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Abstract
We define a nature-inspired model for entanglement optimization in the quantum
Internet. The optimization model aims to maximize the entanglement fidelity and rel-
ative entropy of entanglement for the entangled connections of the entangled network
structure of the quantum Internet. The cost functions are subject of a minimization
defined to cover and integrate the physical attributes of entanglement transmission,
purification, and storage of entanglement in quantum memories. The method can be
implemented with low complexity that allows a straightforward application in the
quantum Internet and quantum networking scenarios.

Keywords Quantum Internet · Quantum repeaters · Quantum entanglement ·
Quantum communication · Quantum Shannon theory

1 Introduction

Quantum entanglement and the entangled network structure serve as fundamental
concepts of the quantum Internet [1–5], long-distance quantum networks and future
quantumcommunications [6–22]. Since the no-cloning theoremmakes it impossible to
use the “copy-and-resend” mechanisms of traditional repeaters [16,23], in a quantum
Internet scenario the quantum repeaters have to transmit correlations in a different way
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[1–4,24]. In the entangled network structure of the quantum Internet, the main task
of quantum repeaters is to distribute quantum entanglement between distant points
that will then serve as a fundamental base resource for quantum teleportation and
other quantum protocols [1]. Since in an experimental scenario [25–31] the quantum
links between nodes are noisy and entanglement fidelity decreases as hop distance
increases, entanglement purification is applied to improve the entanglement fidelity
between nodes [1–5]. Quantum nodes also perform internal quantum error correction
that is a requirement for reliability and storage in quantummemories [1,4,5,29,32–42].
Both entanglement purification and quantum error correction steps in local nodes are
high-cost tasks that require significant minimization [1–9,25,26,29–31,43–76].

The shared entangled states between nodes form entangled connections. Signifi-
cant attributes of these entangled connections are entanglement fidelity [1,4,5] and
correlation in terms of relative entropy entanglement [68,69]. Entanglement fidelity is
a crucial parameter. It serves as the primary objective function in our model, which is a
subject of maximization. Maximizing the relative entropy of entanglement is the sec-
ondary objective function. Minimizing the cost of classical communications, which is
required by the entanglement optimization method as an auxiliary objective function,
is also considered.

Besides these attributes, the entangled connections are characterized by the entan-
glement throughput that identifies the number of transmittable entangled systems per
sec at a particular fidelity. In our model, the nodes are associated with an incoming
entanglement throughput [1], that serves as a resource for the nodes to maximize the
entanglement fidelity and the relative entropy of entanglement. The nodes receive and
process the incoming entangled states. Each node performs purification and internal
quantum error correction, and it stores the entangled systems in local quantum mem-
ories. The amount of input entangled systems in a node is therefore connected to the
achievable maximal entanglement fidelity and correlation in the entangled states asso-
ciated with that node. The objective of the proposed model is to reveal this connection
and to define a framework for entanglement optimization in the quantum nodes of
an arbitrary quantum network. The required input information for the optimization
without loss of generality is the number of nodes, the number of fidelity types of
the received entangled states, and the node characteristics. In a realistic setting, these
cover the incoming entanglement throughput in a node and the costs of internal entan-
glement purification steps, internal quantum error corrections, and quantum memory
usage.

In this work, an optimization framework for quantum networks is defined. The
method aims to maximize the achievable entanglement fidelity and correlation of
entangled systems, in parallel with theminimization of the cost of entanglement purifi-
cation and quantum error correction steps in the quantum nodes of the network. The
problem model is therefore defined as a multiobjective optimization. This paper aims
to provide a model that utilizes the realistic parameters of the internal mechanisms
of the nodes and the physical attributes of entanglement transmission. The proposed
framework integrates the results of quantum Shannon theory, the theory of evolution-
ary multiobjective optimization algorithms [77,78], and the mathematical modeling
of seismic wave propagation [77–82].
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Inspired by the statistical distribution of seismic events and the modeling of wave
propagations in nature, themodel utilizes a Poisson distribution framework to find opti-
mal solutions in the objective space. In the theory of earthquake analysis and spatial
connection theory [77–82], Poisson distributions are crucial in finding new epicen-
ters. Motivated by these findings, a Poisson model is proposed to find new solutions
in the objective space that is defined by the multiobjective optimization problem. The
solutions in the objective space are represented by epicenters with several locations
around them that also represent solutions in the feasible space [77,78]. The epicenters
have a magnitude and seismic power operators that determine the distributions of the
locations and fitness [77,78] of locations around the epicenters. Epicenters with low
magnitude generate high seismic power in the locations, whereas epicenters with high
magnitude generate low seismic power in the locations. Epicenters are generated ran-
domly in the feasible space, and each epicenter is weighted from which the magnitude
and power are derived. By a general assumption, epicenters with lower magnitude
produce more locations because the locations are closer to the epicenter. The locations
are placed within a certain magnitude around the epicenters in the feasible space. The
optimization framework involves a set of solutions to the Pareto optimal front [77,78]
by combining the concept of Pareto dominance and seismic wave propagations. The
new epicenters are determined by a Poisson distribution in analogue to prediction the-
ory in earthquake models. The mathematical model of epicenters allows us to find new
solutions iteratively and to find a global optimum. The framework has low complexity
that allows an efficient practical implementation to solve the defined multiobjective
optimization problem.

The multiobjective optimization problem model considers the fidelity and correla-
tion of entanglement of entangled states available in the quantum nodes. The resources
for the nodes are the incoming entangled states from the quantum links and the already
stored entangled quantum systems in the local quantummemories. In the optimization
procedure, both memory consumptions and environmental effects, such as entangle-
ment purification and quantum error correction steps, are considered to develop the
cost functions. In particular, the amount of resource, in terms of number of available
entangled systems, is a coefficient that can be improved by increasing the incoming
number of entangled systems, such as the incoming entanglement throughput in a
node. In the proposed model, the incoming entanglement fidelity is further divided
into some classes, which allows us to differentiate the resources in the nodes with
respect to their fidelity types. Therefore, the fidelity type serves as a quality index for
the optimization procedure. The optimization aims to find the optimal incoming entan-
glement throughput for all nodes that leads to a maximization of entanglement fidelity
and correlation of entangled states with respect to the relative entropy of entanglement,
for all entangled connections in the quantum network.

The novel contributions of our manuscript are as follows:

1. A nature-inspired, multiobjective optimization framework is conceived for the
quantum Internet.

2. The model considers the physical attributes of entanglement transmission and
quantum memories to provide a realistic setting (realistic objective functions and
cost functions).
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3. The method fuses the results of quantum Shannon theory and theory of evolution-
ary multiobjective optimization algorithms.

4. The model maximizes the entanglement fidelity and relative entropy of entangle-
ment for all entangled connections of the network. It minimizes the cost functions
to reduce the costs of entanglement purification, error correction, and quantum
memory usage.

5. The optimization framework allows a low-complexity implementation.

This paper is organized as follows. Section 2 presents the problem statement. Sec-
tion 3 details the optimization method. Section 4 provides the problem resolution.
Section 5 proposes numerical evidence. Finally, Sect. 6 concludes the paper. Supple-
mental material is included in the Appendix.

2 Problem statement

The problem to be solved is summarized in Problem 1.

Problem 1 For a given quantum network with N nodes, for all nodes xi , i = 1, . . . , N,
the entanglement fidelity and relative entropy of entanglement for all entangled con-
nections are maximized, and the cost of optimal purification and quantum error
correction and the cost of memory usage for all nodes are minimized.

The network model is as follows. Let BF (x) be the incoming number of received
entangled states (incoming entanglement throughput) in a given quantum node x ,
measured in the number of d-dimensional entangled states per sec at a particular
entanglement fidelity F [1–3].

Let N be the number of nodes in the network, and let T be the number of fidelity
types Fj , j = 1, . . . , T of the entangled states in the quantum network.

