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Abstract As the use of wireless sensor networks increases, the need for efficient and
reliable broadcasting algorithms grows. Ideally, a broadcasting algorithm should have
the ability to quickly disseminate data, while keeping the number of transmissions low.
In this paper, we analyze the popular Trickle algorithm, which has been proposed as
a suitable communication protocol for code maintenance and propagation in wireless
sensor networks. We show that the broadcasting process of a network using Trickle
can be modeled by a Markov chain and that this chain falls under a class of Markov
chains, closely related to residual lifetime distributions. It is then shown that this class
of Markov chains admits a stationary distribution of a special form. These results
are used to analyze the Trickle algorithm and its message count. Our results prove
conjectures made in the literature concerning the effect of a listen-only period. Besides
providing a mathematical analysis of the algorithm, we propose a generalized version
of Trickle, with an additional parameter defining the length of a listen-only period.
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1 Introduction

Wireless sensor networks (WSNs) have becomemore and more popular in the last few
years and havemany applications [1]. These networks consist of compact, inexpensive
sensor units that can communicate with each other by wireless transmissions. They
require efficient and reliable communication protocols that can quickly propagate
new information, while keeping the number of transmissions low, in order to conserve
energy andmaximize the lifetime of the network. Several data dissemination protocols
have been proposed in recent years for this purpose [3,6,13,25].

In [13], the Trickle algorithm has been proposed in order to effectively and effi-
ciently distribute and maintain code in wireless sensor networks. Trickle relies on a
“polite gossip” policy to quickly propagate updates across a network of nodes. It uses
a counter method to reduce the number of redundant transmissions in a network and
to prevent a broadcast storm [17]. This makes Trickle also a very energy-efficient and
popular method of maintaining a sensor network. The algorithm has been standardized
by the IETF as the mechanism that regulates the transmission of the control messages
used to create the network graph in the IPv6 Routing Protocol for Low power and
Lossy Networks (RPL) [24]. Additionally, it is used in the Multicast Protocol for Low
power and Lossy Networks (MPL), which provides IPv6 multicast forwarding in con-
strained networks and is currently being standardized [10]. Since the algorithm has
such a broad applicability, the definition of Trickle has been documented in its own
IETF RFC 6206 [12].

Because of the popularity of the algorithm, it is crucial to gain insight into how the
various Trickle parameters influence network performance measures, such as energy
consumption, available bandwidth, and latency. It is clear that such insights are crucial
for optimizing the performance of wireless sensor networks. However, there are only
a few results in that regard, most of them obtained via simulation studies [4,13,14].

Some analytical results are obtained in [2,11,14,15]. First, in [14], qualitative
results are provided for the scalability of the Trickle algorithm, but a complete
analysis is not given. More specifically, the authors of [14] state that in a lossless
single-cell network without a listen-only period, the expected number of messages
per time interval scales as O(

√
n). Here n is the number of nodes in the net-

work and, adopting the terminology of [14], single-cell means that all the nodes
in the network are within communication range from each other. Supposedly,
introducing a listen-only period bounds the expected number of transmissions by
a constant. The analysis in our paper confirms these claims and provides more
explicit results. Secondly, in [11], a model is developed for estimating the mes-
sage count of the Trickle algorithm in a multi-cell network, assuming a uniformly
random spatial distribution of the nodes in the network. However, the influence
of specific Trickle parameters on the message count is not explicitly addressed.
Lastly, in [2,15], analytical models are developed for the time it takes the Trickle
algorithm to update a network. To the best of the authors’ knowledge, no other ana-
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lytical models for the performance of the Trickle algorithm have been published
yet.

The goal of this paper is to develop and analyze stochastic models describing
the Trickle algorithm and gain insight in how the Trickle parameters influence inter-
transmission times and the message count. These insights could help optimize the
energy-efficiency of the algorithm and consequently the lifetime of wireless sensor
networks. Furthermore, knowing how the inter-transmission times depend on the var-
ious parameters could help prevent hidden-node problems in a network and optimize
the capacity of wireless sensor networks. Additionally, our models are relevant for the
analysis of communication protocols that build upon Trickle, such as RPL [24], MPL
[10], CTP [8] and Deluge [9], and could give insight into their performance.

As key contributions of this paper, we first propose a generalized version of the
Trickle algorithm by introducing a new parameter η, defining the length of a listen-
only period. This addition proves to be useful for optimizing the design and usage
of the algorithm. Furthermore, we derive the distribution of an inter-transmission
time and the joint distribution of consecutive inter-transmission times for large-scale
single-cell networks. We show how they depend on the Trickle parameters and inves-
tigate their asymptotic behavior. Additionally, we show that in a single-cell network
without a listen-only period, the expected number of transmissions per time interval
is unbounded and grows as

√
2nΓ

[ k+1
2

]
/Γ
[ k
2

]
, where k is called the redundancy

constant and n the number of nodes as before. When a listen-only period of η > 0
is introduced, the message count is bounded by k/η from above. We then use the
results from the single-cell analysis to develop an approximation for the transmission
count in multi-cell networks. All our results are compared and validated with simu-
lation results and prove to be accurate, even for networks consisting of relatively few
nodes.

Lastly, as an additional contribution of a more theoretical nature, we analyze a
general class of Markov chains, closely related to residual lifetime distributions and
provide the general stationary distribution for this class of chains. Compared with
[16], which the present paper is based on, this contribution is the most important
addition.

1.1 Organization of the paper

The remainder of this paper is organized as follows. In Sect. 2, we give a detailed
description of the Trickle algorithm. Furthermore, we introduce a new parameter
defining the length of a listen-only period and discuss its relevance. Then, in Sect. 3,
we first briefly list the main results, before presenting the details of the model and
its analysis. In Sect. 4, we develop a mathematical model describing the behavior
of the Trickle algorithm in large-scale single-cell networks. This is followed by an
analysis of a special class of Markov chains in Sect. 5 and we use the results from
this analysis to analyze our original model in Sect. 6. In Sect. 7, we then validate our
findings with simulations. In Sect. 8, we use the results from Sect. 6 to approximate
the message count in multi-cell networks and we again compare our approximations
with simulation results. In Sect. 9, we make some concluding remarks.
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2 The Trickle algorithm

The Trickle algorithm has two main goals. First, whenever a new update enters the
network, it must be propagated quickly throughout the network. Secondly, when there
is no newupdate in the network, communication overhead has to be kept to aminimum.

The Trickle algorithm achieves this by using a “polite gossip” policy. Nodes divide
time into intervals of varying length. During each interval, a node will broadcast its
current information if it has heard fewer than, say, k other nodes transmit the same
information during that interval, in order to check if its information is up to date. If it
has recently heard at least k other nodes transmit the same information it currently has,
it will stay quiet, assuming there is no new information to be received. Additionally, it
will increase the length of its intervals, decreasing its broadcasting rate. Whenever a
node receives an update or hears outdated information, it will reduce the length of its
intervals, increasing its broadcasting rate, in order to quickly update nodes that have
outdated information. This way inconsistencies are detected and resolved quickly,
while keeping the number of transmissions low.

