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Abstract This study addresses the use of super resolution mapping (SRM) for precision

agriculture. SRM was applied to a high resolution GeoEye image of a vineyard in Iran with

the aim to determine the actual evapotranspiration (AET) and potential evapotranspiration

(PET). The Surface Energy Balance System applied for that purpose requires the use of a

thermal band, provided by a Landsat TM image of a 30 m resolution. Image fusion

downscaled that information towards the 0.5 by 0.5 m2 scale level. The geometry was

validated with an UltraCam aerial photo. Grape trees in the vineyard were planted in rows

and three levels were distinguished: the field, rows and individual trees. AET values thus

obtained ranged within rows from 5.32 (SD = 0.26) to 5.39 (SD = 0.24), whereas values

for individual plants ranged from 5.29 (SD = 0.22) through 5.33 (SD = 0.39) to 5.36

(SD = 0.23). The study showed that AET values were obtained close to 5.71 mm day-1

derived by standard calculations at the field scale, but spatial variability was clearly pre-

sent. The study concluded that modern satellite derived information in combination with

recently developed image analysis methods is able to provide reliable AET values at the

row level, but not yet for every individual grape tree.
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Introduction

Precision agriculture (PA) is a relatively new and advanced form of agriculture that

emerged as a concept in the nineteen nineties (Bouma 1997). It allows farmers to manage

their crops by maximizing the cost-benefit ratio in terms of field variation (Brisco et al.
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1998). Good management depends upon collecting timely and precise information about

the status of crops and resources. Remote sensing (RS) tools can be useful in this respect.

In particular, PA benefits from integrating advanced geomatical technologies such as a

Global Positioning System (GPS), a geospatial information system (GIS) and RS products

in supporting agricultural activities. PA aims at providing the optimal management strategy

with multiple sources to support farm managers and decision makers such as crop water

requirement related to the adoption of a proper policy on available agricultural area. Crop

water requirements are to be assessed, evaluated and managed on the basis of modeling,

and in this way it is affected by uncertainty (Zhang et al. 2002).

Nowadays, the management system scale is much more precise than before. The

smallest unit is the plant scale or even the scale of individual leaves in contrast to tradi-

tional agriculture management system scales where the field was the smallest unit.

Determining the amount of water to be supplied to various crop types is an important

management decision (Wu et al. 2012). Water deficit, defined as the difference between

supply and requirement is increasingly the result of improper water resource management.

An important variable in this respect is crop EvapoTranspiration (ET). Water will be lost

from the crop and soil due to ET, depending upon crop type, vegetation cover and weather

factors. In agricultural irrigation systems, enough water is used to compensate for crop ET;

the so-called actual crop water requirement. Two types of ET can be distinguished, po-

tential evapotranspiration (PET) and actual evapotranspiration (AET). AET is defined as

the actual elimination of water from the soil surface and the plant, whereas PET is at-

mospheric capability to remove the water from the surface as a consequence of evaporation

and transpiration (Pidwirny 2006) if crop is not faced with any water shortage.

Remotely sensed data are useful to supply crop information from satellite data. With

spatial resolutions down to 0.5 m, more and more information becomes available at a very

high resolution. This scale level, however, is still too coarse to be of much value at the

plant scale of many crops. In this study super resolution mapping (SRM) is used to

partition pixels into smaller sub-pixels in order to achieve a high spatial resolution image

from a coarser resolution image (Atkinson 2009); (Ardila et al. 2011). SRM creates hard

classification maps at a finer resolution by increasing the spatial resolution of input im-

agery using a spatial optimization method (Atkinson 2009). SRM takes the spatial de-

pendency into account between neighboring pixels based on spatial distance. SRM has

been proposed using diverse algorithms. Tatem et al. (2001) developed SRM with a

Hopfield neural network. Verhoeye and De Wulf (2002) proposed the application of linear

optimization techniques for sub-pixel mapping. Mertens et al. (2003) applied genetic al-

gorithms in SRM. Boucher and Kyriakidis (2006) implemented indicator kriging in SRM

to evaluate the spatial variability of classes. Kasetkasem et al. (2005) introduced SRM

based on Markov random field (MRF). Tolpekin and Stein (2009) adapted SRM based

MRF to variation in class separability. Lopez (Ardila et al. 2011) proposed MRF based

SRM for identification of urban trees in very high resolution images on the basis of an

energy function, spatial smoothness, and prior and conditional probability.

