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Abstract For Markov chains with a finite, partially ordered state space, we show
strong stationary duality under the condition of Möbius monotonicity of the chain. We
give examples of dual chains in this context which have no downwards transitions.
We illustrate general theory by an analysis of nonsymmetric random walks on the
cube with an interpretation for unreliable networks of queues.
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1 Introduction

The motivation of this paper stems from a study on the speed of convergence to sta-
tionarity for unreliable queueing networks, as in Lorek and Szekli [13]. The problem
of bounding the speed of convergence for networks is a rather complex one, and is
related to transient analysis of Markov processes, spectral analysis, coupling or du-
ality constructions, drift properties, monotonicity properties, among others (see for
more details Dieker and Warren [9], Aldous [1], Lorek and Szekli [13]). In order to
give bounds on the speed of convergence for some unreliable queueing networks, it is
necessary to study the availability vector of unreliable network processes. This vector
is a Markov chain with the state space representing sets of stations with down or up
status via the power set of the set of nodes (typical state is the set of broken nodes).
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Such a chain represents at the same time a random walk on the vertices of the finite
dimensional cube. We are concerned in this paper with walks on the vertices of the
finite dimensional cube which are up–down in the natural (inclusion) ordering on the
power set. This study is a special case of a general duality construction for monotone
Markov chains.

To be more precise, we shall study strong stationary duality (SSD) which is a prob-
abilistic approach to the problem of speed of convergence to stationarity for Markov
chains. SSD was introduced by Diaconis and Fill [7]. This approach involves strong
stationary times (SST) introduced earlier by Aldous and Diaconis [2, 3] who gave a
number of examples showing useful bounds on the total variation distance for con-
vergence to stationarity in cases where other techniques utilizing eigenvalues or cou-
pling were not easily applicable. A strong stationary time for a Markov chain (Xn) is
a stopping time T for this chain for which XT has the stationary distribution π and is
independent of T . Diaconis and Fill [7] constructed an absorbing dual Markov chain
with its absorption time equal to the strong stationary time T for (Xn). In general,
there is no recipe for constructing particular dual chains. However, a few cases are
known and tractable. One of the most basic and interesting ones is given by Diaconis
and Fill [7] (Theorem 4.6) when the state space is linearly ordered. In this case, un-
der the assumption of stochastic monotonicity for the time reversed chain, and under
the condition that for the initial distribution ν, ν ≤mlr π (that is, for any k1 > k2,
ν(k1)
π(k1)

≤ ν(k2)
π(k2)

) it is possible to construct a dual chain on the same state space. A spe-
cial case is a stochastically monotone birth-and-death process for which the strong
stationary time has the same distribution as the time to absorption in the dual chain,
which turns out to be again a birth-and-death process on the same state space. Times
to absorption are usually more tractable objects in a direct analysis than times to sta-
tionarity. In particular, a well-known theorem, usually attributed to Keilson, states
that, for an irreducible continuous-time birth-and-death chain on E = {0, . . . ,M}, the
passage time from state 0 to state M is distributed as a sum of M independent expo-
nential random variables. Fill [11] uses the theory of strong stationary duality to give
a stochastic proof of an analogous result for discrete-time birth-and-death chains and
geometric random variables. He shows a link for the parameters of the distributions
to eigenvalue information about the chain. The obtained dual is a pure birth chain.
Similar structure holds for more general chains. An (upward) skip-free Markov chain
with the set of nonnegative integers as a state space is a chain for which upward
jumps may be only of unit size; there is no restriction on downward jumps. Brown
and Shao [5] determined, for an irreducible continuous-time skip-free chain and any
M , the passage time distribution from state 0 to state M . When the eigenvalues of the
generator are all real, their result states that the passage time is distributed as the sum
of M independent exponential random variables with rates equal to the eigenvalues.
Fill [12] gives another proof of this theorem. In the case of birth-and-death chains,
this proof leads to an explicit representation of the passage time as a sum of indepen-
dent exponential random variables. Diaconis and Miclo [8] recently obtained such
a representation, using an involved duality construction; for some recent references
related to duality and stationarity, see this paper.

Our main result is an SSD construction which generalizes the above mentioned
construction of Diaconis and Fill [7]. We consider a partially ordered state space
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instead of a linearly ordered one and utilize Möbius monotonicity instead of the
usual stochastic monotonicity. This construction opens new ways to study particu-
lar Markov chains by a dual approach and is of independent interest. It has a special
feature that the dual state space is again the same state space as for the original chain,
similarly as in SSD for birth-and-death processes. Moreover, we show that the dual
chain can have an upwards drift in the sense that it has no downwards transitions.
We formulate the main result in Sect. 3, explaining the needed notation and defini-
tions in detail in Sect. 2. We elaborate on the topic of Möbius monotonicity because
it is almost not present in the literature. The only papers we are aware of are the
following two: Massey [14] recalls Möbius monotonicity as considered earlier by
Adrianus Kester in his PhD thesis, and proves that Möbius monotonicity implies a
weak stochastic monotonicity. The second paper is by Falin [10] where a similar re-
sult to the one by Massey can be found. We introduce two versions of Möbius mono-
tonicity, and we define a new notion of Möbius monotone functions which appear
in a natural way in our main result on SSD. We characterize Möbius monotonicity
by an invariance property on the set of Möbius monotone functions. Utilization of
Möbius monotonicity involves a general problem of inverting a sum ranging over a
partially ordered set, which appears in many combinatorial contexts; see, for exam-
ple, Rota [15]. The inversion can be carried out by defining an analog of the difference
operator relative to a given partial ordering. Such an operator is the Möbius function,
and the analog of the fundamental theorem of calculus obtained in this context is the
Möbius inversion formula on a partially ordered set, which we recall in Sect. 2.

