue lengths, even if the system is not in heavy traffic.

Keywords Batch arrivals · MX/G/1 queue · Semi-Markov service times ·Correlated
service times · Stationary and transient queue length analysis

Mathematics Subject Classification 60K25 · 90B22

1 Introduction

Service systems with correlated service durations have a long tradition in the queue-
ing literature. Such systems enjoy a large variety of application domains, including
logistics, production management and telecommunications [2,11,14,19]. Our main
motivation stems from road traffic analysis, where traffic flows may interact at junc-
tions or crossings [1,18]. Focus, for illustration, on a traffic flow that merges into a
main flow (very similar considerations are valid for road intersections). If the traf-
fic density on the main flow is high, vehicles in the secondary flow may queue up
before merging into the main flow. The merging times required for two subsequent
vehicles will be strongly correlated as they experience similar traffic conditions on
the main flow. In this paper, we will capture this dependence in a queueing model in
which the sequence of service times is governed by a modulating Markovian process.
Although our analysis allows for a slightly larger class of models, we will use the
classical M/G/1 queue with semi-Markov service times [14], and more specifically
its extension to batch arrivals [15] to compare our results with existing literature.

The first to have investigated this class of queueing models was Gaver [11], who
derived the waiting time in a single-server queue with two types of customers arriving
according to independent Poisson processes. In that model, service times are class-
specific andwhen service switches fromone type to the other, an additional switch-over
time is required. This framework was generalized by Neuts [14], allowing for more
than two customer types and the sequence of service times forming a semi-Markov
process. Under technical assumptions (these will be discussed later in detail), Neuts
obtained the transient and stationary distributions of queue lengths, waiting times and
busy periods. Subsequently, Çinlar [4] obtained the transient and stationary queue
length distributions under less restrictive assumptions, and Purdue [17] showed that
the assumptions imposed by Neuts and Çinlar are not necessary for the analysis of the
busy period, presenting an alternative approach. The literature on extensions of this
model steadily expanded in the next two decades. In [16], Neuts studied the multi-
type M/G/1 queue with change-over times when switching service from one type of
customer to another. A further generalization allowing for Poisson arrivals of groups
(batches) of customers of arbitrary random size was investigated by Neuts in [15],
obtaining the busy period, queue length and waiting time distributions.

The departure process of a related model with single Poisson arrivals and exponen-
tial service times was determined by Magalhães and Disney [13]. In that model, the
rate of the exponential service times depends on the type of the customer being served
as well as that of its predecessor.

123



Queueing Syst (2017) 86:217–240 219

Models with single arrivals, but with both the arrivals and the services depending on
a common semi-Markov process have been investigated by De Smit [7] and Adan and
Kulkarni [2]. Using the Wiener–Hopf factorization technique, De Smit [7] obtained
the waiting time and queue length distributions. Adan and Kulkarni [2] considered a
similar setting, but with the customer type being determined at arrival instants (inde-
pendent of the service durations).

In this paper, we investigate the transient and stationary queue length distributions
in a single-server model with semi-Markov service times and with batch arrivals (our
framework includes Poisson arrivals of batches as the most prominent example). In
order to explain the technical contribution of our work, it is best to compare with the
expositions of Neuts [14] and Çinlar [4]. In those papers only single Poisson arrivals
were allowed, but the subsequent analysis is very similar. The earliermentioned techni-
cal assumptions made by Neuts entail that the zeros of a particular matrix determinant
appearing in the transient analysis are either strictly separated or completely coincide.
This ensures that the zeros are analytic functions of the entries of the matrix and,
consequently, that the stationary distribution can be obtained from the transient distri-
bution. The assumptions were relaxed by Çinlar [4] while maintaining the analyticity
of the zeros. Unfortunately, it remains hard, if not impossible, to verify the required
conditions in practice, as theymust hold for the zeros as functions of thematrix entries.
As noted earlier, Purdue [17] showed that the assumptions imposed by Neuts and Çin-
lar are not necessary for the analysis of the busy period. Our work show that these
assumptions are not needed for the analysis of the queue length distribution either.
This comes at the expense of a separate analysis for the stationary distribution, which
is more involved than that of the transient distribution. Specifically, we determine the
generating function of the number of customers immediately after the departure of an
arbitrary customer, considering both transient and steady-state behavior. For Poisson
batch arrivals, in steady state we further obtain the queue length distribution at batch
arrival instants and at arbitrary times, which are identical due to PASTA. Note that this
distribution is in general not the same as that at departure times (for single arrivals,
they would coincide).

A further contribution is an extensive numerical investigation of the mean queue
length in steady state. We show that due to the dependence between service times,
the mean number of customers may be very large, even if the load on the system is
not large. A noteworthy observation is that increasing the variability in the number of
customers arriving during a service time may in fact decrease the mean queue length.

The remainder of this paper is organized as follows. Section 2 gives the model
description in two layers. First we describe the MX/G/1 queue with semi-Markov
services and then present a somewhatmore general framework. In Sect. 3,we derive the
transient and stationary probability generating functions of the number of customers in
the system immediately after a departure. In Sect. 4, we derive the generating functions
of the stationary number of customers at an arbitrary epoch, at batch arrival epochs
and at customer arrivals. The special case with only two customer types is specified in
Sect. 5. Finally, in Sect. 6, we present numerical examples to demonstrate the impact
of the correlated arrivals, and of the variability of the number of customers arriving
during a service time, on the expected number of customers in the system.
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2 Model description

We start by describing the MX/G/1 queueing model with semi-Markov services,
which is the most natural example in our framework. Our analysis extends directly to
any model that satisfies the dynamics described in the recurrence relation (2.9) below.