2.1 Algorithm description

We now describe the Trickle algorithm in its most general form (see also [13]). The
algorithm has four parameters:

– A threshold value k, called the redundancy constant.
– The maximum interval length τh .
– The minimum interval length τl .
– The listen-only parameter η, defining the length of a listen-only period.

Furthermore, each node in the network has its own timer and keeps track of three
variables:

– The current interval length τ .
– A counter c, counting the number of messages heard during an interval.
– A broadcasting time θ during the current interval.

The behavior of each node is described by the following set of rules:

1. At the start of a new interval, a node resets its timer and counter c and sets θ to a
value in [ητ, τ ] uniformly at random.

2. When a node hears a message that is consistent with the information it has, it
increments c by 1.

3. When a node’s timer hits time θ , the node broadcasts its message if c < k.
4. When a node’s timer hits time τ , it doubles its interval length τ up to τh and starts

a new interval.
5. When a node hears a message that is inconsistent with its own information, then

if τ > τl it sets τ to τl and starts a new interval, otherwise it does nothing.

In Fig. 1, an example is depicted of a network consisting of three nodes using the
Trickle algorithm with k = 1 and τ = τh for all nodes. During the first interval, node
3 is the first node that attempts to broadcast and consequently it is successful. The
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Fig. 1 Example of three synchronized nodes using the Trickle algorithm

broadcasts of nodes 1 and 2 during that interval are then suppressed. During the second
interval, the broadcast of node 2 suppresses the other broadcasts.

Note that in the example in Fig. 1, the intervals of the three nodes are synchro-
nized. However, in general, the times at which nodes start their intervals need not
be synchronized. In a synchronized network, all the nodes start their intervals at the
same time, while in an unsynchronized network, this is not necessarily the case. In
practice, networks will generally not be synchronized, since synchronization requires
additional communication and consequently imposes energy overhead. Furthermore,
as nodes get updated and start new intervals, they automatically lose synchronicity.

2.2 The listen-only parameter η

Note that the parameter η is not introduced in the description of the Trickle algo-
rithm in [12] and [13]. We have added this parameter ourselves, so we can analyze
a more general version of the Trickle algorithm. The authors of [13] propose always
using a listen-only period of half an interval, i.e., η = 1

2 , because of the so-called
short-listen problem, which is discussed in the same paper. When no listen-only
period is used, i.e., η = 0, sometimes nodes will broadcast soon after the begin-
ning of their interval, listening for only a short time, before anyone else has a
chance to speak up. If we have a perfectly synchronized network, this does not
give a problem, because the first k transmissions will simply suppress all the other
broadcasts during that interval. However, in an unsynchronized network, if a node
has a short listening period, it might broadcast just before another node starts its
interval and that node possibly also has a short listening period. This possibly
leads to a lot of redundant messages and is referred to as the short-listen prob-
lem.

In [13], it is claimed that not having a listen-only period and k = 1makes the number
of messages per time interval scale as O(

√
n), due to the short-listen problem. When

a listen-only period of τ/2 is used, the expected number of messages per interval is
supposedly bounded by 2, resolving the short-listen problemand improving scalability.

However, introducing a listen-only period also has its disadvantages. Firstly, when
a listen-only period of τ/2 is used, newly updated nodes will always have to wait for
a period of at least τl/2 before attempting to propagate the received update. Conse-
quently, in anm-hop network, the end-to-end delay is at leastm τl

2 . Hence, a listen-only
period greatly affects the speed at which the Trickle algorithm can propagate updates.
To prevent this, it has been proposed in [15] to dynamically adjust η, based on how
new the current information of a node is, greatly increasing propagation speed.
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Fig. 2 One node carries the complete transmission load of the network

Secondly, introducing a listen-only period has a negative effect on the load distrib-
ution. This is illustrated by Fig. 2, where node 2’s broadcasting intervals completely
overlap with node 1’s listen-only periods and vice versa. Consequently, one node will
always transmit and suppress the other node’s transmissions, depending on which
node first starts broadcasting. The probability of having an uneven load distribution
increases as η increases.

For these reasons, one might want to consider using a listen-only period of different
lengths, which raises the question of what length is optimal. Therefore, we have added
the parameter η, which allows us to investigate the effect of using a listen-only period
of general length on the message count.

3 Main results for single-cell networks

In this section, we first briefly list the main results concerning the message count and
scalability of the Trickle algorithm in single-cell networks. In the following sections,
we will then discuss the analytical model and its analysis leading to these results.

We consider a steady-state regime, where all nodes are up to date and their interval
lengths have settled to τ = τh and without loss of generality, we will assume that
τh = 1. In this steady-state regime, as dictated by theTrickle algorithm, nodes still need
to repeat the information they have, in order to be able to detect possible inconsistencies
within the network. However, if no new information enters the network for a long
period of time, all communication during this time is essentially redundant; hence,
message count is the critical performance measure. When new information enters the
network, nodes should quickly disseminate it and return to this steady-state regime.

We denote by N (k,n) the number of transmissions during an interval of length τh for
a given threshold value k in a single-cell network consisting of n nodes. Additionally,
let us denote an inter-transmission time for a given value of k and cell-size n by T (k,n).
Whenever we write a(n) ∼ b(n) + c, where c is a constant, this means a(n) − c is
approximately equal to b(n) as n grows large. More formally

a(n) ∼ b(n) + c denotes lim
n→∞(a(n) − c)/b(n) = 1.

First we look at the case k = 1. We show that the cumulative distribution function
of T (1,n) for large n behaves as

F (1,n)(t) =
⎧
⎨

⎩

0, t < η,

1 − e− n
2

(t−η)2

1−η , t ≥ η.
(1)
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This lets us deduce that

E

[
T (1,n)

]
∼ η +

√
π(1 − η)

2n
. (2)

We conclude thatE[N (1,n)] ∼
√

2n
π
, when η = 0. This proves the claim from [13] that

when no listen-only period is used,E[N (1,n)] = O(
√
n), and shows that the pre-factor

is
√

2
π
. Furthermore, when η > 0, Trickle scales well and E[N (1,n)] ↑ 1

η
, with a

convergence rate of
√
n, proving another claim from [13].