In Sect. 3 we present our main result on SSD with a proof and give some corollar-
ies which show other possible duals, including an alternative dual for linearly ordered
state spaces (Corollary 3.2). In Sect. 4 we show an SSD result for nonsymmetric near-
est neighbor walks on the finite dimensional cube. It gives an additional insight into
the structure of eigenvalues of this chain. It is interesting that the dual (absorbing)
chain here is a chain which jumps only upwards to neighboring states or stays at
the same state. This structure of the dual chain allows us to read all eigenvalues for
the transition matrix P and its dual P∗ from the diagonal of P∗ since P∗ is upper-
triangular. The symmetric walk was considered by Diaconis and Fill [7]. They used
the symmetry to reduce the problem of the speed of convergence to a birth-and-death
chain setting. The problem of the speed of convergence to stationarity for the non-
symmetric case was studied by Brown [4], were the eigenvalues were identified by a
different method. Finally, it is worth mentioning that Möbius monotonicity of non-
symmetric nearest neighbor walks is a stronger property than the usual stochastic
monotonicity for this chain.

2 SSD, Möbius monotonicity

2.1 Time to stationarity and strong stationary duality

Let P be an irreducible aperiodic transition matrix on a finite, partially ordered state
space (E,�). We enumerate the states using natural numbers N in such a way that for
the partial order �, for all i, j ∈ N, ei � ej implies i < j . Each distribution ν on E we
regard as a row vector, and νP denotes the usual vector times matrix multiplication.



82 Queueing Syst (2012) 71:79–95

Consider a Markov chain X = (Xn)n≥0 with transition matrix P, initial distribution
ν, and (unique) stationary distribution π . One possibility of measuring distance to
stationarity is to use the separation distance (see Aldous and Diaconis [3]), given
by s(νPn,π) = maxe∈E(1 − νPn(e)/π(e)). Separation distance s provides an upper
bound on the total variation distance: s(νPn,π) ≥ d(νPn,π) := maxB⊂E |νPn(B) −
π(B)|.

A random variable T is a Strong Stationary Time (SST) if it is a randomized stop-
ping time for X = (Xn)n≥0 such that T and XT are independent, and XT has distri-
bution π . SST was introduced by Aldous and Diaconis in [2, 3]. In [3], they prove
that s(νPn,π) ≤ P(T > n) (T implicitly depends on ν). Diaconis [6] gives some
examples of bounds on the rates of convergence to stationarity via an SST. However,
the method to find an SST is specific to each example.

Diaconis and Fill [7] introduced the so-called Strong Stationary Dual (SSD)
chains. Such chains have a special feature, namely for them the SST for the origi-
nal process has the same distribution as the time to absorption in the SSD one.

To be more specific, let X∗ be a Markov chain with transition matrix P∗, initial
distribution ν∗ on a state space E

∗. Assume that e∗
a is an absorbing state for X∗. Let

Λ ≡ Λ(e∗, e), e∗ ∈ E
∗, e ∈ E, be a kernel, called a link, such that Λ(e∗

a, ·) = π for
e∗
a ∈ E

∗. Diaconis and Fill [7] prove that if (ν∗,P∗) is an SSD of (ν,P) with respect
to Λ in the sense that

ν = ν∗Λ and ΛP = P∗Λ, (2.1)

then there exists a bivariate Markov chain (X,X∗) with the following marginal prop-
erties:

X is Markov with the initial distribution ν and the transition matrix P,
X∗ is Markov with the initial distribution ν∗ and the transition matrix P∗,
the absorption time T ∗ of X∗ is an SST for X.

Recall that
←−
X = (

←−
X n)n≥0 is the time reversed process if its transition matrix is given

by

←−
P = (

diag(π)
)−1PT

(
diag(π)

)
,

where diag(π) denotes the matrix which is diagonal with stationary vector π on the
diagonal.

The following theorem (Diaconis and Fill [7], Theorem 4.6) gives an SSD chain
for linearly ordered state spaces under some stochastic monotonicity assumption. In
the formulation below, we set g(M +1) = 0,

←−
P (M +1, {1, . . . , i}) = 0, for all i ∈ E.