2.1 The MX/G/1 queue with semi-Markov service times

Customers arrive in batches at a single-server queue according to a Poisson process
with rateλ; the batch size is denoted by the randomvariable B with generating function
B(z), for |z| ≤ 1. Customers are served in order of arrival, with speed 1. Customers
within a batch are assumed to be ordered arbitrarily. The service times are governed
by a Markov process Jn , n = 0, 1, . . . , that can take values in {1, 2, . . . , N }, for some
integer N . It will be convenient to refer to Jn as the type of the nth customer; thus,
there are N customer types. The service time of the nth customer is denoted withG(n).
An essential feature of our model is that the type of the (n + 1)th customer depends
both on the type of the nth customer and on the service duration of the nth customer.
This exactly matches the framework of semi-Markov service times introduced by
Neuts [14]. We define

Gi j (x) = P(G(n) ≤ x, Jn+1 = j |Jn = i), x ≥ 0, i, j = 1, 2, . . . , N . (2.1)

For future use, we introduce the Laplace–Stieltjes transform (LST)

G̃i j (s) = E[e−sG(n)

1{Jn+1= j}|Jn = i], Re s ≥ 0, i, j = 1, 2, . . . , N , (2.2)

where 1{.} denotes the indicator function. In particular,

Pi j = Gi j (∞) = P(Jn+1 = j |Jn = i), i, j = 1, 2, . . . , N . (2.3)

The type of a customer, and its service time, do not depend on the arrival process.
It should be observed that {Jn, n = 1, 2, . . . } forms a finite-state Markov chain.

We shall restrict ourselves to irreducible Markov chains. The stationary distribution
P(J = j) of theMarkov chain Jn is given by the unique solution of the set of equations

P(J = j) =
N∑

i=1

P(J = i)Pi j , j = 1, 2, . . . , N , (2.4)

with normalizing condition
∑N

j=1 P(J = j) = 1.
The mean service time of an arbitrary customer is given by

E[G] :=
N∑

i=1

N∑

j=1

P(Jn = i)E[G(n)1{Jn+1= j}|Jn = i]. (2.5)
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The stability condition for this model is given by

ρ := λE[B]E[G] < 1. (2.6)

This can be formalized using Theorem 3 fromLoynes [12], by describing theworkload
process in terms of “super customers” whose service times are the aggregate service
times of customers in a single batch. Let G(m) be the service time of the super customer
corresponding to themth arriving batch, andJm the type of the first customer in themth
batch. Starting from a stationary version of the sequence (G(n), Jn+1), one can readily
construct a stationary sequence (G(m),Jm+1) for the super customers. Note that by
construction G(m) is also stationary and, together with the arrival epochs of batches
(which form an independent Poisson process), this sequence completely determines
the workload process. This description of the workload process satisfies the criteria to
use the characterization for stability in Loynes [12].

We will investigate the queue length process at departure times of customers. For
that it will be convenient to define An as the number of customers arriving during
the service time of the nth customer and Bn as the size of the batch in which the nth
customer arrived. Note that for i, j = 1, 2, . . . , N , |z| ≤ 1,

Ai j (z) := E[zAn1{Jn+1= j}|Jn = i] = G̃i j (λ(1 − B(z))). (2.7)

The queue length distribution at customer departure times is fully determined by the
sequences An and Bn . For the analysis, it is not needed that the arrivals during service
times occur in batches at Poisson instants. For that reason, we will now formulate
our general model in terms of the An and Bn only; to specify our later results for the
MX/G/1 queue with semi-Markov services, we will simply substitute the relation
given in (2.7).

2.2 General model

The inputs to our general model are probability generating functions of non-negative
discrete random variables Ai j (z), i, j ∈ {1, 2, . . . , N }, and B(z). From the Ai j (z), we
construct a Markov process (An, Jn+1), n = 1, 2, . . . , satisfying

E[zAn1{Jn+1= j}|Jn = i] = Ai j (z). (2.8)

In this construction, it is implicit that (An, Jn+1) conditional on Jn is independent of
An−1. The sequence Bn is i.i.d. with generating function B(z) and independent of the
sequence An .

Next we define the recurrence relation

Xn =
{

Xn−1 − 1 + An if Xn−1 ≥ 1
An + Bn − 1 if Xn−1 = 0

, n = 1, 2, 3, . . . . (2.9)

Note: If the Ai j (z) are set equal to (2.7), then the sequence Xn follows the same
law as the number of customers at departure times in the MX/G/1 queue with semi-
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Markov services. The role of the Bn is subtle in this representation: Bn is only included
if the (n−1)th customer leaves the system empty upon departure. The nth customer is
therefore the first customer in a batch that arrives into an empty system. Only for that
reason, the sequence Bn can be taken independent of the An in the MX/G/1 queue
with semi-Markov services.

In the sequel, we will study the transient and stationary distributions of Xn defined
by (2.9). Again using Theorem 3 of Loynes [12], we may conclude that the stability
condition in this case is

ρ := E[A] < 1. (2.10)

Here E[A] denotes the expectation of the An in stationarity:

E[A] =
N∑

i=1

N∑

j=1

P(J = i)αi j ,

with

αi j = E[An1{Jn+1= j}|Jn = i] = A′
i j (1). (2.11)

Note that at first sight (2.9) does not seem to fit the framework in Loynes [12],
because of the special condition when the system is empty. For stability, however, the
behavior of an empty system is irrelevant.

3 The queue length distribution at departure epochs

We shall determine the transient and steady-state joint distribution of the number of
customers immediately after a departure, and the type of the next customer to be served.
From the recurrence relation (2.9), we find, for the probability generating functions,

E

[
zXn1{Jn+1= j}

]
= E

[
zXn−1−1+An1{Jn+1= j}1{Xn−1≥1}

]

+ E

[
zAn+Bn−11{Jn+1= j}1{Xn−1=0}

]

= E

[
zXn−1−1+An1{Jn+1= j}

]
− 1

z
E

[
zAn1{Jn+1= j}1{Xn−1=0}

]

+ E

[
zAn+Bn−11{Jn+1= j}1{Xn−1=0}

]

=
N∑

i=1

E

[
zXn−1−1+An1{Jn+1= j}|Jn = i

]
P(Jn = i)

− 1

z

N∑

i=1

E

[
zAn1{Jn+1= j}1{Xn−1=0}|Jn = i

]
P(Jn = i)
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+
N∑

i=1

E

[
zAn+Bn−11{Jn+1= j}1{Xn−1=0}|Jn = i

]
P(Jn = i),

for n = 1, 2, 3, . . . , j = 1, 2, . . . , N .

