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Abstract In order to establish the computational equivalence between quantum
Turing machines (QTMs) and quantum circuit families (QCFs) using Yao’s quantum
circuit simulation of QTMs, we previously introduced the class of uniform QCFs
based on an infinite set of elementary gates, which has been shown to be compu-
tationally equivalent to the polynomial-time QTMs (with appropriate restriction of
amplitudes) up to bounded error simulation. This result implies that the complexity
class BQP introduced by Bernstein and Vazirani for QTMs equals its counterpart
for uniform QCFs. However, the complexity classes ZQP and EQP for QTMs do
not appear to equal their counterparts for uniform QCFs. In this paper, we intro-
duce a subclass of uniform QCFs, the finitely generated uniform QCFs, based on
finite number of elementary gates and show that the class of finitely generated uni-
form QCFs is perfectly equivalent to the class of polynomial-time QTMs; they can
exactly simulate each other. This naturally implies that BQP as well as ZQP and
EQP equal the corresponding complexity classes of the finitely generated uniform
QCFs.
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1 Introduction

In computational complexity theory, Turing machines and Boolean circuits are com-
monly used as mathematical models of computation. A Turing machine has tapes of
infinite-length to treat the inputs of any length. On the other hand, a Boolean circuit
can only process the inputs of a fixed length since its size is finite. To represent an
algorithm carried out on inputs of any length, we need to consider a family of Boolean
circuits whose n-th circuit handles the inputs of length n. In addition, to keep the
computational power consistent with the Church-Turing thesis, we need the notion of
uniformity of circuit families, first proposed by Borodin [6]. Roughly speaking, the
uniformity of a circuit family requires that there exists a computationally simple rule
for constructing all circuits in the family. It is well-known that the polynomial-time
Turing machine and the polynomial-size uniform circuit family can exactly simulate
each other (see, for instance, Theorem 11.5 in [22, p. 269]). We say that two classes A
and B of computational models, such as the class of polynomial-time Turing machines
and the class of polynomial-size uniform circuit families, are perfectly equivalent if
any element of A can be exactly simulated by an element of B in a sense appropriately
defined thereon, and vise versa. Thus, the class of polynomial-time Turing machines
is perfectly equivalent to the class of polynomial-size uniform circuit families.

In the mid-1980s, Deutsch proposed a new parallel computing paradigm, quan-
tum computing, which utilizes the superposition principle of quantum mechanics. As
mathematical models of quantum computing, he introduced the quantum versions
of Turing machines and Boolean circuits, called quantum Turing machines (QTMs)
and quantum circuits [7,8]. In 1993, Bernstein and Vazirani [4] and Yao [27] refor-
mulated Deutsch’s QTM model and quantum circuit model in the form suitable for
computational complexity theory. Bernstein and Vazirani introduced the complexity
classes BQP, ZQP, and EQP that represent the bounded-error, zero-error, and exact
quantum algorithms to set the grounds for quantum complexity theory. As the first
relation between QTMs and quantum circuits, Yao showed that, for any QTM M and
T > 0, there is a quantum circuit of size O(T 2) that simulates M for T steps. This
result was often mentioned to directly mean that QTMs and quantum circuit families
(QCFs) are equivalent by a simple analogy with the equivalence between classical
Turing machines and classical circuit families. After a few years, the notion of uni-
formity of QCFs was shortly mentioned in [9,24]. In particular, Shor [24] pointed out
(after his private communication with R. Solovay) that uniform QCFs should satisfy
a requirement, which is absent in the standard uniformity requirement, that the entries
of elementary gates be polynomial-time computable. In tandem, Adleman et al. [1]
showed that a polynomial-time QTM with amplitudes from the whole complex num-
ber field can compute even a non-recursive function. In the journal version [5] of [4],
Bernstein and Vazirani defined the complexity classes BQP, ZQP, and EQP based
on the polynomial-time QTM with amplitudes from the polynomial-time computable
numbers.