This study considers the Surface Energy Balance System (SEBS) to use RS information

in PA. SEBS estimates atmospheric turbulent fluxes, evaporative fraction and actual ET

using satellite image data and meteorological information (Su 2002). It includes a toolbox

for determining physical parameters of land surface such as albedo, land surface emissivity

and land surface temperature (LST) from spectral radiance and reflectance measurements

of satellite earth observation data.

PA in Iran is in its infancy, and possibly much can be gained from further development

and applications. An interesting crop is the grape tree. It is grown in the Northern part of
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Iran, close to the Caspian Sea. In that area water is scarce and optimal water application is

required to maintain and possibly increase productivity. Water application is commonly

done at the field scale. Grape trees, however, are planted in rows and the question was

raised whether PA can benefit from RS imagery at the row level, or even at the individual

plant level. In this way, the scarce water could be applied at those locations where it was

maximally beneficial.

Remotely sensed observations and management scale practices do not fully coincide

yet. High spatial resolution satellite images can be used to identify the contours of

relatively large individual plants and study their spatial characteristics, but the spatial

resolution is still too coarse to extract information that is relevant for PA. In this study we

explore location and spectral information of individual plants at it was extracted by SRM

based on MRF of a very high resolution image. We focused on obtaining crop water

requirement, and applied SEBS at coarse resolution images to retrieve the actual

information.

The objective of this research was to investigate to which degree current RS images can

be of help in PA. The aim is to obtain high resolution information on the basis of rows and

individual plants of vineyard from images of coarse spatial and spectral resolution.

Study area and data

The study area is a vineyard with geographical coordinates 36�1102100N, 50�1301900E,
located close to the city of Sharifabad, in the center of the Qazvin province North-western

Iran. In this region, water is scarce and ground water level is lowering every year by

approximately 80 cm. The area is an open homogeneous land planted with grape trees and

is also referred to as an industrial type agricultural field (Fig. 1). Gardens and agricultural

fields like vineyards are abundant in this region. The main reason of focusing on grape

trees is the economic importance of grape fruit and potential capacity of RS based in-

formation in assessing the crop water requirement at row and possibly at plant levels. The

selected field consists of grape trees planted in 22 rows. The length of each row is 40 m

and there are 16 plants per row, the distance between trees in a row is 2 m, whereas the

plant diameter is approximately 60 cm. The growing season of grape trees takes place

between spring and leaf fall in autumn. That means the growing season starts from April

Fig. 1 The study area located in the Northern part of Iran. a The GeoEye satellite image at 2 m
multispectral and a 0.5 m panchromatic resolution. b The Landsat 5 TM image at 30 m resolution. c The
UltraCam digital aerial photo at 14 cm resolution
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until October for both traditional and industrial grape trees. The study period is selected

such that grape trees are in the mid-season of growing and that interlocks between canopy

covers in rows can be observed.

Remote sensing imagery

Three types of images were obtained from this field: a GeoEye satellite image, an Ul-

traCam digital aerial photo and a Landsat 5 TM satellite image (Fig. 1). GeoEye-1 is a high

resolution satellite image of a 0.41 m spatial resolution in panchromatic mode and 1.65 m

in multispectral mode. The GeoEye image provides both image products as panchromatic

images and multispectral images separately as well as simultaneously as a panchromatic

and multispectral (pan-sharpened) product. A four band pan-sharpened, multispectral

image and a panchromatic GeoEye image were collected for the study area on June 19,

2011. Images were projected in Universal Transfer Mercator (UTM) with the standard

spheroidal reference surface WGS 84. A panchromatic image and multispectral images of

GeoEye are very well co-registered. A Landsat 5 TM image was taken on August 1, 2011

(Fig. 1) which has seven multispectral bands such as the visible (from 0.45 to 0.69 lm),

near infrared (from 0.76 to 0.90 lm), middle infrared (from 1.55 to 1.75 and 2.08 to