Nowwe exploit the fact that Xn−1 and (An, Jn+1) are conditionally independent given
Jn , and the Bn are also independent of all other random variables:

E

[
zXn1{Jn+1= j}

]
=

N∑

i=1

E

[
zXn−1−1|Jn = i

]
E

[
zAn1{Jn+1= j}|Jn = i

]
P(Jn = i)

+ B(z) − 1

z

N∑

i=1

E

[
zAn1{Jn+1= j}|Jn = i

]
P(Xn−1 = 0|Jn = i)P(Jn = i)

= 1

z

N∑

i=1

E

[
zXn−11{Jn=i}

]
E

[
zAn1{Jn+1= j}|Jn = i

]

+ B(z) − 1

z

N∑

i=1

E

[
zAn1{Jn+1= j}|Jn = i

]
P(Xn−1 = 0|Jn = i)P(Jn = i),

for n = 1, 2, 3, . . . , j = 1, 2, . . . , N .

(3.1)

3.1 Steady-state analysis

In this subsection, we restrict ourselves to the steady-state queue length distribution,
assuming that the stability condition (2.10) holds. In the next subsection, we will
analyze the transient behavior of the queue length.

It will be useful to introduce some further notation: for i = 1, 2, . . . , N ,

Ai (z) =
N∑

j=1

Ai j (z), (3.2)

and,

αi =
N∑

j=1

αi j , (3.3)

where the αi j are defined in (2.11). Furthermore, for j = 1, 2, . . . , N , |z| ≤ 1:

f j (z) = limn→∞E

[
zXn1{Jn+1= j}

]
, (3.4)

f j (0) = limn→∞P(Xn = 0, Jn+1 = j), (3.5)
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and note that

f j (1) = limn→∞P(Jn+1 = j) = P(J = j). (3.6)

The probability generating function of the steady-state queue length distribution imme-
diately after a departure is denoted by

F(z) =
N∑

j=1

f j (z). (3.7)

In steady state, Eq. (3.1) leads to the following N equations:

(z − A j j (z)) f j (z) −
N∑

i=1,i �= j

Ai j (z) fi (z) = (B(z) − 1)
N∑

i=1

Ai j (z) fi (0), j = 1, 2, . . . , N . (3.8)

We can also write these N linear equations in matrix form as

M(z)T f (z) = b(z),

where

M(z) =

⎡

⎢⎢⎣

z − A11(z) −A12(z) . . . −A1N (z)
−A21(z) z − A22(z) . . . −A2N (z)

. . . . . . . . . . . .

−AN1(z) −AN2(z) . . . z − ANN (z)

⎤

⎥⎥⎦ ,

f (z) =

⎡

⎢⎢⎣

f1(z)
f2(z)
. . .

fN (z)

⎤

⎥⎥⎦ , b(z) = (B(z) − 1)

⎡

⎢⎢⎣

∑N
i=1 Ai1(z) fi (0)∑N
i=1 Ai2(z) fi (0)

. . .∑N
i=1 AiN (z) fi (0)

⎤

⎥⎥⎦ . (3.9)

Therefore, solutions of the non-homogeneous linear system M(z)T f (z) = b(z) are
of the form

f (z) = 1

det M(z)T

(
cof M(z)T

)T
b(z), provided det M(z) �= 0. (3.10)

Here cof M(z)T is the cofactor matrix of M(z)T . It remains to find the values of
f1(0), f2(0), . . . , fN (0). We shall derive N linear equations for f1(0), f2(0), . . . ,
fN (0).

First equation:
Note that M(z)T f (z) = b(z), which implies that

limz→1
1

z − 1
êM(z)T f (z) = limz→1

1

z − 1
êb(z),

where ê is a row vector with all entries one.
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After simplification, we can write this as

limz→1

∑N
i=1

(
z − ∑N

j=1 Ai j (z)
)
fi (z)

z − 1
= limz→1

B(z) − 1

z − 1

N∑

j=1

N∑

i=1

Ai j (z) fi (0).

Using
∑N

i=1 fi (1) = 1 and
∑N

i=1 fi (1)αi = ρ, and after simplification, we get

N∑

i=1

fi (0) = 1 − ρ

E[B] . (3.11)

(N-1) remaining equations:
To find the remaining N − 1 equations, we first prove that det M(z) has exactly
N − 1 zeros in |z| < 1 and the zero z = 1 on |z| = 1. Since fi (z) is an analytic
function in |z| < 1, the numerator of fi (z) also has N − 1 zeros in the unit disk
|z| < 1. As a consequence, these N − 1 zeros provide N − 1 linear equations for
f1(0), f2(0), . . . , fN (0).
To find the N − 1 zeros, we use a method that has also been applied in [2,6,9]. It

is based on the concept of (strict) diagonal dominance in a matrix. The proof consists
of four steps:

Step 1 Prove that each element on the diagonal of M(z) has exactly one zero in
|z| < 1.

Step 2 Introduce amatrixM(t, z), 0 ≤ t ≤ 1, withM(1, z) = M(z), and prove strict
diagonal dominance of M(t, z), i.e., each diagonal element of M(t, z) is in
absolute value larger than the sum of the absolute values of the non-diagonal
terms in the same row of the matrix.

Step 3 Prove that det M(t, z) has exactly N zeros in |z| < 1 and none on |z| = 1 for
0 ≤ t < 1.

Step 4 Use continuity of det M(t, z) in t for 0 ≤ t < 1 to prove that, indeed, det M(z)
has N − 1 zeros in |z| < 1 and one zero z = 1 on |z| = 1.

Step 1: Prove that each element on the diagonal of M(z) has exactly one zero in
|z| < 1.

It follows from (3.9) that M(z) = D(z)+ O(z), where D(z) is the diagonal matrix

D(z) =

⎡

⎢⎢⎣

z − A11(z) 0 . . . 0
0 z − A22(z) . . . 0
. . . . . . . . . . . .

0 0 . . . z − ANN (z)

⎤

⎥⎥⎦ , (3.12)

and O(z) is the off-diagonal matrix which corresponds to M(z).