Theorem 1 Let X ∼ (ν,P) be an ergodic Markov chain on a finite state space
E = {1, . . . ,M}, linearly ordered by ≤, having initial distribution ν, and stationary
distribution π . Assume that

(i) g(i) = ν(i)
π(i)

is non-increasing,

(ii)
←−
X is stochastically monotone.
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Then there exists a Strong Stationary Dual chain X∗ ∼ (ν∗,P∗) on E
∗ = E with the

following link kernel

Λ(j, i) = I(i ≤ j)
π(i)

H(j)
,

where H(j) = ∑
k:k≤j π(k). Moreover, the SSD chain is uniquely determined by

ν∗(i) = H(i)
(
g(i) − g(i + 1)

)
, i ∈ E,

P∗(i, j) = H(j)

H(i)

(←−
P

(
j, {1, . . . , i}) − ←−

P
(
j + 1, {1, . . . , i})), i, j ∈ E.

Theorem 2 is our main result on SSD chains. It is an extension of Theorem 1 to
Markov chains on partially ordered state spaces by replacing monotonicity in condi-
tion (i) and stochastic monotonicity in condition (ii) with Möbius monotonicity. We
state this theorem in Sect. 3, after introducing required definitions and background
material. Theorem 2 reveals the role of Möbius functions in finding SSD chains.
Consequently, it is possible to reformulate Theorem 1 in terms of the corresponding
Möbius function (in a similar way as in Corollary 3.2).

2.2 Möbius monotonicities

Consider a finite, partially ordered set E = {e1, . . . , eM}, and denote a partial order
on E by �. We select the above enumeration of E to be consistent with the partial
order, i.e., ei � ej implies i < j .

Let X = (Xn)n≥0 ∼ (ν,P) be a time homogeneous Markov chain with an initial
distribution ν and transition function P on the state space E. We identify the transition
function with the corresponding matrix written for the fixed enumeration of the state
space. Suppose that X is ergodic with the stationary distribution π .

We shall use ∧ for the meet (greatest lower bound) and ∨ for the join (least upper
bound) in E. If E is a lattice, it has unique minimal and maximal elements, denoted
by e1 := 0̂ and eM := 1̂, respectively.

Recall that the zeta function ζ of the partially ordered set E is defined by:
ζ(ei , ej ) = 1 if ei � ej and ζ(ei , ej ) = 0 otherwise. If the states are enumerated
in such a way that ei � ej implies i < j (assumed in this paper), then ζ can be rep-
resented by an upper-triangular, 0–1 valued matrix C, which is invertible. It is well
known that ζ is an element of the incidence algebra (see Rota [15], p. 344), which
is invertible in this algebra, and the inverse to ζ , denoted by μ, is called the Möbius
function. Using the enumeration which defines C, the corresponding matrix describ-
ing μ is given by the usual matrix inverse C−1.

Throughout the paper, μ will denote the Möbius function of the corresponding
ordering.

For the state space E = {e1, . . . , eM} with the partial ordering �, we define the
following operators acting on all functions f : E → R

S↓f (ei ) =
∑

e∈E

f (e)ζ(e, ei ) =
∑

e:e�ei

f (e) =: F(ei ) (2.2)
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and

S↑f (ei ) =
∑

e∈E

ζ(ei , e)f (e) =
∑

e:e�ei

f (e) =: F̄ (ei ). (2.3)

In the matrix notation, we shall use the corresponding bold letters for functions, and
we have F = fC, F̄ = fCT , where f = (f (e1), . . . , f (eM)), F = (F (e1), . . . ,F (eM)),
and F̄ = (F̄ (e1), . . . , F̄ (eM)).

The following difference operators D↓ and D↑ are the inverse operators to the
summation operators S↓ and S↑, respectively,

D↓f (ei ) =
∑

e∈E

f (e)μ(e, ei ) =
∑

e:e�ei

f (e)μ(e, ei ) =: g(ei ),

and

D↑f (ei ) =
∑

e∈E

μ(ei , e)f (e) =
∑

e:e�ei

μ(ei , e)f (e) =: h(ei ).

In the matrix notation, we have g = fC−1 and h = f(CT )−1.
If, for example, the relations (2.2) and (2.3) hold then

f (ei ) =
∑

e:e�ei

F (e)μ(e, ei ) = D↓
(
S↓f (ei )

)

and

f (ei ) =
∑

e:e�ei

μ(ei , e)F̄ (e) = D↑
(
S↑f (ei )

)
, (2.4)

respectively.

Definition 2.1 For a Markov chain X with the transition function P, we say that P
(or alternatively that X) is

↓-Möbius monotone if

C−1PC ≥ 0,

↑-Möbius monotone if
(
CT

)−1PCT ≥ 0,

where P is the matrix of the transition probabilities written using the enumeration
which defines C, and ≥ 0 means that each entry of a matrix is nonnegative.

