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Abstract We propose a unitary procedure to reconstruct quantum secret for a quantum
secret sharing scheme constructed from stabilizer quantum error-correcting codes.
Erasure correcting procedures for stabilizer codes need to add missing shares for
reconstruction of quantum secret, while unitary reconstruction procedures for certain
class of quantum secret sharing are known to work without adding missing shares.
The proposed procedure also works without adding missing shares.
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1 Introduction

Secret sharing (SS) [16] is a cryptographic scheme to encode a secret to multiple
shares being distributed to participants, so that only qualified sets of participants can
reconstruct the original secret from their shares. Traditionally both secret and shares
were classical information (bits). Several authors [4,6,8,17] extended the traditional
SS to quantum one so that a quantum secret can be encoded to quantum shares.

There was a difference between early pioneering works [4,6,8,17] of quantum SS.
The first quantum SS [8] was based on the controlled teleportation [9,20], whose recon-
struction of quantum secret involved classical communication among participants. On
the other hand, the others works [4,6,17] related reconstruction to quantum error cor-
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rection [3,18], and their reconstruction procedures were generally unitary operations
on quantum shares. This paper studies reconstruction in the second category.

When we require unqualified sets of participants to have zero information of the
secret, the size of each share must be larger than or equal to that of secret. By tolerating
partial information leakage to unqualified sets, the size of shares can be smaller than
that of secret. Such SS is called ramp SS [2,19]. The quantum ramp SS was proposed
by Ogawa et al. [14]. If an unqualified set has absolutely no information about quantum
secret (see [14] for a formal definition), it is called a forbidden set.

When we have a quantum error-correcting code (QECC) of length n and use it for
quantum secret sharing, it can correct erasures in a set J ⊂ {1, …, n}, and it was shown
[4,6] that J = {1, …, n} \ J is a qualified set and J is a forbidden set. The above
statement also holds for quantum ramp SS [14]. In such a situation, a straightforward
method for the set J of participants to reconstruct quantum secret is as follows: Firstly,
initialize quantum systems in J to any quantum states and apply the erasure decoding
procedure of QECC. This method is wasteful because decoding procedures usually
involve measurement and they also need to attach |J | extra quantum systems. For
example, if |J | = 70 and |J | = 30, adding 30 quantum systems and performing
measurement on 100 systems are wasteful.

To overcome this waste, unitary reconstruction methods were proposed for pre-
vious proposals of quantum SS [4,12,14,21]. On the other hand, while quantum SS
constructed from the stabilizer QECC had been already studied [10,11,15], no uni-
tary reconstruction procedure has been proposed for stabilizer-based quantum SS.
Stabilizer-based quantum SS is important because it can realize access structures that
cannot be realized by quantum SS based on CSS codes [3,18]. For example, only the
[[5, 1, 3]] binary stabilizer QECC can realize quantum SS distributing 1 qubit of secret
to 5 participants receiving 1-qubit shares and allowing only 3 or more participants to
reconstruct secret. In addition, when sharing classical secret, it was recently shown
that stabilizer QECC can realize an access structure that cannot be realized by classical
information processing [13].

In this paper, we propose a unitary reconstruction method that can be executed by
a qualified set J of participants without adding extra quantum systems. In Sect. 2,
we introduce notations of stabilizer QECC and prove some properties of stabilizer
QECC used later in the proposed reconstruction procedure. Section 3 describes the
proposed procedure. Section 4 gives an explicit computational example of the proposed
procedure applied to the well-known [[5, 1, 3]]binary stabilizer QECC. In “Appendix,”
we discuss the security of quantum SS based on stabilizer QECCs.

2 Preliminaries

2.1 Notations for stabilizer codes

Let q be a prime power, and we consider the q-dimensional complex linear space Cq .
A quantum system whose state is expressed by Cq is called a qudit in this paper. Each
share is assumed to be a qudit, and quantum secret consists of one or more qudits.
If quantum secret has two or more qudits, the quantum SS becomes a ramp scheme.
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We fix a q-ary stabilizer QECC encoding k qudits to n qudits. The materials in this
subsection are not new at all and can be found in, for example, [1,7]. Its stabilizer can
be expressed as an (n − k)-dimensional Fq -linear subspace C of F2n

q , where Fq is the
finite field with q elements.