Proposition 1 det D(z) has exactly N zeros (counting multiplicities) in |z| < 1 and
none satisfying |z| = 1.
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Proof First observe that det D(z) = ∏N
i=1(z − Aii (z)). Because | Aii (z)

z | ≤ Pii < 1
on |z| = 1, Rouché’s theorem implies that the numbers of zeros of z and z − Aii (z)
are the same in |z| < 1. z has exactly one zero in |z| < 1, and hence z − Aii (z) also
has exactly one zero in |z| < 1, for i = 1, 2, . . . , N .

On |z| = 1, |z − Aii (z)| has no zeros, because |z − Aii (z)| ≥ |z| − |Aii (z)| ≥
1 − P11 > 0.

Hence det D(z) has N zeros in |z| < 1 and none on |z| = 1. 	

Now we define the matrix M(t, z) := D(z) + t O(z), where 0 ≤ t ≤ 1 is a real

parameter. Note that M(0, z) = D(z) and M(1, z) = M(z).

Step 2: Prove diagonal dominance for matrix M(t, z).

Proposition 2 det M(t, z) �= 0 for 0 ≤ t < 1, |z| = 1 and for t = 1, |z| = 1, z �= 1.

Proof Consider an arbitrary i ∈ {1, 2, . . . , N }.

|z − Aii (z)| ≥ |z| − |Aii (z)|
≥ 1 − Pii =

∑

j �=i

Pi j > t
∑

j �=i

Pi j for 0 ≤ t < 1, |z| = 1. (3.13)

On the other hand,
∑

j �=i |t Ai j (z)| ≤ t
∑

j �=i Pi j for 0 ≤ t < 1, |z| = 1.
Therefore, |z − Aii (z)| > |t ∑ j �=i Ai j (z)| for 0 ≤ t < 1, |z| = 1. This holds for

i = 1, 2, . . . , N .
Thus, M(t, z) is strictly diagonally dominant. This implies that M(t, z) is a non-

singular matrix, i.e., det M(t, z) �= 0, for 0 ≤ t < 1, |z| = 1. This concludes the proof
for the case 0 ≤ t < 1, with |z| = 1.

We next turn to the case t = 1, |z| = 1, z �= 1, again considering an arbitrary
i ∈ {1, 2, . . . , N }. Now (3.13) is replaced by |z − Aii (z)| >

∑
j �=i Pi j for |z| =

1, z �= 1. On the other hand,
∑

j �=i |Ai j (z)| <
∑

j �=i Pi j . Therefore, |z − Aii (z)| >

| ∑ j �=i Ai j (z)| for |z| = 1, z �= 1. This holds for i = 1, 2, . . . , N . In this way, we have
proven the strict diagonal dominance, and hence the non-singularity, also for t = 1,
|z| = 1, z �= 1. 	

Step 3: Prove that det M(t, z) has exactly N zeros in |z| < 1 and none on |z| = 1 for
0 ≤ t < 1.

Proposition 3 The function det M(t, z) has exactly N zeros in |z| < 1 and none on
|z| = 1 for 0 ≤ t < 1.

Proof Let n(t) be the number of zeros of det M(t, z) in |z| < 1. By the argument
principle, see Evgrafov [8, p. 97],

n(t) = 1

2π i

∫

|z|=1

∂
∂z det M(t, z)

det M(t, z)
dz, (3.14)

where it should be noticed that det M(t, z) �= 0 on |z| = 1 for 0 ≤ t < 1 according to
Proposition 2. Here, n(t) is a continuous integer-valued function of t for 0 ≤ t < 1
and n(0) = N according to Proposition 1. So n(t) = n(0) = N . 	
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From the above, we may conclude that det M(1, z) = M(z) has at least N zeros
in the closed unit disk, because the zeros of det M(t, z) are continuous functions for
0 ≤ t ≤ 1. Finally we need to prove that there are exactly N zeros in |z| ≤ 1, one of
which (z = 1) lies on |z| = 1.
Step 4: Use continuity of det M(t, z) in t for 0 ≤ t ≤ 1 to prove that det M(z) has
N − 1 zeros in |z| < 1 and one zero z = 1 on |z| = 1.

Proposition 4 d
dz {detM(z)}|z=1 > 0 and z = 1 is a simple zero of det M(z).

Proof Firstly, z = 1 is a zero of det M(z). Now we show that it is a simple zero. Use
that limz→1

det M(z)
z−1 = d

dz {det M(z)}|z=1 > 0, where the inequality is a consequence
of the stability condition. Hence, z = 1 is a simple zero of det M(z). 	


Proposition 5 det M(t, 1) > 0 for 0 ≤ t < 1.

Proof We shall exploit the fact that det M(t, 1) is the product of all eigenvalues of
M(t, 1). So we need to prove that the product of these eigenvalues is positive.

Consider the matrix I − M(t, 1), where I is the identity matrix:

I − M(t, 1) =

⎡

⎢⎢⎢⎢⎢⎣

P11 t P12 t P13 · · · t P1N
t P21 P22 t P23 · · · t P2N
t P31 t P32 P33 · · · t P3N

...
...

...
...

t PN1 t PN2 t PN3 PNN

⎤

⎥⎥⎥⎥⎥⎦
.

Note that I − M(t, 1) is a substochastic matrix, so every eigenvalue of the matrix
I − M(t, 1) lies in |z| < 1. Hence, every eigenvalue of the matrix M(t, 1) lies in
|z − 1| < 1. M(t, 1) is a real matrix, so if M(t, 1) has a complex eigenvalue, then the
conjugate of this complex eigenvalue is also one of the eigenvalues of M(t, 1). This
implies that if M(t, 1) has complex eigenvalues, then the product of these complex
eigenvalues is positive. The product of the real eigenvalues is also positive because
every eigenvalue of the matrix M(t, 1) lies in |z−1| < 1. This concludes the proof. 	


Proposition 6 The function det M(z) has exactly N −1 zeros in |z| < 1 and one zero
on |z| = 1 (at z = 1).

