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Abstract We present graphs of information versus disturbance for general quantum
measurements of completely unknown states. Each piece of information and distur-
bance is quantified by two measures: (i) the Shannon entropy and estimation fidelity
for the information and (ii) the operation fidelity and physical reversibility for the
disturbance. These measures are calculated for a single outcome based on the general
formulas derived by the present author (Terashima in Phys Rev A 93:022104, 2016)
and are plotted on four types of information–disturbance planes to show their allowed
regions. In addition, we discuss the graphs of these metrics averaged over all possible
outcomes and the optimal measurements when saturating the upper bounds on the
information for a given disturbance. The results considerably broaden the perspective
of trade-offs between information and disturbances in quantum measurements.

Keywords Quantum measurement · Shannon entropy · Estimation fidelity · Operation
fidelity · Physical reversibility

1 Introduction

In quantum theory, a measurement that provides information about a system inevitably
disturbs the state of the system, unless the original state is a classical mixture of the
eigenstates of an observable. This feature is not only of great interest to the foundations
of quantum mechanics but also plays an important role in quantum information pro-
cessing and communication [1], such as in quantum cryptography [2–5]. As a result,
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the relationship between information and disturbances has been the subject of numer-
ous studies [6–22] over many years. Most studies have only discussed the disturbance
in terms of the size of the state change. However, the disturbance can also be discussed
in terms of the reversibility of the state change [23–26] because the state change can
be recovered with a nonzero probability of success if the measurement is physically
reversible [27–29].

Intuitively, if a measurement provides more information about a system, the mea-
surement changes the state of the system by a greater degree and the change becomes
more irreversible. To show this trade-off, various inequalities have been derived using
different formulations. For example, Banaszek [7] derived an inequality between the
amount of information gain and the size of the state change using two fidelities, and
Cheong and Lee [25] derived an inequality between the amount of information gain
and the reversibility of the state change using the fidelity and reversal probability.
These inequalities have been verified [30–33] in single-photon experiments.

In this paper, we present graphs of information versus disturbance for general
quantum measurements of a d-level system in a completely unknown state. The infor-
mation is quantified by the Shannon entropy [6] and the estimation fidelity [7], whereas
the disturbance is quantified by the operation fidelity [7] and the physical reversibil-
ity [34]. These metrics are calculated for a single outcome using the general formulas
derived in Ref. [26] and are plotted on four types of information–disturbance planes
to show the allowed regions. Moreover, we show the allowed regions for these met-
rics averaged over all possible outcomes via an analogy with the center of mass. The
allowed regions explain the structure of the relationship between the information and
disturbance including both the upper and lower bounds on the information for a given
disturbance, even though the lower bounds can be violated by non-quantum effects
such as classical noise and the observer’s non-optimal estimation. In particular, opti-
mal measurements saturating the upper bounds are shown to be different for the four
types of information–disturbance pairs. Therefore, our results broaden our understand-
ing of the effects of quantum measurements and provide a useful tool for quantum
information processing and communication.

Two of the above bounds have been shown by Banaszek [7] and Cheong and Lee [25]
to be inequalities for the average values via different methods than ours. The most
important difference is that they directly discussed the information and disturbance
averaged over outcomes, whereas we start with those pertaining to each single out-
come derived [26] in the context of a physically reversible measurement [27–29].
Even though trade-offs between information and disturbance are conventionally dis-
cussed using the average values [6,7,9,10,16,18], physically reversible measurements
strongly imply trade-offs at the level of a single outcome [11]. That is, in a physically
reversible measurement, whenever a second measurement called the reversing mea-
surement recovers the pre-measurement state of the first measurement, it erases all
the information obtained by the first measurement (see the Erratum of Refs. [35,36]).
This state recovery with information erasure occurs not on average but only when the
reversing measurement yields a preferred single outcome.

Moreover, starting from the level of a single outcome greatly simplifies the deriva-
tion of the allowed regions and optimal measurements. It is easy to show the allowed
regions pertaining to a single outcome because the information and disturbance per-
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taining to a single outcome contain only a definite number of bounded parameters and
have some useful invariances under parameter transformations. From these allowed
regions, the allowed regions for the average values are shown using a graphical method
based on an analogy with the center of mass, which makes it easy to construct the opti-
mal measurements. In fact, without our method, it would be difficult to find all of the
bounds and optimal measurements.

The rest of this paper is organized as follows. Section 2 reviews the procedure for
quantifying the information and disturbances in quantum measurements. Sections 3
and 4 show the allowed regions for information and disturbance pertaining to a sin-
gle outcome and those for the average values over all possible outcomes. Section 5
discusses the optimal measurements to show their differences for the four types of
information–disturbance pairs. Section 6 summarizes our results.

2 Information and disturbance

First, the amount of information provided by a measurement is quantified. Suppose
that the d-level system to be measured is known to be in one of a set of predefined pure
states {|ψ(a)〉}. The probability for |ψ(a)〉 is given by p(a); however, which |ψ(a)〉
is actually assigned to the system is unknown. Here we focus on the case where no
prior information concerning the system is available, assuming that {|ψ(a)〉} is a set
of all the possible pure states and that p(a) is uniform according to the normalized
invariant measure over the pure states. Because {|ψ(a)〉} in this case is a continuous
set of states, the index a actually represents a set of continuous parameters such as the
hyperspherical coordinates in 2d dimensions as in Ref. [26], where the summation over
a is replaced with an integral over the coordinates using the hyperspherical volume
element.