For two vectors x = (a1, b1, …, an , bn) and y = (a′
1, b′

1, …, a′
n , b′

n) ∈ F2n
q , we

define its symplectic inner product as

〈x, y〉 =
n∑

i=1

aib
′
i − a′

i bi . (1)

Let C⊥ = {x ∈ F2n
q | ∀y ∈ C , 〈x, y〉 = 0}. Then we have C⊥ ⊃ C and dim C⊥ =

n + k.

2.2 Qualified sets and related properties

To use any reconstruction procedure, the set J of participants must be qualified to
reconstruct the secret. In this subsection, we clarify a necessary and sufficient con-
dition for qualified sets and related properties that are later used for the proposed
reconstruction procedure.

For a set J ⊂ {1, …, n} of participants to be qualified, the erasures in J must be
decodable, where an erasure means a quantum error with known location. In other
words, when the errors are only in J , the stabilizer QECC defined by the stabilizer
C ⊂ F2n

q must be able to correct the error.
Let g1, …, gn−k be a basis of C . A quantum error can also be identified with a

vector e = (a1, b1, …, an , bn) ∈ F2n
q (see, e.g., [1,7]). Measurement in the standard

decoding procedure gives the symplectic inner products 〈e, gi 〉 for i = 1, …, n − k.
Let FJ

q = {(a1, b1, …, an , bn) ∈ F2n
q | j ∈ J ⇒ (a j , b j ) = (0, 0)} and FJ

q = {(a1,

b1, …, an , bn) ∈ F2n
q | j ∈ J ⇒ (a j , b j ) = (0, 0)}. Observe that dim FJ

q = 2|J | and

dim FJ
q = 2|J |.

Under the assumption j ∈ J ⇒ (a j , b j ) = (0, 0) for e, we can correct all errors

e ∈ FJ
q if and only if the implication

∀i, 〈e, gi 〉 = 0 ⇒ e ∈ C (2)

holds. The condition (2) implies (with the assumption that errors belong to J )

C⊥ ∩ FJ
q ⊆ C ∩ FJ

q .

On the other hand, the assumption C⊥ ⊃ C implies

C⊥ ∩ FJ
q ⊇ C ∩ FJ

q .
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Therefore, the condition (2) is equivalent to

C⊥ ∩ FJ
q = C ∩ FJ

q . (3)

We will study the linear spaces consisting of qudits in J or J of quantum codewords.

Let Q(C) ⊂ C⊗n
q , Q(C ∩ FJ

q ) ⊂ C⊗|J |
q , Q(C ∩ FJ

q ) ⊂ C⊗|J |
q be stabilizer QECCs

defined by C , C ∩ FJ
q , and C ∩ FJ

q , respectively. When we consider qudits in J (resp.

J ) of codewords in Q(C), their quantum states are density matrices whose row spaces
are contained in Q(C ∩ FJ

q ) (resp. Q(C ∩ FJ
q )).

In order to evaluate their dimensions, firstly we have to evaluate dim C ∩ FJ
q and

dim C ∩FJ
q , where dim C ∩FJ

q denotes the dimension of the linear space C ∩FJ
q . We

have

|J | − k − |J | ≤ dim C ∩ FJ
q (4)

≤ |J | − k. (5)

The linear space C ∩ FJ
q consists of vectors in C whose (2 j − 1)th component

and 2 j th component are zero if j ∈ J , which implies dim C − dim C ∩ FJ
q ≤ 2|J |.

Equation (4) holds because

dim C︸ ︷︷ ︸
=n−k

−2|J | ≤ dim C ∩ FJ
q

⇔ n − |J |︸ ︷︷ ︸
=|J |

−k − |J | ≤ dim C ∩ FJ
q

⇔ |J | − k − |J | ≤ dim C ∩ FJ
q .