Definition 2.2 A function f : E → R is

↓-Möbius monotone if f(CT )−1 ≥ 0,
↑-Möbius monotone if fC−1 ≥ 0.
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For example, in terms of the Möbius function μ and the transition probabilities,
↓- Möbius monotonicity of P means that for all (ei , ej ∈ E)

∑

e:e�ei

μ(ei , e)P
(
e, {ej }↓

) ≥ 0,

where P(·, ·) denotes the corresponding transition kernel, i.e., P(ei , {ej }↓) =∑
e:e�ej

P(ei , e), and {ej }↓ = {e : e � ej }. In order to check such a condition, an
explicit formula for μ is needed. Note that the above definition for monotonicity can
be rewritten as follows, f is ↓-Möbius monotone if for some nonnegative vector
m ≥ 0, f = mCT holds, and f is ↑-Möbius monotone if f = mC. The last equal-
ity means that f is a nonnegative linear combination of the rows of matrix C. This
monotonicity implies that f is non-decreasing in the usual sense (f non-decreasing
means: ei � ej implies f (ei ) ≤ f (ej )).

Proposition 2.1 P is ↑-Möbius monotone iff

f is ↑-Möbius monotone implies that PfT is ↑-Möbius monotone.

Proof Suppose that P is ↑-Möbius monotone, that is, (CT )−1PCT ≥ 0. Take arbi-
trary f which is ↑-Möbius monotone, i.e., take f = mC for some arbitrary m ≥ 0.
Then (CT )−1PCT mT ≥ 0, which is (using transposition) equivalent to fPT C−1 ≥ 0,
which, in turn, gives (by definition) that PfT is ↑-Möbius monotone. Conversely, for
all f = mC, where m ≥ 0, we have fPT C−1 ≥ 0 since PfT is ↑-Möbius monotone.
This implies that (CT )−1PCT mT ≥ 0 and (CT )−1PCT ≥ 0. �

Many examples can be produced using the fact that the set of Möbius monotone
matrices is a convex subset of the set of transition matrices. We shall give some basic
examples in Sect. 4. These examples can be used to build up a large class of Möbius
monotone matrices.

Proposition 2.2

(i) If P1 and P2 are ↑-Möbius monotone (↓-Möbius monotone) then P1P2 is ↑-
Möbius monotone (↓-Möbius monotone).

(ii) If P is ↑-Möbius monotone (↓-Möbius monotone) then (P)k is ↑-Möbius mono-
tone (↓-Möbius monotone) for each k ∈ N.

(iii) If P1 is ↑-Möbius monotone (↓-Möbius monotone) and P2 is ↑-Möbius monotone
(↓-Möbius monotone) then

pP1 + (1 − p)P2

is ↑-Möbius monotone (↓-Möbius monotone) for all p ∈ (0,1).

Proof (i) Since (CT )−1P1CT ≥ 0 and (CT )−1P2CT ≥ 0, one has

(
CT

)−1P1P2CT = ((
CT

)−1P1C
T
)((

CT
)−1P2CT

) ≥ 0.

The statements (ii), (iii) are immediate by definition. �
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3 Main result: SSD for Möbius monotone chains

Now we are prepared to state our main result on SSD.

Theorem 2 Let X ∼ (ν,P) be an ergodic Markov chain on a finite state space
E = {e1, . . . , eM}, partially ordered by �, with a unique maximal state eM , and with
stationary distribution π . Assume that

(i) g(e) = ν(e)
π(e) is ↓-Möbius monotone,

(ii)
←−
X is ↓-Möbius monotone.

Then there exists a Strong Stationary Dual chain X∗ ∼ (ν∗,P∗) on E
∗ = E with the

following link kernel

Λ(ej , ei ) = I(ei � ej )
π(ei )

H(ej )
,

where H(ej ) = S↓π(ej ) = ∑
e:e�ej

π(e) (H = πC). Moreover, the SSD chain is
uniquely determined by

ν∗(ei ) = H(ei )
∑

e:e�ei

μ(ei , e)g(e) = S↓π(ei )D
↑g(ei ),

P∗(ei , ej ) = H(ej )

H(ei )

∑

e:e�ej

μ(ej , e)
←−
P

(
e, {ei}↓

) = S↓π(ej )

S↓π(ei )
D↑←−

P
(
ej , {ei}↓

)
.

The corresponding matrix formulas are given by

ν∗ = g
(
CT

)−1diag(πC),

P∗ = (
diag(H) C−1←−P C diag(H)−1)T

= diag(πC)−1(CT diag(π)
)
P
(
CT diag(π)

)−1diag(πC),

where g = (g(e1, . . . , g(eM)) (row vector).

Proof of Theorem 2 We have to check the conditions (2.1). The first condition given
in (2.1), ν = ν∗Λ, reads for arbitrary ei ∈ E as

ν(ei ) =
∑

e�ei

ν∗(e)π(ei )

H(e)
,

which is equivalent to

ν(ei )

π(ei )
=

∑

e:e�ei

ν∗(e)
H(e)

.