Let B j
F (xi ) be the number of incoming entangled states in an i th node xi , i =

1, . . . , N , fromfidelity type j . In ourmodel, B j
F (xi ) represents the utilizable resources

in a particular node xi . Thus, the task is to determine this value for all nodes in the
quantum network to maximize the fidelity and relative entropy of shared entanglement
for all entangled connections.

Let X be an N × T matrix

X =
(
B j
F (xi )

)
N×T

. (1)

The matrix describes the number of entangled states of each fidelity type for all nodes
in the network, B j

F (xi ) ≥ 0 for all i and j .

2.1 Objective functions

For a given node xi , let F (xi ) be the primary objective function that identifies the
cumulative entanglement fidelity (a sum of entanglement fidelities in xi ) after an

123



A Poisson Model for Entanglement Optimization… Page 5 of 35 233

entanglement purification P (xi ) and an optimal quantum error correction C (xi ) in xi .
In our framework, Fi (X) for a node xi is defined as

Fi (X) =
T∑
j=1

T∑
k=1

Ai jk B̃
j
F (xi ) B̃

k
F (xi ) +

T∑
j=1

Ri j B̃
j
F (xi ) + ci , (2)

where Ai jk is the quadratic regression coefficient, Ri j is the simple regression coeffi-

cient, ci is a constant, and B̃ j
F (xi ) is defined as

B̃ j
F (xi ) = B j

F (xi ) + 〈B〉 jF (xi ) , (3)

where 〈B〉 jF (xi ) is an initialization value for B j
F (xi ) in a particular node xi .

Then let E (Di (X)) be the secondary objective function that refers to the expected
amount of cumulative relative entropy of entanglement (a sum of relative entropy of
entanglement) in node xi , defined as

E (Di (X)) =
T∑
j=1

T∑
k=1

A∗
i jk B̃

j
F (xi ) B̃

k
F (xi )

+
T∑
j=1

R∗
i j B̃

j
F (xi ) + c∗

i ,

(4)

where A∗
i jk , R

∗
i j , and c∗

i are some regression coefficients, by definition.

Therefore, the aim is to find the values of B j
F (xi ) for all i and j in (1), such that

Fi (X) and E (Di (X)) are maximized for all i .
Assuming that the fidelity of entanglement is dynamically changing and evolves

over time, the w j (xi ) quantum memory coefficient is introduced for the storage of
entangled states from the j th fidelity type in a node xi as follows:

w j (xi ) = η j B
j
F (xi ) + κ j 〈B〉 jF (xi ) , (5)

where η j and κ j are coefficients that describe the storage characteristic of entangled
states with the j th fidelity type.

2.2 Cost functions

The cumulative entanglement fidelity (2) and cumulative relative entropy of entangle-
ment (4) in a particular node xi are associated with a fC (P (xi )) cost entanglement
purification P (xi ) and a fC (C (xi )) cost of optimal quantum error correction C (xi )
in xi , where fC (·) is the cost function.
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Then let C (X) be the total cost function for all of the T fidelity types and for all of
the N nodes, as follows:

C (X) =
N∑
i=1

fC (P (xi)) + fC (C (xi ))

=
N∑
i=1

T∑
i=1

f j B
j
F (xi ) ,

(6)

where f j is a total cost of purification and error correction associated with the j th
fidelity type of entangled states.

Let F∗ be a critical fidelity on the received quantum states. The entangled states
are then decomposable into two sets Slow and Shigh with fidelity bounds Slow (F) and
Shigh (F) as

Slow (F) : max∀i Fi < F∗, (7)

and

Shigh (F) : min∀i Fi ≥ F∗. (8)

For the quantum systems of Slow, the highest fidelity is below the critical amount F∗,
and for set Shigh, the lowest fidelity is at least F∗. Then let XSlow and XShigh identify
the set of nodes for which condition (7) or (8) holds, respectively.

Let Si (X) be the cost of quantum memory usage in node xi , defined as

Si (X) = λ

T∑
j=1

αi
1

ϒi
B j
F (xi ) , (9)

where λ is a constant, αi is a quality coefficient that identifies set (7) or (8) for a given
node xi , and ϒi is the capacity coefficient of the quantum memory.

The main components of the network model are depicted in Fig. 1.

2.3 Multiobjective optimization

The optimization problem is as follows. The entanglement fidelity and the relative
entropy of entanglement for all types of fidelity of stored entanglement for all nodes are
maximized, while the cost of entanglement purification and quantum error correction
is minimal, and the memory usage cost (required storage time) is also minimal. These
requirements define a multiobjective optimization problem [77,78].

Utilizing functions (2) and (4), the function subject of a maximization to yield
maximal entanglement fidelity and maximal relative entropy of entanglement in all
nodes of the network is defined via main objective function G (X):
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Fig. 1 Illustration of the network model components. The quantum nodes xi and x j are associated with

current input values B j
F (xi ) and BlF

(
x j

)
(blue and green arrows), where j and l identify the fidelity types

of received entangled states. The nodes have several entangled connections (depicted by gray lines) in the
network. The nodes are associated with subject functions Fi (X), E (Di (X)), and F j (X), E

(
Dj (X)

)
.

The maximum of the received entanglement fidelity in the nodes allows the classification of the nodes to
sets XSlow and XShigh : node xi belongs to set XSlow , whereas node x j belongs to set XShigh (depicted by
dashed frames)

G (X) = max
N∑
i=1

Fi (X) E (Di (X)) . (10)

Function G (X) should be maximized while cost functions (6) and (9) are minimized
via functions F1 (N ) and F2 (N ):

F1 (N ) = min C (X) =
N∑
i=1

T∑
i=1

f j B
j
F (xi ) , (11)

and

F2 (N ) = minS (X) =
N∑
i=1

Si (X), (12)

with the problem constraints [77,78] C1, C2, and C3 for all i and j . Constraint C1 is
defined as

C1 : ζ (X) ≥ γ, (13)

where γ is a cumulative lower bound on the required entanglement fidelity for all
nodes, while ζ (X) is

ζ (X) =
N∑
i=1

Fi (X) , (14)

and constraint C2 is

C2 : X ≤ 	, (15)
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where 	 is an upper bound on the total cost function C (X), while X is

X =
N∑
i=1

T∑
i=1

f j B
j
F (xi ) . (16)

For constraint C3, let τ j (X) be a differentiation of storage characteristic of entangled
states from the j th fidelity type:

τ j (X) =
N∑
i=1

(
w j (xi ) − �

)2
, (17)

where

� =
∑N

i=1 w j (xi )

N
. (18)

Then, C3 is defined as

C3 : ν (X) ≤ 
, (19)

where 
 is an upper bound on the storage characteristic of entangled states from the
j th fidelity type, while ν is evaluated via (17) as

ν =
N∑
j=1

τ j (X) . (20)

3 Systemmodel

This section defines the Poisson entanglement optimization method, and it is applied
to the solution of the multiobjective optimization problem of Sect. 2.

3.1 Motivation and utility of themathematical model in the quantum internet

The quantum Internet is defined as a complex network model with quantum and clas-
sical layers that involve several optimization criteria and objectives. An optimization
problem model of the quantum Internet therefore induces a multiobjective optimiza-
tion problem model that considers the special requirements of the environment of the
quantum Internet. These requirements cover the entanglement transmission procedure,
processing of quantum entanglement in the quantum nodes, and auxiliary communi-
cation through the classical links that support the entangled network structure. The
quantum transmission procedure models the generation of the entangled quantum net-
workwith quantitative and qualitativemeasures. In thismanner, a quantitativemeasure
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is the relative entropy of entanglement between the quantum nodes, while the entan-
glement fidelity is a qualitative measure. Classical communication could also cause an
overhead in the entanglement distribution mechanism of the quantum Internet. Thus, a
multiobjective optimization framework should consider the attributes of both quantum
and classical layers.