For the case k ≥ 2, we first derive the density function for the distribution of k − 1
consecutive inter-broadcasting times.We then use this result to deduce that the density
function of the distribution of T (k,n) for large n behaves as

f (k,n)(t) = C(k,n)

(k − 2)!
∫ ∞

0
λ(t | ν)νk−2 exp

[
−n(t + ν − η)2

2(1 − η)

]
dν. (3)

Here

λ(t | ν) =
⎧
⎨

⎩

0, t + ν < η,

n
1−η

(t + ν − η), t + ν ≥ η,

(4)

and

C(k,n) =
(

ηk−1

(k − 1)! +
∫ ∞

η

tk−2

(k − 2)! exp
[
−n(t − η)2

2(1 − η)

]
dt

)−1

. (5)

Additionally, we find for the j th moment of T (k,n):

E

[(
T (k,n)

) j] ∼ j ! C(k,n)

C(k+ j,n)

. (6)

Hence, for η = 0, E[N (k,n)] ∼ √
2nΓ

[ k+1
2

]
/Γ
[ k
2

]
, which is again O(

√
n). More-

over, when η > 0, E[N (k,n)] ↑ k
η
, as n → ∞, with a convergence rate of

√
n.

We then use these results to derive the asymptotic distributions of inter-broadcasting
times. When η > 0 and k ≥ 2, we show that

1

η
T (k,n) d−→ Beta(1, k − 1), as n → ∞, (7)

and
k

η
T (k,n) d−→ Exp(1), as n → ∞ and k → ∞. (8)
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For the case η = 0, we show that the density function f (k)(t) of the limiting

distribution of
√

n
2T

(k,n) as n → ∞ satisfies

f (k)(t) = k − 2

k − 3
f (k−2)(t) − Γ

[ k
2

]

Γ
[ k−1

2

]
2t

k − 3
f (k−1)(t), (9)

where

f (2)(t) = 2√
π
e−t2 ,

f (3)(t) = √
πerfc(t).

Lastly we show that

√
nkT (k,n) d−→ Exp(1), as n → ∞ and k → ∞. (10)

4 Modeling the broadcasting process

In this section, we develop a mathematical model describing the Trickle broadcasting
process,which allows us to analyze themessage count in single-cell networks. Suppose
we have a single-cell network consisting of n nodes which are all perfect receivers and
transmitters. Furthermore, we assume that all nodes are up to date and τ = τh = 1
for all nodes. Lastly, we assume that the interval skew of the nodes is uniformly
distributed, meaning each node has one interval starting at some time in the interval
[0, 1) uniformly at random.

In order to analyze the message count, we treat the process of nodes attempting
to broadcast as a Poisson process with rate n. This assumption is motivated by the
following lemma, which shows that the properly scaled process of nodes attempting
to broadcast behaves as a Poisson process with rate 1 as n grows large.

Lemma 1 Let Nn be the point process of times that nodes attempt to broadcast in a
single cell consisting of n nodes with η ∈ [0, 1]. Then if we dilate the timescale by a
factor n, the process Nn converges weakly to a Poisson process with rate 1 as n grows
large.

Proof See Appendix. 	

Let us denote the PDF and CDF of an inter-transmission time T (k,n)

P for this process
with Poisson broadcasting attempts by f (k,n)(t) and F (k,n)(t), respectively. Recall that
by T (k,n) we denote an inter-transmission time for a given value of k and cell-size n for
the original Trickle broadcasting process, which is not Poisson. We will use the fact
that the distribution function of T (k,n)

P will tend to provide an accurate approximation
for that of T (k,n) for large n (because of Lemma 1), but the derivation of explicit error
bounds or limit theorems is outside the scope of the present paper. It is important to
keep in mind that we are analyzing the Poisson broadcasting process, and all results
for T (k,n) (and N (k,n)) are only true asymptotically, for n → ∞.
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4.1 k = 1

Wefirst consider the case k = 1. Suppose at time 0, a broadcast occurs. Now assume at
time t , a node ends its listening period and attempts to broadcast. In order for the node’s
transmission not to be suppressed, it must have started its listening period after time
0. If it started listening before this time, it would have heard the transmission at time
0 and its broadcast would have been suppressed. This means that the node’s broadcast
will be successful if its corresponding timer was smaller than t . Since broadcasting
times are picked uniformly in [η, 1], this probability is 0 if t < η and t−η

1−η
otherwise.

Hence, if we define λ(t) to be the instantaneous rate at which successful broadcasts
occur, we can write

λ(t) =
⎧
⎨

⎩

0, t < η,

n
1−η

(t − η), t ≥ η.

(11)

It is well known that the hazard rateλ(t) = f (1,n)(t)
1−F (1,n)(t)

uniquely determines F (1,n)(t) =
P[T (1,n)

P ≤ t] (see [7], Theorem 2.1):

F (1,n)(t) = 1 − e− ∫ t0 λ(u) du =

⎧
⎪⎨

⎪⎩

0, t < η,

1 − e− n
2

(t−η)2

1−η , t ≥ η.

(12)

Hence,
√

n
1−η

(T (1,n)
P − η) is a Rayleigh distributed random variable with scale para-

meter σ = 1. Therefore,

E

[
T (1,n)

]
∼ E

[
T (1,n)
P

]
= η +

√
π(1 − η)

2n
. (13)

We conclude

E

[
N (1,n)

]
=
(
E

[
T (1,n)

])−1 ∼
(√

π(1 − η)

2n
+ η

)−1

. (14)

Hence, for the case η = 0, we find E[N (1,n)] ∼
√

2n
π
. This proves the claim from [13]

that E[N (1,n)] = O(
√
n) when no listen-only period is used. For η > 0, we get from

(14) that

E

[
N (1,n)

]
∼ 1

η
− 1

η2

√
π(1 − η)

2n
+ O(n−1). (15)

This implies E[N (1,n)] ↑ 1
η
from below, proving the claim that introducing a listen-

only period bounds the number of transmissions per interval by a constant.
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4.2 k ≥ 2

We now look at k ≥ 2, starting by examining the case k = 2. We can apply similar
reasoning as we did for the case k = 1. Suppose again that at time 0 a broadcast occurs
and let −T−1 be the time of the last broadcast before time 0. Now similarly to before,
a broadcasting attempt at time t will be successful if the corresponding node started its
listening interval after time −T−1. Hence, the instantaneous rate at which successful
broadcasts occur conditioned on T−1 = ν is given by

λ(t | ν) =
⎧
⎨

⎩

0, t + ν < η,

n
1−η

(t + ν − η), t + ν ≥ η.

(16)

Hence,
P

[
T (2,n)
P ≤ t

∣∣ T−1 = ν
]

= 1 − exp
[
− ∫ t0 λ(u | ν)du

]

=

⎧
⎪⎪⎨

⎪⎪⎩

0, t + ν < η,

1 − exp
[
− n(t+ν−η)2

2(1−η)

]
, ν < η ∧ t + ν ≥ η,

1 − exp
[
− n(t2/2+t (ν−η))

1−η

]
, ν ≥ η.