For x = (a1, b1, …, an , bn) ∈ F2n
q , let PJ (x) = (a j , b j ) j∈J , that is, the projection to

the index set J . Then we have C ∩FJ
q = C ∩ker(PJ ) and dim C ∩FJ

q +dim PJ (C) =
dim C , which implies

dim PJ (C) = (n − k) − dim C ∩ FJ
q . (6)

Suppose that Eq. (5) does not hold, then we have dim PJ (C) < |J | by Eq. (6) and

the equality n = |J | + |J |. Since C⊥ ∩FJ
q = PJ (C)⊥ (⊥ in PJ (C)⊥ is considered in

F2|J |
q ), we have dim C⊥ ∩FJ

q = 2|J | − dim PJ (C) > |J |. The last inequality implies

dim C⊥ ∩ FJ
q > |J | > dim PJ (C) ≥ dim C ∩ FJ

q because PJ (C) ⊇ C ∩ FJ
q . The

inequality dim C⊥ ∩ FJ
q > dim C ∩ FJ

q contradicts with Eq. (3). So we see that Eq.
(5) is true when J is a qualified set.

In light of Eqs. (4) and (5), let dim C ∩FJ
q = |J |−k−�. Then Q(C ∩FJ

q ) encodes
k + � qudits to |J | qudits.
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We consider dim C ∩ FJ
q . By Eq. (3) we have

dim C ∩ FJ
q

= dim C⊥ ∩ FJ
q

= dim C⊥ − dim PJ (C
⊥)︸ ︷︷ ︸

=(C∩FJ
q )⊥ inF2|J |

q

= dim C⊥
︸ ︷︷ ︸

=n+k

−
(

2|J | − dim C ∩ FJ
q

)

= n + k − 2|J | + dim C ∩ FJ
q︸ ︷︷ ︸

=|J |−(k+�)

= |J | − �,

which means that Q(C ∩FJ
q ) encodes � qudits to |J | qudits. Readers might wonder if

� = |J | is always true. The equality � = |J | usually holds as we will see in Sect. 4 with
an example. But � = |J | is sometimes false in general cases, for example, consider an
unpractical stabilizer QECC whose codewords are always set to |00 · · · 0〉 in J , which
gives � = 0.

3 Proposed unitary reconstruction

For ease of presentation, without loss of generality we may assume J = {1, …, |J |}
and J = {|J | + 1, …, n}, by reordering indices. Let

{
|i(k)〉 | i(k) ∈ Fk

q

}
(7)

be an orthonormal basis (ONB) of C⊗k
q , let |ψ(i(k))〉 ∈ Q(C) the quantum codeword

corresponding to |i(k)〉. Let

{
|ϕJ (i

(�))〉 | i(�) ∈ F�
q

}
(8)

be an ONB of Q(C ∩ FJ
q ). Then

(|ϕJ (i
(�))〉〈ϕJ (i

(�))| ⊗ IJ )|ψ(i(k))〉 (9)

have the same nonzero length for all i(k) and i(�), where IJ is the identity matrix on
qudits in J . Because otherwise the Holevo information between classical information
i(k) and the qudits in J would have strictly positive value which contradicts by Ogawa
et al. [14] to our assumption that J is a qualified set
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Define a state vector |ϕJ (i(k), i(�))〉 ∈ Q(C ∩ FJ
q ) by

|ϕJ (i
(�))〉|ϕJ (i(k), i(�))〉 = (|ϕJ (i

(�))〉〈ϕJ (i
(�))| ⊗ IJ )|ψ(i(k))〉

‖(|ϕJ (i
(�))〉〈ϕJ (i

(�))| ⊗ IJ )|ψ(i(k))〉‖ . (10)

Then |ϕJ (i(k), i(�))〉 is of length one and orthogonal to each other for different (i(k),
i(�)). Therefore, {

|ϕJ (i(k), i(�))〉 | i(k) ∈ Fk
q , i

(�) ∈ F�
q

}
(11)

is an ONB of Q(C ∩ FJ
q ).

