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Abstract We study coherent quantum control strategy that is robust with respect to
coupling with an external environment. We model this interaction by appending an
additional subsystem to the initial system and we choose the strength of the coupling
to be proportional to the magnitude of the control pulses. Therefore, to minimize the
interaction, we impose L1 norm restrictions on the control pulses. In order to efficiently
solve this optimization problem, we employ the BFGS algorithm. We use three differ-
ent functions as the derivative of the L1 norm of control pulses: the signum function,
a fractional derivative %, where 0 < o < 1, and the Fermi—Dirac distribution. We
show that our method allows to efficiently obtain the control pulses which neglect the
coupling with an external environment.

Keywords Quantum information - Quantum computation - Control in mathematical
physics

1 Introduction

The ability to manipulate the dynamics of a given complex quantum system is one
of the fundamental issues of the quantum information science. It has been an implicit
goal in many fields of science such as quantum physics, chemistry, or implementations
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of quantum information processing [1-3]. The usage of experimentally controllable
quantum systems to perform computational task is a very promising perspective. Such
usage is possible only if a system is controllable. Thus, the controllability of a given
quantum system is an important issue of the quantum information science, since it
concerns whether it is possible to drive a quantum system into a previously fixed
state.

When manipulating quantum systems, a coherent control strategy is a widely used
method. In this case, the application of semiclassical potentials, in a fashion that
preserves quantum coherence, is used to manipulate quantum states. If a given system
is controllable, it is interesting to obtain control sequence that drives a system to
a desired state and simultaneously minimize the value of the disturbance caused by
imperfections of practical implementation. In the realistic implementations of quantum
control systems, there can be various factors which disturb the evolution [4]. One of
the main issues in this context is decoherence—the fact that the systems are very
sensitive to the presence of the environment, which often destroys the main feature
of the quantum dynamics. Other disturbance can be a result of the restriction on the
frequency spectrum of acceptable control parameters [5]. In the case of such systems,
it is not accurate to apply piecewise-constant controls. In an experimental setup that
utilizes an external magnetic field [6,7], such restrictions come into play and cannot
be neglected.

In many situations, the interaction with the control fields causes an undesirable
coupling with the environment, which can lead to a destruction of the interesting
features of the system [8]. In such situations, it is reasonable to seek a control field
with minimal total influence on a system. Depending on a type of interaction with
an environment, the influence differs. In this article, we consider an interaction that
is proportional to the magnitude of a control field. To minimize the influence of an
environment in such case, when the control field performs the desired evolution, the
L1 norm should be minimized.

A different dynamical method for beating decoherence in open quantum systems
is dynamical decoupling [9—12]. In this case, additional perturbation on a system is
added, which protects the evolution against the effects of the environment influence
at the same time driving the system to the desired state. In our case, the interaction
with the environment is in strict relation to the control strategy, since it emerges only
if the control pulses are applied. On the other hand, in a typical dynamical decoupling
scheme, the coupling to the environment is constant, given by some Hamiltonian
Hgg acting on the system and environment. Another approach to robust quantum
control is quantum sliding mode control [13]. This model combines unitary control
and periodic projective measurements. First, the initial state is driven into a sliding
mode and then a periodic projective measurement is performed. Finally, there is risk-
sensitive quantum control [14,15] that is a robust control method with a feedback
loop.

The paper is organized as follows. In Sect. 2, we introduce the model used for
simulations. Section 3 describes the simulation setup. In Sect. 4, we show results of
numerical simulations, and in Sect. 5, we draw the final conclusions.
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2 Our model

To demonstrate a method of obtaining piecewise-constant controls, which have mini-
mal energy, we will consider an isotropic Heisenberg spin-1/2 chain of a finite length
N. The control will be performed on the first spin only. The total Hamiltonian of the
aforementioned quantum control system is given by

H(t) = Ho + Hc(1), (D
where
N-1
Ho=J > (Sisi 4+ 5isi + sisi+), @

i=1

is a drift part given by the Heisenberg Hamiltonian. The control is performed only on
a first spin and is Zeeman like, i.e.,

He(t) = hy(1)S} + hy(1)S,. 3)

In the above, S,’; denotes k™ Pauli matrix which acts on the spin i. Time dependent
control parameters /1, (t) and £, (¢) are chosen to be piecewise constant. Furthermore,
as opposed to [16], we do not restrict the control fields to be alternating with x and
y, i.e., they can be applied simultaneously (see e.g., [17] for similar approach). For
notational convenience, we set i = 1; and after this, rescaling frequencies and control
field amplitudes can be expressed in units of the coupling strength J; and on the other
hand, all times can be expressed in units of 1/J [16].

The system described above is operator controllable, as it was shown in [18] and
follows from a controllability condition using a graph infection property introduced
in the same article. The controllability of the described system can be also deduced
from a more general condition utilizing the notion of hypergraphs [19].