(17)

This tells us that for k = 2, the sequence of consecutive inter-transmission times
T (2,n)
P = {T (2,n)

P,i }∞i=0 forms a Markov chain with transition probabilities as in (17).
For the general case k ≥ 2, the same reasoning applies. Suppose again that at time

0, a broadcast occurs and let −T−(k−1) be the time of the (k − 1)th broadcast before
time 0. Then a broadcasting attempt at time t will be successful if the corresponding
node started its listening interval after time−T−(k−1). Hence, the instantaneous rate at
which broadcasts occur conditioned on T−(k−1) = ν is again given byEq. (16). Thus, in

general, the sequence T (k,n)
P =

{(
T (k,n)
P,i , . . . , T (k,n)

P,i+k−2

)}∞
i=0

forms a Markov chain.

Moreover, as we will show in the next section, this Markov chain is a specific case of
a class of Markov chains closely related to residual lifetime distributions.

5 Markov chains of residual lifetimes

In order to analyze theMarkov chain T (k,n)
P and determine its steady-state distribution,

it will help us to first study a more general class of Markov chains. The most important
result of this section is the following theorem.

Theorem 1 Let Y be a continuous random variable with support (a, b) for some
a ≥ 0 and b > 0 and where we allow b = ∞. Denote by F(y) the cumulative distri-
bution function of Y . Let X = {Xi }∞i=1 be an m-dependent sequence with probability
transition function of the following specific form:
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P[Xn+1 ≤ y
∣∣ Xn−m+1 = x1, . . . , Xn = xm] = P

⎡

⎣Y ≤
m∑

j=1

x j + y

∣∣∣∣ Y ≥
m∑

j=1

x j

⎤

⎦ .

(18)

Then, if E[Ym] < ∞,

ΠX (y) := lim
i→∞P[Xi ≤ y] = 1 − m

E [Ym]

∫ ∞

0
(1 − F(s + y))sm−1ds. (19)

Remark 1 The distribution function in Eq. (19) can be interpreted as the stationary
distribution of the mth iterated overshoot of a renewal process with inter-renewal
distribution F(·): see [23]. That is, the residual of the residual of the residual. . . of Y
iterated m times.

In preparation for the proof of Theorem 1, we shall first study the sequence Xm =
{(Xi , . . . , Xi+m−1)}∞i=1. Define F̄(y) = 1 − F(y) and let Λ(y) = − log[F̄(y)] be
the cumulative hazard function of Y . Note that we can write F(y) = 1 − e−Λ(y).
Clearly, Xm constitutes a Markov chain with state space X = {x ∈ R

m :∑m
j=1 x j ≤

b and xi ≥ 0 for 1 ≤ i ≤ m} and Markov transition function P as in (18). That is

P((x1, . . . , xm), (x2, . . . , xm, dy)) = dP

⎡

⎣Y ≤
m∑

j=1

x j + y

∣∣∣∣ Y ≥
m∑

j=1

x j

⎤

⎦

=
⎡

⎣dΛ

⎛

⎝
m∑

j=1

x j +y

⎞

⎠

⎤

⎦ e
−Λ
(∑m

j=1 x j+y
)
+Λ
(∑m

j=1 x j
)

.

(20)

We show the following

Theorem 2 An invariant measure of the chain Xm is given by

π(x1, . . . , xm) = Cme
−Λ
(∑m

j=1 x j
)

= Cm F̄

⎛

⎝
m∑

j=1

x j

⎞

⎠ , (21)

where Cm is a constant.

Proof Using (20) and (21) we find

∫ ∞

0
π(x1, . . . , xm)P((x1, . . . , xm), (x2, . . . , xm, dxm+1))dx1

= Cm

∫ ∞

0

⎡

⎣dΛ

⎛

⎝
m+1∑

j=1

x j

⎞

⎠

⎤

⎦ e
−Λ
(∑m+1

j=1 x j
)

dx1
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= Cme
−Λ
(∑m+1

j=2 x j
)

= Cm F̄

⎛

⎝
m+1∑

j=2

x j

⎞

⎠ = π(x2, . . . , xm+1).

	

If E[Ym] < ∞, then (21) can be normalized with a constant Cm that satisfies

Cm =
(∫ ∞

0
· · ·
∫ ∞

0
e
−Λ
(∑m

j=1 x j
)

dxm · · · dx1
)−1

=
(∫ ∞

0

ym−1

(m − 1)! F̄(y) dy

)−1

= m!
E [Ym]

, (22)

where we have used the following lemma:

Lemma 2 Let m ∈ N and G(x) be a positive real-valued integrable function. Assume
that

∫∞
0 xmG(x)dx < ∞, then

∫ ∞

0
· · ·
∫ ∞

0
G

(
m+1∑

i=1

xi

)

dx1 · · · dxm+1 =
∫ ∞

0

xm

m! G(x)dx .

Proof By writing x =∑m+1
i=1 xi and a change of variables, we can write

∫ ∞

0
· · ·
∫ ∞

0
G

(
m+1∑

i=1

xi

)

dx1 · · · dxm+1

=
∫ ∞

0
G(x)

∫
· · ·
∫

x1 + · · · + xm ≤ x
xi ≥ 0 for 1 ≤ i ≤ m

dx1 · · · dxm dx .

The inner m-tuple integral is equal to the volume of the m-dimensional simplex given
by {(x1, · · · , xm) | ∑m

i=1 xi ≤ x and xi ≥ 0 for 1 ≤ i ≤ m}, which is known to be
xm/m! [19]. Applying this result completes the proof. 	

Remark 2 In general, the steady-state joint cumulative distribution function of Xm
cannot be written as neatly as its density (21). However, one can show through induc-
tion that its multivariate Laplace transform is given by

LXm (s1, . . . , sm) = Cm

m∑

i=1

1 − LY (si )

si

1
∏

j =i (s j − si )
, (23)

where LY (s) = ∫∞
0 e−sy dF(y) is the Laplace-Stieltjes transform of Y .
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In Theorem 2, we have established that the chain Xm has an invariant measure π as
given in (21). We now proceed to show that the density function of Xm also converges
to π as in (21) with normalization constant as given in (22) for any starting vector
x ∈ X , if E[Ym] < ∞.

Given the existence of a strictly positive finite invariant measure π , inspection of
Theorem 4 in [18] shows that if the chain Xm is aperiodic and φ-irreducible, then
the distribution of Xm will converge to the distribution associated with the invariant
measure given in (21).

It follows easily from the fact that Y has support (a, b) for some a ≥ 0 and b > 0
that Xm is aperiodic. Furthermore, φ-irreducibility of the chain (i.e., having positive
probability of reaching every set A with φ(A) > 0 from every state x ∈ X , for some
nonzero measure φ(·)) is also easy to verify. We can take φ(A) = μL(A∩X ), where
μL(·) denotes the Lebesgue measure on R

m . Starting from any x ∈ X , the chain is
able to move to the set {x ∈ R

m : min(x1, . . . , xm) ≥ a} within m steps, and from
there it can reach any other set in X within m steps. Hence, under the conditions of
Theorem 1, Xm is aperiodic and φ-irreducible.