In our previous investigation [19], we instituted the complexity theory of uniform
QCFs . For this purpose, we rigorously introduced the notion of uniformity of QCFs and
based on that we defined the complexity classes, what we called BUPQC, ZUPQC,
and EUPQC, which correspond to BQP, ZQP, and EQP, respectively. Using this
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formulation and Yao’s quantum circuit construction for simulation of QTMs, we
showed the following results on the computational equivalence between QTMs and
uniform QCFs: (i) BUPQC = BQP [19] (QTMs and uniform QCFs are computa-
tionally equivalent in the bounded-error setting). (ii) ZQP ⊆ ZUPQC and EQP ⊆
EUPQC while the simulation does not work to show the converse [19,20] (the com-
putational equivalence between the two models are open in the zero-error and exact
setting). Thus, the following question still remained: In the zero-error and exact set-
ting, what restriction for the uniform QCF guarantees the computational equivalence
between the two models? Kitaev and Watrous [14] introduced the notion of uniformly
generated QCFs based on Shor basis [25]. The class of uniformly generated QCFs
is computationally equivalent to the class of our uniform QCFs up to bounded error
simulation, and it has been used for the study of quantum interactive proof systems.
However, this notion does not provide a solution to question (ii) above.

In this paper, we give a complete answer to the above question. To this end, we
introduce the notion of finitely generated uniform QCFs based on finite sets of ele-
mentary gates, which is a subclass of the uniform QCFs. In [19], we briefly mentioned
the notion of semi-uniform QCFs, which is also based on finite sets of elementary
gates. Finitely generated uniform QCFs are regarded as those semi-uniform QCFs
whose amplitudes are taken from polynomial-time computable numbers. We show
that the class of finitely generated uniform QCFs is perfectly equivalent to the class
of polynomial-time QTMs with amplitudes from polynomial-time computable num-
bers. This implies that these two models can simulate each other without error, and
hence not only BQP but also ZQP and EQP coincide with the corresponding classes
defined through finitely generated uniform QCFs. The proof requires more minute
arguments than that of the computational equivalence up to bounded error simulation.
For the proof, we revisit properties of polynomial-time computable numbers, which
was implicitly used in [19], and Yao’s quantum circuit construction. We combine them
with the exact decomposition of unitary matrices.

2 Finitely generated QCFs

In this section, we give a formal definition of finitely generated QCFs. For the defini-
tion of QCFs, see [19]. For convenience, we usually identify quantum gates or circuits
with the unitary matrices representing them in the computational basis. For other fun-
damental notions of quantum computation, we refer to Gruska [11] and to Nielsen and
Chuang [17]. For classical complexity theory, we refer, for example, to Papadimitriou
[22]. In what follows, let N and C denote the sets of natural numbers and complex
numbers, respectively. Let PC denote the set of polynomial-time computable complex
numbers [12]. (Informally speaking, a complex number r is polynomial-time comput-
able if its real and imaginary parts can be approximated with accuracy of 1/2n in time
polynomial in n. See Ko [13] for its formal definition.) For two integers m and n with
m < n, let [m, n]Z denote {m, m + 1, . . . , n}.

The precise formulation of the uniformity of QCFs was introduced in our previous
work [19]. Let Gu be the set of quantum gates such that
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Gu = {�1(N ), R(θ), P(θ ′)| θ, θ ′ ∈ PC ∩ [0, 2π)},

where �1(N ) is a controlled-not gate, R(θ) is a rotation gate by angle θ , and P(θ ′)
is a phase shift gate by angle θ ′. All the gates in Gu can be encoded by binary strings,
using the codes of polynomial-time computable numbers. Here, the code of a polyno-
mial-time computable number r is an appropriate encoding of a deterministic Turing
machine (DTM) that approximates r within 2−n in time polynomial in n. We can
then give the code Code(C) of a quantum circuit C based on Gu . We say that a QCF
C = {Cn} based on Gu is polynomial-size uniform, or uniform for short, if the function
1n �→ Code(Cn) is computable by a DTM in time polynomial in n. Uniform QCFs
are very suitable to represent important quantum algorithms such as the quantum Fou-
rier transform and the amplitude amplification. However, uniform QCFs cannot be
exactly simulated by any QTM [19] (even with zero-error [20]). Thus, it is question-
able whether the class of languages recognized by uniform QCFs with certainty (resp.
with zero-error) coincides with the class EQP (resp. ZQP) of polynomial-time QTMs.