From the Möbius inversion formula (2.4), we get

ν∗(ei )

H(ei )
=

∑

e:e�ei

μ(ei , e)
ν(e)
π(e)

,
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which gives the required formula. From the assumption that g = ν
π

is ↓-Möbius
monotone, it follows that ν∗ ≥ 0. Moreover, since ν = ν∗Λ and Λ is a transition
kernel, it is clear that ν∗ is a probability vector.

The second condition given in (2.1), ΛP = P∗Λ, means that for all ei , ej ∈ E

∑

e∈E

Λ(ei , e)P(e, ej ) =
∑

e∈E

P∗(ei , e)Λ(e, ej ).

Taking the proposed Λ, we have to check that

∑

e:e�ei

π(e)
H(ei )

P(e, ej ) =
∑

e:e�ej

π(ej )

H(e)
P∗(ei , e),

that is,

1

H(ei )

∑

e:e�ei

π(e)
π(ej )

P(e, ej ) =
∑

e:e�ej

P∗(ei , e)
H(e)

.

Using π(e)
π(ej )

P(e, ej ) = ←−
P (ej , e), we have

1

H(ei )

←−
P

(
ej , {ei}↓

) =
∑

e:e�ej

P∗(ei , e)
H(e)

. (3.1)

For each fixed ei we treat 1
H(ei )

←−
P (ej , {ei}↓) as a function of ej and again use the

Möbius inversion formula (2.4) to get from (3.1)

P∗(ei , ej )

H(ej )
=

∑

e:e�ej

μ(ej , e)
←−
P

(
e, {ei}↓

)

H(ei )
.

In the matrix notation, we have

C−1PC(ei , ej ) =
∑

e:e�ei

μ(ei , e)P
(
e, {ej }↓

)
,

therefore,

P∗ = (
diag(H) C−1←−P C diag(H)−1)T

.

Since, from our assumption, C−1←−P C ≥ 0, we have P∗ ≥ 0. Now ΛP = P∗Λ implies
that P∗ is a transition matrix. �

Note that in the context of Theorem 2, if the original chain starts with probability
1 in the minimal state, i.e., ν = δe1 , then ν∗ = δe1 .

For E = {1, . . . ,M}, with linear ordering ≤, the Möbius function is given by
μ(k, k) = 1,μ(k − 1, k) = −1, and μ equals 0 otherwise. In this case, the link is
given by Λ(j, i) = I(i ≤ j)

π(i)
H(j)

, and we obtain from Theorem 2 (as a special case)
Theorem 1, which is a reformulation of Theorem 4.6 from Diaconis and Fill [7].
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In a similar way, we construct an analog SSD chain for ↑-Möbius monotone P.
We skip the corresponding matrix formulation and a proof. This analog SSD chain
will be used in Corollary 3.2 to give an alternative SSD chain to the one given in
Theorem 1.

Corollary 3.1 Let X ∼ (ν,P) be an ergodic Markov chain on a finite state space
E = {e1, . . . , eM}, partially ordered by �, with a unique minimal state e1, and with
the stationary distribution π . Assume that

(i) g(e) = ν(e)
π(e) is ↑-Möbius monotone,

(ii)
←−
X is ↑-Möbius monotone.

Then there exists a Strong Stationary Dual chain X• ∼ (ν•,P•) on E
• = E with the

following link

Λ•(ej , ei ) = I(ei � ej )
π(ei )

H̄ (ej )
,

where H̄ (ej ) = S↑π(ej ). Moreover, the SSD is uniquely determined by

ν•(ei ) = H̄ (ei )
∑

e:e�ei

g(e)μ(e, ei ) = S↑π(ei )D
↓g(ei ),

P•(ei , ej ) = H̄ (ej )

H̄ (ei )

∑

e:e�ej

←−
P

(
e, {ei}↑

)
μ(e, ej ) = S↑π(ej )

S↑π(ei )
D↓←−

P
(
ej , {ei}↑

)
.

Note that in the setting of Corollary 3.1, if the original chain starts with probability
1 in the maximal state, i.e., ν = δeM

, then ν• = δeM
.

From Corollary 3.1 we obtain an alternative dual result for linearly ordered spaces
assuming that ν(i)

μ(i)
is non-decreasing. Roughly speaking, Theorem 1 and Corol-

lary 3.2 describe two complementary situations, namely when an initial distribution
for the original chain is in a sense (mlr ordering) smaller or bigger than the station-
ary distribution, then one can create (and use) different (alternative) dual chains as
described in these statements.

Corollary 3.2 Let X ∼ (ν,P) be an ergodic Markov chain on a finite state space
E = {1, . . . ,M}, linearly ordered by ≤, with stationary distribution π . Assume that

(i) g(i) = ν(i)
π(i)

is non-decreasing,

(ii)
←−
X is stochastically monotone.