2.35 lm) and a resampled thermal band (from 10.40 to 12.5 lm), all at a 30 m spatial

resolution. For atmospheric correction of the Landsat image, the simplified method in the

atmospheric correction (SMAC) is used (Rahman and Dedieu 1994). An UltraCam digital

aerial photo was taken on July 17, 2012 at 0.14 m ground resolution in the visible and near

infrared multispectral range. The digital photo was taken by a high resolution multichannel

RGBI sensor on an airborne platform at a 6 lm physical pixel size. The digital aerial photo

was orthorectified to eliminate camera tilt, lens distortion and topographic correction. To

overlay the aerial photo with the GeoEye satellite image, it was georeferenced using

ground control points (GCPs) extracted from the GeoEye satellite image, using the GeoEye

image as the master image for geo-registration (Fig. 1).

Meteorological data

A main issue in PA is to indicate the water stress with respect to the ET. For this purpose

the SEBS model presented below has been used at rows and individual pixels in the field.

Variability of ET depends upon crop-, soil-, water-, management and weather-related

variables. Weather data were collected by the Qazvin weather station during a day of

August 1, 2011. The weather station with coordinates 36�1500000 N, 50�3000000 E is located

at approximately 17 km north of the city of Qazvin (Table 1). Recorded weather data

include the maximum and minimum temperature, wind speed, sunshine hours, air pressure

and humidity.

Table 1 The ground meteorological data (at the Qazvin weather station). Time of recording information is
at 6 am GMT

Wind speed
(m�s-1)

Max Temp
(�C)

Min Temp
(�C)

Sunshine
(h)

Humidity
(%)

Air pressure
(mbar)

2011-08-01 2.6 37.14 17 12.7 14.4 868.8

574 Precision Agric (2015) 16:571–586

123



Field data

For the field data, we considered a field, denoted by F, of 3040 m2. In this field, grape trees

were planted in 22 rows, labeled as R1; . . .;R22, each row containing 16 plants. This field

was selected as it had regularly spaced grape trees, and had a shared coverage in both

GeoEye satellite image and UltraCam photo. Visual interpretation was based on the Ul-

traCam image, whereas the Geoeye panchromatic image was applied to delineate indi-

vidual plants and create reference data for validation (Fig. 2). Delineating plants was not

possible for some rows and plants because several plants were not pruned, resulting in an

interlock between them. To study the effects of SRM in more detail a subset R = {R15,

R16, R17} of three rows was identified with relatively little interlock. Within R16 we defined

the subset P = fP1;P2;P3g consisting of three individual plants that had relatively low

coverage, so that only a few interlocks occurred between canopies of the plants.

Methodology

The methodology of this research is divided into three stages. The first step uses MRF based

SRM to detect rows and plantswithin rows. The second step uses SEBS to determine theET at

a rather coarse level (30 m resolution). The third step applies image fusion to integrate the

results from SEBS and SRM to assess the ET at row and plant levels to support PA.

Super resolution mapping based on Markov random field

We consider a coarse resolution multispectral image y of M � N pixels and a fine resolution

multispectral image x. S is the scale factor between y and x as ratio of pixel size where pixel is

modeled with square footprint whereas the pixel size is the side of the square. If S is integer,

Fig. 2 Identification of three
individual plants as the subset P:
a from the GeoEye panchromatic
image and b as reference
polygons from the aerial photo
(Color figure online)
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then each pixel y contains S2 pixels from x, whereas if S is non-integer that number may vary.

It is assumed that x only contains pure pixelswhereas y also containsmixed pixels.Apixel in y

is represented as bi (i.e., i 2 1; . . .;M � Nf g) and a pixel in x as aijj, where the notation i|j

indicates that the center of the pixel is inside the footprint of pixel bi. If the footprint of bi

containsWðbiÞ centroids ofai|j then a general equation expressing the relation between x and y

is represented as a weighted average with weights hj equals:

yðbiÞ ¼
1

W bið Þ
XW bið Þ

j¼1

hjx aijj
� �

: ð1Þ

For integer valued S and aligned grids of a and b, W bið Þ = S2 pixels ai|j compose bi,

whereas for non-integer valued S, fractions of ai|j compose bi and W bið Þ can have various

values between [S]2 and ([S] ? 1)2, with [S] denoting the integer part of S. It is convenient

to choose a grid of a to match the direction of rows in R, whereas in practice grid b is not

aligned with the rows in R. To deal with misaligned grids we use geographic coordinates to

relate bi and ai|j. For each pixel bi, thus all pixels aijj with centroid in bi are identified.