By analogy with the uniformity of classical circuits, we may imagine a “uni-
form” QCF based on a fixed finite set of elementary gates. For example, Kitaev and
Watrous [14] introduced polynomial-time uniformly generated QCFs to define ver-
ifiers of quantum interactive proof systems: A QCF C = {Cx }1 is polynomial-time
uniformly generated if there exists a deterministic procedure that, on input x , out-
puts a description of Cx and runs in time polynomial in |x |. Although they used
Shor’s basis [25] as their set of elementary gates, in the bounded-error setting, any
other universal set of elementary gates is available without changing the computa-
tional power of polynomial-time uniformly generated QCFs. However, for exact (or
zero-error) algorithms, fixing a set of elementary gates may seriously reduce the com-
putational power of “uniform” QCFs. For instance, the class of languages recognized
with bounded-error by polynomial-time uniformly generated QCFs based on a univer-
sal set G4/5 = {�1(N ), R(θ), P(θ)| cos θ = 4/5} coincides with the class BQP [1],
while the class of languages recognized with certainty by polynomial-time uniformly
generated QCFs based on G4/5 coincides with the class P [18], instead of the class
EQP.

We now introduced a class of QCFs, called finitely generated QCFs, an interme-
diate class between uniform QCFs and polynomial-time uniformly generated QCFs.
A uniform QCF C is said to be finitely generated if there is a finite subset G of Gu

such that C is based on G. By definition, any polynomial-time uniformly generated
QCF is finitely generated, and any finitely generated uniform QCF is uniform. Finitely
generated uniform QCFs have two nice properties: (i) The finitely generated uniform
QCF is based on finite sets of elementary gates, different from the uniform QCF; and
(ii) The definition of the finitely generated uniform QCF is independent of the choice
of universal sets, different from the polynomial-time uniformly generated QCF. In
[19], we provided a similar notion, called semi-uniform QCFs. A finitely generated

1 Their family is somewhat nonstandard in the sense that the parameter of the family is a binary string
that represents an input, not an integer that represents the length of the input. However, as they mentioned
in [14], this does not change the computational power for some fixed set of elementary gates (also, see
Sect. 4).
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uniform QCF can be regarded as a semi-uniform QCF such that all the components
representing matrices of elementary gates are restricted to PC. An analogous concept
to finitely generated uniform QCFs was also mentioned by Green et al. [10] in their
study of shallow quantum circuits.

3 Proof of the perfect equivalence

In this section, we establish the perfect equivalence between the finitely generated
uniform QCF and the polynomial-time QTM with amplitudes from PC. See [5,19,21,
26] for the definition of QTMs.

First, we recall two elementary properties on polynomial-time computable num-
bers given by Ko and Friedman [12]. Loosely speaking, a real function f is said to
be polynomial-time computable if for any real x , the value f (x) can be approximated
with accuracy of 1/2n in time polynomial in n using x as an “oracle” to obtain any
required bits of x (see [13] for its formal definition).

Theorem 1 (i) All roots of an analytic, polynomial-time computable function are
polynomial-time computable.

(ii) PC is an algebraically closed field.

Second, we provide a standard exact decomposition of finite dimensional unitary
matrices [2] with an argument on polynomial-time computable entries of matrices.2 To
this end, we use the terminology of the approximate decomposition algorithm of uni-
tary matrices given in [5]. Although this exact decomposition is not algorithmic, it is
sufficient for our purpose. Let e j be the m-dimensional unit column vector whose j-th
component is 1. We denote by Nearm( j, θ) an m-dimensional unitary matrix satisfying

Nearm( j, θ)ek =
{

(eıθ )ek if k = j,
ek otherwise.