A quantum measurement is performed to obtain information about the state of the
system. It can be described by a set of measurement operators {M̂m} [1] that satisfy

∑

m

M̂†
m M̂m = Î , (1)

where m denotes the outcome of the measurement and Î is the identity operator. Here,
the quantum measurement has been assumed to be ideal [37] or efficient [8] in the
sense that it does not have classical noise yielding mixed post-measurement states
because we focus on the quantum nature of the measurement. When the system is in
a state |ψ(a)〉, the measurement {M̂m} yields an outcome m with probability

p(m|a) = 〈ψ(a)|M̂†
m M̂m |ψ(a)〉, (2)

changing the state into

|ψ(m, a)〉 = 1√
p(m|a)

M̂m |ψ(a)〉. (3)
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Each measurement operator can be decomposed by a singular-value decomposition,
such as

M̂m = Ûm D̂m V̂m, (4)

where Ûm and V̂m are unitary operators and D̂m is a diagonal operator in an orthonormal
basis {|i〉} with i = 1, 2, . . . , d such that

D̂m =
∑

i

λmi |i〉〈i |. (5)

The diagonal elements {λmi } are called the singular values of M̂m and satisfy 0 ≤
λmi ≤ 1.

From the outcome m, the state of the system can be partially deduced. For example,
Bayes’s rule states that, given an outcome m, the probability that the state was |ψ(a)〉
is given by

p(a|m) = p(m|a) p(a)

p(m)
, (6)

where p(m) is the total probability of outcome m,

p(m) =
∑

a

p(m|a) p(a). (7)

That is, the outcome m changes the probability distribution for the states from {p(a)}
to {p(a|m)}. This change decreases the Shannon entropy, which is known as a measure
of the lack of information:

I (m) =
[
−
∑

a

p(a) log2 p(a)

]

−
[
−
∑

a

p(a|m) log2 p(a|m)

]
. (8)

Therefore, I (m), which we define as the information gain, quantifies the amount of
information provided by the outcome m of the measurement {M̂m} [11,38] and is
explicitly written in terms of the singular values of M̂m as [26]

I (m) = log2 d − 1

ln 2

[
η(d) − 1

]

− log2 σ 2
m + 1

σ 2
m

∑

i

λ2d
mi log2 λ2

mi∏
k �=i

(
λ2
mi − λ2

mk

) , (9)

where

η(n) =
n∑

k=1

1

k
, σ 2

m =
∑

i

λ2
mi . (10)

123



Allowed region and optimal measurement... Page 5 of 22 250

Note that I (m) satisfies

0 ≤ I (m) ≤ log2 d − 1

ln 2
[η(d) − 1]. (11)

The average of I (m) over all outcomes,

I =
∑

m

p(m) I (m), (12)

is equal to the mutual information [6] between the random variables {a} and {m},

I =
∑

m,a

p(m, a) log2
p(m, a)

p(m) p(a)
(13)

with p(m, a) = p(m|a) p(a) because p(a) is uniform.
Alternatively, the state of the system can be estimated as a state |ϕ(m)〉 depending

on the outcome m. In the optimal estimation [7], |ϕ(m)〉 is the eigenvector of M̂†
m M̂m

corresponding to its maximum eigenvalue. The quality of the estimate is evaluated by
the estimation fidelity such that

G(m) =
∑

a

p(a|m)
∣∣〈ϕ(m)|ψ(a)〉∣∣2. (14)

As was found for I (m), G(m) also quantifies the amount of information provided by
the outcome m of the measurement {M̂m} [cf. Eq. (8)] and is explicitly written in terms
of the singular values of M̂m as [26]

G(m) = 1

d + 1

(
σ 2
m + λ2

m,max

σ 2
m

)
, (15)

where λm,max is the maximum singular value of M̂m . Note that G(m) satisfies

1

d
≤ G(m) ≤ 2

d + 1
. (16)

The average of G(m) over all outcomes,

G =
∑

m

p(m)G(m), (17)

becomes the mean estimation fidelity discussed in Ref. [7] because

p(m) = σ 2
m

d
,
∑

m

σ 2
m = d, (18)
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even though G(m) was not derived in Ref. [7]. Note that G can be derived from
G(m); however, G(m) cannot be derived from G. That is, G(m) characterizes the
measurement {M̂m} in more detail than G.

Next, the degree of disturbance caused by the measurement is quantified. When
the measurement {M̂m} yields an outcome m, the state of the system changes from
|ψ(a)〉 to |ψ(m, a)〉, as given in Eq. (3). The size of this state change is evaluated by
the operation fidelity such that

F(m) =
∑

a

p(a|m)
∣∣〈ψ(a)|ψ(m, a)〉∣∣2. (19)

F(m) quantifies the degree of disturbance caused when the measurement {M̂m} yields
the outcome m and is explicitly written in terms of the singular values of M̂m as [26]

F(m) = 1

d + 1

(
σ 2
m + τ 2

m

σ 2
m

)
, (20)

where
τm =

∑

i

λmi . (21)

Note that F(m) satisfies
2

d + 1
≤ F(m) ≤ 1. (22)

Similar to G(m), the average of F(m) over all outcomes,

F =
∑

m

p(m) F(m), (23)

becomes the mean operation fidelity discussed in Ref. [7], even though F(m) was not
derived in Ref. [7].

