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Introduction

Himanthalia elongata, commonly known as Thongweed, 
sea thong or sea spaghetti, is an alga belonging to the order 
Fucales [1]. H. elongata is a cold-temperate fucoid com-
monly found in the Baltic, North Sea, and north-eastern 
Atlantic from Scandinavia to Portugal and Ireland. It lives 
on gently sloping rocky shores in low-lying and coastal 
zones, especially on shores with moderate wave loads. It is 
sometimes abundant and forms a distinct zone just below 
the Fucus serrated zone [2, 3]. H. elongata consists of small 
flat or discoid discs up to 3 cm wide with short stems. From 
autumn to winter, a long ribbon extends from the centre 
of the disc and branches several times. They have a rapid 
growth rate and can grow up to 2 m in height by the fol-
lowing summer with a disk life span of about 2–3 years [3].

The plant kingdom contains the best-studied families of 
naturally occurring antioxidants, phenolic chemicals, and 
carotenoid hues [4]. Although these useful additions can be 
obtained from sources other than land, plants in general and 
algae (seaweed) are great sources of natural antioxidants. 
Seaweeds flourish in harsh environments, releasing a wide 

  Ali Ali Redha
aa1249@exeter.ac.uk

1 Department of Laboratory, Bahrain Specialist Hospital, P. O. 
Box: 10588, Juffair, Kingdom of Bahrain

2 The Department of Public Health and Sport Sciences, Faculty 
of Health and Life Sciences, University of Exeter Medical 
School, University of Exeter, Exeter EX1 2LU, UK

3 Centre for Nutrition and Food Sciences, Queensland 
Alliance for Agriculture and Food Innovation (QAAFI), The 
University of Queensland, Brisbane, QLD 4072, Australia

4 Centre for Virus and Vaccine Research, School of Medical 
and Life Sciences, Sunway University, Selangor  
47500, Malaysia

5 Department of Biological Sciences, School of Medical and 
Life Sciences, Sunway University, Selangor 47500, Malaysia

6 Department of Food and Human Nutritional Sciences, 
University of Manitoba, Winnipeg, MB R3T 2N2, Canada

7 Richardson Centre for Food Technology and Research 
(RCFTR), 196, Innovation Drive, Winnipeg, MB  
R3T 2N2, Canada

Abstract
Himanthalia elongata is a brown seaweed containing several nutritional compounds and bioactive substances including 
antioxidants, dietary fibre, vitamins, fatty acids, amino acids, and macro- and trace- elements. A variety of bioactive 
compounds including phlorotannins, flavonoids, dietary fucoxanthin, hydroxybenzoic acid, hydroxycinnamic acid, poly-
phenols and carotenoids are also present in this seaweed. Multiple comparative studies were carried out between different 
seaweed species, wherein H. elongata was determined to exhibit high antioxidant capacity, total phenolic content, fucose 
content and potassium concentrations compared to other species. H. elongata extracts have also shown promising anti-
hyperglycaemic and neuroprotective activities. H. elongata is being studied for its potential industrial food applications. 
In new meat product formulations, it lowered sodium content, improved phytochemical and fiber content in beef patties, 
improved properties of meat gel/emulsion systems, firmer and tougher with improved water and fat binding properties. 
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range of antioxidant chemicals to combat environmental 
stressors [5]. Polyphenols, phlorotannin, flavonoids, carot-
enoids, polysaccharides, fatty acids, and amino acids are the 
most prevalent naturally occurring seaweed elements with 
antioxidant characteristics [6]. H. elongata, a brown mari-
time seaweed, is high in bioactive constituents [7] and, due 
to its antibacterial and antioxidant capabilities, plays a sig-
nificant role in food production. [8].

From the literature research, it was found that no nar-
rative review had been written on H. elongata up to date. 
Being an important source of bioactive compounds, this nar-
rative review focuses on the presence of these compounds 
and their potential uses. Because of the presence of biologi-
cally active substances in algae, they play an essential role 
in therapeutic treatment; hence, pharmacological research is 
also included in this review. In addition, as a major source 
in the food industry, applications related to the food industry 
are discussed.