Proof We follow the argument of Gail et al. [9, p. 372]. By letting t → 1 in Propo-
sition 3, it follows that det M(z) has at least N zeros in |z| ≤ 1. By Proposition 4,
given ε > 0, there is a real z′, 1 − ε < z′ < 1, such that det M(z′) is negative. By
continuity, there is a real t ′, 1 − ε < t ′ < 1, such that det M(t ′, z′) is negative. Since
det M(t ′, 1) is positive according to Proposition 5, there is a real z′′, z′ < z′′ < 1
with det M(t ′, z′′) = 0. Thus, the zero of det M(z) at z = 1 is the limit of a zero of
det M(t, z) from inside the unit disk. As t → 1, the limiting positions of the N zeros
of det M(t, z) are: one at z = 1 and the other N − 1 in |z| < 1. 	
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3.2 Transient analysis

In this subsection, we shall determine the transient behavior of the probability gener-
ating function of the number of customers. The analysis proceeds largely analogously
to the stationary case. In fact, for the transient analysis, it turns out to be less involved
to demonstrate the location of the roots. We define

f j (r, z) =
∞∑

n=0

rnE
[
zXn1{Jn+1= j}

]
for |r | < 1, j = 1, 2, ..., N , (3.15)

so that

f j (r, 0) =
∞∑

n=0

rnP(Xn = 0, Jn+1 = j). (3.16)

Using (3.1) with E
[
zAn1{Jn+1= j}|Jn = i

] = Ai j (z) in (3.15), we get

f j (r, z) =E

[
zX01{J1= j}

]
+ 1

z

N∑

i=1

Ai j (z)
∞∑

n=1

rnE
[
zXn−11{Jn=i}

]

+
(
B(z) − 1

z

) N∑

i=1

Ai j (z)
∞∑

n=1

rnP(Xn−1 = 0, Jn = i)

=zx0P(J1 = j) + 1

z

N∑

i=1

Ai j (z)
∞∑

n=0

rn+1
E

[
zXn1{Jn+1=i}

]

+ r

(
B(z) − 1

z

) N∑

i=1

Ai j (z) fi (r, 0),

provided the initial number of customers in the system is deterministic and equal to
x0.

Using (3.15) and after simplification, we get the following N equations:

(z − r A j j (z)) f j (r, z) − r
N∑

i=1,i �= j

Ai j (z) fi (r, z) = zX0+1
P(J1 = j)

+ r (B(z) − 1)
N∑

i=1

Ai j (z) fi (r, 0), j = 1, 2, . . . , N . (3.17)

We can also write these N linear equations in matrix form as

M(r, z)T f (r, z) = b(r, z),
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where

M(r, z) =

⎡

⎢⎢⎣

z − r A11(z) −r A12(z) . . . −r A1N (z)
−r A21(z) z − r A22(z) . . . −r A2N (z)

. . . . . . . . . . . .

−r AN1(z) −r AN2(z) . . . z − r ANN (z)

⎤

⎥⎥⎦ ,

f (r, z) =

⎡

⎢⎢⎣

f1(r, z)
f2(r, z)

. . .

fN (r, z)

⎤

⎥⎥⎦ ,

b(r, z) =zX0+1

⎡

⎢⎢⎣

P(J1 = 1)
P(J1 = 2)

. . .

P(J1 = N )

⎤

⎥⎥⎦ + r(B(z) − 1)

⎡

⎢⎢⎣

∑N
i=1 Ai1(z) fi (r, 0)∑N
i=1 Ai2(z) fi (r, 0)

. . .∑N
i=1 AiN (z) fi (r, 0)

⎤

⎥⎥⎦ .

Therefore, solutions of the non-homogeneous linear systemM(r, z)T f (r, z) = b(r, z)
are of the form

f (r, z) = 1

det M(r, z)T
(cof M(r, z)T )T b(r, z), provided det M(r, z) �= 0. (3.18)

It remains to find the values of f1(r, 0), f2(r, 0), . . . , fN (r, 0). We shall derive N
linear equations for f1(r, 0), f2(r, 0), . . . , fN (r, 0).

To find N linear equations for f1(r, 0), f2(r, 0), . . . , fN (r, 0), we first prove that
det M(r, z) has exactly N zeros for fixed r in |z| < 1. Since M(r, z) = z I − r A(z),
det M(r, z) is a continuous function in r for 0 ≤ r ≤ 1, and therefore the zeros are
continuous in 0 ≤ r ≤ 1.

Remark It is worth emphasizing that it is at this point that our approach is different
from the analysis by Neuts [14] and Çinlar [4]. We do not require for each pair of
elementary roots that they either be strictly different for all values of 0 ≤ r ≤ 1 or
coincide for all 0 ≤ r ≤ 1. The main price to pay is that we can not use that the roots
are analytic in r and we can therefore not obtain the stationary distribution from the
transient distribution as r → 1.

Compared to the steady-state analysis, the proof is simpler and only consists of two
steps:

Step 1: Prove diagonal dominance of the matrix M(r, z).

Proposition 7 det M(r, z) �= 0 for 0 ≤ r < 1, |z| = 1.

Proof Consider an arbitrary i ∈ {1, 2, . . . , N }.
|z − r Aii (z)| ≥ |z| − r |Aii (z)|

> 1 − Pii =
∑

j �=i

Pi j > r
∑

j �=i

Pi j for 0 ≤ r < 1, |z| = 1. (3.19)

On the other hand,
∑

j �=i |r Ai j (z)| ≤ r
∑

j �=i Pi j for 0 ≤ r < 1, |z| = 1.
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Therefore, |z − r Aii (z)| > |r ∑
j �=i Ai j (z)| for 0 ≤ r < 1, |z| = 1. This holds for

i = 1, 2, . . . , N .
Thus, M(r, z) is strictly diagonally dominant. This implies that M(r, z) is a non-

singular matrix, i.e., det M(r, z) �= 0, for 0 ≤ r < 1, |z| = 1. This completes the
proof. 	

Step 2: Prove that det M(r, z) has exactly N zeros in |z| < 1 for 0 ≤ r < 1.

Proposition 8 The function det M(r, z) has exactly N zeros in |z| < 1 for 0 ≤ r < 1.

Proof Let n(r) be the number of zeros of det M(r, z) in |z| < 1. As before, by the
argument principle [8, p. 97],

n(r) = 1

2π i

∫

|z|=1

∂
∂z det M(r, z)

det M(r, z)
dz, (3.20)

where it should be noticed that det M(r, z) �= 0 on |z| = 1 for 0 ≤ r < 1 according to
Proposition 7. Here, n(r) is a continuous integer-valued function of r for 0 ≤ r < 1
and n(0) = N because det M(0, z) = zn . So n(r) = n(0) = N . 	