In addition to the size of the state change, the reversibility of the state change can
also be regarded as a measure of the disturbance. Even though |ψ(a)〉 and |ψ(m, a)〉
are unknown, this state change is physically reversible if M̂m has a bounded left inverse
M̂−1

m [28,29]. To recover |ψ(a)〉, a second measurement called a reversing measure-
ment is made on |ψ(m, a)〉. The reversing measurement is described by another set
of measurement operators {R̂(m)

μ } that satisfy

∑

μ

R̂(m)†
μ R̂(m)

μ = Î , (24)

and, moreover, R̂(m)
μ0 ∝ M̂−1

m for a particular μ = μ0, where μ denotes the outcome
of the reversing measurement. When the reversing measurement yields the preferred
outcome μ0, the state of the system reverts to |ψ(a)〉 via the state change caused by
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the reversing measurement because R̂(m)
μ0 M̂m ∝ Î . For the optimal reversing measure-

ment [34], the probability of recovery is given by

R(m, a) = λ2
m,min

p(m|a)
, (25)

where λm,min is the minimum singular value of M̂m . The reversibility of the state
change is then evaluated by this maximum successful probability as

R(m) =
∑

a

p(a|m) R(m, a). (26)

As was found for F(m), R(m) also quantifies the degree of disturbance caused when
the measurement {M̂m} yields the outcome m [cf. Eq. (19)] and is explicitly written
in terms of the singular values of M̂m as [26]

R(m) = d

(
λ2
m,min

σ 2
m

)
. (27)

Note that R(m) satisfies
0 ≤ R(m) ≤ 1. (28)

The average of R(m) over all outcomes,

R =
∑

m

p(m) R(m), (29)

is the degree of physical reversibility of a measurement discussed in Ref. [34], whose
explicit form in terms of the singular values is given in Ref. [25], even though R(m)

was not derived in Ref. [25].
Therefore, the information and disturbance for a single outcome m are obtained as

functions of the singular values of M̂m : I (m) and G(m) for the information and F(m)

and R(m) for the disturbance. Note that they are invariant under the interchange of
any pair of singular values,

λmi ←→ λmj for any (i, j), (30)

and under rescaling of all the singular values,

λmi −→ cλmi for all i, (31)

by a constant c [26]. By contrast, the probability for the outcome m, p(m) = σ 2
m/d,

is invariant under the interchange but is not invariant under the rescaling.
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As an important example, consider M̂ (d)
k,l (λ), which is defined as a measurement

operator whose singular values are

1, 1, . . . , 1︸ ︷︷ ︸
k

, λ, λ, . . . , λ︸ ︷︷ ︸
l

, 0, 0, . . . , 0︸ ︷︷ ︸
d−k−l

(32)

with 0 ≤ λ ≤ 1. Even though the information and disturbance for M̂ (d)
k,l (λ) can be

calculated from Eqs. (9), (15), (20), and (27), calculating I (m) is not straightforward
due to the degeneracy of the singular values. By taking the limit λmi → λmk , I (m) is
found to be [26]

I (m) = log2 d − 1

ln 2

[
η(d) − 1

]
− log2

(
k + λ2

)

+ 1

k + λ2

[
λ2(k+1) log2 λ2

(λ2 − 1)k
−

k−1∑

n=0

a(k+1)
n

(λ2 − 1)k−n

]
(33)

for M̂ (d)
k,1 (λ) and

I (m) = log2 d − 1

ln 2

[
η(d) − 1

]

− log2

(
1 + lλ2

)
− 1

1 + lλ2

l−1∑

n=0

c(l+1)
n (λ)

(1 − λ2)l−n
(34)

for M̂ (d)
1,l (λ), where {a( j)

n } and {c( j)
n (λ)} are given by

a( j)
n = 1

ln 2

(
j

n

)[
η( j) − η( j − n)

]
, (35)

c( j)
n (λ) = λ2( j−n)

[(
j

n

)
log2 λ2 + a( j)

n

]
. (36)

Similarly, P̂(d)
r is defined as a projective measurement operator of rank r . Note that

M̂ (d)
k,l (0) = P̂(d)

k , M̂ (d)
k,l (1) = P̂(d)

k+l , and P̂(d)
d = Î . For P̂(d)

r , I (m) is found to be [39]

I (m) = log2
d

r
− 1

ln 2

[
η(d) − η(r)

]
. (37)

3 Allowed region

Next, we plot the information and disturbance for various measurement operators on
a plane. In particular, an allowed region for information versus disturbance can be
shown on the plane by plotting all physically possible measurement operators, that
is, by varying every singular value over the range of 0 ≤ λmi ≤ 1. It is easy to do

123



Allowed region and optimal measurement... Page 9 of 22 250

F
(m

)

G(m)

(a)

P1

P2

P3

P4

(1,3)

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.26  0.28  0.3  0.32  0.34  0.36  0.38  0.4

(3,1)

(2,1)

(1,1)

R
(m

)

G(m)

(b)

P1
P3

P4

(1,3)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.26  0.28  0.3  0.32  0.34  0.36  0.38  0.4

P2

(3,1)

F
(m

)

I (m)

(c)

P1

P2

P3

P4

(1,3)

T

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  0.1  0.2  0.3  0.4

(3,1)

(2,1)

(1,1)

0.98

1

0 0.02

R
(m

)

I (m)

(d)

P1
P3

P4

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.1  0.2  0.3  0.4

P2

(1,3)

(3,1)

Fig. 1 Four allowed regions for information versus disturbance for d = 4: a estimation fidelityG(m) versus
operation fidelity F(m), b estimation fidelity G(m) versus physical reversibility R(m), c information gain
I (m) versus operation fidelity F(m), and d information gain I (m) versus physical reversibility R(m). In
each panel, the region pertaining to a single outcome is shown in blue (dark gray), and the extended region
obtained by averaging over all outcomes is shown in yellow (light gray) (Color figure online)

this for I (m), G(m), F(m), and R(m) because they contain only a definite number of
bounded parameters, i.e., d singular values, in contrast to I , G, F , and R. Moreover,
from the interchange invariance in Eq. (30), measurement operators having the same
singular values up to ordering correspond to the same point on the plane. According
to the rescaling invariance in Eq. (31), M̂m and cM̂m correspond to the same point on
the plane.