In (1) we do not further explore weighing of the sub-pixels, and take hj ¼ 1 throughout.

MRF as a contextual classification method uses the spatial dependence between finer scale

pixels (a) to assign class label c aijj
� �

to each aijj at the finer scale image. The label set is

denoted by L whereas c is a super-resolution map. In MRF, a context is prior information

that is used when constructing the global energy in a Bayesian way. MRF can be specified

by means of a Gibbs random field (GRF) (Li 2009). For super-resolution map c, the prior

probability density function in a GRF is written as:

P cð Þ ¼ 1

Z
exp �U cð Þ

T

� �
; ð2Þ

where U cð Þ is the prior energy function of c, T is a constant termed of the temperature and

Z is a partition function, ensuring normalization of P cð Þ.
Let U c aijj

� �
c D aijj

� �� ���� �
be the local prior energy of pixel in ai|j and let D aijj

� �
be the

neighborhood of pixel aijj. This can be expressed as U c aijj
� �

c D aijj
� �� ���� �

following Tol-

pekin and Stein (2009). This energy function takes the value zero if all neighbor pixels are

assigned to the same class, whereas it takes larger value for heterogeneous class labels in

aijj
� �

. Further, let U xijcið Þ be the local conditional energy of pixel a and U ci xijð Þ the local
posterior energy of the pixel a. The following equation expresses the posterior energy

applying Bayes formula to a single pixel aijj:

U c aijj
� �

x aijj
� ��� ; c D aijj

� �� �� �
¼ U x aijj

� �
c aijj
� ���� �

þ U c aijj
� �

c D aijj
� �� ���� �

: ð3Þ

Further, let k (0� k\1) be an MRF parameter that balances the prior and conditional

energy functions and let kpan (0� kpan\1) be the likelihood energy parameter that bal-

ances the conditional energies of the multispectral and panchromatic GeoEye images. The

energy function with respect to coarse resolution image y and panchromatic image q is then

written following Ardila et al. (2011):

U c aijj
� �

jc D aijj
� �� �

; yðbiÞ; q aijj
� �� �

¼ kU c aijj
� �

c D aijj
� �� ���� �

þ 1� kð Þ kpanU q aijj
� �

jc aijj
� �� ��

þ 1� kpan

� �
U y bið Þjc aijj

� �� ��
: ð4Þ
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The global posterior energy function is then obtained as:

U c y; qjð Þ ¼
X

i;j

U c aijj
� �

jc D aijj
� �� �

; yðbiÞ; q aijj
� �� �

: ð5Þ

The equations can be interpreted as follows. First, x is not observed and we only have y

and q. The solution of MRF based SRM is then found by finding the super-resolution map c

that leads to the minimum of the global posterior energy function (5). To apply SRM based

MRF, the posterior energy (5) is optimized in terms of smoothness parameters (k, kpan).

Our finding with the values of smoothness parameter agrees with the values of other

studies Tolpekin and Stein (2009) and Ardila et al. (2011) for the same scale factor and

class separability. A maximum a posteriori (MAP) estimated is then obtained by applying

Simulated Annealing (SA). In order to minimize the posterior energy for estimating MAP,

a convenient class label is defined for each pixel. SA reaches the highest classification

accuracy and the lowest energy as compared to other algorithms (Tso and Mather 2009). It

is a stochastic algorithm that includes as the annealing parameters the initial temperature

T0 and the cooling rate g\1 controls the temperature reduction rate. The temperature is

decreased as Tkþ1 ¼ Tk � g. A high temperature corresponds to large randomness and thus

increases the probability of labeling pixels by replacing classes with a new class of a higher

energy. We set T0 = 3 after testing values between 0 and 3, and g ¼ 0.9, as taking a larger

g value resulted in a high increase of the number of iterations to reach convergence for

assigning class labels. Those experimentally determined values agreed with those from

Tolpekin and Stein (2009). We defined two classes as canopy and soil and estimated the

mean and covariance matrices of these classes. The scale factor value was set equal to four,

resulting in each pixel at the SRM map having a 0.5 m spatial resolution, thus allowing a

good integration of SEBS and the SRM based map.