Then there exists a Strong Stationary Dual chain X• ∼ (ν•,P•) on E
• = E with the

following link kernel

Λ•(j, i) = I(i ≥ j)
π(i)

H̄ (j)
,
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where H̄ (j) = ∑
k:k≥j π(k). Moreover, the SSD is uniquely determined by

ν•(i) = H̄ (i)
∑

k:k≤i

μ(k, i)g(k) = H̄ (i)
(
g(i) − g(i − 1)

)
, i ∈ E,

P•(i, j) = H̄ (j)

H̄ (i)

∑

k:k≤j

μ(k, j)
←−
P

(
k, {i, . . . ,M})

= H̄ (j)

H̄ (i)

(←−
P

(
j, {i, . . . ,M}) − ←−

P
(
j − 1, {i, . . . ,M})), i, j ∈ E.

4 Nearest neighbor Möbius monotone walks on a cube

Consider the discrete time Markov chain X = {Xn,n ≥ 0}, with the state space E =
{0,1}d , and transition matrix P given by

P(e, e + si ) = αiI{ei=0},

P(e, e − si ) = βiI{ei=1}, (4.1)

P(e, e) = 1 −
∑

i:ei=0

αi −
∑

i:ei=1

βi,

where e = (e1, . . . , ed) ∈ E, ei ∈ {0,1}, and si = (0, . . . ,0,1,0, . . . ,0) with 1 at the
ith coordinate.

We use the following partial order:

e = (e1, e2, . . . , ed) � e′ = (
e′

1, e
′
2, . . . , e

′
d

)
if ei ≤ e′

i , for all i = 1, . . . , d.

To make our presentation simpler, we assume that ν = δ(0,...,0) (this assumption
can be waived).

For example, such a Markov chain is a model for a set of working unreliable
servers where the repairs and breakdowns of servers are independent for different
servers and only one server can be broken or repaired at a transition time.

Assume that all αi and βi are positive and that there exists at least one state e such
that P(e, e) > 0. Then the chain is ergodic.

Theorem 3 For the Markov chain X = {Xn,n ≥ 0}, E = {0,1}d with the transition
matrix P given by (4.1), and ν = δ(0,...,0), assume that

∑d
i=1(αi +βi) ≤ 1. Then there

exists a dual chain on E
∗ = E given by ν∗ = ν, and

P∗(e, e + si ) = αi + βi if ei = 0,

P∗(e, e) = 1 −
∑

i:ei=0

(αi + βi),

P∗(e, e′) = 0 otherwise.
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Proof A direct check shows that X is time-reversible with stationary distribution

π(x) =
∏

i:xi=1

αi

αi + βi

∏

i:xi=0

βi

αi + βi

.

Let |e| = ∑d
i=1 ei . Note that E with � is a Boolean lattice, and the corresponding

Möbius function is given by

μ
(
e, e′) =

{
(−1)|e′|−|e| if e � e′,
0 otherwise.

The assumption
∑d

i=1(αi + βi) ≤ 1 implies ↓-Möbius monotonicity. Indeed, calcu-
lating

P∗(ei , ej ) = H(ej )

H(ei )

∑

e:e�ej

μ(ej , e)
←−
P

(
e, {ei}↓

)
,

we find conditions for its nonnegativity, which implies ↓-Möbius monotonicity of the
chain and its time reversed chain:

P∗((0, . . . ,0), (0, . . . ,0)
)

=
∑

e�(0,...,0)

μ
(
(0, . . . ,0), e

)←−
P

(
e,

{
(0, . . . ,0)

}↓)

= 1 − (α1 + · · · + αd) − β1 − · · · − βd = 1 −
d∑

i=1

αi −
d∑

i=1

βi,

which is nonnegative (because we assumed that
∑d

i=1(αi + βi) ≤ 1).
Fix si = (0, . . . ,0,1,0, . . . ,0) with 1 in position i. Then

P∗(si , si ) =
∑

e:e�si

μ(si , e)
←−
P

(
e, {si}↓

) = 1 −
d∑

k=1

αk + αi −
d∑

k=1

βk + βi.

For each state of the form ei = (e1, . . . , ei−1,0, ei+1, . . . , ed),

P∗(ei , ei + si

) = H
(
ei + si

)

H
(
ei

)
∑

e:e�ei+si

μ
(
ei + si , e

)←−
P

(
e,

{
ei

}↓)

= H
(
ei + si

)

H
(
ei

)
(
μ

(
ei + si , ei + si

)←−
P

(
ei + si ,

{
ei

}↓)) = H
(
ei + si

)

H
(
ei

) βi.

Denote by z(e) = {k : ek = 0} the index set of zero coordinates. We shall compute
H(ei+si )

H(ei )
. Let G = ∏d

j=1(αj + βj ).

H
(
ei

) =
∑

e:e�ei

π(e) = 1

G

∑

e:e�ei

∏

k:ek=1

αk

∏

k:ek=0

βk
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= 1

G

∏

k:ei
k=0

βk

( ∑

A⊆{1,...,d}\z(ei )

∏

j∈A

αj

∏

j∈AC

βj

)
,

H
(
ei + si

) =
∑

e�ei+si

π(e) = H
(
ei

) +
∑

e�ei+si
ei=1

π(e)

= H
(
ei

) + 1

G

∏

k:ek=0

βkαi

( ∑

A⊆{1,...,d}\z(ei )

∏

j∈A

αj

∏

j∈AC

βj

)

= H
(
ei

) + 1

G

∏

k:ei
k=0

βk

αi

βi

( ∑

A⊆{1,...,d}\z(ei )

∏

j∈A

αj

∏

j∈AC

βj

)
.