Figure 1a shows the allowed region for G(m) versus F(m) when d = 4 in blue
(dark gray). In the figure, Pr and (k, l) represent the point corresponding to cP̂(d)

r and
the line corresponding to cM̂ (d)

k,l (λ) with 0 ≤ λ ≤ 1, respectively. The upper boundary
consists of one curved line (1, d − 1) connecting P1 and Pd as λ varies from 0 to 1,
whereas the lower boundary consists of d−1 curved lines (k, 1) connecting Pk to Pk+1
for k = 1, 2, . . . , d−1. Conversely, Fig. 1b shows the allowed region for G(m) versus
R(m) when d = 4 in blue (dark gray). In this case, both the upper and lower boundaries
consist of one straight line: (1, d − 1) for the upper boundary and (d − 1, 1) for the
lower boundary. Similarly, Fig. 1c, d shows the allowed region for I (m) versus F(m)

and for I (m) versus R(m), respectively. The measurement operators corresponding to
the upper and lower boundaries are the same as for G(m), even though the lines have
different shapes. Figure 2 shows the allowed regions when d = 8 in blue (dark gray).
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Fig. 2 Four allowed regions for information versus disturbance for d = 8: a estimation fidelityG(m) versus
operation fidelity F(m), b estimation fidelity G(m) versus physical reversibility R(m), c information gain
I (m) versus operation fidelity F(m), and d information gain I (m) versus physical reversibility R(m). In
each panel, the region pertaining to a single outcome is shown in blue (dark gray), and the extended region
obtained by averaging over all outcomes is shown in yellow (light gray) (Color figure online)

The above boundaries, (1, d − 1) and (k, 1), were first confirmed by brute-force
numerical calculations where every singular value was varied by steps of Δλmi = 0.01
for d = 2, 3, . . . , 6 and Δλmi = 0.02 for d = 7, 8. Moreover, for G(m) ver-
sus F(m) and for G(m) versus R(m), the boundaries can analytically be proven to
be the true boundaries for arbitrary d (see “Appendix A”). Unfortunately, however,
for I (m) versus F(m) and for I (m) versus R(m), proving that the boundaries are
the true boundaries is difficult analytically. Nevertheless, they can be shown to sat-
isfy the necessary conditions for the true boundaries using the Karush–Kuhn–Tucker
(KKT) conditions [40], which generalize the method of Lagrange multipliers to handle
inequality constraints in mathematical optimization. For example, to find the lower
boundary for I (m) versus F(m), consider minimizing I (m) subject to F(m) = F0

and λmi ≥ 0 (i = 1, 2, . . . , d). Then, M̂ (d)
k,1 (λ) satisfies a necessary condition for a

local minimum, that is, for a Lagrange function

LF = I (m) − αF [F(m) − F0] −
∑

i

βiλmi , (38)

M̂ (d)
k,1 (λ) satisfies ∂LF/∂λmi = 0 with KKT multipliers αF and {βi } such that βi ≥ 0

and βiλmi = 0 for all i and has λ = λ0 such that F(m) = F0 if (k + 1)/(d + 1) ≤
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F0 ≤ (k + 2)/(d + 1). These mathematical optimizations are explained in “Appendix
B”.

4 Average over outcomes

Here, the regions that are allowed for the information and disturbance averaged over
all possible outcomes are discussed: I and G for the information and F and R for the
disturbance. Unfortunately, it is difficult to show the allowed regions directly from their
explicit forms written in terms of the singular values because the number of singular
values contained in them is not definite due to the indefinite number of outcomes. Note
that there are no physical limitations on the number of outcomes.

Instead, we show the allowed regions using the following analogy with the center
of mass. In the measurement {M̂m}, each measurement operator M̂m corresponds to a
point Rm in the allowed region pertaining to a single outcome with weight p(m). This
situation can be viewed as a set of particles, each with a mass p(m) located at a point
Rm . The center of mass of these particles then indicates the average information and
disturbance of the measurement. Conversely, for an arbitrary set of particles located
in the allowed region pertaining to a single outcome, an equivalent measurement
satisfying Eq. (1) can be constructed by rescaling and duplicating the measurement
operators, as shown in “Appendix C”. For example, for d = 4, two particles with the
same mass 1/2 located at P1 and P4 in Fig. 1 can be simulated by a measurement with
five outcomes whose measurement operators are

M̂m =
⎧
⎨

⎩

1√
2

|m〉〈m| (m = 1, 2, 3, 4)

1√
2
Î (m = 5).

(39)

Therefore, the allowed region for the average information and disturbance can be
shown by considering the center of mass of all possible sets of particles. Note that
the center of mass may be located outside the region where the particles are situated,
which means that the allowed region is extended by averaging over the outcomes. The
resultant region is the convex hull of the original region.

The regions extended by averaging are shown in Fig. 1 in yellow (light gray). As
shown in Fig. 1a, the lower boundary for G versus F is extended to the straight lines
between Pk and Pk+1 for k = 1, 2, . . . , d − 1, whereas the upper boundary is not
extended due to its convexity. By contrast, as shown in Fig. 1b, the boundaries for G
versus R are not extended at all. Meanwhile, as shown in Fig. 1c, the lower boundary
for I versus F is extended as in the case of G and, moreover, the upper boundary is
extended a little higher when d ≥ 3 because the line (1, d − 1) has a slight dent near
Pd . In fact, an analytic calculation of M̂ (d)

1,d−1(λ) shows that

d2F(m)

dI (m)2 > 0 (40)

near Pd when d ≥ 3. The upper boundary is therefore extended to the tangent line
drawn from Pd to the line (1, d−1) between Pd and the point of tangency T. As shown

123



250 Page 12 of 22 H. Terashima

Fig. 3 Two line slopes for
d = 4. D4(λ) is the slope of the
tangent line to the line (1,3) at a
point Q, and S4(λ) is the slope
of the straight line from P4 to Q.
Note that the horizontal axis is
reversed because large λ

corresponds to small I (m) in
Fig. 1c
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in Fig. 1d, the upper boundary for I versus R is extended to the straight line between
P1 and Pd , whereas the lower boundary is not extended. The case of d = 8 is shown
in Fig. 2.