To address the multiple criteria and several objectives of the quantum Internet, a
multiobjective optimization framework is defined. Themultiple criteria of the quantum
Internet are defined as diverse objective functions that should be satisfied in parallel.
The problem is therefore analogous to finding solutions in an objective space such that
the objective space is defined and spanned by the input problems induced by the envi-
ronment of the quantum Internet. The multiobjective optimization framework should
evolve a set of solutions to the Pareto optimal front. In our model, these solutions are
evolved via the mathematical model of epicenters that provide a naturally inspired
answer to the multiobjective problem defined via the environment of the quantum
Internet. The mathematical model of epicenters utilizes the theory of Pareto domi-
nance in the problem resolution such that the selection and evaluation processes in
the objective space that are required to identify a global optimal solution are con-
trolled via our nature-inspired model. The proposed Poisson model ensures a robust
randomization and efficient convergence in the objective space such that the solu-
tions determined by utilizing the epicenters in the objective space will converge to a
global optimal solution. The global optimal solution in the objective space represents
the parallel satisfaction of the multiple criteria and objective functions defined by the
quantum Internet. The randomness injected by the Poisson distribution not just avoids
early convergence to a local optimal solution but also induces a fast convergence for
the global optimal solution in the objective space.

Since the multiple objectives and optimization criteria of the mathematical frame-
work are motivated by practical assumptions and considerations of the quantum
Internet, the proposed mathematical model of epicenters is strongly connected with
a quantum Internet scenario. As follows, the utility of the proposed multiobjective
optimization framework represents an effective solution for the practical optimization
problems induced by the quantum Internet.

3.2 Poisson operators

The attributes of the Poisson operator are as follows.

3.2.1 Dispersion

The D (E) dispersion coefficient of an epicenter E (solution in the feasible space
SF ) determines the number of affected L j , j = 1, . . . , D (E), locations around an
epicenter E . The random locations around an epicenter also represent solutions in SF

that help in increasing the diversity of population P (a set of possible solutions) to
find a global optimum. The diversity increment is therefore a tool to avoid an early
convergence to a local optimum [77,78].
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The dispersion D (Ei ) operator for an i th epicenter Ei is defined as

D (Ei ) = m

(
f̃ (〈E〉) − f̃ (Ei )

)
+ ϑ

∑|P |
i=1

(
f̃ (〈E〉) − f̃ (Ei )

)
+ ϑ

, (21)

where m is a control parameter, Ei is an i th individual (epicenter) from the |P| indi-
viduals (epicenters) in population P , |P| is the size of population P , function f̃ (·) is
the fitness value (see Sect. A.2.1), f̃ (〈E〉) is a maximum objective value among the
|P| individuals, and ϑ is a residual quantity.

Without loss of generality, assuming |P| epicenters, the q total number of locations
is as

q =
|P |∑
i=1

D (Ei ) . (22)

3.2.2 Seismic power andmagnitude

Assume that L j is a random location around Ei . For L j , the Euclidean distance
d

(Ei , l j
)
between an i th epicenter Ei and the projection point l j of a j th location

point L j , j = 1, . . . , D (E) on the ellipsoid around Ei is as follows:

d
(Ei , l j

) =
√(

dim1
(
l j

))2 + (
dim2

(
l j

))2

=
√

1 + tg2αEi
(
l j

)

a−2 + tg2αEi
(
l j

) ,

(23)

where dimi (·) is the i th dimension of l j , and

(
dim1

(
l j

))2
a2

+
(
dim2

(
l j

))2
b2

= 1, (24)

where coefficients a and b define the shape of the ellipse around epicenter Ei (see
Fig. 2), while αEi

(
l j

)
is an angle:

tgαEi
(
l j

) = dim2
(
l j

)

dim1
(
l j

) . (25)

The seismic power P
(Ei , L j

)
operator for an i th epicenter Ei in a j th location point

L j , j = 1, . . . , D (Ei ) is defined as

P
(Ei , L j

) =
(

1

d
(Ei , l j

)M (Ei , L j
))b1

b0e
σln P(Ei ,L j), (26)
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where b0 and b1 are regression coefficients, σln P(E j) is the standard deviation [82],

M
(Ei , L j

)
is the seismic magnitude in a location L j , and l j is the projection of L j

onto the ellipsoid around Ei [82].
Thus, at a given L j with d

(Ei , l j
)
((23)), from P

(Ei , L j
)
(see (26)), the magnitude

M
(Ei , L j

)
between epicenter Ei and location L j is evaluated as

M
(Ei , L j

) =
(
P

(Ei , L j
) 1

b0e
σln P(Ei ,L j)

) 1
b1

d
(Ei , l j

)
. (27)

3.2.3 Cumulative magnitude

Let LEi
j be the location point where the seismic power P

(
Ei , LEi

j

)
is maximal for a

given epicenter Ei . Let P∗ (Ei ) be the maximal seismic power,

P∗ (Ei ) = max∀ j
P

(
Ei , LEi

j

)
. (28)

Assuming that |P| epicenters, E1,...,|P | exist in the system, let identify by Pmax
(E ′)

the epicenter E ′ with a maximal seismic power among as

Pmax
(E ′) = max∀i

(
P∗ (Ei )

)
, (29)

with magnitude M
(
E ′, LE ′

j

)
, where LE ′

j is the location point where the seismic power

Pmax
(E ′) is maximal yielded for E ′.

Then the C (Ei ) cumulative magnitude for an epicenter Ei is defined as

C (Ei ) = M
(
f̃ (Ei ) − f̃

(E ′)) + ϑ

∑|P |
i=1

(
f̃ (Ei ) − f̃ (E ′)

)
+ ϑ

, (30)

where E ′ is the highest seismic power epicenter withmagnitudeM
(
E ′, LE ′

j

)
, f̃

(E ′) is
the minimum objective value among the |P| epicenters, andM is a control parameter
defined as

M =
|P |∑
i=1

M
(
Ei , LEi

j

)
, (31)

where LEi
j provides themaximal seismic power for an i th epicenter Ei , functions f̃ (Ei )

and f̃
(E ′) are the fitness values (see Sect. A.2.1) for the current epicenter Ei and for

the highest seismic power epicenter E ′, and ϑ is a residual quantity.
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3.3 Distribution of epicenters

Assume that Ei is a current epicenter (solution) and Rk and Rl are two random
reference points around Ei . Using the C (Ei ) cumulative seismic magnitude (see (30))
of an epicenter Ei , the generation of a new epicenter Ep is as follows:

Let �(Ei ,Rk,Rl) be a Poisson range identifier function [80,81] for Ei using Rk

and Rl as random reference points:

�(Ei ,Rk,Rl)

= d (Ei ,Rk) cw (Rk,Rl)

cos
(
θ

(
�Ei ,Rk , �Rk ,Rl

)) · d (Rk,Rl) cw (Ei ,Rk)
,

(32)

where Ei is a current epicenter, Rk and Rl are random reference points, d (·) is the
Euclidean distance function, cw (Ei ,Rk) and cw (Rk,Rl) are weighting coefficients
between epicenters Ei and Rk and between Rk and Rl , and θ

(
�Ei ,Rk , �Rk ,Rl

)
is the

angle between lines �Ei ,Rk and �Rk ,Rl :

θ
(
�Ei ,Rk , �Rk ,Rl

)

= cos−1

(
d (Ei ,Rk)

2 + d (Ek,Rl)
2 − d (Ei ,Rl)

2

2d (Ei ,Rk) d (Rk,Rl)

)
.

(33)

Without loss of generality, using (32), a Poissonian distance function D
(Ep

)
for the

finding of new epicenter Ep is defined via a P Poisson distribution [80,81] as follows:

D
(Ep

) = P (k, λ) , (34)

where

k = �(Ei ,Rk,Rl) , (35)

with mean

λ = E [�(Ei ,Rk,Rl)] . (36)

Therefore, the resulting new epicenter Ep is a Poisson random epicenter Ep with a
Poisson range identifier D

(Ep
)
.