Nutritional Composition of H. elongata

Polysaccharides

Although brown algae are photosynthetic multicellular 
sea creatures, they have similarities to bacteria, mammals, 
plants, and even other algae in terms of their use of car-
bohydrates (alginates) [9, 10]. Fucales’ cell walls were 
chemically and enzymatically fractionated, and the results 
revealed that FCSPs and alginates were connected to vari-
ous phenolic compounds while proteins and cellulose were 
tightly connected to FCSPs. The sulfated fucans from H. 
elongata had a consistent backbone structure of α-(1→3), 
but certain brown algae from Fucales had an alternating 
α-(1→3), (1→4) structure. Additionally, cellulose makes up 
just a small portion of the cell wall in brown algae (1–8% of 
algal dry weight), while sulfated fucans and alginates make 
up to 45% of the cell wall [9]. Similarly, it was determined 
that H. elongata have a very high fucose content with an 
amount of 26.3 g/kg [11].

The biopolymer specific to brown seaweeds such as H. 
elongata are alginates that are classified as polysaccharides. 
They have widespread biomedical purposes with minimal 
toxicity. A recent study used subcritical water extraction 
(SWE) on H. elongata in a pressurised reactor, with ensu-
ing acetone fractionation to precipitate the crude fucoidan 
and liquid-phase containing alginate [10]. Calcium chlo-
ride was then added to the liquid phase to obtain calcium 
alginate precipitate that was further converted into sodium 
alginate. The yield of sodium alginate from SWE was 5.9% 
but increased to 15.9% with increasing acetone: hydrolysate 
volume ratios (0.5-2.0 v/v), indicating a greater yield than 

other Fucales species (10%). The corresponding sodium 
alginate products obtained from SWE and SWE with ace-
tone fractionation (SWE_A) showed varying impact on 
viability (%) of T98G (Caucasian human glioblastoma), 
HCT-116 (colon carcinoma) and A549 (epithelial lung 
adenocarcinoma) cells. High cell viability was observed in 
HCT-116 with SWE, however in contrast, higher viability 
was observed in A549 and T98G cell lines with SWE_A.

Dietary Fibre

Brown algae contain considerable amounts of dietary fibre 
[12] that contribute to a healthy gut and metabolic function. 
According to research, the total amount of dietary fiber found 
in H. elongata, collected from the coast of northwest Spain, 
was 37.14 ± 0.86% dry weight, of which soluble and insol-
uble dietary fiber made up 23.63 ± 0.48 and 13.51 ± 0.45% 
dry weight, respectively [13]. In this study, H. elongata had 
considerably more total dietary fibre (P < 0.05) than Lami-
naria saccharina (sweet kombu), Mastocarpus stellatus, 
and Gigartina pistillata.

It has also been investigated the β-D-mannuronic acid 
and α-L-guluronic acid ratio are present in edible sea-
weeds such H. elongata. [14]. The total dietary fibre, 
β-D-mannuronic acid and α-L-guluronic acid in canned 
H. elongata were determined to be 53.3 ± 3.5 (g/100 g dry 
weight), 78.2 ± 1.4 and 21.8 ± 1.4%, respectively, in compar-
ison to dried H. elongata samples wherein the total dietary 
fibre was 42.7 ± 1.8 g/100 g dw, β-D-mannuronic acid was 
78.3 ± 2.7% and α-L-guluronic acid was 21.7 ± 2.7%. The 
presence of these uronic acids has been shown to provide 
prevention against reactive oxygen species (ROS), thereby 
acting as reliable antioxidants [14].

Amino Acids

It was found that H. eloganta had a total amino acid content 
of 54.02 ± 0.46 g/kg dry weight and contained high levels of 
lysine and methionine, which are essential for human nutri-
tion [15]. A previous study reported a low protein content 
(6.8%) for the Spanish H. elongata [13].

Fatty Acids

The fatty acid content of H. elongata collected from the 
Irish coast has been studied, it was found that in addition 
to 23.6% palmitic (C16:0), the algae produce high content 
of arachidonic acid (C20:4) (28.3%); 16.6% of stearidonic 
acid (C18:4), in addition to 10.7% γ-linolenic acid (C18:3), 
10.6% oleic acid (C18:1), and 10.2% EPA (C20:5) [16]. 
Characterisation and analysis of Iberian coast’s H. elon-
gata fatty acid content has reported (36.73 ± 2.16%) C16:0, 
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(22.64 ± 1.80%) C18:1Ѡ9, (9.78 ± 2.27%) C20:4Ѡ6, and 
(2.77 ± 0.80%) C20:5Ѡ3 [17]. In a comparison study, two 
brown algae, H. elongata and U. pinnatifida, showed higher 
contents (0.79% and 7.87% dry matter, respectively) of 
polyunsaturated fatty acids (PUFAs) than the red algae P. 
umbilicalis [12].