Now, with the stationary density function of Xm, we can also determine the associ-

ated steady-state density of the processΣ =
{∑m−1

j=0 Xi+ j

}∞
i=1

, which we will denote

by πΣ . Using (21), we find

πΣ(x) =
∫ x

0

∫ x−x1

0
· · ·
∫ x−

m−2∑

j=1
x j

0
π

⎛

⎝x1, . . . , xm−1, x −
m−1∑

j=1

x j

⎞

⎠ dxm−1 · · · dx1

=Cm

∫ x

0

∫ x−x1

0
· · ·
∫ x−

m−2∑

j=1
x j

0
F̄(x) dxm−1 · · · dx1 = m

E[Ym] x
m−1 F̄(x).

(24)

We are now in a position to prove Theorem 1.

Proof of Theorem 1 We already derived that under the conditions of Theorem 1, the
density of Xm will converge to the normalized version of the expression given in Eq.
(21). Consequently, the density of Σ will converge to (24). Therefore, we can write
the limiting stationary distribution of X as

ΠX (y) = lim
i→∞P[Xi ≤ y] =

∫ ∞

0
πΣ(s)P[Y ≤ y + s | Y ≥ s]ds

=
∫ ∞

0
πΣ(s)

(
1 − e−Λ(s+y)+Λ(s)

)
ds

= 1 − m

E [Ym]

∫ ∞

0
(1 − F(s + y))sm−1ds. (25)

Hence, we have proven Theorem 1. 	
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Lastly, we use (19) to derive the moments of the stationary distribution of X . For
all j ∈ N such that E[Ym+ j ] < ∞,

∫ ∞

0
y j dΠX (y) = m

E[Ym]
∫ ∞

0

∫ ∞

0
y j sm−1 dF(s + y) dy

=
[(

m + j

j

)]−1 1

E [Ym]

∫ ∞

0
ym+ j dF(y)

=
[(

m + j

j

)]−1
E
[
Ym+ j

]

E [Ym]
, (26)

where we have used the following lemma:

Lemma 3 Let m ∈ N and G(x) be a positive real-valued integrable function. Assume
that

∫∞
0 xm+ j+1G(x)dx < ∞, then

∫ ∞

0

∫ ∞

0
x j ymG(x + y) dx dy = 1

m + 1

[(
m + j + 1

j

)]−1 ∫ ∞

0
zm+ j+1G(z) dz.

Proof Write z = x + y, then

∫ ∞

0

∫ ∞

0
x j ymG(x + y) dx dy =

∫ ∞

0

∫ ∞

y
(z − y) j ymG(z) dz dy

=
j∑

i=0

(−1)i
(
j

i

)∫ ∞

0

∫ ∞

y
z j−i ym+i G(z) dz dy

=
j∑

i=0

(−1)i
(
j

i

)∫ ∞

0
z j−i G(z)

∫ z

0
ym+i dy dz

=
⎛

⎝
j∑

i=0

(−1)i
(
j

i

)
1

1 + i + m

⎞

⎠
∫ ∞

0
z1+m+ j G(z) dz

= 1

m + 1

[(
m + j + 1

j

)]−1 ∫ ∞

0
zm+ j+1G(z) dz.

The last equality follows from a known identity involving the reciprocal of binomial
coefficients (see [21], Corollary 2.2). 	


We will now use the results from this section to analyze the Markov chain T (k,n)
P

from Sect. 4.

6 Inter-transmission time distributions and message count

We return to themodel fromSection 4.We already deduced that the sequence T (k,n)
P ={(

T (k,n)
P,i , . . . T (k,n)

P,i+k−2

)}∞
i=0

forms a Markov chain. Moreover, we showed that for

k ≥ 2,
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P

[
T (k,n)
P ≤ t

∣∣ T−(k−1) = ν
]

= 1 − exp

[
−
∫ t

0
λ(u | ν)du

]
, (27)

with λ(t | ν) as in (16). Since T−(k−1) is actually the sum of the previous k − 1 inter-
broadcasting times, we find that (27) is of the form as in (18) with m = k − 1. Further
examination then gives that for this case Y ∼ T 1,n

P and F(t) is given by (12). Now,

since all the moments of T 1,n
P are finite and T 1,n

P has support (η,∞), Theorem 1

applies, and we can apply all the results from the previous Sect. to T (k,n)
P .

Recall that by f (k,n)(t) and F (k,n)(t), we denote the steady-state PDF and CDF of
a transmission time T (k,n)

P , respectively. Additionally, let us denote the steady-state
joint probability density function of k − 1 consecutive inter-transmission times by
f̃ (k,n)(t1, . . . , tk−1) and let f (k,n)

Σ (s) be the steady-state probability density function

of the sequence Σ(k,n) = {∑k−2
j=0 T

(k,n)
P,i+ j }∞i=0.

It then follows directly from (21) that

f̃ (k,n)(t1, . . . , tk−1) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

C(k,n),
k−1∑

i=1
ti < η,

C(k,n) exp

[

− n
2(1−η)

(
k−1∑

i=1
ti − η

)2]

,
k−1∑

i=1
ti ≥ η.

(28)

Here the normalization constant C(k,n) satisfies

C(k,n) = (k − 1)!
E

[(
T 1,n
P

)k−1
] =

(
ηk−1

(k − 1)! +
∫ ∞

η

tk−2

(k − 2)! exp
[
−n(t − η)2

2(1 − η)

]
dt

)−1

.

(29)
Alternatively, by a change of variables and splitting the integral, we can write (29) in
terms of a finite sum as

C(k,n) =
(

ηk−1

(k−1)! + 1

2(k − 2)!
k−2∑

i=0

(
k − 2

i

)
ηk−i−2

(
2(1−η)

n

) i+1
2

Γ

[
i + 1

2

])−1

,

which more clearly reveals the role of some of the parameters.
There are two important observations we can make regarding the constant C(k,n).

First, for η = 0, (29) reduces to C(k,n) = (2n)
k−1
2 Γ [k/2]/√π . Secondly, for η > 0,

we have that C(k,n) ↓ (k−1)!
ηk−1 as n grows large.

Let us now look at the sequence Σ(k,n), i.e., the sequence of the sum of k − 1
consecutive inter-transmissions times. Equation (24) immediately gives its steady-
state probability density function:

f (k,n)
Σ (s) =

⎧
⎨

⎩

C(k,n)

(k−2)! s
k−2, s < η,

C(k,n)

(k−2)! s
k−2 exp

[
− n(s−η)2

2(1−η)

]
, s ≥ η.