For a large set of reference points, only those reference points that are within the
r (Ei ) radius around the current solution Ei are selected for the determination of the
new solution Ep. This radius is defined as

r (Ei ) = χ10
Q1

(
2M̃

)
−Q2

, (37)
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where M̃ is the average magnitude,

M̃ = 1

|P|M = 1

|P|
|P |∑
i=1

M
(
Ei , LEi

j

)
, (38)

Q1 and Q2 are constants, and χ is a normalization term. Motivated by the corre-
sponding seismologic relations of the Dobrovolsky–Megathrust radius formula [81],
the constants in (37) are selected as Q1 = 0.414 and Q2 = 1.696.

In the relevance range r (Ei ) of (37), the weights of reference points are determined
by the seismic power function (26).

3.4 Population diversity

3.4.1 Hypocentral

The hypocentral of an epicenter is aimed to increase the diversity of population by a
randomization.

Let dimk (Ei )be an actual randomly selected kth dimension and k = 1, . . . , dim (Ei )
be a current epicenter Ei , i = 1, . . . , |P|. The H (dimk (Ei )) hypocentral provides a
random displacement [80,81] of dimk (Ei ) using C (Ei ) (see (30)):

H (dimk (Ei )) = dimk (Ei ′)

=

√√√√√√

(
1

M
(
dimk (Ei ),Ldimk (Ei )

j

) dimk (Ei )
)2

+ (U (−C (Ei ) ,C (Ei )))2
(39)

where U (−C (Ei ) ,C (Ei )) is a uniform random number from the range of [−C (Ei ) ,

C (Ei )] to yield the displacement dimk (Ei ′), M
(
dimk (Ei ) , Ldimk (Ei )

j

)
is the magni-

tude, and Ldimk (Ei )
j is a location point where P

(
dimk (Ei ) , Ldimk (Ei )

j

)
is maximal for

dimk (Ei ).
The D (Ei ) locations around the cumulativemagnitudeC (Ei ) of Ei are generated by

(39) through all the randomly selected Y dimensions, where Y is as follows [77,78]:

Y = U (1, dim (Ei )) . (40)

The process is repeated for all Ei .

3.4.2 Poisson randomization

To generate random locations around dimk (Ei ), a Poisson distribution is also used
to increase the diversity of the population. A random location in the kth dimension
Ldimk (Ei )
r around dimk (Ei ) is generated as follows:
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Ldimk (Ei )
r = dimk (Ei ) w, (41)

where

w ∈ P (X = k, λ) (42)

is a Poisson random number with distribution coefficients k and λ. Given that it is
possible that using (41) some randomly generated locations will be out of the feasi-
ble space SF , a normalization operator N (·) of Ldimk (Ei )

r is defined to keep the new
locations around dimk (Ei ) in SF , as follows [77,78]:

Ldimk (Ei )
r = Ldimk (Ei )

r

(
mod

(
Bk
up − Bk

low

))
+ Bk

low, (43)

where Bk
low and Bk

up are lower and upper bounds on the boundaries of locations in
a kth dimension, and mod(·) is to a modular arithmetic function. The procedure is
repeated for the randomly selected t = U (1, dim (Ei )) dimensions of Ei , for ∀i .

3.5 Iterative convergence

The method of convergence of solutions in the Poisson optimization is summarized
in Method 1.

Method 1 Convergence of Solutions
Step 1. Generate |P| epicenters, E1, . . . ,E|P |, with D (Ei ) random locations around a given i th

epicenter Ei .
Step 2. Select an epicenter Ei , and determine the seismic operators D (Ei ), P

(Ei , L j
)
,M

(Ei , L j
)
.

Step 3. Determine theD
(Ep

)
Poisson distance function using references Rk andRl to yield a new

solution Ep .
Step 4. Repeat steps 1–3, until the closest epicenter to the E ′ optimal epicenter is not found or other
stopping criteria are not met.

An epicenter Ei and the generation of a new solution Ep in the objective space
SO are depicted in Fig. 2. The ellipsoid around Ei and the projection point lk of the
reference location Rk are serving the determination of power function P (Ei ,Rk) in
the reference location Rk .

A new epicenter Ep is determined via the Poisson functionD
(Ep

)
. Locations with

low power function (26) values have highmagnitudes (27) from the epicenter, whereas
locations with high power function values have low magnitudes from the epicenter.

3.6 Framework

The algorithmical framework that utilizes the Poisson entanglement optimization
method for the problem statement presented in Sect. 2 is defined in Algorithm 1.
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Fig. 2 Iteration step of the Poisson optimization model in the objective space SO . An i th epicenter, Ei
(depicted by the red dot), with a projected point lk of random reference location Rk . Reference locations
Rk and Rl (blue dots) identify locations Lk and Ll , respectively. The power in Rk is P (Ei ,Rk ) (see
(26)), while the magnitude is M (Ei ,Rk ) (see (27)). Notation dimi (·) refers to the i th dimension of lk ,
and coefficients a and b define the shape of the ellipse (yellow) around epicenter Ei . The H (dimk (Ei ))
hypocentral of Ei is determined via the range of the C (Ei ) cumulative magnitude (depicted by the green
circle). The new epicenter Ep (depicted by the green dot) is determined by the D

(Ep
)
Poisson distance

function using Rk and Rl , with angle θ
(
�Ei ,Rk

, �Rk ,Rl

)
between lines �Ei ,Rk

and �Rk ,Rl
(Color

figure online)

Algorithm 1 Poisson Entanglement Optimization for Quantum Networks
Step 0. In an initial phase, a random population P of |P| feasible solutions is generated [77,78] Let
G be an upper bound on the number of generations, nG .
Step 1. For each epicenter xi = Ei in P , define D (Ei ) random locations around Ei . For a diversity
increment, determine theH (dimk (Ei )) hypocentral displacement function (39) for dimk (Ei ), for
k = 1, . . . , dim (Ei ).
Step 2. Determine the seismic power P

(Ei , L j
)
operator via (26) for an i th epicenter Ei in a j th

location point L j , j = 1, . . . , D (Ei ). Determine the L
Ei
j , the location point where the seismic power

P
(
Ei , LEij

)
is maximal for a given epicenter Ei , via (28).

Step 3. Determine epicenter E ′ with a maximal seismic power Pmax
(E ′) via (29). Compute seismic

magnitude M
(
E ′, LE ′

j

)
via (27), and determine the sum of all N seismic magnitudesM via (31).

Step 4. Compute the D (Ei ) dispersion via (21) and the C (Ei ) cumulative seismic magnitude via
(30). Select non-dominated solutions from the P population set to the set NP of non-dominated

solutions. Identify ϕk as ϕk = L
Ei
k , where L

Ek
k is a kth location around Ei . UpdateNP with the

non-dominated solutions.
Step 5. Create set P ′ of epicenters by selecting p feasible solutions from P using the Pr (ϕi )

selection probability as Pr (ϕi ) = f̃ (ϕi )
/∑

r∈P f̃ (ϕr ). Apply Sub-procedure 1.

Step 6. If nG ≥ G, then stop the iteration; otherwise, repeat steps 1–4.
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Sub-procedure 1 of step 5 is discussed in the Appendix.

3.6.1 Optimization of classical communications

Toachieve theminimization of classical communications required by the entanglement
optimization, the S-metric (or hypervolume indicator) is integrated, which is a quality
measure for the solutions or a contribution of a single solution in a solution set [77,78].
By definition, thismetric identifies the size of dominated space (size of space covered).

By theory, the S (R) S-metric for a solution set R = {r1, . . . , rn} is as follows:

S (R) = L
( ⋃
r∈R

{
xre f ∠x∠ x | r}

)
, (44)

whereL is a Lebesgue measure, notation b∠a means a dominates b (or b is dominated
by a), and xre f is a reference point dominated by all valid solutions in the solution set
[77,78].