We denote by Nearm(i, j, θ) an m-dimensional unitary matrix satisfying

Nearm(i, j, θ)ek =
⎧⎨
⎩

(cos θ)ei − (sin θ)e j if k = i,
(sin θ)ei + (cos θ)e j if k = j,
ek otherwise.

These two types of matrices are called near-trivial [5]. We show that any unitary
matrix whose components are in PC can be decomposed into near-trivial matrices
whose components are also in PC.

Lemma 1 (i) Any N-dimensional unitary matrix U can be represented by the
product Um . . . U1 of m = O(N 2) near-trivial matrices U1, . . . , Um.

(ii) Moreover, if all the entries in U are in PC, each U j has the entries in PC.

2 Lately, more efficient decomposition is shown (e.g., [16]) but they do not reduce the number of gates
exponentially. Thus, for simplicity of our argument, we use the decomposition in [2].
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Proof (i) Let U be an N -dimensional unitary matrix. We can show that there is a
product A of 2N − 1 near-trivial matrices such that AU (1) = e1, where U (1) denotes
the first column vector of U . Actually, we show that for any N -dimensional unit col-
umn vector v, there is a product A of 2N − 1 near-trivial matrices such that Av = e1.
Let vi denote the i-th coordinate of v. First, we use N near-trivial matrices to map v
into the N -dimensional real space. Let Pi = Nearm(i, φi ) where

φ j =

⎧⎪⎪⎨
⎪⎪⎩

2π − cos−1
(

Re(v j )

|v j |
)

if Im(v j ) > 0,

cos−1
(

Re(v j )

|v j |
)

if Im(v j ) < 0,

0 if v j = 0.

Then, P1 . . . PN v is the vector with i-th coordinate |vi |. Second, we use N − 1
near-trivial matrices to move all of the weight of the vector into dimension 1. Let

Ri = Nearm(i, i + 1, θi ), where θi = tan−1
(√∑N

j=i+1 |v j |2/|vi |
)

. Then, we have

R1 · · · RN−1 P1 · · · PN v = e1.
Now we have AU = diag(1, B), where B is an (N −1)-dimensional unitary matrix.

Here, diag(A1, . . . , An) denotes the block-diagonal square matrix composed of square
matrices A1, . . . , An along the diagonal and 0’s everywhere else. By induction, we can
verify that there is the product C of O(N 2) near-trivial matrices satisfying CU = I .
Thus, U can be represented by the product of O(N 2) near-trivial matrices.

(ii) In the case where all the entries in U are in PC, we should note that the above
decomposition uses only four arithmetic operations, the function x �→ √

x , the trigo-
nometric functions and their inverse functions for each real parts and imaginary parts.
Therefore, each near-trivial matrix composing U has the entries in PC by Theorem 1.

As seen in [2], any 2n-dimensional near-trivial unitary matrix U can be decomposed
into O(n3) quantum gates in Gu as follows: (i) Using an idea from the grey code, U
can be decomposed into O(n) controlled(n−1)-phase shifts or rotation gates; (ii) Any
controlled(n−1)-phase shift (or rotation gate) can be decomposed into O(n2) quantum
gates in Gu (Corollary 7.6 in [2]). Moreover, by carefully checking the argument lead-
ing to obtain Corollary 7.6 in [2], we can see that those O(n3) quantum gates have
their entries in PC provided that all the entries in U are in PC. Thus, we obtain the
following exact decomposition of unitary matrices.

Proposition 1 (i) Any n-qubit gate U can be decomposed into O(22nn3) quantum
gates in Gu.

(ii) Moreover, if all the entries in U are in PC, each of the quantum gates that
decomposes U has its entries in PC.