Sterols

Sterols, that are classified as lipids, have also been deter-
mined in H. eloganta. It was found that the predominant 
sterol was fucosterol measuring up to 2320 ± 187 µg/g dw 
in canned H. elongata samples, and 1706 ± 150 µg/g dw in 
dried samples. Additionally, 24-ethylenecholesterol mea-
sured up to 2.6 ± 0.2% in canned H. elongata samples, and 
2.6 ± 0.6% in dried samples [18]. The quantified amounts of 
macromolecules found in H. elongata has been reported in 
Table 1 with the respective analytical method.

Vitamins and Minerals

Water-soluble vitamins including thiamine (vitamin B1) and 
riboflavin are abundant in brown algae (vitamin B2). Flavin 
adenine dinucleotide and riboflavin mononucleotide, both 
of which are crucial for energy metabolism, are coenzyme 
[22]. Research was conducted to determine the concentra-
tion of thiamine and riboflavin from dry samples or canned 
sources of H. elongata, L. ochroleuca, U. pinnatifida, Pal-
maria sp., and Porphyra sp. [20]. It was determined that the 
thiamine content in dried H. elongata (0.14 µg/g) and dried 
Porphyra (2.02 µg/g) and the riboflavin content in canned 
H. elongata (0.31 µg/g) and dried Porphyra (6.15 µg/g) 
were calculated on a dry weight basis.

Folates are water-soluble natural form of vitamin B9 
that may be found in a variety of foods. Depending on the 
degree of oxidation of the pteridine ring structure, foli-
ates include a variety of compounds. Purine and pyrimi-
dine synthesis as well as the synthesis of methionine from 
homocysteine both require vitamin cofactors [23]. Using 
HPLC, de Rodrı́guez-Bernaldo et al. [21] studied the con-
tent of folates in dehydrated and canned H. elongata along 
with other seaweeds. The folate was extracted through heat 
treatment, deconjugation and by purification methods. In 
dehydrated H. elongata, the concentrations of vitamers 
were found as: 5-CH3–H4-folate (30.14 ± 4.85 µg/100 g 
dry weight), 5-HCO–H4-folate (46.96 ± 11.64 µg/100 g 
dry weight), H4-folate (10.82 ± 2.96 µg/100 g dry weight), 
and folic acid (25.81 ± 1.73 µg/100 g dry weight). In com-
parison, the concentrations of vitamers in canned food 
were 5-CH3–H4-folate (24.31 ± 0.83 µg/100 g dry weight), 
5-HCO–H4-folate (32.34 ± 3.57 µg/100 g dry weight), 

H4-folate (8.24 ± 0.83 µg/100 g dry weight), and folic acid 
(17.59 ± 0.59 µg/100 g dry weight) [21].

Seaweeds are rich in nutritional variables that are attract-
ing an increasing interest, pertaining to their low-calorie 
content in addition to high levels of vitamins, minerals and 
dietary fibre. The presence of vitamin E, which is a generic 
name applied to tocopherols and tocotrienols in micro-
algae samples were confirmed by HPLC; an estimate of 
33.3 ± 4.2 µg/g dry mass of α-tocopherol was measured in 
dehydrated H. elongata and 12.0 ± 2.0 µg/g dry mass found 
in canned H. elongata [24, 25].

Another research examined for trace elements (B, Ba, Co, 
Cr, Cu, Fe, Li, Mn, Mo, Ni, Sr, V, and Zn) as well as macro 
elements (Na, Ca, K, and Mg) in H. elongata and Undaria 
pinnatifida. When compared to U. pinnatifida, H. elongata 
exhibited the highest observed amounts of K (57480 mg/kg 
dry weight). However, it demonstrated relatively lower Fe 
concentration (58.8 mg/kg dry weight) [19]. In a compara-
tive study, brown algae which are rich sources of K, Na, Ca, 
and Mg and have good Na/K ratios were reported to have 
significantly more minerals than red algae [26]. The quanti-
fied amounts of elements found in H. elongata are shown in 
Table 1 along with the respective analytical methods.