For a given solution ri , the S-metric identifies the size of space dominated by ri but
not dominated by any other solution, without loss of generality as:

S (ri ) = �S (R, ri ) = S (R) − S (R\{ri }) . (45)

In the optimization of classical communications, the existence of two objective func-
tions is assumed. The first objective function, f1, is associated with the minimization
of the cost of the first type of classical communications related to the reception and
storage of entangled systems in the quantum nodes. (It covers the classical commu-
nications related to the required entanglement throughput by the nodes, fidelity of
received entanglement, number of stored entangled states, and fidelity parameters.)
Thus,

f1 : min∀i C1 (xi ) , (46)

where C1 (xi ) is the cost associated with the first type of classical communications
related to a xi .

The second objective function, f2, is associated with the cost of the second type of
classical communications that is related to entanglement purification:

f2 : min∀i C2 (xi ) , (47)

where C2 (xi ) is the cost associated with the second type of classical communications
with respect to xi .
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Assuming objective functions f1 and f2, the S (ri ) of a particular solution ri is as
follows:

S (ri ) = ( f1 (ri ) − f1 (ri−1)) ( f2 (ri ) − f2 (ri+1)) . (48)

Given that the S-metric is calculated for the solutions, a set of nearest neighbors that
restrict the space can be determined. Since the volume of this space can be quantified
by the hypervolume, the solutions that satisfy objectives f1 and f2 can be found by
utilizing (48).

3.7 Computational complexity

The computational complexity of the Poissonian optimization method is derived as
follows.Given that |P| epicenters are generated in the search space and that the number
of locations for an i th epicenter Ei is determined by the dispersion operator D (Ei ), the
resulting computational complexity at a total number of locations q = ∑|P |

i=1 D (Ei )
(see (22)) is

O
(
(|P| + q)d/2 log (|P| + q)

)
, (49)

since after a sorting process the locations for a given epicenter Ei can be calculated
with complexity O (D (Ei )), where d is the number of objectives.

Considering that in our setting d = 2, the total complexity is

O ((|P| + q) log (|P| + q)) . (50)

4 Problem resolution

The resolution of the problem shown in Sect. 2 using the Poissonian entanglement
optimization framework of Sect. 3 is as follows.

Let XSlow be a set of nodes for which condition (7) holds for the fidelity of the
received entangled states in the nodes, and let XShigh be a set of nodes for which
condition (8) holds for the received fidelity entanglement.

Then let
∣∣XSlow

∣∣ and
∣∣∣XShigh

∣∣∣ be the cardinality of XSlow and XShigh , respectively.

Specifically, function (10) for the XSlow -type nodes is rewritten as

GXSlow (X) = max

∣∣XSlow

∣∣∑
i=1

F XSlow
i (X) E

(
D

XSlow
i (X)

)
, (51)

where F XSlow
i (X) is the entanglement fidelity function for an i th XSlow -type node xi ,

xi ∈ XSlow , and E

(
D

XSlow
i (X)

)
is the expected relative entropy of entanglement in

an i th XSlow -type xi .
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Similarly, for the XSlow -type nodes, function (10) is as follows:

GXShigh (X) = max

∣∣∣XShigh

∣∣∣∑
i=1

F XShigh
i (X) E

(
D

XShigh
i (X)

)
. (52)

From (51) and (52), a cumulative GXShigh⊗XShigh (X) is defined as

GXSlow⊗XShigh (X) =

∣∣∣XShigh

∣∣∣∑
i=1

AiF
XShigh
i (X) E

(
D

XShigh
i (X)

)

+
∣∣XSlow

∣∣+
∣∣∣XShigh

∣∣∣∑

i=
∣∣∣XShigh

∣∣∣+1

AiF XSlow
i (X) E

(
D

XSlow
i (X)

)
F1 (X) ,

(53)

where Ai refers to the number of received entangled systems in an i th node, while

F1 (X) = min C (X) =
N∑
i=1

T∑
i=1

f j B
j
F (xi ). (54)

The fidelity types of the available resource states in the nodes should be further divided
into T classes. The final function is then evaluated as

GXSlow⊗XShigh (X) = F1 (X) F2 (X)

=
∣∣XSlow

∣∣+
∣∣∣XShigh

∣∣∣∑
i=1

T∑
j=1

f j B
j
F (xi )F2 (X) ,

(55)

where

F2 (X) = minS (X) =
∣∣XSlow

∣∣+
∣∣∣XShigh

∣∣∣∑
i=1

Si (X). (56)

Thus,

GXSlow⊗XShigh (X) =
∣∣XSlow

∣∣+
∣∣∣XShigh

∣∣∣∑
i=1

Si (X), (57)
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such that [77,78]

∣∣XSlow

∣∣+
∣∣∣XShigh

∣∣∣∑
i=1

Fi (X) ≥ γ F1 (N )

= γ

∣∣XSlow

∣∣+
∣∣∣XShigh

∣∣∣∑
i=1

T∑
j=1

f j B
j
F (xi )

≤ νX (ϕi ) 	 ≤ 
B j
F (xi ) ,

(58)

where νX (ϕi ) =
Z∑
j=1

τ j (ϕi ), γ is given by the constraint of (13), while 
 is given by

the constraint of (19).

4.1 Convergence of solutions

Let Fi (X) ∈ [0, 1] be the objective function that refers to the resulting entanglement
fidelity in a particular node xi , after purification and quantum error correction with
per-node cost functions Fi

1 (X), and Fi
2 (X), respectively.

Precisely, a current i th epicenter Ei identifies a solution in the objective space SO ,

SO :
{
Fi
1 (N ) , Fi

2 (N ) ,Fi (X)
}

. (59)

The random locations around Ei also represent possible solutions. Let E∗ be an optimal
solution in the SO subject space, which maximizes Fi (X) and minimizes Fi

1 (X) and
Fi
2 (X). From Ei , the algorithmdetermines a new solution (epicenter)Ep via theD

(Ep
)

Poisson distance function, using the connection model between the locations around
Ei . To improve the diversity, locations around Ep are generated. The new epicenter Ep

converges to an optimal solution E∗. The iterations are repeated until E∗ is not found
or until a stopping criterion is met.

The iteration from a current solution Ei to a new solution Ep toward a global optimal
E∗ in SO is illustrated in Fig. 3.

5 Numerical evidence

In this section, a numerical evidence is proposed to demonstrate the Poisson entan-
glement optimization method.

5.1 Decisionmaking

To demonstrate the results of Sect. 4, let Fi (X) be the object function subject to
maximize. The problem is to determine a matrix X that maximizes Fi (X), and also
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Fig. 3 Distribution of solutions for entanglement fidelity maximization in the objective space SO :{
Fi
1 (N ) , Fi

2 (N ) ,Fi (X)
}
of the entanglement optimization problem (cost functions F1 (N ) and F2 (N )

and the objective function Fi (X) are normalized onto the range of [0, 1]). a A random epicenter Ei refers
to a current solution (depicted by the red dot) with the Poisson distributed reference locations (the reference
points are not real solutions). The random reference locations are clustered into two classes: (1) reference
locations within radius r (Ei ) around Ei and (2) reference locations outside the radius (depicted by the gray
dots). Reference locations outside the range are neglected in the iteration. bAnew epicenter Ep (depicted by
the green dot) is determined via the connection model of relevant reference points (e.g., lie inside the range
of r (Ei )), which yields the D

(Ep
)
Poisson distance function. The new solution, Ep , converges toward an

optimal solution E∗ (depicted by the purple dot). The reference locations inside the relevance region are
weighted by the seismic power function (Color figure online)

E

(
D

NSlow
i (X)

)
, and minimizes the cost functions Fi

1 (N ) and Fi
1 (N ). Thus, for each

node N , the optimal number of received and stored entangled systems should be
determined, with high and low fidelity classes.