(30)
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Finally, Eq. (19) gives

F (k,n)(t) = 1 − C(k,n)

(k − 2)!
∫ ∞

0

(
1 − F (1,n)(s + t)

)
sm−1 ds, (31)

and equivalently,

f (k,n)(t) = C(k,n)

(k − 2)!
∫ ∞

0
f (1,n)(s + t)sm−1ds. (32)

Substitution of Eq. (16) reduces the right-hand side of (32) for t < η to

n

1 − η

C(k,n)

(k − 2)!
∫ ∞

η−t
(t + ν − η)νk−2 exp

[
−n(t + ν − η)2

2(1 − η)

]
dν, (33)

and for t ≥ η, the right-hand side reduces to

n

1 − η

C(k,n)

(k − 2)!
∫ ∞

0
(t + ν − η)νk−2 exp

[
−n(t + ν − η)2

2(1 − η)

]
dν. (34)

Lastly, we focus our attention on the moments of an inter-transmission time T (k,n).
Applying (26), we find for the first moment of T (k,n)

E

[
T (k,n)

]
∼ E

[
T (k,n)
P

]
= C(k,n)

C(k+1,n)

. (35)

For the case η = 0, this implies

E

[
N (k,n)

]
=
(
E

[
T (k,n

])−1 ∼ √
2n

Γ
[ k+1

2

]

Γ
[ k
2

] , (36)

which is again O(
√
n), as was conjectured in [13].

When a listen-only period is used, i.e., η > 0,

E

[
N (k,n)

]
=
(
E

[
T (k,n

])−1 ∼ k

η
− k

η2

√
π(1 − η)

2n
+ O(n−1), (37)

implying that E[N (k,n)] ↑ k
η
from below as n → ∞. This implies that for η > 0, the

expected number of messages per interval is bounded by a constant and shows that
Trickle scales well.

Again using (26), we obtain the following expression for the j th moment of an
inter-transmission time

E

[(
T (k,n)

) j] ∼ E

[(
T (k,n)
P

) j] = j ! C(k,n)

C(k+ j,n)

. (38)
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For the special case η = 0, this reduces to

E

[(
T (k,n)

) j] ∼ j !
(2n)

j
2

Γ
[ k
2

]

Γ
[
k+ j
2

] . (39)

For the case η > 0, we deduce

E

[(
T (k,n)

) j]→ (k − 1)! j !
(k + j − 1)!η

j , as n → ∞. (40)

6.1 Limiting distributions

The previous analysis allows us to determine the limiting distributions of T (k,n) as n
and k grow large. We distinguish between two cases.

Case 1: η > 0.
First, Eq. (40) implies that for η > 0 and k ≥ 2,

1

η
T (k,n) d−→ Beta(1, k − 1), as n → ∞, (41)

since all moments converge to the moments of the Beta distribution. For the density
function of T (k,n)

P (and hence also that of T (k,n)), this implies that as n → ∞,

f (k,n)(t) →
⎧
⎨

⎩

(k−1)
η

(
1 − t

η

)k−2
, 0 ≤ t ≤ η,

0, otherwise.
(42)

Furthermore, since kBeta(1, k)
d−→ Exp(1) for k → ∞,

k

η
T (k,n) d−→ Exp(1), as n → ∞ and k → ∞. (43)

We can relate this result to Equation (28). We know that the sum of k consecutive
inter-transmission times converges to η as n → ∞. Equation (28) then tells us that if
we look at an interval of length η, k − 1 broadcasting times are distributed uniformly
in this interval, when n → ∞. Therefore, if we scale time by a factor k, we will
see a Poisson process with intensity 1, as k → ∞, and expect to see exponential
inter-broadcasting times, which is in agreement with (43).

Case 2: η = 0.
For the case η = 0,we canwrite the density function f (k)(t) of the limiting distribution

of
√

n
2T

(k,n) for k ≥ 2 after scaling Equation (34) as
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f (k)(t) = 4

Γ
[ k−1

2

]
∫ ∞

0
(t + ν)νk−2 exp

[
−(t + ν)2

]
dν

= 4

Γ
[ k−1

2

] t
∫ ∞

0
νk−2 exp

[
−(t + ν)2

]
dν

− 4

Γ
[ k−1

2

]
∫ ∞

0
νk−1 exp

[
−(t + ν)2

]
dν. (44)

Alternatively, performing integration by parts gives

f (k)(t) = 2(k − 1)

Γ
[ k−1

2

]
∫ ∞

0
νk−3 exp

[
−(t + ν)2

]
dν. (45)

Combining (44) and (45), we find after some rewriting

f (k)(t) = k − 2

k − 3
f (k−2)(t) − Γ

[ k
2

]

Γ
[ k−1

2

]
2t

k − 3
f (k−1)(t). (46)

Direct computation gives

f (2)(t) = 2√
π
e−t2 ,

and

f (3)(t) = √
πerfc(t).

All other distribution functions then follow from Equation (46). Additionally, from
Equation (39), we have

E

[(√
nT (k,n)

) j]→ j !
2

j
2

Γ
[ k
2

]

Γ
[
k+ j
2

] , as n → ∞. (47)

Using the fact that

lim
k→∞

Γ
[ k
2

] ( k
2

) j
2

Γ
[
k+ j
2

] = 1,

we find

E

[(√
nkT (k,n)

) j]→ j !, as n → ∞ and k → ∞. (48)

This finally implies that
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√
nkT (k,n) d−→ Exp(1), as n → ∞ and k → ∞, (49)

since all moments converge to the moments of the exponential distribution.
The last result can be related to Lemma 1. If we look at the special case k = n,

we know all broadcasting attempts will be successful. Hence, the process of nodes
broadcasting will be the same as the process of nodes attempting to broadcast, from
which we know it converges to a Poisson process with rate 1, as n → ∞, if we scale
time by a factor n, because of Lemma 1. Furthermore, (49) also tells us that for this
case, if we scale time by a factor n, we expect to see exponential inter-transmission
times with rate 1. So these results are in good agreement with each other.

6.2 Discussion of results

We briefly discuss the implications of our results. First, Equation (36) gives us insight
into the effects of the short-listen problem.We found that without a listen-only period,
the number of transmissions per time unit scales as O(

√
n), due to the short-listen

problem. However, by introducing a listen-only period, the expected number of trans-
missions per interval is bounded by k/η: see (37). Hence, having η = 1

2 as suggested
in [13] reduces the number of redundant transmissions and resolves the short-listen
problem.

However, one could also consider using lower values of η. For example, one could
consider setting η = 1

4 . We know this roughly doubles the expected number of redun-
dant transmissions, but it could also double the propagation speed. Indeed, whenever
a node gets updated, it only has to wait for a period of at least τl/4 before propagating
the update, as opposed to a period of τl/2. Hence, the choice of η involves a trade-off.
Lowering η increases not only the propagation speed, but also the number of transmis-
sions. In order to get a full understanding of this trade-off, more knowledge is needed
on the propagation speed of the algorithm. Combined with results from this paper, this
knowledge could provide guidelines for how to optimally set the Trickle parameters
and the length of the listen-only period.