Third, we provide the exact simulation of QTMs by finitely generated uniform
QCFs, combining Yao’s idea for the simulation of a QTM by a quantum circuit [27]
and Proposition 1. We briefly recall the definition of the simulation of QTMs by
finitely generated uniform QCFs. See [19] for the detail. A quantum circuit C is said
to exactly t-simulate a QTM M if the following two probability distributions Dx and
D′

x are equal for any string x : (i) the probability distribution Dx of the outcomes of the
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simultaneous measurement of the tape cells from cell −t to cell t after t steps of M for
input state |q0, tape[x], 0〉, where tape[x] represents the tape configuration such that
x is written from cell 0 to cell |x | − 1; and (ii) the probability distribution D′

x of the
string obtained by decoding the output of C for the input of the binary string obtained
by encoding x . A finitely generated uniform QCF {Cn} is said to exactly simulate a
polynomial-time QTM M if Cn t (n)-simulates M , where a polynomial t (n) is the
computation time of M on input of length n.

Theorem 2 Let M = (Q, �, δ) be a polynomial-time QTM with amplitudes from PC.
Then, there is a finitely generated uniform QCF {Cn} that exactly simulates M.

Proof The basic line of this proof is in accordance with the proof in [19, Theorem
4.3], which is based on Yao’s construction. For our exact simulation, we argue the
decomposition of Yao’s construction into elementary gates in detail. We refer to [19,
Sect. 4] for the terminology of quantum circuits.

Let t (n) be the computation time of M on input of length n. First, we fix n and
construct a quantum circuit CG which t-simulates M . Henceforth, let t = t (n) for
simplicity. The quantum gate determined by CG consists of l0 + (2t + 1)l wires (i.e.,
qubits), where l0 = 	log |Q|
 and l = 2+	log |�|
. Its wires are indexed in order. We
divide their wires into a part consisting of the first l0 wires and 2t + 1 parts. Each of
the 2t + 1 parts consists of l wires. The part consisting of the first l0 wires represents
the processor configuration of M . This set of wires is called cell “P” of CG . The state
of the cell P of CG is represented by a unit vector in the Hilbert space spanned by
the computational basis {|q〉}, where q ∈ {0, 1}l0 . For j ∈ [0, 2t]Z, the wires with
indices l0 + jl + 1, . . . , l0 + jl + l represent the symbol in the ( j − t)-th cell of M
and whether the head scans this cell or not. This set of wires is called cell j − t of
CG . For i ∈ [−t, t]Z, the state of the cell i of CG is represented by a unit vector in the
Hilbert space spanned by the computational basis {|σi si 〉}, where σi ∈ {0, 1}	log |�|

and si ∈ {0, 1}2.

The circuit CG consists of two types of quantum gates G1 and G2. The quantum
gate G1 is used for simulating one step of M when its gate is connected into the cell
in which the head of M exists. The quantum gate G2 is used for resetting some wires
to simulate the next step. In what follows, p, q, . . . denote binary strings representing
elements of Q, the symbols σ, τ, . . . denote binary strings representing elements of �,
and s = 0̄, 1̄, 2̄ denote 00,01,10, respectively. We denote by |q; σ1s1; σ2s2; · · · ; σksk〉
the computational basis state |qσ1s1σ2s2 · · · σksk〉 on the wires corresponding to all
the numbers in [1, l0 + kl]Z. Let G1 be an (l0 +3l)-qubit gate satisfying the following
conditions (i) and (ii):

(i) G1|wp,σ1,σ,σ3〉 = |vp,σ1,σ,σ3〉, where

|wp,σ1,σ,σ3〉 = |p; σ10̄; σ 1̄; σ30̄〉, and

|vp,σ1,σ,σ3〉 =
∑
q,τ

δ(p, σ, q, τ,−1)|q; σ12̄; τ 0̄; σ30̄〉
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+
∑
q,τ

δ(p, σ, q, τ, 0)|q; σ10̄; τ 2̄; σ30̄〉

+
∑
q,τ

δ(p, σ, q, τ, 1)|q; σ10̄; τ 0̄; σ32̄〉

for any (p, σ1, σ, σ3) ∈ Q × �3; each summation
∑

q,τ is taken over all
(q, τ ) ∈ Q × �.