And thus

H
(
ei + si

)

H
(
ei

) = 1 + αi

βi

= αi + βi

βi

and

P∗(ei , ei + si

) = αi + βi.

Now, fix some ie = {e1, . . . , ei−1,1, ei+1, . . . , ed}.

P∗(ie, ie − si

) = H
(ie − si

)

H
(ie

)
∑

e:e� ie−si

μ
(ie − si , e

)←−
P

(
e,

{ie
}↓)

.

Fix j ∈ {1, . . . , d} \ z(ie). The following cases are possible:

e = ie − si : μ
(
ie − si ,

ie − si

)←−
P

(
ie − si ,

{
ie

}↓) = 1 −
∑

k∈z(ie)

αk;

e = ie : μ
(
ie − si ,

ie
)←−
P

(
ie,

{
ie

}↓) = −
(

1 −
∑

k∈z(ie)

αk

)
;

e = ie − si + sj : μ
(
ie − si ,

ie − si + sj

)←−
P

(
ie − si + sj ,

{
ie

}↓) = −βj ;

e = ie + sj : μ
(
ie − si ,

ie + sj

)←−
P

(
ie + sj ,

{
ie

}↓) = βj .

Summing up all possibilities, we get

P∗(ie, ie − si

) = 0.

For each e, we have

P∗(e, e) =
∑

e′:e′�e

μ
(
e, e′)←−P (

e′, {e}↓);
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e′ = e : μ(e, e)
←−
P

(
e, {e}↓) = 1 −

∑

i∈z(e)

αi;

e′ = e + si : μ(e, e + si )
←−
P

(
e + si , {e}↓

) = −1 · βi.

Therefore, we get

P∗(e, e) = μ(e, e)
←−
P

(
e, {e}↓) +

∑

i∈z(e)

μ(e, e + si)
←−
P

(
e + si , {e}↓

)

= 1 −
∑

i∈z(e)

(αi + βi).
�

It is worth mentioning that the condition for ↓-Möbius monotonicity (i.e.,∑d
i=1(αi + βi) ≤ 1) is equivalent to the condition that all eigenvalues of P are non-

negative.
The time to absorption of the above defined dual chain has the following “balls

and bins” interpretation. Consider n multinomial trials with cell probabilities pi =
αi + βi, i = 1, . . . , d and pd+1 = 1 − ∑d

i=1(αi + βi). Then, the time to absorption
of the dual chain P∗ is equal (in distribution) to the waiting time until all cells are
occupied. To be more specific, let T be the waiting time until all cells 1, . . . , d are
occupied and let An be the event that at least one cell is empty. Then, since T is some
SST for P, we have

s
(
δ(0,...,0)Pn,π

) ≤ P(T > n) = P(An).

In particular, for αi = βi = 1
2d

, we have P(e, e) = 1/2, and P∗(e, e) = |e|
d

. More-

over, T is equal in distribution to
∑d

i=1 Ni , where (Ni) are independent, Ni has
geometric distribution with parameter i

d
. In the “balls and bins” scheme, pi = 1

d
,

i = 1, . . . , d , and pd+1 = 0. From the coupon collector’s problem solution, we re-
cover a well known bound

s
(
δ(0,...,0)Pd logd+cn,π

) ≤ P(T > d logd + cn) ≤ e−c, c > 0.

4.1 Further research

The problem of finding SSD chains for walks on the cube, which are not nearest
neighbor walks, is open and seems to be a difficult one. Moreover, a more difficult
task is to find SSD chains which have an upper triangular form (potentially useful
for finding bounds on times to absorption). We have some observations for three
dimensional cubes which might be of some interest. Consider the random walk on
the three-dimensional cube, E = {0,1}3, which is a special case of the random walk
given in (4.1). We define on E the partial ordering: for all e = (e1, e2, e3) ∈ E, e′ =
(e′

1, e
′
2, e

′
3) ∈ E, e � e′ iff e1 ≤ e′

1, e2 ≤ e′
2, e3 ≤ e′

3.
We consider the transition matrix P under the state space enumeration: e1 =

(0,0,0), e2 = (1,0,0), e3 = (0,1,0), e4 = (0,0,1), e5 = (1,1,0), e6 = (1,0,1),
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e7 = (0,1,1), e8 = (1,1,1) of the form
⎡

⎢⎢⎢⎢⎢⎢⎢⎢
⎢⎢
⎣

1 − 3α α α α 0 0 0 0
β 1 − β − 2α 0 0 α α 0 0
β 0 1 − β − 2α 0 α 0 α 0
β 0 0 1 − β − 2α 0 α α 0
0 β β 0 1 − 2β − α 0 0 α