To find the point T on the upper boundary for I versus F , two line slopes are defined
as functions of λ: the slope of the tangent line to the line (1, d − 1) at the point Q
corresponding to M̂ (d)

1,d−1(λ),

Dd(λ) = dF(m)

dI (m)
, (41)

and the slope of the straight line from Pd to Q,

Sd(λ) = F(m) − 1

I (m)
. (42)

These functions are shown for d = 4 in Fig. 3. Using λT such that

Dd(λT) = Sd(λT), (43)

the measurement operator corresponding to T can be written as M̂ (d)
1,d−1(λT). In Fig. 4,

λT is shown with I (m) and F(m) at T, denoted by IT and FT, respectively, for various
d. When d = 4, T in Fig. 1c corresponds to M̂ (4)

1,3(0.299) and the upper boundary for
I versus F moves up between P4 and T, at most by 3.5 × 10−3. This extension of the
upper boundary becomes larger as d increases. For example, when d = 8, T in Fig. 2c
corresponds to M̂ (8)

1,7(0.120) and the upper boundary moves up at most by 2.6 × 10−2.

Interestingly, M̂ (d)
1,d−1(λT) is the most efficient measurement operator in terms of the

ratio of information gain to fidelity loss [26],

EF (m) = I (m)

1 − F(m)
. (44)

The upper boundary for G versus F and that for G versus R are equivalent to the
inequalities of Banaszek [7] and Cheong and Lee [25], respectively, where the averages
are explicitly calculated using p(m) = σ 2

m/d. However, to our knowledge, this is the
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Fig. 4 Singular value λT,
information IT, and fidelity FT
at the point of tangency T for
various d
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first derivation of the other two upper and four lower boundaries. The lower boundaries
are less important than the upper boundaries in quantum information and can be
violated by non-ideal measurements, which have classical noise yielding mixed post-
measurement states, or by non-optimal estimations, which assume unwise observers
making incorrect choices for |ϕ(m)〉 in G(m). Nevertheless, for the foundations of
quantum mechanics, it is worth deriving both the upper and lower boundaries for ideal
measurements with optimal estimation to examine the intrinsic nature and power of
quantum measurements.

The case of d = 2 is a special case, where the regions extended by averaging are the
main parts of the allowed regions, as shown in Fig. 5. In this case, the allowed regions
pertaining to a single outcome shrink to the line (1, 1) because a measurement operator
can be represented by a single parameter via the rescaling invariance in Eq. (31) [24].
Moreover, the line (1, 1) in Fig. 5c has no dent unlike the case of d ≥ 3. In fact, it can
be shown for M̂ (2)

1,1(λ) that

d2F(m)

dI (m)2 < 0 (45)

near P2. The point T does not exist on the line (1, 1) because the slopes D2(λ) and
S2(λ) in Eqs. (41) and (42) do not become equal to each other except for λ = 1, as
shown in Fig. 6.

5 Optimal measurement

Finally, we discuss the optimal measurements saturating the upper bounds on the
information for a given disturbance. The upper bounds are denoted by the upper
boundaries of the allowed regions for the average information and disturbance. There-
fore, according to the analogy with the center of mass, a measurement is optimal for
an information–disturbance pair if it is equivalent to a set of particles whose center of
mass is on the upper boundary for that information–disturbance pair. The optimal mea-
surements are different for the four types of information–disturbance pairs because the
upper boundaries have different shapes on the four information–disturbance planes,
as shown in Fig. 1.
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Fig. 5 Four allowed regions for information versus disturbance for d = 2: a estimation fidelityG(m) versus
operation fidelity F(m), b estimation fidelity G(m) versus physical reversibility R(m), c information gain
I (m) versus operation fidelity F(m), and d information gain I (m) versus physical reversibility R(m). In
each panel, the region pertaining to a single outcome is just the solid line denoted by (1, 1) and the extended
region obtained by averaging over all outcomes is shown in yellow (light gray) (Color figure online)

Fig. 6 Two line slopes for
d = 2. D2(λ) is the slope of the
tangent line to the line (1, 1) at a
point Q, and S2(λ) is the slope
of the straight line from P2 to Q.
Note that the horizontal axis is
reversed because large λ

corresponds to small I (m) in
Fig. 5c
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The conditions for the optimal measurements are as follows. A measurement {M̂m}
is optimal for G versus F if all M̂m’s correspond to an identical point on the line
(1, d − 1) because the upper boundary for G versus F is the convex curve (1, d − 1),
as shown in Fig. 1a, whereas it is optimal for G versus R if every M̂m corresponds
to a point on the line (1, d − 1) because the upper boundary for G versus R is the
straight line (1, d − 1), as shown in Fig. 1b. These conditions are equivalent to those
in Refs. [7,25]. Similarly, when d ≥ 3, a measurement {M̂m} is optimal for I versus
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Fig. 7 Four conditions for
optimal measurements. For
example, the set G–F represents
all measurements that are
optimal for G versus F

G-R

I-R

G-F I-F

F if all M̂m’s correspond to an identical point between T and P1 on the line (1, d − 1)

or if every M̂m corresponds to either Pd or T because the upper boundary for I versus
F is the union of the convex curve (1, d − 1) between T and P1 and the straight line
between Pd and T, as shown in Fig. 1c. However, when d = 2, the condition to be
optimal for I versus F is the same as that for G versus F because the upper boundary
is just the convex curve (1, d − 1), as shown in Fig. 5c. Conversely, a measurement
{M̂m} is optimal for I versus R if every M̂m corresponds to either Pd or P1 because
the upper boundary for I versus R is the straight line between Pd and P1, as shown in
Fig. 1d.