4 Poisson batch arrivals: stationary queue length at arrival and
arbitrary epochs

In the previous section,we determined the stationary and the transient queue length dis-
tributions at departure times of customers. In the general framework, the exact arrival
process of customers is not specified, but for the model with Poisson batch arrivals, we
can obtain the stationary queue length distribution at arbitrary time, at batch arrival
instants and at customer arrival instants. Because of PASTA, the distribution of the
number of customers already in system just before a new batch arrives (let us denote
this by a generic random variable Xba) coincides with the distribution of the number
of customers in the system at an arbitrary time (Xarb). The number of customers at
customer arrival instants (denoted with Xca) needs to be further specified, because
with batch arrivals all customers in the same batch have the same arrival time. As
noted previously, customers within one batch are assumed to be (randomly) ordered.
Although they arrive at the same time, they see different numbers of customers in
front of them. In particular, the last customer in a batch sees all the customers that
were already in the system plus all other customers (excluding him/her) arriving in the
same batch. In the customer average distribution at arrival times, this must be taken
into account. In Fig. 1 we depict three batch arrivals, two of which contain multiple
customers and thus coincide with more than one customer arrival. Applying a simple
level crossing argument with the aid of Fig. 1, it is readily seen that the distributions
of X (at departure times) and Xca must coincide: indeed, for each level k = 1, 2, . . . ,
customer departures that decrease the queue length from k to k − 1 must be matched
by customer arrivals increasing the level from k − 1 to k (since the arrival of each
customer within a batch is counted separately, the difference can be at most 1, which
is negligible in the long run).
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t
0

1

2

3

4

5

Batch arrival epochs

Customer arrival epochs

Customer departure epochs
X(t)

Fig. 1 Up- and down-crossing

We can also link the distributions of Xba and Xca : A customer in an arriving batch
sees in front of him the number of customers already in the system (Xba) and the
number of customers in front of him in the same batch. For an arbitrary customer in
the batch, the number of customers in front of him in the same batch has the forward
recurrence distribution of B. Summarizing:

E

[
zX

]
= E

[
zX

ca
]

= E

[
zX

ba
] 1 − B(z)

E[B](1 − z)
, (4.1)

where we use independence of the batch size and the number of customers already in
system, and

E

[
zX

arb
]

= E

[
zX

ba
]
. (4.2)

From these relations, we can obtain all the required distributions. It can be verified
that these distributions agree with the results from Chaudhry[3] for the model without
dependencies between successive service times.

5 The queueing model with two customer types : departure epochs

In this section, we restrict ourselves to the case of two customer types, i.e., N = 2.
In this case, we are able to give an explicit expression for the probability generating
function of the number of customers in the system immediately after a departure. For
the steady-state behavior, it follows from (3.8) that

f1(z) =
(
B(z) − 1

)(
f1(0) (zA11(z) + A12(z)A21(z) − A11(z)A22(z)) + z f2(0)A21(z)

)

(z − A11(z))(z − A22(z)) − A12(z)A21(z)
,

(5.1)
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f2(z) =
(
B(z) − 1

)(
z f1(0)A12(z) + f2(0) (zA22(z) + A12(z)A21(z) − A11(z)A22(z))

)

(z − A11(z))(z − A22(z)) − A12(z)A21(z)
,

(5.2)

where

f1(0) = 1 − ρ

E[B]
A11(ẑ) − ẑ

A11(ẑ) + A12(ẑ) − ẑ
, f2(0) = 1 − ρ

E[B]
A22(ẑ) − ẑ

A21(ẑ) + A22(ẑ) − ẑ
,

(5.3)

so that f1(0) + f2(0) = 1−ρ
E[B] , and z = ẑ is the zero of (z − A11(z))(z − A22(z)) −

A12(z)A21(z) with |ẑ| < 1.
It is noted that the probability generating function of Xn in steady state is

F(z) = limn→∞E

[
zXn

]
.

From Eq. (3.7), for N = 2, we can write F(z) as the sum of f1(z) and f2(z), i.e.,

F(z) = f1(z) + f2(z).

After substituting the values of f1(z) and f2(z) from Eqs. (5.1) and (5.2), respectively,
we obtain F(z) as

F(z) =
z(B(z) − 1)

(
f1(0)(A11(z) + A12(z)) + f2(0)(A21(z) + A22(z))

)

(z − A11(z))(z − A22(z)) − A12(z)A21(z)

+
(B(z) − 1)( f1(0) + f2(0))

(
A12(z)A21(z) − A11(z)A22(z)

)

(z − A11(z))(z − A22(z)) − A12(z)A21(z)
.

Equation (3.2) states that Ai (z) = Ai1(z) + Ai2(z) for i = 1, 2. After substituting
the values of fi (0) and Ai (z) for i = 1, 2, F(z) becomes

F(z) =
z(B(z) − 1)(1 − ρ)

(
c1A1(z) + c2A2(z)

)

E[B]
(
(z − A11(z))(z − A22(z)) − A12(z)A21(z)

)

+
(B(z) − 1)(1 − ρ)

(
A12(z)A21(z) − A11(z)A22(z)

)

E[B]
(
(z − A11(z))(z − A22(z)) − A12(z)A21(z)

) ,

where c1 = A11(ẑ)−ẑ
A11(ẑ)+A12(ẑ)−ẑ , c2 = A22(ẑ)−ẑ

A21(ẑ)+A22(ẑ)−ẑ .
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After simplification, we can write F(z) as

F(z)=
(1 − ρ)(B(z) − 1)

(
c1zA1(z) + c2zA2(z)+A12(z)A21(z) − A11(z)A22(z)

)

E[B]
(
(z − A11(z))(z − A22(z)) − A12(z)A21(z)

) .

(5.4)

Let us now determine the expected number of customers E[X ] = F ′(1).