Phytochemicals

Previous research has found that seaweed has an antioxi-
dant capability that might be utilised to generate biophar-
maceuticals with extensive medicinal uses [27]. Seaweeds 
are known as an important source of carotenoids [28], algi-
nates [10] and phenolic compounds [29]. It has been dem-
onstrated that brown algae contain more polyphenols than 
red and green algae. Phlorotannins, which have molecular 
weights ranging from 126 Da to 100 kDa and are structur-
ally different polyphenols produced by the oligomerization 
and decoupling of the monomer phloroglucinol (1,3,5-tri-
hydroxybenzene) [30, 31]. Phlorotannins are intricate 
polymers of the macroalgae compound phloroglucinol 
(1,3,5-trihydroxybenzene). The cell walls of brown algae 
are made up of these phenolic compounds. Additionally, 
they perform ecological tasks like UV resistance and grazing 
defense. To profile phlorotannin isomers in these macroal-
gae, phlorotannin fractions were increased using molecular 
weight cut-off dialysis and flash chromatography. Tests for 
antioxidant activity and total phenolic content are used as 
indicators. [32]. H. elongata also had considerably greater 
total phenolic content and antioxidant properties than nori 
(Phorphyra), kombu (Laminaria), and wakame (Undaria) 
[13]. The quantified amounts of phytochemicals found in 
H. elongata has been reported in Table 1 with the respective 
analytical method.
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Biomolecules/elements Amount Sample 
Condition

Extraction method Detection method Refer-
ence

Amino acids 54.02 ± 0.46 g/kg DW Dried sample Dried and powdered. Acid hydrolysed Ion chromatogra-
hyby ninhydrin 
post-column 
reaction (PCR) 
technique

[15]

Macro-elements
Sodium 25,805 ± 7924 mg/kg 

DW
Dried sample Acid digestion and incineration in a muffle 

furnace
ICP-OES [19]

Calcium 3469 ± 1526 mg/kg DW Dried sample Acid digestion and incineration in a muffle 
furnace

ICP-OES [19]

Potassium 57,480 ± 19,976 mg/
kg DW

Dried sample Acid digestion and incineration in a muffle 
furnace

ICP-OES [19]

Magnesium 3537 ± 1497 mg/kg DW Dried sample Acid digestion and incineration in a muffle 
furnace

ICP-OES [19]

Trace Elements
Boron 31.4 ± 16 mg/kg DW Dried sample Acid digestion and incineration in a muffle 

furnace
ICP-OES [19]

Barium 3.39 ± 0.8 mg/kg DW Dried sample Acid digestion and incineration in a muffle 
furnace

ICP-OES [19]

Cobalt 0.65 ± 0.14 mg/kg DW Dried sample Acid digestion and incineration in a muffle 
furnace

ICP-OES [19]

Chromium 0.50 ± 0.70 mg/kg DW Dried sample Acid digestion and incineration in a muffle 
furnace

ICP-OES [19]

Copper 2.2 ± 0.9 mg/kg DW Dried sample Acid digestion and incineration in a muffle 
furnace

ICP-OES [19]

Iron 17.8 ± 3.3 mg/kg DW Dried sample Acid digestion and incineration in a muffle 
furnace

ICP-OES [19]

Lithium 1.02 ± 0.6 mg/kg DW Dried sample Acid digestion and incineration in a muffle 
furnace

ICP-OES [19]

Manganese 14.1 ± 12 mg/kg DW Dried sample Acid digestion and incineration in a muffle 
furnace

ICP-OES [19]

Molybdenum 0.08 ± 0.03 mg/kg DW Dried sample Acid digestion and incineration in a muffle 
furnace

ICP-OES [19]

Nickel 1.62 ± 0.2 mg/kg DW Dried sample Acid digestion and incineration in a muffle 
furnace

ICP-OES [19]

Vanadium 1.82 ± 1.0 mg/kg DW Dried sample Acid digestion and incineration in a muffle 
furnace

ICP-OES [19]

Zinc 21.3 ± 13 mg/kg DW Dried sample Acid digestion and incineration in a muffle 
furnace

ICP-OES [19]

Sterols
Fucosterol 2320 ± 187 µg/g DW Canned Saponification HPLC-MS [18]

1706 ± 150 µg/g DW Dried sample Saponification HPLC-MS [18]
Dietary fibre
Total dietary fibre 53.3 ± 3.5 g/100 g DW Canned AOAC gravimetric-enzymatic method HPLC/LC-MS [14]

42.7 ± 1.8 g/100 g DW Dried sample AOAC gravimetric-enzymatic method HPLC/LC-MS [14]
β-D-mannuronic acid 78.2 ± 1.4% DW Canned AOAC gravimetric-enzymatic method HPLC/LC-MS [14]