0 β 0 β 0 1 − 2β − α 0 α

0 0 β β 0 0 1 − 2β − α α

0 0 0 0 β β β 1 − 3β

⎤

⎥⎥⎥⎥⎥⎥⎥⎥
⎥⎥
⎦

with the dual P∗
⎡

⎢⎢⎢
⎢⎢⎢⎢⎢⎢⎢
⎣

1−3α −3β β +α β +α β +α 0 0 0 0
0 1−2α −2β 0 0 β +α β +α 0 0
0 0 1−2α −2β 0 β +α 0 β +α 0
0 0 0 1−2α −2β 0 β +α β +α 0
0 0 0 0 1−β −α 0 0 β +α

0 0 0 0 0 1−β −α 0 β +α

0 0 0 0 0 0 1−β −α β +α

0 0 0 0 0 0 0 1

⎤

⎥⎥⎥
⎥⎥⎥⎥⎥⎥⎥
⎦

(4.2)

One possibility to extend the model to allow up–down jumps not only to neigh-
boring states is to take powers of the nearest neighbor transitions matrix P, that is, to
look at two step chain. It turns out that the matrix P2 is again Möbius monotone, and
has a dual with an upper-triangular form if α = β .

Another way to modify the nearest neighbor walk is to transform some rows of P
to get distributions bigger in the supermodular ordering. To be more precise, recall
that we say that two random elements X,Y of E are supermodular stochastically
ordered (and write X ≺sm Y or Y �sm X) if Ef (X) ≤ Ef (Y ) for all supermodular
functions, i.e., functions such that, for all x, y ∈ E,

f (x ∧ y) + f (x ∨ y) ≥ f (x) + f (y).

A simple sufficient criterion for ≺sm order when E is a discrete (countable) lattice
is given as follows.

Lemma 4.1 Let P1 be a probability measure on a discrete lattice ordered space
E and assume that for not comparable points x �= y ∈ E we have P1(x) ≥ κ and
P1(y) ≥ κ for some κ > 0. Define a new probability measure P2 on E by

P2(x) = P1(x) − κ, P2(x ∨ y) = P1(x ∨ y) + κ,

P2(y) = P1(y) − κ, P2(x ∧ y) = P1(x ∧ y) + κ, (4.3)

P2(z) = P1(z) otherwise.

Then P1 ≺sm P2.
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If in Lemma 4.1 the state space E is the set of all subsets of a finite set (i.e.,
the cube) then the transformation described in (4.3) is called as in Li and Xu [16] a
pairwise g+ transform, and Lemma 4.1 specializes then to their Proposition 5.5.

If we modify rows numbered 1, 3, 6, 8 by such a transformation (notice that
e1, e3, e6, e8 lie on a symmetry axis), that is, we consider an up–down walk which al-
lows jumps not only to the nearest neighbors, then it can be checked that it is Möbius
monotone, and the dual matrix again has an upper-triangular form, for an appropriate
selection of α and κ .

An upper-triangular form of dual matrices gives us the corresponding eigenvalues
since they are equal to the diagonal elements. They can be used to find bounds on the
speed of convergence to stationarity via

d
(
νPn,π

) ≤ s
(
νPn,π

) ≤ P
(
T ∗ > n

)
.

If ν = δe1 , P∗ has an upper-triangular form, and in addition it has positive values only
directly above the diagonal then T ∗ = ∑M−1

i=1 Ni , where Ni are independent geomet-
ric random variables with parameters 1−λi, i = 1, . . . ,M −1, where λ1, . . . , λM = 1
denote the diagonal entries of P∗. This case corresponds to a skip-free structure to
the right as described for example by Fill [12]. In other cases, it is possible to bound
P(T ∗ > n) by P(T ′ > n), where T ′ is the time to absorption in a reduced chain rep-
resenting the stochastically maximal passage time from e1 to eM . We will skip details
of such a possibility giving, however, an example which illustrates this idea. Consider
P∗ given above in (4.2). Analyzing all possible paths from e1 to eM , we see that T ∗
is stochastically bounded by T ′, which is the time to absorption in a chain with the
following transition matrix

P′ =

⎡

⎢⎢
⎣

1 − 3(α + β) 3(α + β) 0 0
0 1 − 2(α + β) 2(α + β) 0
0 0 1 − (α + β) α + β

0 0 0 1

⎤

⎥⎥
⎦ .

We have T ′ = ∑3
i=1 Ni , where Ni are independent geometric random variables with

parameters i(α+β), i = 1,2,3. The expected time to absorption is ET ′ = 11
6 (α+β),

and using Markov inequality we have (for any c > 0)

d
(
νPn,π

) ≤ s
(
νPn,π

) ≤ P
(
T ∗ > n

) ≤ P
(
T ′ > n

) ≤ ET

n
= 1

c

for n = c · 11
6 (α + β).

There are several other examples of chains which are Möbius monotone on some
other state spaces. We shall study this topic in a subsequent paper.
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