Second, Eqs. (12), (31), (42), (43), (46), and (49) provide insight in the distributions
of inter-transmission times. In our derivations, we have assumed that transmissions are
instantaneous. However, in reality, transmissions take some time, although this time
is generally short compared to the interval length τh . Using the inter-transmission
time distributions, one can estimate the probability that transmissions would overlap
in time and hence interfere. Potentially, one can use this knowledge to optimize the
medium access protocol and the capacity of the wireless network. Therefore, the
impact of having non-instantaneous transmissions on the performance of Trickle is an
interesting topic for future research.

7 Simulation results

The model we have developed assumes that the process of nodes attempting to broad-
cast is Poisson with rate n. Lemma 1 shows that this is true as n grows large. We now
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Fig. 3 Mean number of transmissions per interval for η = 0

Fig. 4 Density plot of inter-transmission times for η = 0, k = 1, and n = 50

investigate howwell this assumption holds in networks with only a few nodes. In order
to do so, we compare our analytic results for the message count and the distribution
of inter-transmissions times with simulations done in Mathematica. We simulate a
lossless single-cell network using the Trickle algorithm, where transmissions occur
instantaneously.

In Fig. 3, we compare simulation results for the case η = 0 with the analytic results
from Eq. (36). For each combination of k and n, we simulate a network consisting of n
nodes using the Trickle algorithm and average over 103 runs of 100 virtual time units.
Each run, we use a different interval skew chosen uniformly at random for each of the
nodes. We see that the simulation results and the analytic results coincide very well,
even for small cell-sizes, and that the analytic results provide a conservative estimate
for the mean number of transmissions per interval.

In Fig. 4, we compare simulation results for the case η = 0, k = 1, and n = 50
with the analytic results from Eq. (12). We show a histogram of the observed inter-
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Fig. 5 Density plot of inter-transmission times for η = 0, k = 3, and n = 50

Fig. 6 Mean number of transmissions per interval for η = 1
2

transmission times obtained from 103 runs of 100 virtual time units and the probability
density function from (12). We see a very good match between the analytic result and
simulations, even though we consider a network consisting of only 50 nodes.

In Fig. 5, we compare (32) with simulations for the case η = 0, k = 3, and n = 50.
Again, both results are in good agreement with each other, despite the relatively small
size of the network. Note, also, that the asymptotically exponential behavior from (49)
can already be seen in the density plot.

In Fig. 6, we compare simulation results for the case η = 1
2 with analytic results

from Eq. (37). Here, also, we find that the analysis gives an accurate estimate for the
mean number of transmissions in small networks. From our analysis, we also know
that E[N (k,n)] should converge to 2k as n grows large. From the graph, we see that
this convergence is quite slow.
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Fig. 7 Density plot of inter-transmission times for η = 1
2 , k = 1, and n = 50

Fig. 8 Density plot of inter-transmission times for η = 1
2 , k = 3, and n = 50

In Figs. 7 and 8, we compare simulation results for k = 1 and k = 3, respectively,
with the analytic results from Eqs. (12) and (32), where η = 1

2 and n = 50. Like
before, we see a very good match between the analytic results and simulations. Note,
that the asymptotic behavior from (41) can already be recognized in the density plot
of Fig. 8.

Additionally, we have simulated more realistic network settings in the OMNeT++
simulation tool. As mentioned in Sect. 6.2, in reality, transmissions do not occur
instantaneously but take some time M ; hence, collisions can occur. To investigate
the effect of not having instantaneous and possibly colliding transmissions, we have
simulated the same scenarios as we did with Mathematica and compared the results.
The simulator incorporates IEEE standard 802.15.4.
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We find that the OMNeT++ and Mathematica simulations produce nearly indistin-
guishable results, which is not surprising. Since τh tends to be very large compared to
a transmission length M , the probability of nodes trying to broadcast simultaneously
tends to be very small. Furthermore, sincewe are dealingwith a single-cell network, the
CSMA/CA protocol prevents all collisions in the OMNeT++ simulations. Therefore,
both simulators provide nearly the same results. Since the Mathematica simulations
are computationally less demanding and much more easily reproducible, we have
omitted the OMNeT++ simulation data.

8 Multi-cell network

Suppose now that we have a network consisting of n2 nodes placed on a square grid,
where not all nodes are able to directly communicate with each other. Instead, each
node has a fixed transmission range R, whichmeans that when a node sends amessage,
only nodes within a distance R of the broadcaster receive the message. While a fully-
fledged analysis of multi-cell networks is beyond the scope of the present paper, we
now briefly examine how the results for the single-cell scenario obtained in Sect. 6
can be leveraged to derive a useful approximation. We denote by N (k,n,R)

MC the number
of transmissions during an interval of length τh for a given threshold value k in a cell
consisting of n × n nodes with broadcasting range R. Hence, we are interested in

determining the behavior of E
[
N (k,n,R)
MC

]
.

8.1 Approximation

We will use the analytical results from Sect. 6 to develop an approximation for the
expected number of transmissions per interval in multi-cell networks. Let us denote
by S(R) the number of nodes a single broadcasting node having a broadcasting range
of R can reach, i.e., the size of a single broadcasting-cell. Heuristically, we can reason
as follows. We have an n × n grid consisting of approximately n2/S(R) distinct
non-overlapping broadcasting-cells. Assuming each cell behaves independently of
the others, we can approximate the expected number of transmissions per interval in
the multi-cell case as follows:

E

[
N (k,n,R)
MC

]
≈ n2

S(R)
E

[
N (k,S(R))

]
≈ n2

S(R)

C(k+1,S(R))

C(k,S(R))

. (50)

Using the fact that S(R) ∼ πR2 and Eqs. (36) and (37), we can get more insight
into the behavior of our approximation. For η = 0, we have that as R grows large:

n2

S(R)
E

[
N (k,S(R))

]
≈
√

2

π

n2

R

Γ
[ k+1

2

]

Γ
[ k
2

] .
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Fig. 9 Ratio of simulated transmission count and approximation for η = 0

Similarly, when a listen-only period is used, i.e., η > 0, we have that as R grows
large:

n2

S(R)
E

[
N (k,S(R))

]
≈ n2

R2

k

πη
.

Consequently, we see how the short-listen problempotentially plays a role inmulti-cell
networks.