After optimizing the smoothness parameters and the posterior energy, the appropriate

class label is defined for each pixel. The application of MAP criterion ensures that the

obtained SRM is optimal both with respect to the image data and with respect to the spatial

configuration of land cover classes.

EvapoTranspiration

EvapoTranspiration (ET) refers to two simultaneous processes related to plant—atmo-

sphere interaction: evaporation, being the loss of water from the soil surface, and tran-

spiration the removal of water from wet vegetation through the atmosphere (Allen et al.

1998). Commonly, AET is distinguished from PET, where AET is the actual elimination of

water from the surface, and PET is the capability of the atmosphere to remove the water

from the surface as a consequence of evaporation and transpiration (Pidwirny 2006) when a

crop is not faced with any water shortage. In agricultural irrigation management systems,

the amount of water that is needed to maximize crop productivity, is equal to PET, and the

so-called crop water stress (CWS), equals the difference between AET and PET (Pidwirny

2006):

CWS ¼ PET � AET : ð6Þ

CWS is thus the deficit, which in principle has to be supplied to crop if CWS [ 0.

The SEBS was developed for the assessing of atmospheric turbulent fluxes and daily ET

per pixel using RS data (Su 2002). The surface energy balance is written as:
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Rn ¼ H þ k�E þ G0: ð7Þ

The net radiation flux Rn is thus the sum of the sensible heat flux H which is the heat

transferred between the air and surface by turbulence, the latent heat flux k�E where k� is
the latent heat of vaporization and E is the AET. G0 is the soil surface heat flux that is the

energy for warming the subsurface of the earth, each expressed in Wm-2. SEBS requires

three sets of input data:

1. Land surface emissivity, albedo, temperature and the Normalized Difference

Vegetation Index (NDVI) data derived from remotely sensed images. Land surface

emissivity (LSE) is estimated from the visible and near infrared bands of Landsat 5

TM following Sobrino (2004). Su (2002) assumed a linear relationship between soil

heat flux and net radiation. Sensible heat flux (H) is modeled by Monin–Obukhov

similarity (Brutsaert 1982). Finally the daily actual ET (ETdaily, mm day�1) is

estimated as (Su 2002):

ETdaily ¼ 8:64� 107 � Kdaily �
Rn � G0

k�qw

: ð8Þ

Here Rn is the daily net radiation (J m-2 day-1), k� is the latent heat of vaporization

k� ¼ 2:501� 0:00237� Tairð Þ � 106
� �

(J kg-1), ^daily is the daily average evapora-

tive fraction that can be found in Su (2002) and qw is the density of water

ð1000kg m�3Þ. In addition, the soil heat flux G0 during 24 h is assumed to be small,

and therefore was neglected. Further, LST is taken from the thermal band using the

method by Sobrino et al. (2004), whereas the surface albedo for shortwave radiation

(a) is derived from narrowband to broadband conversion by Liang (2001). SEBS can

use Landsat images with a combination of ground meteorological data as input for

calculating the surface energy balance, but is not applicable to GeoEye or Ultracam

images, as they do not have a thermal band.

2. Air pressure, humidity, temperature and wind speed data at reference height, obtained

from weather stations.

3. Downward shortwave radiation and downward longwave radiation data that can be

measured directly or can be obtained from a radiation model. The net radiation flux

(Rn) is estimated by incorporating the retrieved surface emissivity, the LST and a from
the Landsat 5 TM data and by the use of the downward longwave and solar radiation.

The output of SEBS is provided at spatial resolution of the thermal band of the input

image (Su 2002).