Since the interest here is focused on operator control sequence, a quality of a control
will be measured with the use of gate fidelity,

1 i
F=xx ’Tr(UTU(h))

, “)

where Ur is the target quantum operation, and U (k) is an operation achieved by
control parameters .. We choose gate fidelity as it neglects global phases.

In the case of disturbed system, we will measure the quality of the control by a trace
distance between Choi—Jamiotkowski states, which gives an estimation of a diamond
norm.

In many situations, the interaction with the control fields causes an undesirable
coupling with the environment, which can lead to a destruction of the interesting
features of the system. We will consider a general model described by

H(t) = Ho + He(r) + y (|he| + |1y ) Hy, )
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where Hj denotes a general Hamiltonian responsible for a coupling with an envi-
ronment, and the interaction is proportional to the magnitude of a control field. To
minimize the influence of an environment in this model, we introduce an additional
constrain on the control pulses, namely we wish to minimize the L norm of control

pulses
n

il =D Ik, (6)
i=1
where k € {x, y} and n are the total number of control pulses. In order to make this
quantity comparable with fidelity, we impose bounds on the maximal amplitude of the
control pulses. To accommodate this, we introduce the following penalty

Do g

P= ,
nb

@)

where b is the bound on the control pulse amplitude. This leads to the following
functional we wish to minimize

G=0—-wP~kP—ukF, (3)

where p is a weight assigned to fidelity.

To optimize the control pulses, we utilize the BFGS algorithm [20]. In order to use
this method effectively, we need to calculate the explicit form of derivatives of Eq. (6).
We propose the following functions to be used as the derivative of the absolute value:

e The signum function:

d
ﬂ = sgn(x). ©)]
dx
e A fractional derivative:
d”|x| re -,
= , 10
dx re—a (19)

where I'(x) = (x — 1)! and we set « = 0.99.
e Rescaled Fermi—Dirac distribution

d —1
ﬂ’%Z —F——— +05], (11)
dx exp (ﬁ)+l

where we set kT = 0.01.

The signum function is the natural conclusion when one thinks about the derivative
of the L1 norm as it penalizes any nonzero control pulses in the control scheme. To
further out studies, we introduce two approximations of the derivative of the L norm.
The first one utilizes the idea of fractional derivatives [21]. This allows us to achieve
a continuous function, which quickly increases from O to 1 for positive values of the
argument and decreases from 0 to —1 for negative values. Although continuous, the
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Fig. 1 Comparison of different derivative approximations

function has the drawback that control pulses with lower magnitude are less penalized.
The penalty can be adjusted by using the parameter o

The last proposed approximation is a rescaled Fermi—Dirac distribution [22]. The
distribution is given by |

exp (%) + 1’

where E ¢ is the Fermi energy level. The usage is justified, as for T = 0 the function
is given as

fx) = (12)

1 ifE < Ey,

F(E) = io fE £ (13)

We rescale this function in the following manner: First, we set E y = 0. Next, in order

to obtain behavior similar to the signum function, we translate and rescale the function,
so that f(x) = —1 forx « 0 and f(x) = 1 for x > 0. After these operations we

obtain
-1
=2 ———+0.5]), 14
fx) (exp(%)—}-l—i_ ) (14)

From our point of view, the function has properties similar to the fractional derivative
and the penalty for low magnitude pulses can be adjusted by using the “temperature”
T. A comparison of these approximations is shown in Fig. 1.

3 Simulation setup

To demonstrate the beneficialness of our approach, we study three- and four-qubit spin
chains. The control field is applied to the first qubit only. Our target gates are:

NOTy = 19V @ o, (15)
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the negation of the last qubit of the chain, and
SWAPy = 1®V2 @ SWAP, (16)

swapping the states between the last two qubits. This set of gates is universal in
quantum computation.

We provide an explicit example in which we set the duration of the control pulse
to At = 0.2 and the total number of pulses in each direction to n = 64 for the three-
qubit chain and n = 256 in the four-qubit case, although the presented method may
be applied for arbitrary values of Ar and n. The weight of fidelity in Eq. (8) is set to
@ = 0.2 in the three-qubit scenario and to i = 0.4 in the four-qubit scenario.

4 Results

We show examples of control sequences obtained by using our method in Figs. 2
and 3. They depict results obtained for the three-qubit NOT gate optimization and
four-qubit SWAP gate optimization, respectively. In the three-qubit scenario, we find,
as expected, a control sequence that equal to zero most of the time with irregular,
high amplitude pulses. A similar case can be made for the swap gate in the four-
qubit scenario. The main difference is that in this case, the high amplitude pulses are
surrounded by groups of weaker pulses. The results shown here are for the fractional
derivative approximation. Simulations for other approximation yield nearly identical
results.