78.3 ± 2.7% DW Dried sample AOAC gravimetric-enzymatic method HPLC/LC-MS [14]
α-L-guluronic acid 21.8 ± 1.4% DW Canned AOAC gravimetric-enzymatic method HPLC/LC-MS [14]

21.7 ± 2.7% DW Dried sample AOAC gravimetric-enzymatic method HPLC/LC-MS [14]
Vitamins
Thiamine (B1) 0.26 ± 0.04 g/g DW Canned Acid and enzymatic hydrolysis Reverse-phase 

HPLC
[20]

0.14 ± 0.02 g/g DW Dried sample Acid and enzymatic hydrolysis Reverse-phase 
HPLC

[20]

Table 1 Quantified amounts of biomolecules and elements found in Himanthalia elongata
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as proven by several in vitro studies. The lipophilic com-
pounds from three Irish brown seaweeds were also discov-
ered for their antioxidant properties [34]. This study looked 
at the lipophilic antioxidants of H. elongata, Laminaria sac-
charina, and Laminaria digitata. Using an equal-volume 
mixture of organic solvents (chloroform, diethyl ether and 
n-hexane) for extraction, the highest total phenol (52.7 ± 1.93 
to 180.2 ± 1.84 mg gallic acid equivalents/g), flavonoid 
(31.9 ± 2.65 to 131.3 ± 4.51 mg quercetin equivalents/g), 
carotenoid (2.19 ± 1.37 to 3.15 ± 0.91 µg/g) and chlorophyll 
content (2.88 ± 1.08 to 3.86 ± 1.22 µg/g) were obtained in 
the selected seaweed species. H. elongata, L. saccharina, 
and L. digitata lipophilic extracts showed significant anti-
oxidant activity as well as the ability to chelate metal ions. 
In terms of antioxidant activity, H. elongata outperformed 
L. saccharina, L. digitized, and other species.

In a different study, TLC bioautography was used to 
extract several compounds from H. elongata in order to 
investigate their potential anti-inflammatory and antibacte-
rial effects on Listeria monocytogenes bacterium. [28]. The 

It was also clear that among other seaweed species and 
specific nutritional/bioactive components, H. elongata had 
the greatest total phenolic concentration (14.0 g/kg) [11]. 
To evaluate the quantitative and qualitative assessment of 
polyphenols in seaweeds, a recent study was undertaken on 
the optimization and validation of the reverse phase HPLC 
method [33]. Phlorotannins, hydroxybenzoic acid, hydroxy-
cinnamic acid, and polyphenol flavonol subclasses are only 
a few of the seven phenolic chemicals that were found. The 
quantitative analysis of these compounds revealed the pres-
ence of 394.1 ± 4.33 µg/g of phloroglucinol, 96.3 ± 3.12 µg/g 
of gallic acid, 38.8 ± 1.94 µg/g of chlorogenic acid, 
44.4 ± 2.72 µg/g of caffeic acid, 17.6 ± 0.85 µg/g of feru-
lic acid, 8.6 ± 0.85 µg/g of myricetin and 4.2 ± 0.15 µg/g 
of quercetin in H. elongata extracted using 60% methanol 
extraction and cleaned with solid phase extraction.

Lipophilic compounds such as certain flavonoids and 
polyphenols as well as carotenoid pigments, flexibly act as 
primary or secondary antioxidants by obstructing hyperva-
lent metals form generating and reacting with free radicals, 

Biomolecules/elements Amount Sample 
Condition

Extraction method Detection method Refer-
ence

Riboflavin (B2) 0.31 ± 0.05 g/g DW Canned Acid and enzymatic hydrolysis Reverse-phase 
HPLC

[20]

1.14 ± 0.14 g/g DW Dried sample Acid and enzymatic hydrolysis Reverse-phase 
HPLC

[20]

5-CH3–H4-folate 24.31 ± 0.83 µg/100 g 
DW 

Canned Heat treatment, deconjugation of folate poly-
glutamates using hog kidney conjugase, SPE 
and SPX purification

HPLC [21]

30.14 ± 4.85 µg/100 g Dried sample Heat treatment, deconjugation of folate poly-
glutamates using hog kidney conjugase, SPE 
and SPX purification.

HPLC [21]

5-HCO–H4-folate 32.34 ± 3.57 µg/100 g 
DW

Canned Heat treatment, deconjugation of folate poly-
glutamates using hog kidney conjugase, SPE 
and SPX purification.