Particularly, finding an optimal solution E∗ in SO with the assumptions given
in Sect. 4 therefore means the selection of the optimal objective function (e.g.,
maximizing the entanglement fidelity Fi (X) or maximizing the relative entropy of

entanglement E

(
D

NSlow
i (X)

)
), in particular node types XSlow and XShigh , while all

cost functions are minimized in the quantum network.
A solution set in SO is depicted in Fig. 4.
An optimal solution E∗ in SO therefore yields the maximization of entanglement

fidelityFN (X) if a particular node N belongs to the class NShigh , whereas it maximizes

the relative entropy of entanglement E

(
D

NSlow
i (X)

)
if N belongs to the class NSlow .

Increasing B j
F (xi ) for a NShigh -class node and then performing an optimal purification

and quantum error correction could significantly improve the fidelity of entanglement.
On the other hand, for a NSlow -class node, the fidelity improvement at an optimal
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Fig. 4 Solution set in SO , with
an optimal epicenter E∗,
Fi
1 (N ) ∈ [0.3, 0.6],

Fi
2 (N ) ∈ [0.3, 0.6],

Fi (X) ∈ [0.85, 1]

purification and quantum error correction is insignificant. Thus, incrementing B j
F (xi )

does not lead to a significant improvement in the fidelity. The optimal solution for these
nodes is to focus on improving the relative entropy of entanglement, which requires
lower cost function values.

This decision strategy provides a global optimal with respect to all quantum nodes
of the quantum network.

The decision making is illustrated in Fig. 5. In Fig. 5a, the F entanglement fidelity
is depicted in function of Fi

1 (N ) for NSlow and NShigh nodes. In Fig. 5b, the D relative

entropy of entanglement is depicted in function of Fi
1 (N ) for NSlow and NShigh nodes.

The initial values of F and D are assumed to be equal for a given class, while the
value of Fi

2 (N ) is set to constant for illustration purposes.
For an NShigh node, the increment of Fi

1 (N ) leads to significant improvement in

F , while the increment in D is moderate. For an NSlow node, the increment of Fi
1 (N )

leads to moderate improvement in F , while the improvement in D is significant. As
a corollary, the increment of the entanglement throughput is a useful approach to
increase the entanglement fidelity for the XShigh set, and to boost the relative entropy
of entanglement in the XSlow set.

5.2 Distribution of solutions

First, we analyze the distribution of solutions in the feasible space SF focusing on the
magnitudes associated to the locations around epicenters.
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Fig. 5 Illustration of the decision making. a The F entanglement fidelity values in function of Fi
1 (N ) for

NSlow (red line) and NShigh (blue line) nodes. The value of Fi
2 (N ) is set to constant. b The D relative

entropy of entanglement values in function of Fi
1 (N ) for NSlow (red line) and NShigh (blue line) nodes.

The value of Fi
2 (N ) is set to constant (Color figure online)

Let us assume that the total number of q locations (see (22)) can be divided into m
magnitude ranges [79], such that

m∑
i=1

ni = q =
|P |∑
i=1

D (Ei ) , (60)

where ni is the number of locations belonging to an i th magnitude range, |P| is the
population size. Then let Mi be the magnitude associated to the i th magnitude range.
Then a ñi approximation of ni is evaluated as

ñi = f (Mi ) , (61)

where f (·) is a fitting function. To give an estimate on ni at a particular magnitude
Mi , we utilize a power law distribution [79] function B (ni ) for a log-scaled ni , as

B (ni ) : log10 (ni ) = a − bM̃i , (62)

where M̃i is a log-scaled Mi , while a and b are constants [79].
Then, the ñi Poisson estimate is yielded as

ñi = σ 2
i = λi , (63)

where σ 2
i is the observational variance, while λi is the mean of a Poisson distribution.

Since the sum of independent Poisson variables is also a Poisson variable with mean
equals to the sum of the components means,

λ (q) =
m∑
i=1

λi ≈ q, (64)
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Fig. 6 Distribution of B (λi ) for different magnitudes Mi , Mi = 1, . . . , 10 and coefficient b, for a a = 10,
and b a = 20
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Fig. 7 Distribution of λ (q) for kit iterations, kit = 0, . . . , 1000, for a λ (q) = 102, and b λ (q) = 106

where λ (q) is the mean total number, while λi is an i th component mean. Using
the Poisson property σ 2 = λ, the σ 2

q estimated uncertainty is yielded as [79] σ 2
q =

λ (q) = ∑m
i=1 f

(
M̃i

)
. Thus using a corresponding fitting function f (·), the mean

and the variance of the total number of events are equal to the sum of the fitted values.
In our model the distribution of the log-scaled ñi = λi values in function of Mi

is well approachable by the power law distribution B (λi ) : log10 (λi ) = a − bM̃i ,
while the distribution of the λ (q) total number (64) of locations is approachable by
aN (

λ (q) , σ 2
N

)
, Gaussian distribution with variance σ 2

N = λ (q) as λ (q) → ∞, by
theory.

The distributions of B (λi ) in function of the magnitude Mi and coefficient b are
illustrated in Fig. 6.

The distributions of λ (q) (see (64)) for kit iterations are depicted in Fig. 7. In
Fig. 7a, λ (q) = 102, while Fig. 7b illustrated the distribution at λ (q) = 106. As
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Fig. 8 The distributions of B (λi ) for kit iterations, kit = 0, . . . , 1000, a λ (q) = 102, and b λ (q) = 106

λ (q) → ∞, the distributions of λ (q) can be approximated by a N (
λ (q) , σ 2

N
)
,

σ 2
N = λ (q) Gaussian distribution.
The associated distributions of B (λi ) for the values of λ (q) are depicted in Fig. 8.

The maximum value of B (λi ) is selected to B (λi ) ≈ 10 in each cases which values
are picked up at λ (q), where λ (q) = 102 in Fig. 8a, and λ (q) = 106 in Fig. 8b. The
B (λi ) values approximates to a Gaussian distribution. The statistical distribution of
B (λi ) is therefore constitutes a similar pattern for arbitrary λ (q).

6 Conclusions

Wedefined an optimization framework for the transmission and processing of quantum
entanglement in the entangled network structure of the quantum Internet. The proposed
Poissonian entanglement optimization framework fuses the fundamental concepts of
quantum Shannon theory with the theory of evolutionary algorithms and seismic wave
propagations. Two objective functions are defined, with primary focus on the entan-
glement fidelity and secondary focus on the relative entropy of entanglement. As an
additional objective function, the minimization of classical communications required
by the entanglement optimization procedure is considered. The cost functions are
defined to cover the physical attributes of entanglement transmission, purification, and
storage in quantum memories. This method can be implemented with low complex-
ity that allows a straightforward application in future quantum Internet and quantum
networking scenarios.
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Appendix

Definitions

Entanglement Fidelity

Let
|β00〉 = 1√

2
(|00〉 + |11〉) (A.1)

be the target Bell state subject to be created at the end of the entanglement distribution
procedure. The entanglement fidelity F at an actually created noisy quantum system
σ is

F (σ ) = 〈β00|σ |β00〉, (A.2)

where F is a value between 0 and 1, F = 1 for a perfect Bell state and F < 1 for an
imperfect state. The fidelity for two pure quantum states is defined as

F(|ϕ〉, |ψ〉) = |〈ϕ|ψ〉|2. (A.3)

The fidelity of quantum states can describe the relation of a pure channel input state
|ψ〉 and the received mixed quantum system σ = ∑n−1

i=0 piρi = ∑n−1
i=0 pi |ψi 〉〈ψi | at

the channel output as

F(|ψ〉, σ ) = 〈ψ |σ |ψ〉 =
n−1∑
i=0

pi |〈ψ |ψi 〉|2. (A.4)

Fidelity can also be defined for mixed states σ and ρ

F(ρ, σ ) =
(
Tr

(√√
σρ

√
σ

))2

=
∑
i

pi

(
Tr

(√√
σiρi

√
σi

))2

. (A.5)
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Relative Entropy of Entanglement

By definition, the E(ρ) relative entropy of entanglement function of a joint state ρ

of subsystems A and B is defined by the D(·‖·) quantum relative entropy function,
without loss of generality as

E(ρ) = min
ρAB

D(ρ‖ρAB) = min
ρAB

Tr(ρ log ρ) − Tr(ρ log(ρAB)), (A.6)

where ρAB is the set of separable states ρAB = ∑n
i=1 piρA,i ⊗ ρB,i .

