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Abstract We study gradient estimates of q-harmonic functions u of the fractional
Schrödinger operator �α/2 + q, α ∈ (0, 1] in bounded domains D ⊂ Rd. For nonneg-
ative u we show that if q is Hölder continuous of order η > 1 − α then ∇u(x) exists
for any x ∈ D and |∇u(x)| ≤ cu(x)/(dist(x, ∂ D) ∧ 1). The exponent 1 − α is critical
i.e. when q is only 1 − α Hölder continuous ∇u(x) may not exist. The above gradient
estimates are well known for α ∈ (1, 2] under the assumption that q belongs to the
Kato class Jα−1. The case α ∈ (0, 1] is different. To obtain results for α ∈ (0, 1] we use
probabilistic methods. As a corollary, we obtain for α ∈ (0, 1) that a weak solution of
�α/2u + qu = 0 is in fact a strong solution.

Keywords Schrodinger operator · Fractional Laplacian · Green function ·
Harmonic function · Gradient
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1 Introduction

Let α ∈ (0, 2), d ∈ N and q belong to the Kato class Jα . We say that a Borel function
u on Rd is q-harmonic in an open set D ⊂ Rd iff

u(x) = Ex
[

exp

(∫ τW

0
q(Xs) ds

)
u(XτW )

]
, x ∈ W, (1)
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for every open bounded set W, with W ⊂ D. Here Xt is the symmetric α-stable
process in Rd, τW the first exit time of Xt from W, and we understand that the
expectation in Eq. 1 is absolutely convergent.

It is possible to express the above probabilistic definition in analytic terms.
Namely, it is known [8, Theorem 5.5] that if u is q-harmonic in open set D ⊂ Rd

then u is a weak solution of

�α/2u + qu = 0, on D. (2)

Here �α/2 := −(−�)α/2 is the fractional Laplacian. On the other hand if D ⊂ Rd

is an open bounded set and (D, q) is gaugeable then a weak solution of Eq. 2 is a
q-harmonic function on D after a modification on a set of Lebesgue measure zero
(for more details see Section 2).

It is known [8] that if u is q-harmonic in D then it is continuous in D. The purpose
of this paper is to derive further regularity results of q-harmonic functions. The main
result is the following.

Theorem 1.1 Let α ∈ (0, 1], d ∈ N and D ⊂ Rd be an open bounded set. Assume
that q : D → R is Hölder continuous with Hölder exponent η > 1 − α. Let u be q-
harmonic in D. If u is nonnegative in Rd then ∇u(x) exists for any x ∈ D and we have

|∇u(x)| ≤ c
u(x)

δD(x) ∧ 1
, x ∈ D, (3)

where δD(x) = dist(x, ∂ D) and c = c(α, d, η, q).
If u is not nonnegative in Rd but ‖u‖∞ < ∞ then ∇u(x) exists for any x ∈ D and we

have

|∇u(x)| ≤ c
‖u‖∞

δD(x) ∧ 1
, x ∈ D, (4)

where c = c(α, d, η, q).

The existence of ∇u(x) and similar gradient estimates are well known in the
classical case for α = 2, see e.g. [16] and for α ∈ (1, 2), see [10]. These results for
α ∈ (1, 2] were shown under the assumption that q ∈ Jα−1. The biggest difference
between the cases α ∈ (0, 1] and α ∈ (1, 2] is the fact that for α ∈ (0, 1] the function
y → |∇xGD(x, y)| is not integrable while for α ∈ (1, 2] is integrable. Here GD(x, y)

is the Green function for �α/2 with Dirichlet condition on Dc. The fact that y →
|∇xGD(x, y)| is integrable was widely used in [10] for α ∈ (1, 2), see e.g. [10, Lemma
5.2]. For α ∈ (0, 1] more complicated method must be used. Key ingredients of
the method for α ∈ (0, 1] may be briefly described as the combination of some
estimates of the Green function and some self-improving estimates used in the
proof of Theorem 1.1. The proof of the estimates of the Green function is mainly
probabilistic. It is based on the representation of symmetric α-stable processes
as subordinated Brownian motions and the reflection principle for the Brownian
motion. This probabilistic idea is similar to the one used in the paper by B. Böttcher,
R. Schilling, J. Wang, where they study couplings of subordinated Brownian motions,
see Section 2 in [11]. More remarks about these probabilistic methods are at the end
of Section 3.