By using the above notations, we can express

|ψ(i(k))〉 = 1√
q�

∑

i(�)∈F�
q

|ϕJ (i
(�))〉|ϕJ (i(k), i(�))〉. (12)

We can define a unitary operationUrec from Q(C ∩FJ
q ) to Q(C ∩FJ

q )⊗C⊗k
q , sending

|ϕJ (i(k), i(�))〉 to |ϕJ (i
(�))〉|i(k)〉, because both {|ϕJ (i(k), i(�))〉 | i(k) ∈ Fk

q , i(�) ∈ F�
q}

and {|ϕJ (i
(�))〉|i(k)〉 | i(k) ∈ Fk

q , i(�) ∈ F�
q} are ONBs with the same number of

quantum state vectors in them.
Suppose that quantum secret is

∑

i(k)∈Fkq
α(i(k))|i(k)〉,

where α(i(k)) are complex coefficients. Then the whole quantum state of all shares is,
by Eq. (12),

∑

i(k)∈Fkq
α(i(k))

1√
q�

∑

i(�)∈F�
q

|ϕJ (i
(�))〉|ϕJ (i(k), i(�))〉.

Applying Urec on the qualified set J yields

⎛

⎜⎝
1√
q�

∑

i(�)∈F�
q

|ϕJ (i
(�))〉|ϕJ (i

(�))〉
⎞

⎟⎠ ⊗
∑

i(k)∈Fkq
α(i(k))|i(k)〉. (13)

Equation (13) means that the quantum secret is reconstructed in the rightmost k qudits
and that it is unentangled from the rest of qudits.
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4 Explicit computational example of the [[5, 1, 3]] binary stabilizer
QECC

Since our presentation of the proposed procedure is slightly abstract, in this section
we will see an explicit computational example with the [[5, 1, 3]] binary stabilizer
QECC. According to Gottesman [5], the [[5, 1, 3]] binary stabilizer QECC encodes
|0〉 to

|ψ(0)〉
= |00000〉 + |10010〉 + |01001〉 + |10100〉

+|01010〉 − |11011〉 − |00110〉 − |11000〉
−|11101〉 − |00011〉 − |11110〉 − |01111〉
−|10001〉 − |01100〉 − |10111〉 + |00101〉,

and |1〉 to

|ψ(1)〉
= |11111〉 + |01101〉 + |10110〉 + |01011〉

+|10101〉 − |00100〉 − |11001〉 − |00111〉
−|00010〉 − |11100〉 − |00001〉 − |10000〉
−|01110〉 − |10011〉 − |01000〉 + |11010〉.

According to Gottesman [5, Table 3.2], the corresponding stabilizer C ⊂ F10
2 is

generated by

g1 = (1, 0, 0, 1, 0, 1, 1, 0, 0, 0),

g2 = (0, 0, 1, 0, 0, 1, 0, 1, 1, 0),

g3 = (1, 0, 0, 0, 1, 0, 0, 1, 0, 1),

g4 = (0, 1, 1, 0, 0, 0, 1, 0, 0, 1).

Since it can correct any two erasures, we can set J = {3, 4, 5} and J = {1, 2}.
Since C ∩ FJ

2 = C⊥ ∩ FJ
2 are zero linear spaces, we can see that Eq. (3) holds and

� = 2. We can choose |ϕJ (i
(�))〉 of Eq. (8) as |ϕJ (00)〉 = |00〉, |ϕJ (01)〉 = |01〉,

|ϕJ (10)〉 = |10〉, and |ϕJ (11)〉 = |11〉. Then |ϕJ (i(k), i(�))〉 of Eq. (10) become the
following states:

|ϕJ (0, 00)〉 = 1

2
(|000〉 − |110〉 − |011〉 + |101〉),

|ϕJ (0, 01)〉 = 1

2
(|001〉 + |010〉 − |111〉 − |100〉),

|ϕJ (0, 10)〉 = 1

2
(|010〉 + |100〉 − |001〉 − |111〉),
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|ϕJ (0, 11)〉 = 1