HPLC [21]

46.96 ± 11.64 µg/100 g 
DW

Dried sample Heat treatment, deconjugation of folate poly-
glutamates using hog kidney conjugase, SPE 
and SPX purification

HPLC [21]

H4-folate 8.24 ± 0.83 µg/100 g 
DW

Canned Heat treatment, deconjugation of folate poly-
glutamates using hog kidney conjugase, SPE 
and SPX purification

HPLC [21]

46.96 ± 11.64 µg/100 g 
DW

Dried sample Heat treatment, deconjugation of folate poly-
glutamates using hog kidney conjugase, SPE 
and SPX purification

HPLC [21]

Folic acid 17.59 ± 0.59 µg/100 g 
DW

Canned Heat treatment, deconjugation of folate poly-
glutamates using hog kidney conjugase, SPE 
and SPX purification

HPLC [21]

25.81 ± 1.73 µg/100 g 
DW

Dried sample Heat treatment, deconjugation of folate poly-
glutamates using hog kidney conjugase, SPE 
and SPX purification

HPLC [21]

α-tocopherol 33.3 ± 4.2 µg/g DW Dried sample Pyrocatechol and KOH solution extraction HPLC [20]
12.0 ± 2.0 µg/g DW Canned Pyrocatechol and KOH solution extraction HPLC [20]

Abbreviations: DW, dry weight; HPLC, high-performance liquid chromatography; HPLC-MS, high-performance liquid chromatography-mass 
spectrometry; ICP-OES, inductively coupled plasma optical emission spectrometry; LC-MS, liquid chromatography-mass spectrometry.

Table 1 (continued) 
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I/R injury in the small intestine [41]. In this study, 72 male 
Wistar rats were randomly assigned to 12 different groups: 
sham, I/R only, I/R and vehicle at 3 time points, and I/R and 
extracted at 3 time points. The H. elongata extract-treated 
group showed significant differences (P < 0.05) in all param-
eters examined compared to the papillaless I/R group, thus 
H. elongata extract maintained normal enzyme levels. I can 
do it. Histological studies showed that intestinal mucosal 
damage was less severe in animals treated with H. elongata 
extract up to 24 h of reperfusion than in the untreated I/R 
group.

Fucoxanthin (Fx), an abundant compound in brown algae 
including H. elongata, along with fucoxanthinol (FxOH), 
the deacetylated type of Fx, to exert potential anticancer 
effects in preclinical cancer models through the suppres-
sion of many cancer-related signal pathways and the tumour 
microenvironment or modification of the gut microbiota 
[42]. In human and animal models, Fx has shown anti-
inflammation [43, 44], anti-obesity [45], anti-diabetes [46], 
anti-hypertension, anti-cardiovascular disease [47], anti-
microbial, antioxidant, photoprotective, anti-angiogenesis, 
anti-brain damage, and anticancer activities [48].

Colorectal cancer (CRC) is one of the ten most frequent 
cancers, although it is treatable with proper surgery and/or 
treatment. It is claimed that certain meals can help reduce 
the risk of CRC. Fx is recognized to reduce the risk of CRC 
due to its anti-cancer activity [42]. FxOH- and Fx-enriched 
algal extracts have been shown in human CRC cell lines, 
cancer stem cell-like spheroids, and CRC animal models to 
exhibit anticancer activity via different molecular pathways. 
It has been proposed that dietary and lifestyle changes can 
reduce the risk of CRC in people. As a result, intervention 
trials employing dietary or dietary-derived substances to 
study prevention have been conducted [42].

Anti-hypoglycaemic Activity

Algae are also high in dietary fiber, which can help with 
glucose absorption and glycemic control. In a comparative 
study, Porphyra umbilicalis, H. elongata, and U. pinnati-
fida (Wakame) (Nori) were compared to investigate the in 
vitro inhibitory actions of various extract forms on gluco-
sidase and glucose diffusion. H. elongata inhibited gluco-
sidase activity significantly (P < 0.05), generating 26.2% 
lower glucose levels than controls. According to principal 
component analysis (PCA) done in this study discovered 
that soluble fiber and polyphenols were responsible for H. 
elongata’s enhanced nutraceutical activity. The H. elongata 
ethanol extract demonstrated the strongest inhibitory impact 
on glucose diffusion after 6 h (65.0 and 60.2%, respectively, 
vs. control). The extracts had the lowest slopes (68.2 and 
62.8% vs. control, respectively) of the linear fits of glucose 

isolated compound (fucoxanthin) shown high antioxidant 
(IC50: 14.8 ± 1.27 μg/mL) and antibacterial action (inhibi-
tion zone of 10.27 mm at 25 g compound/disc). Fucoxan-
thin (Fx), a non-provitamin A carotenoid, is prevalent in 
brown algae and microalgae. It is known to attach to the 
chlorophyll a/c protein complex, which aids in photosyn-
thetic organisms’ effective light gathering and body colour. 
Fx is thought to account for more than 10% of total body 
carotenoids [35].