8.2 Simulations

We compare the approximation with simulations in order to evaluate its accuracy. We
do so by plotting the ratio

θ(k, n, R) = E

[
N (k,n,R)
MC

]
/

(
n2

S(R)

C(k+1,S(R))

C(k,S(R))

)
. (51)

In Mathematica, we simulate a network consisting of 50 × 50 nodes placed on a grid
for several values of k and R. For each combination of k and R, we simulate a lossless
multi-cell network for 100 virtual time units. Each run, we use a different randomly
chosen interval skew for the nodes. We use toroidal distance in order to cope with
edge effects.

In Fig. 9, we show a plot of (51) for the case η = 0. We see that the estimate
given in Eq. (50) tends to slightly underestimate the number of transmissions per
interval. However, the approximation is accurate within a factor 1.2. Furthermore, as
k increases, the approximation becomes more accurate. We also note that for fixed k,
the accuracy remains fairly constant as R grows.

Finally, let us consider the effect of a listen-only period. In Fig. 10, we show a plot
of (51) for the case η = 1

2 . We see again that the estimate given in Eq. (50) tends to
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Fig. 10 Ratio of simulated transmission count and approximation for η = 1
2

underestimate the number of transmissions per interval, more than for the case η = 0.
The error slowly increases with the transmission range R. However, as k increases,
the approximation becomes more accurate.

Remark 3 In [11], a method is presented for estimating the message count in syn-
chronized networks. It is shown that this method also gives an accurate approximation
for unsynchronized networks with η = 1

2 . However, the method is not suitable for
smaller values of η and assumes a uniformly random spatial distribution of the nodes.
Hence, if one is interested in listen-only periods of different length or regular network
topologies, our approximation is preferable.

Remark 4 Given the way we derived our approximation, one can conclude that its
performance strongly depends on the fact that we are considering a network which
is very homogeneous in terms of node density. For networks that are more heteroge-
neous in terms of node density, one cannot easily decide what value to take for S(R);
hence, approximating the message count becomes difficult. Moreover, as shown in
[22], Trickle’s performance strongly depends on the network topology, which makes
approximating the message count an even more difficult task.

9 Conclusion

In this paper, we presented a generalized version of the Trickle algorithm with a new
parameter η, which allows us to set the length of a listen-only period. This parameter
can greatly increase the speed at which the algorithm can propagate updates, while
still controlling the number of transmissions. Furthermore, we have shown that this
parameter influences how the transmission load is distributed among nodes in a net-
work.We then presented a mathematical model describing how the message count and
inter-transmission times of the Trickle algorithm depend on its various parameters.
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We showed that the broadcasting process in a single-cell network can be modeled
as a Markov chain and that this chain falls under a special class of Markov chains,
closely related to residual lifetimes. This class of Markov chains was then analyzed
and its stationary distribution derived. For our model, these results lead to the distri-
bution function of inter-transmission times and the joint distribution of consecutive
inter-transmission times. We showed how they depend on the redundancy constant k,
the network-size n, and the length of a listen-only period η. We also investigated their
asymptotic behavior as n and k go to infinity. These distributions give insight in the
energy-efficiency of Trickle and the probability that nodes try to broadcast simulta-
neously. These insights contribute to optimizing the design and usage of the Trickle
algorithm.

Specifically, we showed that in a network without a listen-only period, the expected
number of transmissions grows as O(

√
n), proving a conjecture from [13], and we

identified that the pre-factor is
√
2Γ
[ k+1

2

]
/Γ
[ k
2

]
. Additionally, we showed that,

when a listen-only period is used, the number of transmissions per interval is bounded
from above by k

η
, proving a second conjecture from [13] on the scalability of Trickle.

We have also performed a simulation study in Mathematica and the OMNeT++
simulation tool. We compared our analytic results, which hold for very large networks
with instantaneous transmissions, with simulation results of small and more realistic
wireless networks. We found a very good match between the analytic results and the
simulations.

Additionally, we used the results from the single-cell analysis to get an approxima-
tion for the message count in multi-cell networks. These results were also compared to
simulation results fromMathematica and the OMNeT++ simulation tool. The approx-
imation proved to be fairly accurate, in particular, for small values of η. A more
comprehensive investigation ofmulti-cell networks and the influence of network topol-
ogy on Trickle’s performance would be interesting topics for further research.

Finally, we note that the speed at which the Trickle algorithm can disseminate
updates is discussed in [15]. Combined with results from this paper, this could provide
insight in how to optimally set the Trickle parameters and the length of the listen-only
period. Additionally, the impact of non-instantaneous broadcasts, interference, and
combining Trickle with CSMA/CA on the performance of the Trickle algorithm is
discussed in [20].
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Appendix: Proof of Lemma 1

In order to prove Lemma 1, we will use the following theorem (see [5], Proposition
11.2.VI).
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Theorem 3 Let M be a simple stationary point process on X = Rwith finite intensity
λ, and let Mn denote the point process obtained by superposing n independent repli-
cates of M and dilating the scale of X by a factor n. Then as n → ∞, Mn converges
weakly to a Poisson process with parameter measure λμL(·), whereμL(·) denotes the
Lebesgue measure on R.

Let N be the process of an arbitrary node’s broadcasting moments. Then evidently the
superposition of n of these processes Nn gives us the process of broadcasting attempts
by all the nodes in our cell. Hence, if we show that N is a simple stationary point
process with finite intensity λ = 1, we can apply Theorem 3, resulting in Lemma 1.

Let {Bi }, with i ∈ Z, be the sequence of broadcasting times for an arbitrary node
defining our process N . Then if we denote by S the interval skew and assume it is
uniform, i.e., S ∼ U [0, 1], we can write

Bi ∼ (S + i) + Ti , i ∈ Z.

Here Ti represents the timer of the corresponding node in the i th interval; thus, Ti ∼
U [η, 1]. It is easy to see that N is a simple point process with intensity λ = 1.

It remains to show stationarity. Let Ns be the point process resulting from applying
a shift operator to the process N . That is, if {Bs

i }, with i ∈ Z, is the sequence of events
for the shifted process Ns , we have

Bs
i ∼ (S + i) + Ti + s, i ∈ Z.

We show that {Bi } and {Bs
i }, with i ∈ Z, have the same distribution, which means that

the processes N and Ns coincide in distribution, implying stationarity. We first write

{Bs
i }i∈Z = {(S + i) + Ti + s}i∈Z

= {(S + s − �S + s�) + (i + �S + s� + Ti )}i∈Z

Now note that (S + s − �S + s�) ∼ U [0, 1] ∼ S. Furthermore, since the Ti are
independent and identically distributed, (i+�S+s�+Ti ) ∼ (i + �S + s� + Ti+�S+s�

)
.

Moreover,
{
i + �S + s� + Ti+�S+s�

}
i∈Z ∼ {i + Ti }i∈Z. This allows us to conclude

{
Bs
i

}
i∈Z ∼ {Bi }i∈Z.

Consequently, Theorem 3 applies and Lemma 1 follows.
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