2
(−|011〉 − |000〉 − |101〉 − |110〉),

|ϕJ (1, 00)〉 = 1

2
(−|100〉 − |111〉 − |010〉 − |001〉),

|ϕJ (1, 01)〉 = 1

2
(|101〉 + |011〉 − |110〉 − |000〉),

|ϕJ (1, 10)〉 = 1

2
(|110〉 + |101〉 − |000〉 − |011〉),

|ϕJ (1, 11)〉 = 1

2
(|111〉 − |001〉 − |100〉 + |010〉).

The unitary reconstruction Urec works as follows:

Urec|ϕJ (i1, i2i3)〉 = |i2i3〉|i1〉.

If the quantum secret is α(0)|0〉 + α(1)|1〉, then the quantum state of all shares is
α(0)|ψ(0)〉+α(1)|ψ(1)〉. Application of Urec to the 3rd, the 4th and the 5th qubits of
α(0)|ψ(0)〉 + α(1)|ψ(1)〉 gives

1

2
(|0000〉 + |0101〉 + |1010〉 + |1111〉)(α(0)|0〉 + α(1)|1〉),

which means that the 3rd, the 4th and the 5th participants successfully reconstructed
the quantum secret into the 5th qubit. Also observe that after the reconstruction the 5th
qubit is completely unentangled from the rest of qubits. Since the proposed procedure
only interacts with the 3rd to the 5th qubits, even if there are errors in the 1st and the
2nd qubits, after reconstruction we obtain α(0)|0〉 + α(1)|1〉 at the 5th qubit.
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Appendix: security analysis

For the completeness of this paper, in this appendix we discuss the security of quantum
SS based on stabilizer QECCs. For the security analysis of quantum secret sharing
based on quantum error correction, such as [4,6], we need to clarify (a) which share
sets are qualified (being able to reconstruct secret perfectly) and (b) which share sets
are forbidden (having no information about secret). The characterization of qualified
sets in the proposed scheme is given by Eq. (3). Observe also that from a given basis
g1, …, gn−k of C , we can easily verify by standard linear algebra whether or not Eq.
(3) holds for an arbitrarily given share set J . The characterization of forbidden sets
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also immediately follows from the fact that a share set is forbidden if and only if the
rest of shares is qualified, as shown in [4,6,14].

References

1. Ashikhmin, A., Knill, E.: Nonbinary quantum stabilizer codes. IEEE Trans. Inform. Theory 47(7),
3065–3072 (2001)

2. Blakley, G.R., Meadows, C.: Security of ramp schemes. In: Advances in Cryptology–CRYPTO’84.
Lecture Notes in Computer Science, vol. 196, pp. 242–269. Springer (1985). doi:10.1007/
3-540-39568-7_20

3. Calderbank, A.R., Shor, P.W.: Good quantum error-correcting codes exist. Phys. Rev. A 54(2), 1098–
1105 (1996)

4. Cleve, R., Gottesman, D., Lo, H.K.: How to share a quantum secret. Phys. Rev. Lett. 83(3), 648–651
(1999). doi:10.1103/PhysRevLett.83.648

5. Gottesman, D.: Stabilizer codes and quantum error correction. Ph.D. thesis, California Institute of
Technology (1997)

6. Gottesman, D.: Theory of quantum secret sharing. Phys. Rev. A 61(4), 042311 (2000). doi:10.1103/
PhysRevA.61.042311

7. Grassl, M.: Variations on encoding circuits for stabilizer quantum codes. In: Chee, Y.M., et al. (eds.)
IWCC 2011, Lecture Notes in Computer Science, vol. 6639, pp. 142–158. Springer (2011)

8. Hillery, M., Bužek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59, 1829–1834 (1999).
doi:10.1103/PhysRevA.59.1829