In this research, SEBS is applied to estimate AET and PET on a daily basis, whereas

SRM is used to detect the rows or the individual plants. To do so, the raw data of each

image band is converted first to radiance and reflectance.

Image fusion for integration of actual ET and NDVI

In this research, the result of AET from SEBS from the 30 m lower coarse resolution

image was fused with the NDVI image extracted from the GeoEye satellite image. To do

so, it was assumed that the NDVI at the fine resolution image includes both vegetation with

a high AET and soil with a low daily AET. The Gram–Schmidt (GS) spectral sharpening

(Laben and Brower 2000) was applied for image fusion of the fine scaled GeoEye image

with the coarse scale Landsat image. GS consists of four steps. Step 1 simulates a coarse
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spatial resolution image of AET maps at 30 m spatial resolution. Step 2 performs a GS

transformation on the simulated coarser resolution image. Step 3 adjusts the statistical

information at the finer spatial resolution image of NDVI at 0.5 m spatial resolution and

compares it with statistical information of the first transform GS providing an adapted finer

resolution image. Step 4 applies the inverse GS transformation and provides the enhanced

spatial resolution image. All processes were carried out following (Ha et al. 2012) in ENVI

(Environment for Visualizing Image) software, developed by ITT�.

Comparison with existing methods

We validated the SRM results from each row and individual plants using the UltraCam

photo and the panchromatic image of the GeoEye satellite image respectively.

SRM is performed both at subset R, and for the three individual plants in P. A reference

map displaying the rows and individual plants was created from the UltraCam digital aerial

photo and the panchromatic image of GeoEye satellite image. In this process, selected rows

and individual plants were presented as a red polygon (Fig. 2). The number of pixels

classified inside a polygon served as a reference for the total number of classified pixels.

Accuracy of SRM results was assessed using Cohen’s kappa statistics (Richards 2012).

The quality and accuracy of estimated AET determined through SEBS should be

assessed in comparison with field measurements (Su 2002). However, due to the absence of

in situ data, we followed a standard FAO-56 method, i.e. the FAO Penman–Monteith

methodology (Allen et al. 1998) of determining daily PET and to validate the result of ET

obtained from SEBS. In this process ET is estimated as follows:

ETc ¼ ET0 � Kc; ð9Þ

where ETc is the potential crop evapotranspiration under standard conditions, ET0 is the ET

of grass as the reference crop and Kc is the coefficient factor for the well watered crop

under optimal agronomic conditions. The Kc is a single crop coefficient for the grape tree

was chosen at the mid-season stage of crop development. PET was determined as well

from meteorological data using (9) that was then compared to the assumed maximum value

of AET from SEBS.

Results

SRM from the GeoEye satellite image

We begin by considering optimization of the smoothness parameters for applying SRM

based MRF, k and kpan. For subset R, values equal to k = 0.9 and kpan ¼ 0:4 resulted in the

highest accuracy for row detection. The optimized SRM showed a much more coherent

pattern of the three rows. Convergence was reached after 70 iterations, when the total

energy after a reduction with more than 50 % did not decrease any further (Fig. 3). Using a

g ¼ 0:95 value, we observed the highest quality of agreement (j = 0.72), whereas the total

energy included a local and global minimum values. This value needed 174 iterations to

converge. Choosing g = 0.9 updated the pixels and changed their classes during 63 it-

erations. The curve shows that the energy minimization values converged from a local

minimum value equal to 7.2 to a global minimum value of 6.5. Optimization was repeated
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for each of the three rows individually (Fig. 4), observing slightly different structures for

the rows of plants.

Figure 5 displays the result of initial and optimized SRM for the subset P. Values of j
were equal to 0.64, 0.60 and 0.71 respectively. Plant P1, was covered by 18 pixels as

canopy class after the initial SRM, whereas by the optimal SRM it was covered by 9 pixels.

For plants P2 and P3 the original coverage of 22 and 17 reduced to 17–12, respectively.