The fidelity obtained in both cases is F > 0.99, and the value of P has the order
of 1072

Finally, we show the evolution of each qubit’s state. Let the qubits be in the state
[Y)o = |000) in the case of the three-qubit scenario. Figure 4 shows the time evolution
of the target qubit in this setup. The final state of the chain is ¥y = |001). Note that
the evolution is smooth, no signs of control pulses are visible in the qubit’s trajectory.
In the four-qubit scenario the time evolution of the target qubits is shown in Figs. 5

—10

—20
00 05 10 15 20 25 30 35 40

Fig. 2 Example control sequences &y and &y, for the NOT gate in the three-qubit scenario
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Fig. 3 Example control sequences /iy and &y for the SWAP gate in the four-qubit scenario

Fig. 4 Time evolution of the ‘0>
target qubit of a three-qubit

chain from the state |000) to the
state |[001) under the operator

1 ® 1 ® o, implemented by
optimized control sequences

1)

and 6. Let the initial state of the chain be equal to |¢9) = |0010). The final state of the
chain is |¢) = [0001). In this case, the figures show that the transition is performed
along the shortest path possible. Also, note that the evolution is quite smooth, and the
application of each control pulse is not visible in these figures.

In order to demonstrate the advantages of our approach, we perform additional
simulations, where we put © = 1 in Eq. (8). This is the unconstrained problem of
finding optimal control pulses. Next, we introduce an interaction with an environment,
proportional to || + |y |. We model the interaction with the environment by adding
a qubit to the chain. The Hamiltonian for this case is

Hgraph (1) = Ho + Hc (1) + Y (lhx| + |hyl)

N
X D7 (SEsi 4 spsN el g sishH), (17)
i=1
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Fig. 5 Time evolution of the
third qubit of a four-qubit chain
from the state |0010) to the state
|0001) under the operator

1 ® 1 ® SWAP implemented by
optimized control sequences

Fig. 6 Time evolution of the
fourth qubit of a four-qubit chain
from the state |0010) to the state
|0001) under the operator

1 ® 1 @ SWAP implemented by
optimized control sequences
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In order to compare the evolution with the additional qubit with a given Ur, we use
the following scheme. For a quantum channel ®, let us write J(®) to denote the

associated state:

1
J(@) =~ > (i) iD ® i)l

(18)

Here, we are assuming that the channel maps n x n complex matrices into m x m
complex matrices. The matrix J(®) is sometimes called the Choi—Jamiotkowski rep-
resentation of ®. For quantum channels ®y and &, we may define the “diamond

norm distance” between them as

[Po — Pillo = Skup [(Po @ Lp)(p) — (P @ L) (0) Iy
0

19)

where 1 denotes the identity channel from the set of k x k complex matrices to itself;
Il - I denotes the trace norm; and the supremum is taken over all k > 1 and all density
matrices p from the set of nk x nk complex matrices. The supremum always happens
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Table 1 Summary of the value

of Eq. (20) for the studied cases Without additional qubit With additional qubit
nw=1 n<l1 n=1 n<1
NOT3 0.0000  0.0000 0.0975  0.0086
NOT4 0.0000  0.004 0.9788  0.0142
For 1 = 1 we have a control SWAP3  0.0000  0.0001 0.0135  0.0133
optimization without regarding  gwap,  0.0000  0.0020 0.0843  0.0064

the L norm of control pulses

to be achieved for some choice of k < n and some rank 1 density matrix p. A coarse
bound for the diamond norm defined in Eq. (19) is known [23]

1
~l1Po = @1llo = I7(®0) = J(@D)l1 = [P0 = Pillo- (20)

Therefore, to compare the target operations with and without the additional qubit,
we study the L; of the difference of the Jamiotkowski matrices of the respective
quantum channels ||J(®g) — J(P1)]|1. The results for different target operations are
summarized in Table 1. We show results obtained for Fermi—Dirac approximation of
the derivative. As stated in the table, the bigger the system under consideration is the
greater is the gain from using our method.

5 Conclusions

In this work, we introduced a method of obtaining a piecewise-constant control field
for a quantum system with an additional constrain of minimizing the L; norm. To
demonstrate the beneficialness of our approach, we have shown results obtained for
a spin chain, on which we implemented two quantum operations: negation of the last
qubit of the chain and swapping the states of the two last qubits of the chain. Our
results show that it is possible to obtain control fields which have minimal energy
and still give a high fidelity of the quantum operation. Our method may be used in
situations where the interaction with the control field causes additional coupling to
the environment. As our method allows one to minimize the number of control pulses,
it also minimizes the amount of coupling to the environment. It is important to note
that our model differs from known in the literature dynamical decoupling, in which
additional perturbation on a system is added, which protects the evolution against the
effects of the environment influence. In our case the interaction with the environment is
related to the control strategy, and it emerges only if the control is applied. Our model
allows to optimize high fidelity control pulses for the cases with and without external
environment, as shown in Table 1 as long as the coupling is induced by the control
pulses themselves. Other possible usage of our method includes systems, in which it
is possible to use rare, but high value of control pulses, for example, superconducting
magnets with high impulse current.
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