After differentiating F(z) w.r.t. z and taking the limit z → 1, we get

E[X ] =ρ

2
+ Var(A)

2(1 − ρ)
+ E[B(B − 1)]

2E[B]
+ −ρ + E[B]( f1(0)α1 + f2(0)α2) + ρ(α11 + α22) + α12α21 − α11α22

(P12 + P21)(1 − ρ)
.

(5.5)

For the transient distribution, it follows from (3.17) that

f1(r, z) =
zX0+1

(
zP(J1 = 1) + r(A21(z)P(J1 = 2) − A22(z)P(J1 = 1))

)

(
z − r A11(z)

)(
z − r A22(z)

)
− r2A12(z)A21(z)

+ r z(B(z) − 1)
∑2

i=1 Ai1(z) fi (r, 0)(
z − r A11(z)

)(
z − r A22(z)

)
− r2A12(z)A21(z)

+
r2(B(z) − 1)

(
A12(z)A21(z) − A11(z)A22(z)

)
f1(r, 0)

(
z − r A11(z)

)(
z − r A22(z)

)
− r2A12(z)A21(z)

, (5.6)

f2(r, z) =
zX0+1

(
zP(J1 = 2) + r(A12(z)P(J1 = 1) − A11(z)P(J1 = 2))

)

(
z − r A11(z)

)(
z − r A22(z)

)
− r2A12(z)A21(z)

+ r z(B(z) − 1)
∑2

i=1 Ai2(z) fi (r, 0)(
z − r A11(z)

)(
z − r A22(z)

)
− r2A12(z)A21(z)

+
r2(B(z) − 1)

(
A12(z)A21(z) − A11(z)A22(z)

)
f2(r, 0)

(
z − r A11(z)

)(
z − r A22(z)

)
− r2A12(z)A21(z)

, (5.7)
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where

f1(r, 0) =
(
−ẑ X0

1 (B̂(2) − 1) Â(2)
21 (ẑ1 − r Â(1)

22 ) + ẑ X0
2 (B̂(1) − 1) Â(1)

21 (ẑ2 − r Â(2)
22 )

)
P(J1 = 1)

(B̂(1) − 1)(B̂(2) − 1)
(
Â(2)
21 (ẑ1 − r Â(1)

22 ) − Â(1)
21 (ẑ2 − r Â(2)

22 )
)

+
r
(
ẑ X0
2 (B̂(1) − 1) − ẑ X0

1 (B̂(2) − 1)
)
Â(1)
21 Â(2)

21 P(J1 = 2)

(B̂(1) − 1)(B̂(2) − 1)
(
Â(2)
21 (ẑ1 − r Â(1)

22 ) − Â(1)
21 (ẑ2 − r Â(2)

22 )
) , (5.8)

f2(r, 0) =1

r

(
ẑ X0
1 (B̂(2) − 1) − ẑ X0

2 (B̂(1) − 1)
) (

ẑ1 − r Â(1)
22

) (
ẑ2 − r Â(2)

22

)
P(J1 = 1)

(B̂(1) − 1)(B̂(2) − 1)
(
Â(2)
21 (ẑ1 − r Â(1)

22 ) − Â(1)
21 (ẑ2 − r Â(2)

22 )
)

+
(
−ẑ X0

2 (B̂(1) − 1) Â(2)
21 (ẑ1 − r Â(1)

22 ) + ẑ X0
1 (B̂(2) − 1) Â(1)

21 (ẑ2 − r Â(2)
22 )

)
P(J1 = 2)

(B̂(1) − 1)(B̂(2) − 1)
(
Â(2)
21 (ẑ1 − r Â(1)

22 ) − Â(1)
21 (ẑ2 − r Â(2)

22 )
) ,

(5.9)

z = ẑ1 and z = ẑ2 are the zeros in the unit disk |z| < 1 of
(
z − r A11(z)

)(
z −

r A22(z)
)

− r2A12(z)A21(z) and Â(1)
i j := Ai j (ẑ1), Â

(2)
i j := Ai j (ẑ2), B̂(i) := B(ẑi ) for

i, j = 1, 2.

Remark 1 It can be observed that the first three terms on the right-hand-side of Eq.
(5.5) are exactly equal to the mean queue length at departure epochs of the standard
MX/G/1 queue without dependencies, cf. Gaver [10] and Cohen [5, Sect. III.2.3],
and the remaining term appears due to the dependent service times.

Remark 2 It can be shown, after some straightforward but tedious algebraic manipu-
lations, that the queue length distribution in the system considered in the present paper
also reduces to the distribution of the number of customers in an MX/G/1 queuing
model if A1(z) = A2(z) = A(z), again cf. Gaver [10] and Cohen [5, Sect. III.2.3].
Similarly, we can also prove that the expected number of customers in the system
considered in the present paper is equal to the expected number of customers in the
corresponding MX/G/1 queuing model if α1 = α2 = E[A].

6 Numerical results

In this section, we present four numerical examples in order to get more insight into the
consequences of introducing dependencies between the service times of consecutive
customers. For simplicity, we restrict ourselves to two customer types (N = 2). In all
four examples, we assume that the overall batch arrival process is a Poisson process
with rate λ and the load ρ equals 3

4 .

6.1 Example 1

In this example, we consider an almost symmetric system, with P(J = 1) = P(J =
2) = 1

2 and αi j = 3
8 for i, j = 1, 2. It follows that E[A] = 3

4 , P11 = P22 and we shall
vary P11. The batch sizes are geometrically distributed with
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P(B = k) = pk−1(1 − p), k = 1, 2, . . .

We take p = 3/4, resulting in a mean batch size of E[B] = 4. The conditional service
times are, respectively, exponential and Erlang distributed random variables, with

Gi j (x) =
⎛

⎝1 −
k j−1∑

m=0

(μi j x)m

m! e−μi j x

⎞

⎠ Pi j ,

for μi j > 0, i, j = 1, 2. In this example, we will take an Erlang distribution with four
phases. If we define

k j =
{
1 if j = 1,

4 if j = 2,

we can use Eq. (2.8) to obtain

Ai j (z) = Pi j

(
μi j

λ(1 − B(z)) + μi j

)k j
,

for i = 1, 2 and j = 1, 2.
The variance of the number of arrivals during one arbitrary service time, written as

a function of P11, directly follows. For 0 < P11 < 1,

Var(A) = 75

16
+ 117

512(1 − P11)P11
.