Interestingly, an optimal measurement for G versus F is not necessarily optimal
for I versus F and an optimal measurement for G versus R is not necessarily optimal
for I versus R. The relationships between the four conditions are illustrated in Fig. 7,
excluding the strongest measurement, where all the measurement operators correspond
to P1, and the weakest measurement, where all the measurement operators correspond
to Pd ; these two measurements satisfy all four conditions.

As a specific example, consider a measurement {M̂ (d)
m (λ)} with d outcomes, m =

1, 2, . . . , d, where M̂ (d)
m (λ) is defined by

M̂ (d)
m (λ) ≡ 1√

1 + (d − 1)λ2

⎛

⎝|m〉〈m| +
∑

i �=m

λ|i〉〈i |
⎞

⎠ (46)

with 0 < λ < 1. For a given λ, all M̂ (d)
m (λ)’s correspond to an identical point on the

line (1, d − 1) in the four information–disturbance planes because they are equivalent
to M̂ (d)

1,d−1(λ) via the interchange and rescaling invariances in Eqs. (30) and (31).
The corresponding point on the line (1, d − 1) indicates the average information and
disturbance of {M̂ (d)

m (λ)}. The measurement {M̂ (d)
m (λ)} is optimal both for G versus

F and for G versus R for arbitrary λ because the line (1, d − 1) is equal to the upper
boundary, as shown in Fig. 1a, b.

However, the measurement {M̂ (d)
m (λ)} is not necessarily optimal for I versus F

because only a part of the line (1, d − 1) is equal to the upper boundary when d ≥ 3,
as shown in Fig. 1c. It is optimal for I versus F only if λ ≤ λT, with λT being defined
by Eq. (43). Note that M̂ (d)

m (λT) corresponds to T on the S-shaped curve (1, d − 1). If
λ > λT, M̂ (d)

m (λ) corresponds to a point on the concave part between Pd and T of the
line (1, d − 1), where the upper boundary is equal to the straight line between Pd and
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T. This means that {M̂ (d)
m (λ)} is not optimal for I versus F if λ > λT or equivalently

if F > FT. The optimal measurement for this case can easily be constructed from the
analogy with the center of mass by considering two particles: one located at T with
mass q and the other located at Pd with mass 1 − q. According to “Appendix C”, the
optimal measurement has d + 1 outcomes whose measurement operators are

M̂m =
{√

q M̂ (d)
m (λT) (m = 1, 2, . . . , d)√

1 − q Î (m = d + 1),
(47)

where q = (1− F)/ (1 − FT) for a given F . The average information and disturbance
of this measurement are then indicated by a point on the straight line between Pd and
T equal to a part of the upper boundary. By contrast, when d = 2, {M̂ (2)

m (λ)} is optimal
for I versus F for arbitrary λ because the line (1, 1) is equal to the upper boundary,
as shown in Fig. 5c.

Conversely, the measurement {M̂ (d)
m (λ)} is not optimal for I versus R for any λ

because the line (1, d−1) is not equal to the upper boundary at all, as shown in Fig. 1d.
In this case, the upper boundary is the straight line between Pd and P1. Therefore, the
optimal measurement for I versus R can be constructed from the analogy with the
center of mass by considering two particles: one located at P1 with mass q and the
other located at Pd with mass 1 − q. This has d + 1 outcomes whose measurement
operators are

M̂m =
{√

q |m〉〈m| (m = 1, 2, . . . , d)√
1 − q Î (m = d + 1),

(48)

where q = 1 − R for a given R. The average information and disturbance of this
measurement are indicated by a point on the straight line between Pd and P1 equal to
the upper boundary.

Of course, the measurements given in Eqs. (47) and (48) are also optimal for G
versus R for arbitrary q. Even though their measurement operators correspond to
different points on the line (1, d −1), the point indicating the average values is still on
the line (1, d − 1) equal to the upper boundary because the line (1, d − 1) is straight,
as shown in Fig. 1b. However, except for q = 0 or 1, the measurement in Eq. (47) is
optimal neither for G versus F nor for I versus R and the measurement in Eq. (48) is
optimal neither for G versus F nor for I versus F .

6 Summary

In summary, we have shown the allowed regions for information versus disturbance
for quantum measurements of completely unknown states. The information and dis-
turbances pertaining to a single outcome are quantified using the singular values of the
measurement operator and are plotted on four types of information–disturbance planes
to show the allowed regions pertaining to a single outcome. The allowed regions for the
average values are also discussed via an analogy with the center of mass. These regions
explicitly give not only the upper bounds but also the lower bounds on the information
for a given disturbance together with the optimal measurements saturating the upper
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bounds. Consequently, our results broaden our perspective of quantum measurements
and provide a useful tool for quantum information processing and communication.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

Appendix A: Proof of boundaries

Here, the proofs of the boundaries are outlined for G(m) versus F(m) and for G(m)

versus R(m). To prove the upper and lower boundaries for G(m) versus F(m), con-
sider maximizing and minimizing F(m) for a given G(m). Using the interchange and
rescaling invariances in Eqs. (30) and (31), the singular values are assumed to be sorted
in descending order, λm1 ≥ λm2 ≥ · · · ≥ λmd , and normalized such that σ 2

m = 1.
Then, the problems are simplified to maximizing and minimizing

∑d
i=2 λmi subject

to
∑d

i=2 λ2
mi = 1 − λ2

m1 and 0 ≤ λmi ≤ λm1 for a given λm1 from Eqs. (15) and (20).