Daily ET from the Landsat 5 TM satellite image

AET values around the field F with its 22 rows obtained using the RS data and the weather

data in SEBS is presented in Fig. 6. Daily AET values in this field ranged from 4.50 up to

5.76 mm day-1. The AET value of 5.76 mm day-1 was taken as the PET value. This value

is comparable to the PET derived with the FAO Penman–Monteith methodology, equal to

5.71 mm day-1. Comparison of these two values shows a small difference, confirming the

acceptability of SEBS. We observed that there was a lower AET variation along the top of

the vineyard as compared to the bottom side.

Image fusion of AET and NDVI maps

After image fusion of the coarse resolution image (Fig. 7a) and the fine resolution image

(Fig. 7b), Fig. 7c illustrates the resampled coarse resolution image as the AET values

(Fig. 7b). High AET values shown as light colors appear within the rows, whereas low

values, shown as dark colors, appear between the rows. Therefore, the high AET values

correspond with the canopy, whereas low AET values refer to the soil between the rows.

Fig. 3 The result of SRM based MRF for subset R with using the starting parameters S = 4 T0 = 3 and
g = 0.9 and the optimized parameters k = 0.9 and kpan = 0.4; red polygons are reference data (Color figure

online)
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Because of the coarse resolution of the Landsat image and the high resolution of the

GeoEye image, the observed pattern looks similar to the GeoEye image, whereas the

values correspond with the AET values obtained from the Landsat image.

In this part, the results of applying SRM for the fused image at the 0.5 m resolution are

presented first for rows 15–17 and then for three individual plants (Fig. 8). Rows are

clearly identified, whereas individual plants are more difficult to separate. Table 2 indi-

cates the results AET for R and P, respectively, where for assigning AET to each row or

individual plant the mean pixel value was taken per row and individual plant. For rows we

observe AET values ranging between 5.32 (SD = 0.26) and 5.39 (SD = 0.24), whereas

values for individual plants the AET values ranged from 5.29 (SD = 0.22) for P1, through

5.33 (SD = 0.39) for P2 to 5.36 (SD = 0.23) for P3. The standard deviation indicates the

amount variation from the mean, i.e. a low sd indicates that AET values are close to the

mean AET value. So, we observed that plant P2 has the highest sd and P1 with has the

lowest sd. Furthermore, the AET value of P1 is close to the mean AET as compared to the

other individual plants and rows. Hence the main difference is, as expected, at the within-

plant level. Because, P2 is located between P1 and P3, the effect of extracting individual

plants that was based on visual interpretation, resulted in the high sd value for P2 as

compared to P1 and P3. For the individual plants P1;P2;P3 the AET values slightly below

the FAO-56 PET value.

Application of SRM and SEBS for precision agriculture

We found that rows are clearly identified, whereas individual plants are more difficult to

separate. Hence, PA that is based on the satellite with the finest resolution and the use of

SEBS should focus on rows rather than on plants. Spatially varying water application

Fig. 4 Result of SRM based MRF for the three rows in subset R individually: a R15, b R16 and c R17; red
polygons are reference data (Color figure online)
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should therefore best be done at the row level. Application of SRM may then proceed as

follows. First, the relation between the SRM produced map and the actual ET per row and

individual plant is constructed. This is followed by the specification of the NDVI map as

vegetation index indicates for rows and individual plants.

Discussion

In this part, the results are discussed of applying SRM based MRF for obtaining AET from

SEBS as reported in the ‘‘Result’’ section. Further, the applicability of using SRM and the

SEBS in a more general setting is discussed in detail to support the crop water requirement

in PA.

An important problem for linking SEBS and SRM results concerns the resolution of the

thermal band available from RS images. The Geoeye image has a high spatial resolution,

Fig. 5 The initial (left) and the optimized (right) SRM results for individual plants of subset P located in
R16: a P1, b P2, c P3. In the optimized results a more coherent pattern is observed that better corresponds
with the red polygons as reference data (Color figure online)
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whereas the Landsat 5 TM produces medium spatial resolution images. To overcome this

problem, image fusion using the Gram–Schmidt (GS) method applied to increase the

spatial resolution of the actual ET image from 30 m resolution to 0.5 m spatial resolution

equivalent to the resolution of the SRM result. To apply downscaling, the NDVI image

from the pan-sharpened GeoEye image was used. It was further assumed that vegetation in

the NDVI map represents a higher AET value than the soil.