Nutraceutical Properties of H. elongata

The properties of brown algae inhabiting the north-western 
coast of the Iberian Peninsula reflect several health-promot-
ing properties that may lead to their use in the food, phar-
maceutical and cosmetic industries [36]. The concept of 
nutrients that consumers around the world benefit from has 
changed in recent years as consumers become more cautious 
towards more nutritionally healthy foods and their ingredi-
ents. The wide range of bioactive compounds mentioned 
earlier has given H. elongata a variety of nutraceutical prop-
erties that include: anti-mycotic, anti-histamine, anticholin-
ergic, anti-photodamage, anti-osteoporosis, antioxidant, 
antidiabetic, hepatoprotective, anti-mycotic, anti-photo-
damage, anti-osteoporosis activities, as well as decreasing 
blood cholesterol, and preventing vascular thrombosis [37].

Antioxidant Activity

According to epidemiological research, free radical produc-
tion has a significant role in impacting human health via 
malignancies or age-related neurological illnesses [38]. 
However, advanced research has revealed that antioxidant-
rich foods help to reduce damaging free radicals or ROS in 
the prevention of various diseases [39]. Previous research 
has shown that damaging free radicals, or ROS, play a cru-
cial role in the etiology of chronic health issues such as can-
cer, cardiovascular disease, and neurological disorders [40]. 
Because of their high redox potential, the phytochemicals 
of H. elongata are regarded powerful antioxidants against 
ROS [33].

The presence of bioactive compounds in H. elongata and 
other brown algae has been widely studied and their con-
centrations were compared. Recent studies compared dif-
ferent brown algae and screened their bioactive properties 
followed by characterising antioxidant capacity [13, 19, 36]. 
Antioxidant treatment tends to minimize organic deteriora-
tion caused by excessive oxidative stress and can protect 
against the negative consequences of different traumas such 
as ischemia-reperfusion (I/R) [27]. One study showed the 
antioxidant capacity of H. elongata to protect against her 
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Applications in the Food Industry

The bioactive compounds such as phlorotannins, flavo-
noids, steroids, and sulfated polysaccharides of H. elongata 
may play important roles in food production due to their 
antibacterial and antioxidant properties. These secondary 
metabolites serve as potent defences against pathogens, 
inhibiting microbial growth and surviving under stressful 
conditions [55].

Fermentation of H. elongata was unsuccessful because 
neither heat-treated nor raw seaweed could support the 
growth of his Lactobacillus plantarum. However, its anti-
bacterial activity against Escherichia coli and Staphylo-
coccus aureus has been demonstrated [56]. The potent 
antibacterial activity of marine brown algae is attributed to 
phlorotannins. High concentrations of fucose and sulfate, 
and their placement in brown algae fibers, may contribute to 
this resistance to bacterial fermentation. Similarly, a study 
tested antimicrobial extracts from five food-approved spe-
cies for efficacy against foodborne pathogenic bacteria in 
vitro (agar diffusion test) and in situ (microbial attack test) 
[60]. It was indicated that the extract with the highest phe-
nolic content (18.79 ± 1.90 mg GAE/g) was obtained from 
H. elongata. The antibacterial effects also confirmed in food 
matrices may open up the prospect of their application as 
food preservatives [57].

It has been demonstrated that depending on the fatty 
acid concentration in H. elongata, the addition of 5% H. 
elongata alters the physicochemical, sensory, and microbio-
logical characteristics of low-fat (10%) and PUFA-enriched 
frankfurters [58]. Seaweed significantly increased the hard-
ness and crunchiness of PUFA-enriched low-fat frankfurt-
ers, decreased the brightness and redness, and enhanced 
the water-fat binding capacity (P < 0.05). The frankfurters 
with olive oil and seaweed had the highest total bacterial 
counts after 14 days of storage, indicating a lactobacillus-
dominant microbiome as well as a successful food preserva-
tion technique.