Evaluation of Solutions

Fitness Function

To evaluate the performance of the epicenters we utilize a mathematical apparatus
based on the Pareto strength and fitness assignment [77,78]. Let Pr (Ei ) be the proba-
bility of selection of an epicenter Ei , defined as

Pr (Ei ) = κ (Ei )∑
l∈K κ (El) , (A.7)

whereκ (Ei ) is the sumofd (·)Euclideandistances betweenEi and the other epicenters,
as

κ (Ei ) =
K∑
l=1

d (Ei , El) =
K∑
l=1

‖Ei − El‖ , (A.8)

where K is a set with cardinality

|K | =
|P |∑
i=1

D (Ei ) +
N∑
i=1

dim(Ei )∑
k=1

R (i, k) , (A.9)

where D (Ei ) is given in (21), and l ∈ K refers to that the position of E j belongs to
set K , and |P| is the population size. Let NP refer to the non-dominated solution
archive, and let

ϕi = Ei (A.10)

refer to the selected epicenter, i.e, to an individual solution in P or in NP .
Let �(ϕi ) be a strength coefficient for solution ϕi , defined as

�(ϕi ) =
∣∣∣ϕk ∈ P

⋃
NP

∣∣∣ ϕk∠ϕi | , (A.11)

where ∠ refers to the Pareto dominance relation between ϕi and ϕk = Ek . As follows,
(A.11) depends on the number of individuals it dominates, by theory [77,78].

By definition, a decision vector A dominates a vector B, i.e., B∠A, if
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fi (A) ≤ fi (B) (A.12)

for ∀i , i = 1, . . . ,m and for at least one j with i , j = 1, . . . , n,

f j (A) ≤ f j (B) , (A.13)

where f : R
m → R

n . The set of non-dominated decision vectors in R
n is called a

Pareto optimal set, while the image under f in the solution space is called the Pareto
front [77,78]. In a multiobjective optimization the aim is to achieve the best Pareto
front, by theory.

Using (A.11), let α (ϕi ) be the raw fitness value of ϕi evaluated by the�(·) strength
function (see (A.11)) of its dominators as

α (ϕi ) =
∑

(ϕk∈P ⋃NP)∧ (ϕi∠ϕk )|
�(ϕk) , (A.14)

with an inverse distance function (referred to as the density value of ϕi ), ρ (ϕi ) as

ρ (ϕi ) = 1

dg (ϕi )
, (A.15)

where dg (ϕi ) is the distance from solution ϕi to its gth nearest individual, where g is
initialized as the square root of the sample size

∣∣P ⋃NP∣∣, by theory [77,78].
Using (A.15), a for a random solution r (ϕi ) the f̃ (·) fitness function of ϕi is as

f̃ (ϕi ) = α (ϕi ) + ρ (ϕi ) . (A.16)

Then let p refer to the number of selected ϕi solutions inP . Using (A.16), the selection
probability of each solution is yielded as

Pr (ϕi ) = f̃ (ϕi )∑
r∈P f̃ (ϕr )

. (A.17)

Constraints

As a solution ϕi does not satisfy the problem constraints C1, C2, C3, a HCz (ϕi ),
z = 1, 2, 3 degrees of violation are defined for the constraints.

For constraint C1 (see (13)), the HC1 (ϕi ) violation function [77,78] is as

HC1 (ϕi ) =
{

γ − ζ (ϕi ) , if ζ (ϕi ) ≤ γ

0, otherwise,
(A.18)

where

ζ (ϕi ) =
N∑
i=1

Fi (ϕi ) . (A.19)
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For constraint C2 (see (15)), the HC2 (ϕi ) violation function is as follows

HC2 (ϕi ) =
{
F1 (ϕi ) − 	, if F1 (ϕi ) ≥ 	

0, otherwise,
(A.20)

where

F1 (ϕi ) =
N∑
i=1

T∑
i=1

f j B
j
F (ϕi ) . (A.21)

For constraint C3 (see (19)), the HC3 (ϕi ) violation function is as

HC3 (ϕi ) =
{

ν (ϕi ) − 
, if ν (ϕi ) ≥ 


0, otherwise,
(A.22)

where

ν (ϕi ) =
N∑
j=1

τ j (ϕi ) . (A.23)

From (A.18), (A.20) and (A.22) a penalty coefficient ∂ (ϕi ) is defined as

∂ (ϕi ) = w1H
C1 (ϕi ) + w2H

C2 (ϕi ) + w3H
C3 (ϕi ) , (A.24)

where wi -s are weighting coefficients [77,78].

Selection Condition

Assuming that there are χ number of selected random solutions such that the selection
probabilities are proportional to their fitness values. The selection of a solution ϕi is
as follows.

First from the selected random solutions a mutant solution �i is generated as

�i = ϕra + ϑ
(
ϕrb − ϕrc

)
, (A.25)

where ri ∈ {a, . . . p} are the random indexes, while ϑ > 0 is a coefficient.
From the components of �i a trial solution Ti is defined with a j th component T( j)

i
as

T( j)
i =

{
�

( j)
i if r (0, 1) < Pcross, or j = r (i)

ϕ
( j)
i , otherwise,

(A.26)

where r (0, 1) is a random number from the range [0, 1], r (i) is a random integer
within (0, X ] for each i , while Pcross is the crossover probability ranged in (0, 1).

Then the selection of the solution ϕi using the trial solution Ti is as

ϕi =
{
Ti , if f̃ (Ti ) ≤ f̃ (ϕi )

ϕi , otherwise,
(A.27)

where function f̃ (·) is given in (A.16).
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Sub-Procedure 1

The Sub-procedure 1 of Algorithm 1 is as follows [77,78].

Sub-procedure 1 Convergence of Solutions

Apply feasible space exploration (41) through the dimensions L
dimk(Ei )
r around dimk (Ei ) of the

epicenters. For i = 1, . . . , p obtain a Ti trial solution (A.26) for ϕi . Determine the best solution
between ϕi and Ti via (A.27). If f̃ (Ti ) ≤ f̃ (ϕi ) and Ti is a non-dominated solution, then update
NP with Ti . Then, update P with the best solution, and with other p − 1 randomly selected
solutions, ϕq , q = 1, . . . , p − 1, using the selection probability function (A.7) as

Pr
(
ϕq

) = f̃
(
ϕq

) /∑p−1
i=1 f̃ (ϕi ).

Notations

The notations of the manuscript are summarized in Table 1.