9. Karlsson, A., Bourennane, M.: Quantum teleportation using three-particle entanglement. Phys. Rev.
A 58, 4394–4400 (1998). doi:10.1103/PhysRevA.58.4394

10. Marin, A., Markham, D.: Equivalence between sharing quantum and classical secrets and error cor-
rection. Phys. Rev. A 88(4), 042332 (2013). doi:10.1103/PhysRevA.88.042332

11. Markham, D., Sanders, B.C.: Graph states for quantum secret sharing. Phys. Rev. A 78(4), 042309
(2008). doi:10.1103/PhysRevA.78.042309

12. Matsumoto, R.: Coding theoretic construction of quantum ramp secret sharing, (2014).
arXiv:1405.0149

13. Matsumoto, R.: Quantum stabilizer codes can realize access structures impossible by classical secret
sharing. IEICE Trans. Fundamentals E100-A(12) (2017). To be published, arXiv:1701.02911

14. Ogawa, T., Sasaki, A., Iwamoto, M., Yamamoto, H.: Quantum secret sharing schemes and reversibility
of quantum operations. Phys. Rev. A 72(3), 032318 (2005). doi:10.1103/PhysRevA.72.032318

15. Sarvepalli, P.K.: Nonthreshold quantum secret-sharing schemes in the graph-state formalism. Phys.
Rev. A 86(4), 042303 (2012). doi:10.1103/PhysRevA.86.042303

16. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979). doi:10.1145/359168.
359176

17. Smith, A.D.: Quantum secret sharing for general access structures (2000). arXiv:quant-ph/0001087
18. Steane, A.M.: Multiple particle interference and quantum error correction. Proc. R. Soc. London Ser.

A 452(1954), 2551–2577 (1996)
19. Yamamoto, H.: Secret sharing system using (k, l, n) threshold scheme. Electron. Commun. Jpn. Part

I Commun. 69(9), 46–54 (1986). doi:10.1002/ecja.4410690906
20. Yang, C.P., Chu, S.I., Han, S.: Efficient many-party controlled teleportation of multiqubit quantum

information via entanglement. Phys. Rev. A 70, 022329 (2004). doi:10.1103/PhysRevA.70.022329
21. Zhang, P., Matsumoto, R.: Quantum strongly secure ramp secret sharing. Quantum Inf. Process. 14(2),

715–729 (2015). doi:10.1007/s11128-014-0863-2

123

http://dx.doi.org/10.1007/3-540-39568-7_20
http://dx.doi.org/10.1007/3-540-39568-7_20
http://dx.doi.org/10.1103/PhysRevLett.83.648
http://dx.doi.org/10.1103/PhysRevA.61.042311
http://dx.doi.org/10.1103/PhysRevA.61.042311
http://dx.doi.org/10.1103/PhysRevA.59.1829
http://dx.doi.org/10.1103/PhysRevA.58.4394
http://dx.doi.org/10.1103/PhysRevA.88.042332
http://dx.doi.org/10.1103/PhysRevA.78.042309
http://arxiv.org/abs/1405.0149
http://arxiv.org/abs/1701.02911
http://dx.doi.org/10.1103/PhysRevA.72.032318
http://dx.doi.org/10.1103/PhysRevA.86.042303
http://dx.doi.org/10.1145/359168.359176
http://dx.doi.org/10.1145/359168.359176
http://arxiv.org/abs/quant-ph/0001087
http://dx.doi.org/10.1002/ecja.4410690906
http://dx.doi.org/10.1103/PhysRevA.70.022329
http://dx.doi.org/10.1007/s11128-014-0863-2

	Unitary reconstruction of secret for stabilizer-based quantum secret sharing
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Notations for stabilizer codes
	2.2 Qualified sets and related properties

	3 Proposed unitary reconstruction
	4 Explicit computational example of the [[5,1,3]] binary stabilizer QECC
	Acknowledgements
	Appendix: security analysis
	References