(ii) G1|h〉 = |h〉 for each vector |h〉 in the subspace H of C2l0+3l
spanned by three

types of vectors:

(1) |q; σ1s1; σ2s2; σ3s3〉, where s2 �= 1̄ and none of s1, s2, s3 equals 2̄;
(2) |u1

p,σ,σ2,σ3
〉 = ∑

q,τ δ(p, σ, q, τ, 0)|q; τ 2̄; σ20̄; σ30̄〉
+ ∑

q,τ δ(p, σ, q, τ, 1)|q; τ 0̄; σ22̄; σ30̄〉;
(3) |u2

p,σ,τ,σ1,σ2,σ3
〉 = ∑

q∈Q δ(p, σ, q, τ, 1)|q; σ12̄; σ20̄; σ30̄〉.
Let G2 be an (l0 + (2t + 1)l)-qubit gate that does nothing except for mapping all
si = 2̄’s to si = 1̄’s and vice versa. Let CG be the quantum circuit based on G =
{G1, G2} constructed as follows. First, 2t − 1 G1’s are connected in such a way that,
for j ∈ [1, 2t − 1]Z, the j-th G1 is connected with cells j − t − 1, j − t and j − t + 1.
The (l0 + (2t + 1)l)-qubit circuit constructed from these G1’s is called C1. Lastly, G2
is connected with cells −t,−t +1, . . . , t . The (l0 +(2t +1)l)-qubit circuit constructed
from this G2 is called C2. Let CG be (C2 ◦C1)

t , i.e., the t concatenations of the circuit
C2 ◦ C1 obtained by connecting C2 into C1. The quantum circuit C2 ◦ C1 is illustrated
in Fig. 1. By the definitions of G1 and G2, it can be verified that C2 ◦ C1 carries out
the operation corresponding to one step of M (see [19] for the verification). Hence,
CG simulates t steps of M exactly.

The (l0 + 3l)-qubit gate G1 can be exactly decomposed by a finite number of one-
qubit gates G11, . . . , G1α and �1(N ) from Proposition 1(i). Note that all the compo-
nents of G11, . . . , G1α,�1(N ) are in PC by Proposition 1(ii) since the QTM M has
transition amplitudes in PC. By definition, the quantum gate G2 can be implemented
by swapping two qubits of each si , which can be implemented by the concatenation of
three controlled-not gates. Thus, there are an (l0 + 3l)-qubit quantum circuit Cu,1 of

Fig. 1 The quantum circuit C2 ◦C1 based on the set G = {G1, G2} of quantum gates. This circuit simulates
one step of a QTM M with amplitudes from PC
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size O(1) and an (l0 +(2t +1)l)-bit quantum circuit Cu,2 of size 3(2t +1) based on Gu

such that the quantum gates determined by them are G1 and G2, respectively. Now, let
Ca be an (l0 + (2t + 1)l)-qubit quantum circuit obtained by decomposing each G1 in
C1 into O(1) gates using a subset GM = {G11, . . . , G1α,�1(N )} of Gu . Since the size
of Ca is O(2t + 1), C = (Cu,2 ◦ Ca)t is a quantum circuit based on GM of size O(t2)

that exactly t-simulates M. The codes of Cu,2 and Ca can be computed by a DTM in
time polynomial in n from their constructions (note that the codes of polynomial-time
computable numbers used in Cu,2 and Ca can be stored in the processor of the DTM
since they are finite). Moreover, the code of C is also computed in time polynomial
in n since C is simply the concatenation of t (n) circuits Cu,2 ◦ Ca . Noting that the
set GM of elementary gates is fixed with respect to n, we can verify that M is exactly
simulated by a finitely generated uniform QCF {Cn}, where Cn is the above quantum
circuit that exactly t (n)-simulates M . This completes the proof. 
�

Finally, we can exactly simulate any given finitely generated uniform QCF {Cn} by
a polynomial-time QTM M with amplitudes from PC (see Lemma 5.1 in [19]) because
the set of elementary gates for Cn is finite and the quantum transition function of M can
represent all the operations induced by the elementary gates. Combining this fact with
Theorem 2, we obtain the perfect equivalence between the classes of polynomial-time
QTMs with amplitudes from PC and finitely generated uniform QCFs.

Theorem 3 The class of polynomial-time QTMs with amplitudes from PC is perfectly
equivalent to the class of finitely generated uniform QCFs.