Table 1 Summary of notations

Notation Description

l Level of entanglement

F Fidelity of entanglement

N Number of nodes in the network

T Number of fidelity types Fj , j = 1, . . . , T of the entangled states

SO Objective space

SF Feasible space

Ll An l-level entangled connection. For an Ll link, the hopdistance is 2
l−1

d (x, y)Ll Hop-distance of an l-level entangled connection between nodes x and y

ELl (x, y) entangled connection ELl (x, y) between nodes x and y

BF
(
ELl (x, y)

)
Entanglement throughput of an Ll -level entangled connection ELl (x, y) between
nodes (x, y)

B j
F (xi ) Number of incoming entangled states in an i th node xi , with fidelity-type j ,

i = 1, . . . , N

X An N × T matrix, X =
(
B j
F (xi )

)
N×T

, it describes the number of resource

entangled states injected into the nodes from each fidelity-type in the network,

B j
F (xi ) ≥ 0 for all i and j

F (xi ) A primary objective function. It identifies the cumulative entanglement fidelity (a
sum of entanglement fidelities in xi ) after an entanglement purification P (xi )
and an optimal quantum error correction C (xi ) in xi

P (xi ) Entanglement purification in xi
C (xi ) Optimal quantum error correction in xi

〈B〉 jF (xi ) An initialization value for B j
F (xi ) in a particular node xi
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Table 1 continued

Notation Description

E (Di (X)) A secondary objective function. It refers to the expected amount of cumulative
relative entropy of entanglement (a sum of relative entropy of entanglement) in
node xi ,

w j (xi ) Quantum memory coefficient for the storage of entangled states from the j th
fidelity type in a node xi , evaluated as:

w j (xi ) = η j B
j
F (xi ) + κ j 〈B〉 jF (xi ),

where η j and κ j are coefficients to describe the storage characteristic of
entangled states with the j th fidelity type

τ j (X) Differentiation of storage characteristic of entangled states from the j th fidelity
type, defined as

τ j (X) = ∑N
i=1

(
w j (xi ) − �

)2
,

where � = ∑N
i=1 w j (xi )

/
N

fC (P (xi )) Cost of entanglement purification P (xi ) in xi
fC (C (xi )) Cost of optimal quantum error correction C (xi ) in xi
C (X) Total cost function, defined as

C (X) =
N∑
i=1

fC (P (xi )) + fC (C (xi )) =
N∑
i=1

T∑
i=1

f j B
j
F (xi ) ,

where T is the number of fidelity types, N is the number of nodes, f j is a total
cost of purification and error correction associated to the j th fidelity type of
entangled states

f j Total cost of purification and error correction associated to the j th fidelity type of
entanglement fidelity

F∗ Critical fidelity coefficient

Slow, Shigh Sets with fidelity bounds Slow (F) and Shigh (F) as
Slow (F) : max∀i Fi < F∗,
and
Shigh (F) : min∀i Fi ≥ F∗

XSlow Set of nodes for which condition Slow (F) : max∀i Fi < F∗ holds

XShigh Set of nodes for which condition Shigh (F) : min∀i Fi ≥ F∗ holds

Si (X) Cost of quantum memory usage in node xi , defined as

Si (X) = λ
∑T

j=1 αi
1
ϒi

B j
F (xi ),

where λ is a constant, αi is a quality coefficient, while ϒi is a capacity
coefficient of the quantum memory

G (X) Main objective function,

G (X) = max
N∑
i=1

Fi (X) E (Di (X))

F1 (N ) Minimization function for cost C (X)

F2 (N ) Minimization function for cost S (X)

C1, C2, C3 Problem constraints

E Epicenter, represents a solution in the feasible space

L j A random location around epicenter E
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Table 1 continued

Notation Description

D (E) Dispersion coefficient of an epicenter E (solution in the feasible space). It
determines the number of affected L j , j = 1, . . . , D (E), locations (also
represent solutions in the feasible space) around an epicenter E

P Population P (a set of possible solutions)

m Control parameter

Ei An i th individual (epicenter) from the |P| individuals (epicenters) in the
population P

f̃ (·) Fitness function

f̃ (〈E〉) A maximum objective value among the |P| individuals
ϑ A residual quantity

fR (·) Rounding function

q Total number of locations, q = ∑|P |
i=1 D (Ei )

D̂ (Ei ) Upper bound on D (Ei ) for a given epicenter Ei
d

(Ei , l j
)

Euclidean distance d
(Ei , l j

)
between an i th epicenter Ei and the projection point

l j of a j th location point L j , j = 1, . . . , D (E) on the ellipsoid around Ei
dimi (·) An i th dimension of l j

P
(Ei , L j

)
Seismic power P

(Ei , L j
)
operator for an i th epicenter Ei . Measures the power in

a j th location point L j , j = 1, . . . , D (Ei ), as

P
(Ei , L j

) =
(

1
d
(Ei ,l j

) M
(Ei , L j

))b1
b0e

σ
ln P

(
Ei ,L j

)
,

where b0 and b1 are regression coefficients, σln P
(E j

) is the standard deviation,

while M
(Ei , L j

)
is the seismic magnitude in a location L j , while l j is the

projection of L j onto the ellipsoid around Ei
M

(Ei , L j
)

Magnitude between epicenter Ei and location L j is evaluated as

M
(Ei , L j

) =
⎛
⎝P

(Ei , L j
) 1

b0e

σ
ln P

(
Ei ,L j

)

⎞
⎠

1
b1

d
(Ei , l j

)

P∗ (Ei ) Maximal seismic power for a given epicenter Ei
C (Ei ) Cumulative magnitude for an epicenter Ei
E ′ Highest seismic power epicenter with magnitude M

(
E ′, LE ′

j

)

f̃
(E ′) Minimum objective values among the |P| epicenters

M Control parameter,

M = ∑|P |
i=1 M

(
Ei , LEij

)
,

where L
Ei
j provides the maximal seismic power for an i th epicenter Ei

� (Ei ,Rk ,Rl ) Poisson range identifier function of Ei , where Rk andRl are random reference
points

cw (Ei ,Rk ),
cw (Rk ,Rl )

Weighting coefficients between epicenters Ei and Rk , and between Rk
andRl

D
(Ep

)
Poissonian distance function D

(Ep
)
, where Ep is a new solution
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Table 1 continued

Notation Description

r (Ei ) Radius around a current solution Ei , defined as
r (Ei ) = χ10

Q1

(
2M̃

)
−Q2 ,

where M̃ is the average magnitude

M̃ = 1
|P |M = 1

|P |
∑|P |

i=1 M
(
Ei , LEij

)
,

while Q1 and Q2 are constants, while χ is a normalization term

dimk (Ei ) Randomly selected kth dimension, k = 1, . . . , dim (Ei ) of a current epicenter Ei ,
i = 1, . . . , |P|

H (dimk (Ei )) Hypocentral, provides a random displacement of dimk (Ei ) using C (Ei )
L
dimk(Ei )
r A random location in the kth dimension L

dimk(Ei )
r around dimk (Ei )

N (·) Normalization operator N (·) of Ldimk(Ei )
r . It keeps the new locations around

dimk (Ei ) in SF , where Bk
low and Bk

up are lower and upper bounds on the
boundaries of locations in a kth dimension

S-metric Hypervolume indicator. A quality measure for the solutions or a contribution of a
single solution in a solution set

S (R) S-metric for a solution set R = {r1, . . . , rn} is as
S (R) = L (⋃

r∈R
{
xre f ∠x∠ x | r}) ,

where L is a Lebesgue measure, notation b∠a refers to that a dominates b (or b
is dominated by a), while xre f is a reference point dominated by all valid
solutions in the solution set

f1, f2 Objective functions

C1 (xi ) Cost results from the first-type classical communications related to a xi
C2 (xi ) Cost results from the second-type classical communications with respect to xi
E∗ Global optima

m Number of magnitude ranges

ni Number of locations belonging to an i th magnitude range

B (ni ) Power law distribution function for a log-scaled ni ,
B (ni ) : log10 (ni ) = ab tildeMi ,
where M̃i is a log scaled Mi , while a and b are constants

ñi Poisson estimate of ni , as
ñi = σ 2

i = λi ,

where σ 2
i is the observational variance, while λi is the mean of a Poisson

distribution

σ 2
q Estimated uncertainty, σ 2

q = λ (q) = ∑m
i=1 f

(
M̃i

)
, where f (·) is a fitting

function

λ (q) Mean total number, λ (q) = ∑m
i=1 λi ≈ q, where λi is an i th component mean

B (λi ) Power law distribution function for λi = ñi
ki t Number of iterations
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