The maximum is achieved when λm2 = λm3 = · · · = λmd =
√

(1 − λ2
m1)/(d − 1).

The corresponding singular values are proportional to those of M̂ (d)
1,d−1(λ) with

λ =
√

(1 − λ2
m1)/(d − 1)/λm1. Therefore, the line (1, d − 1) is the upper bound-

ary for G(m) versus F(m).

Conversely, the minimum is achieved when λm2 =
√

1 − λ2
m1 and the others are 0

if λm1 ≥ 1/
√

2. Because these singular values are proportional to those of M̂ (d)
1,1 (λ)

with λ =
√

1 − λ2
m1/λm1, the line (1, 1) is the lower boundary for G(m) versus F(m)

if G(m) ≥ 3/(2d + 2). However, if λm1 < 1/
√

2, they do not satisfy λm2 ≤ λm1

because
√

1 − λ2
m1 > λm1. Therefore, in this case, let λm2 = λm1 and consider

minimizing
∑d

i=3 λmi subject to
∑d

i=3 λ2
mi = 1 − 2λ2

m1 and 0 ≤ λmi ≤ λm1 for a

given λm1. If λm1 ≥ 1/
√

3, the minimum is achieved when λm3 =
√

1 − 2λ2
m1 and

the others are 0. Because these singular values are proportional to those of M̂ (d)
2,1 (λ)

with λ =
√

1 − 2λ2
m1/λm1, the line (2, 1) is the lower boundary for G(m) versus

F(m) if 4/(3d + 3) ≤ G(m) < 3/(2d + 2). By repeating similar minimizations for
λm1 < 1/

√
3, the lines (k, 1) with k = 1, 2, . . . , d − 1 are shown to be the lower

boundaries for G(m) versus F(m).
Similarly, to prove the upper and lower boundaries for G(m) versus R(m), consider

maximizing and minimizing R(m) for a given G(m). Via the descending ordering and
the normalization σ 2

m = 1, the problems are simplified to maximizing and minimizing
λmd subject to

∑d
i=2 λ2

mi = 1−λ2
m1 and 0 ≤ λmi ≤ λm1 for a given λm1 from Eqs. (15)

and (27). As in the case of F(m), the maximum is achieved when λm2 = λm3 = · · · =
λmd . This result shows that the line (1, d − 1) is the upper boundary for G(m) versus
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R(m). Conversely, the minimum is achieved when λmd = 0 if λm1 ≥ 1/
√
d − 1. That

is, R(m) = 0 is the lower boundary for G(m) versus R(m) if G(m) ≥ d/(d2 − 1).
However, if λm1 < 1/

√
d − 1, λmd cannot be 0 to satisfy σ 2

m = 1 because λmi ≤
λm1. In this case, the minimum is achieved when λmd =

√
1 − (d − 1)λ2

m1 and the

others are λm1. These singular values are proportional to those of M̂ (d)
d−1,1(λ) with

λ =
√

1 − (d − 1)λ2
m1/λm1. This result shows that the line (d − 1, 1) is the lower

boundary for G(m) versus R(m) if G(m) < d/(d2 − 1).

Appendix B: Mathematical optimization

Here, the mathematical optimizations of the information for a given disturbance are
outlined for I (m) versus F(m) and for I (m) versus R(m) based on the method of
Lagrange multipliers and its generalization known as the Karush–Kuhn–Tucker (KKT)
conditions [40]. Consider maximizing I (m) subject to F(m) = F0 using a Lagrange
function LF = −I (m) − αF [F(m) − F0] with a multiplier αF . To use the method of
Lagrange multipliers, the derivatives of I (m) and F(m) with respect to λmi should be
calculated. From the rescaling invariance in Eq. (31), the derivatives of I (m) satisfy

∑

i

λmi
∂ I (m)

∂λmi
= 0 (49)

according to Euler’s homogeneous function theorem. Using this equation and the
interchange invariance in Eq. (30), the derivatives of I (m) for M̂ (d)

k,l (λ) can be written
as

∂ I (m)

∂λmi
≡

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

I (d)
k,l (λ) (1 ≤ i ≤ k)

− k
lλI

(d)
k,l (λ) (k + 1 ≤ i ≤ k + l)

0 (k + l + 1 ≤ i ≤ d)

(50)

with I (d)
k,l (λ) ≥ 0, where the third case is 0 because I (m) is a function of {λ2

mi }.
Similarly, the derivatives of F(m) for M̂ (d)

k,l (λ) can be written as

∂F(m)

∂λmi
≡

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

F (d)
k,l (λ) (1 ≤ i ≤ k)

− k
lλF

(d)
k,l (λ) (k + 1 ≤ i ≤ k + l)

F̃ (d)
k,l (λ) (k + l + 1 ≤ i ≤ d)

(51)

with F (d)
k,l (λ) ≤ 0 and F̃ (d)

k,l (λ) > 0. These derivatives show that M̂ (d)
1,d−1(λ) satisfies

∂LF/∂λmi = 0 for all i with a multiplier of αF = −I (d)
1,d−1(λ)/F (d)

1,d−1(λ). Moreover,

there exists a parameter λ0 such that F(m) for M̂ (d)
1,d−1(λ0) is equal to F0. That is,

M̂ (d)
1,d−1(λ0) satisfies a necessary condition for a local maximum according to the
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method of Lagrange multipliers. This result implies that the line (1, d − 1) is the
upper boundary for I (m) versus F(m).