The following corollary directly comes from Theorem 3.

Corollary 1 The class of languages recognized with certainty (resp. with zero-error
and bounded-error) by finitely generated QCFs coincides with the corresponding
complexity class EQP (resp. ZQP and BQP) for polynomial-time QTMs.

4 Concluding remarks

We introduced a subclass of uniform QCFs, finitely generated uniform QCFs, and
showed that this subclass is perfectly equivalent to the class of polynomial-time QTMs
with amplitudes from polynomial-time computable numbers. Here, we shortly point
out relationships among uniformity notions under other conditions.

Complexity of coding

In the theory of circuit complexity, a number of uniformity notions (say, [3,6,23])
were proposed according to machines for constructing circuit families. We use poly-
nomial-time DTMs as machines for computing the codes of QCFs. Although we could
take polynomial-time QTMs with amplitudes from PC, instead of polynomial-time
DTMs, the resulting class of uniform QCFs does not change. This is because such
polynomial-time QTMs can be exactly simulated by QCFs whose coding functions
are deterministically polynomial-time computable by using Yao’s construction. Fur-
thermore, we can restrict machines for computing the codes of QCFs to logspace
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DTMs without changing the resulting class of uniform QCFs since, in the proof of
Theorem 2, the code of C is computed by an O(log n)-space DTM. This means that
the finitely generated “logspace-uniform” QCF is perfectly equivalent to the finitely
generated “P-uniform” (and even “EQP-uniform”) QCF, like the classical case.

Parameter of uniform QCFs

In [14], the binary string x ∈ {0, 1}∗ was used as the parameter of uniform QCFs
instead of the number n ∈ N. That is, a QCF {Cx } is uniform if there is a DTM M
that on input x , produces a description of Cx in time polynomial in |x |. However, as
mentioned in [14], this variation does not change the resulting class of uniform QCFs.
Actually, all the Cx ’s with |x | = n can be simulated by only one quantum circuit C ′

n ,
which implements Cx on the target part of C ′

n when x is provided to the controlled
part of C ′

n . It is easy to check that {C ′
n} is a uniform QCF in the regular meaning.

Size of elementary gates

It is well-known that any one-qubit gates whose components are in PC and the con-
trolled-not gate are sufficient [2] to represent any uniform QCF exactly. Therefore,
uniform QCFs defined under elementary gates of larger size more than two are per-
fectly equivalent to our uniform QCFs.

Restriction of transition amplitudes

In [19], we showed the perfect equivalence between semi-uniform QCFs and polyno-
mial-time QTMs without any restriction of amplitudes. In Theorem 2, we also have
shown that both models are perfectly equivalent if their transition amplitudes are
restricted to PC. However, if we restrict their transition amplitudes to other subsets of
C, there is no guarantee that two models are still perfectly equivalent. This is because,
in the proof of Theorem 2, we use the square root operation and the root of a function
generated by trigonometric functions as well as the addition, the subtraction, the mul-
tiplication, and the division. By checking carefully the proof of Theorem 2, we can
establish the perfect equivalence between two models with amplitudes from the set
of algebraic numbers, provided that the size of elementary gates is allowed to be any
number fixed with respect to the input length. The case of the rational number field is
open since Yao’s construction needs the square root operation.

In [20], the following related results on the power of finitely generated uniform
QCFs have been reported by comparing it with that of uniform QCFs: (i) The quan-
tum Fourier transform (QFT) of any order cannot be implemented with zero error by
any finitely generated uniform QCF, while it can be exactly implemented by a uniform
QCF by the result by Mosca and Zalka [15]. (ii) If a permutation M f : |x〉 �→ | f (x)〉
can be implemented with zero error by a uniform QCF, then both f and f −1 can be
exactly computed by uniform QCFs. The first result implies that uniform QCFs cannot
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always be simulated with zero error by finitely generated uniform QCFs.3 The second
result suggests that uniform QCFs are more useful for constructing exact quantum
algorithm than finitely generated QCFs.
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