Meat and meat products are an essential element of the 
daily diet, supplying essential nutrients (such as protein, 
iron, zinc, and B vitamins) for a healthy, balanced diet. 
The creation of functional meals based on meat can ben-
efit from a variety of methods. The antioxidant capacity and 
composition of low-salt meat coupled with edible seaweed, 
for example, showed an increase (P < 0.05) in n-3 polyun-
saturated fatty acids (PUFA) and a decrease (P < 0.05) in the 
n-6/n-3 PUFA ratio. H. elongata consumption resulted in a 
20% increase in sulfur-containing amino acids in a low-salt 
meat composition. The addition of algae loaded the meat 
samples with soluble polyphenolic chemicals and boosted 
the system’s antioxidant capability. H. elongata samples 

diffusion times. Algal effects on blood sugar have many dif-
ferent manifestations and are not always related. The stud-
ies to date suggest that H. elongata ethanolic and aqueous 
extracts could be helpful in creating functional meals [49].

Similarly, a prior research [50] investigated the in vivo 
hypoglycemic effect of different seaweed extracts in rabbits. 
Animals with normal blood sugar and triglyceridemia levels 
were used to study the effects of H. elongata, Laminaria 
ochroleuca, Saccorhiza polyschides, Fucus vesiculosus, 
and Codium tomentosum ethanol extracts. Eight hours after 
intravenous injection, H. elongata polysaccharides were 
found to significantly lower blood glucose levels. A 5 mg/
kg crude polysaccharide dosage decreased blood glucose by 
approximately 18% in normal rabbits and 50% in alloxan 
diabetic animals.

Neuroprotection Activity

The central nervous system (CNS) is significantly impacted 
by H. elongata as well. We investigated the analgesic, anti-
convulsant, and muscle relaxing properties of a protein-rich 
algal solution. This includes impacts on body temperature, 
hyperactivity caused by amphetamine, exploratory behav-
ior, and sleep caused by barbiturates. The extract was dem-
onstrated to extend barbiturate-induced sleep. H. elongata 
can lessen CNS-related symptoms and possesses mod-
est hypothermic, analgesic, and muscle relaxant [51]. In 
another research [52], found that H. elongata fraction (F1) 
changed analgesic activity, hyperlocomotion, motor coor-
dination, rectal temperature, hypnosis brought on by pen-
tobarbital, convulsions brought on by pentylenetetrazole, 
and analgesic activity using the writhing and hot plate tests. 
It was indicated that in the pentobarbital sodium-induced 
sleep test, F1 significantly reduced locomotor activity, 
hyperlocomotion, and rectal temperature while only slightly 
lengthening sleep time.

The two main sources of omega-3 fatty acids are phy-
toplanktons and seaweeds. One of the many omega-3 fatty 
acids, eicosapentaenoic acid (EPA), builds up in fish and in 
other marine animals that feed on algae and is then trans-
ferred to other species in the food chain. The CNS has 
been demonstrated to benefit from these fatty acids (FAs) 
throughout the growth of the fetal and new-born brain, ret-
ina, and nerve tissue. As a result, the importance of algae 
as a source of high-quality FAs for nutritional purposes 
is quickly growing, and it is vital to develop methods for 
maximizing extraction and evaluating their various levels 
in algae [53, 54].
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of polyphenols, phlorotannin, flavonoids, carotenoids, 
fatty acids, polysaccharides, and amino acids. H. elongata 
demonstrated flexibility within the food industry wherein 
it has provided nutritional and texture enhancements for 
meat products such as frankfurters. In the pharmacological 
aspect, it has exhibited hypoglycaemic influence through 
inhibitory effects on α-glucosidase activity and on diffusion 
of glucose, demonstrated analgesic activity in the central 
nervous system and is the primary source for the biopoly-
mer known as alginates (up to 15.9%), which is a non-toxic 
alternative for wound healing. H. elongata has also previ-
ously been discovered to mediate environmental toxicity 
caused by polycyclic aromatic hydrocarbons in the form of 
matrices. Through investigating a vast collection of research 
studies previously conducted on H. elongata, a clear sig-
nificance on its role in the nutraceutical and pharmaceutical 
industry can be drawn. Finally, given the extensive diversity 
of applications of H. elongata, future research may evolve 
from in vitro testing to explore in vivo investigations.
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