For implementing SRM based MRF, the set of training pixels for canopy and soil was

chosen from the multispectral and panchromatic bands. There was a limitation for selecting

land cover classes in the multispectral GeoEye image, because of the absence of variation

between soil and canopy pixels. Therefore, when choosing training pixels from the soil

Fig. 6 Retrieval daily AET
values at a 30 m resolution based
on the SEBS model overlaid with
the whole field F (Color figure
online)

Fig. 7 The high resolution NDVI image (a), the AET image obtained from SEBS (b) and the result after
image fusion (c) using the GS method
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class, we selected an area close to the area of interest. For g, Kassaye (2006) recommended

values between 0.8 and 0.9 as being optimal for simple and complex scenes respectively.

The highest j values, equal to 0.64, 0.60 and 0.71, were observed for one subset of three

individual plants respectively. An important reason that relatively low accuracies are

achieved is due to the use of the UltraCam digital aerial photo as reference data. The time

of acquisition of the GeoEye image and the aerial photo differs by more than a year.

Therefore, changes during the growing season could affect the selection of an appropriate

boundary for each row and individual plants. The observed values, though, are well

compatible with values of 0.73, 0.67, 0.68 and 0.54, respectively, observed e.g. by Ardila

Lopez (2012) for four subsets of urban trees.

The current study is potentially useful for farmers who want to obtain information

regarding the health of individual plants. The reason is that NDVI as a vegetation index is

informative on general vegetation status that is in turn affected by crop stress. Hence, using

SRM at the individual row and plant scale and combining that result at the 0.5 m pixel

resolution results into a 50 cm resolution NDVI map. Farmers will thus be able to control

crop health at that scale level. PA aims at providing management strategies from multiple

sources to support the decision makers and farm managers with crop production (Oliver

2010). Using advanced technologies in Geomatic science such as integration RS, GIS and

GPS data thus leads to an important and reproducible strategy. In particular in this study,

crop water requirement was the main issue for farmers and decision makers. Farmers who

want to develop a strategy for managing water supply though irrigation networks of

agricultural fields can use crop water requirement derived from RS data using the SEBS

Fig. 8 Combination of SRM result with the actual ET a for subset R and b zooming in at subset P

Table 2 Mean AET values and their standard deviation for subareas R and P

Rows and individual plants Mean AET (mm day-1) Standard deviation

R15 5.32 0.26

R16 5.33 0.25

R17 5.39 0.24

P1 5.29 0.22

P2 5.33 0.39

P3 5.36 0.23
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model and SRM as shown in this study. Such a product helps farmers and decision makers

to decide on the amount of water requirements to maximize the cost benefit ratio of crop

productivity. In this study, the target area was a vineyard, and crop water requirement was

studied at the plant scale. The AET map can be utilized to assess the water stress at row and

plant levels, and develop strategy for irrigation and select those irrigation methods that are

appropriate to use. In turn, the NDVI map can be instrumental to make a fertilization plan.

Taking the maximum AET value as the PET value we were able to estimate crop water

requirement for each row and individual plants: if PET exceeds AET then water stress

occurs and the crop should be irrigated. Water requirement is spatially varying for

stochastic reasons. Besides there is a temporal effect on the variation of AET values during

the growing season and even within a single day. Finally, different crop varieties could in

principle occur. In agricultural production situations, such as those for grape trees in a

vineyard area in Iran, only a single variety is cultivated. At From the AET and PET

obtained in the study area, there is limited water stress on these crops and plants have to be

irrigated when stress is becoming considerable.

Conclusions

The aim of this research was to achieve high resolution information on the basis of rows

and individual plants of vineyard from images of coarse spatial and spectral resolution. We

derived the following conclusions:

– SRM is able to provide reliable positional information of the position and the extent of

plants in rows, but that the information for individual plants has a higher uncertainty.

– Evapotranspiration values provided by the standard SEBS are in good agreement with

values derived by standard FAO methods.

– Further improvements are to be expected when satellite information also in the thermal

band becomes available at a finer resolution.
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