Conversely, consider minimizing I (m) subject to F(m) = F0 and λmi ≥ 0 (i =
1, 2, . . . , d). The inequality constraints are indispensable in this case because the
solutions are on the boundary of the parameter space, λmi = 0. To handle these
inequality constraints, the KKT conditions are applied using a Lagrange function
LF = I (m) − αF [F(m) − F0] − ∑i βiλmi with multipliers αF and {βi }. Then,

M̂ (d)
k,1 (λ) satisfies ∂LF/∂λmi = 0 for all i with multipliers αF = I (d)

k,1 (λ)/F (d)
k,1 (λ)

and

βi =
{

0 (1 ≤ i ≤ k + 1)

−αFF̃
(d)
k,1 (λ) (k + 2 ≤ i ≤ d).

(52)

In addition, these {βi } satisfy the requirements as multipliers for the inequality con-
straints, βi ≥ 0 and βiλmi = 0, for all i . There exists a parameter λ0 such that F(m) for
M̂ (d)

k,1 (λ0) is equal to F0 if (k + 1)/(d + 1) ≤ F0 ≤ (k + 2)/(d + 1). That is, M̂ (d)
k,1 (λ0)

satisfies a necessary condition for a local minimum according to the KKT conditions.
This result implies that the line (k, 1) is the lower boundary for I (m) versus F(m).

Similarly, letting λm,min = λmd , consider maximizing I (m) subject to R(m) = R0
and λmi − λmd ≥ 0 (i = 1, 2, . . . , d − 1) using a Lagrange function LR = −I (m) −
αR[R(m)− R0]−∑i γi (λmi −λmd) with multipliers αR and {γi }. The derivatives of

R(m) for M̂ (d)
k,l (λ) can be written when k + l = d such that

∂R(m)

∂λmi
≡
⎧
⎨

⎩
R(d)

k,l (λ) (1 ≤ i ≤ k)

− k
lλR

(d)
k,l (λ) − 1−lδi,d

l R̃(d)
k,l (λ) (k + 1 ≤ i ≤ d)

(53)

with R(d)
k,l (λ) ≤ 0 and R̃(d)

k,l (λ) ≥ 0. Then, M̂ (d)
1,d−1(λ) satisfies ∂LR/∂λmi = 0 for all

i with multipliers αR = −I (d)
1,d−1(λ)/R(d)

1,d−1(λ) and

γi =
⎧
⎨

⎩
0 (i = 1)

1
d−1αRR̃(d)

1,d−1(λ) (2 ≤ i ≤ d − 1)
(54)

satisfying γi ≥ 0 and γi (λmi − λmd) = 0 for all i . Moreover, there exists a parameter
λ0 such that R(m) for M̂ (d)

1,d−1(λ0) is equal to R0. According to the KKT conditions,

M̂ (d)
1,d−1(λ0) satisfies a necessary condition for a local maximum implying that the

line (1, d − 1) is the upper boundary for I (m) versus R(m). Conversely, consider
minimizing I (m) subject to R(m) = R0 using a Lagrange function LR = I (m) −
αR[R(m) − R0] with a multiplier αR . Then, M̂ (d)

d−1,1(λ) satisfies ∂LR/∂λmi = 0 for

all i with the multiplier αR = I (d)
d−1,1(λ)/R(d)

d−1,1(λ) and there exists a parameter λ0

such that R(m) for M̂ (d)
d−1,1(λ0) is equal to R0. According to the method of Lagrange

multipliers, M̂ (d)
d−1,1(λ0) satisfies a necessary condition for a local minimum implying

that the line (d − 1, 1) is the lower boundary for I (m) versus R(m).
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Appendix C: Construction of equivalent measurement

Here, the general construction of an equivalent measurement is presented for an arbi-
trary set of particles located in the allowed region pertaining to a single outcome. The
construction is not trivial because a measurement operator not only corresponds to
a point but also gives the weight at that point. Moreover, the measurement operators
must satisfy Eq. (1).

Consider a set of particles, where each particle n has a mass qn and is located at
a point Rn in the allowed region pertaining to a single outcome. Without a loss of
generality, the total mass can be assumed to be

∑
n qn = 1. By definition, there exists

a measurement operator M̂n with singular values {λni } that corresponds to the point
Rn . In general, its weight p(n) = σ 2

n /d is not equal to the mass qn . However, the
weight can be adjusted by rescaling and duplicating M̂n . That is, for a particle n, d
measurement operators are introduced such that

M̂ns ≡
√

qn
σ 2
n

∑

i

λni |cs(i)〉〈cs(i)| (55)

with s = 0, 1, . . . , d − 1, where cs(i) ≡ (i − 1 + s mod d) + 1 performs the cyclic
permutation of {|i〉}. These measurement operators correspond to the same point Rn

from the interchange invariance in Eq. (30), giving the same weight qn/d. Note that
the weight is not invariant under rescaling of the singular values in Eq. (31). The
total weight of the d measurement operators is then equal to the mass qn as desired.
Moreover, such measurement operators for all the particles satisfy Eq. (1) such that∑

n,s M̂
†
ns M̂ns =∑n qn Î = Î when regarding a pair of indices (n, s) as an outcome

m. Therefore, {M̂ns} is a measurement equivalent to the set of particles.
In this construction, one particle corresponds to d outcomes, even though the num-

ber of outcomes can be reduced when some singular values are degenerate. As a result,
it suffices to consider measurements having at most 2d outcomes to study the allowed
regions for the average values because for any point in the region there exists a set of
two particles whose center of mass is located at that point.
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