We observe that α1 = α2, but A1(z) �= A2(z). FromRemark 2, we know that the mean
queue length in our model is equal to the mean queue length of a standard MX/G/1
queue, but for higher moments of the queue length this equality is not true unless
we can construct a case with A1(z) = A2(z). This is confirmed by Table 1, which
depicts numerical values for themeans and variances of the queue lengths in ourmodel
and in the corresponding MX/G/1 queue. Indeed, the mean queue lengths of both
systems are equal, whereas the variances of the queue lengths are only equal in the case
P11 = 1

2 , where A1(z) = A2(z). Since α1 = α2, we immediately conclude that the
mean queue length and the variance of A areminimal when P11 = 1/2 (see Remark 2).

Table 1 Means and variances of X and XMX /G/1 for various values of P11 in Example 1

P11 E[X ] = E

[
XMX /G/1

]
Var(X) Var

(
XMX /G/1

)

0.1 17.8281 374.4642 374.4631

0.3 14.9263 237.6202 237.6198

0.5 14.5781 223.8303 223.8303

0.7 14.9263 237.6184 237.6198

0.9 17.8281 374.4185 374.4631
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Table 2 Mean queue length and
variance of the number of
arrivals during an arbitrary
service time, for various values
of P11 in Example 3.

P11 E[X ] Var(A)

0.100 20.377 8.327

0.300 17.931 7.056

0.500 16.969 6.493

0.650 16.747 6.263

0.700 16.780 6.214

0.788 17.060 6.175

0.900 18.587 6.333

6.2 Example 2

In this example, we take a similar setting as in the previous example, but we make two
adjustments. First, for even more simplicity, we assume that all conditional service
times are exponentially distributed, i.e.,

Gi j (x) = (1 − e−μi j x )Pi j , i, j = 1, 2.

Secondly, we take α11 = α12 = 1
2 and α21 = α22 = 1

4 . As in the previous example,
we let P(J = 1) = P(J = 2) = 1

2 . We observe that the difference with Example 1 is
that all conditional service time distributions are exponential now, but with different
parameters. Moreover, in this model α1 �= α2.

An interesting question is, how the mean queue length and the variance of the
number of arrivals during an arbitrary service time are related. Since α1 �= α2, the
setting of Remark 2 does not apply. In Fig. 2, we show E[X ] and Var(A) plotted
versus P11. When studying the two plots carefully, one can see that the plots are not
completely symmetric, which is obviously caused by the asymmetric service times.
However, another observation that is not visible to the human eye is that the minima
of both plots are not attained at the same value of P11. It can be shown analytically
that the variance of A is minimal at exactly P11 = 1/2, and, numerically, that E[X ]
is minimal for P11 ≈ 0.500411. Although this is a small difference, it means that this
system exhibits an interesting, rare feature: it is possible to obtain a smaller mean
queue length by having a greater variance in the number of arrivals during one service
time. In Example 3, we will create a setting in which this effect is even bigger.

From Fig. 2a, b, we can observe that, except for the small region where 0.5 <

P11 < 0.500411, the expected number of customers is increasing when the variance
of the number of arrivals during a customer service time is increasing and conversely.
This means that a bigger variance of the number of arrivals implies a larger expected
number of customers. This also implies that the expected number of customers can
grow beyond any bound in a stable system due to the very large variance of the number
of arrivals during one service time. This scenario occurs when P11 tends to 0 or 1 in
Fig. 2. Therefore, we can observe dependencies when P11 or (1 − P11) is small.
Otherwise, E[X ] and Var(A) appear to be rather insensitive to the value of P11.
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(a)

(b)

Fig. 2 Mean queue length E[X ] and the variance of A in Example 2

Of course, the reason for the large variance in the number of arrivals during a
customer service time lies in the dependence. When, for example, P11 = P22 is very
small, services alternate for a long time between exp(μ12) and exp(μ21) services with
small mean; rarely is there an exp(μ11) or exp(μ22) service which has a huge mean.

6.3 Example 3

Once again, we assume that the conditional service times are exponentially distributed,
but in this example we choose less symmetric settings. Let P(J = 1) = 7

16 ,P(J =
2) = 9

16 , α11 = α12 = α21 = 3
20 and α22 = 19

20 . From these settings, we obtain
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(a)

(b)

Fig. 3 Variance of the number of arrivals versus the expected number of customers during an arbitrary
customer service time. This implicit plot is obtained by varying P11. Figure (b) is a zoomed in version of
Figure (a)
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Fig. 4 Numerical example 4: transient mean queue length analysis

P21 = 7
9 P12, α1 = 0.3, and α2 = 1.1. The interesting phenomenon observed in

Example 2 is also taking place here. In fact, in this example there is a bigger difference
between the value of P11 forwhich themeanqueue length isminimal (P11 ≈ 0.65), and
the value resulting in a minimum variance of the number of arrivals during an arbitrary
service time (P11 ≈ 0.788) (in bold). More details can be found in Table 2. The
interesting region is obviously 0.650 < P11 < 0.788, because in this region we know
that an increase inVar(A) results in a decrease inE[X ]. This is illustrated even better in
Fig. 3, whereVar(A) andE[X ] are plotted against each other, for varying values of P11.

6.4 Example 4: transient-state analysis

We return to the system in Example 2, but now we study the transient analysis. In this
example, we start with an empty system, E[zX0 ] = 1, and set P11 = 1/10. Next, we
repeatedly apply Eq. (3.1) to express E[zXn ] in terms of E[zXn−1 ]. We have taken four
different distributions for the conditional service times, namely exponential, gamma
with shape parameter 1/2, gamma with shape parameter 5, and deterministic. The
results are shown in Fig. 4, where we depict the mean queue length after the departure
of the nth customer, for n = 0, 1, 2, . . . , 200. In this example, it can clearly be seen
that service time distributions with higher coefficients of variation result in longer
queues. Also, it seems to take longer to reach steady state. For completeness, we give
the steady-state mean queue lengths for the four systems below:

Distribution Deterministic Gamma 5 Exponential Gamma 1/2

E[X ] 16.224 16.918 19.696 23.168
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