From analytic point of view Theorem 1.1 gives some regularity results for weak
solutions of Eq. 2. It is worth to notice that regularity results of weak solutions of
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equations involving the fractional Laplacian have attracted a lot of attention recently,
see e.g. [21, 26].

One may ask whether it is possible to weaken the assumption in Theorem 1.1 that
q is Hölder continuous with Hölder exponent η > 1 − α. It occurs that the exponent
η = 1 − α is critical in the following sense.

Proposition 1.2 For any α ∈ (0, 1], d ∈ N and any open bounded set D ⊂ Rd there
exists q : D → [0,∞) which is 1 − α Hölder continuous, a function u : Rd → [0, ∞)

which is q-harmonic in D and a point z ∈ D such that ∇u(z) does not exist.

The proof of this proposition is based on the estimates of the Green function
of the killed Brownian motion subordinated by the α/2-stable subordinator. These
estimates were obtained by R. Song in [27].

When a q-harmonic function u vanishes continuously near some part of the
boundary of D and D ⊂ Rd is a bounded Lipschitz domain then the estimates
obtained in Theorem 1.1 are sharp near that part of the boundary.

Theorem 1.3 Let α ∈ (0, 1], d ∈ N, D ⊂ Rd be a bounded Lipschitz domain and q :
D → R be Hölder continuous with Hölder exponent η > 1 − α. Let V ⊂ Rd be open
and let K be a compact subset of V. Then there exist constants c = c(D, V, K, α, q, η)

and ε = ε(D, V, K, α, q, η) such that for every function u : Rd → [0,∞) which is
bounded on V, q-harmonic in D ∩ V and vanishes in Dc ∩ V we have

c−1 u(x)

δD(x)
≤ |∇u(x)| ≤ c

u(x)

δD(x)
, x ∈ K ∩ D, δD(x) < ε.

Similar result was obtained for α = 2 in [2] and for α ∈ (1, 2) in [10], see
Theorem 5.1.

As an application of our main result we obtain gradient estimates of eigenfunc-
tions of the eigenvalue problem of the fractional Schrödinger operator with Dirichlet
boundary conditions. These estimates are formulated and proved in Section 6.

As another application of our main result we show for α ∈ (0, 1) that under some
assumptions on q a weak solution of �α/2u + qu = 0 is in fact a strong solution. Note
that in the following corollary we do not have to assume that (D, q) is gaugeable.

Corollary 1.4 Let α ∈ (0, 1), d ∈ N and D ⊂ Rd be an open bounded set. Assume
that q : D → R is Hölder continuous with Hölder exponent η > 1 − α and either u
is nonnegative on Rd or ‖u‖∞ < ∞. If u is a weak solution of Eq. 2 then (after a
modif ication on a set of Lebesgue measure zero) u is continuous on D and it is a
strong solution of Eq. 2.

The paper is organized as follows. Section 2 is preliminary; we collect here basic
facts concerning the fractional Laplacian, the fractional Schrödinger operator and
q-harmonic functions. In Section 3 using probabilistic methods we obtain estimates
of the Green function, which will be essential in the rest of the paper. In Section 4
the main result of the paper is proved. Section 5 contains proofs of Proposition 1.2
and Theorem 1.3. Section 6 concerns applications of the main result.
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2 Preliminaries

Most of the terminology and facts presented here are taken from [8, 9]. The notation
c(a, b , . . .) means that c is a constant depending only on a, b , . . .. Constants are
always positive and finite. We adopt the convention that constants may change
their value from one use to another. As usual we write x ∧ y = min(x, y), x ∨ y =
max(x, y) for x, y ∈ R, ‖u‖∞ = supx∈Rd |u(x)| for any function u : Rd → R, B(x, r) =
{y ∈ Rd : |x − y| < r} for x ∈ Rd, r > 0. By ei, i = 1, . . . , d we denote the standard
basis in Rd.

We denote by (Xt, Px) the standard rotation invariant (“symmetric”) α-stable
process in Rd, α ∈ (0, 2] with the characteristic function E0 exp(iξ Xt) = exp(−t|ξ |α),
ξ ∈ Rd, t ≥ 0. Ex denotes the expectation with respect to the distribition Px of
the process starting from x ∈ Rd. We have Px(Xt ∈ A) = ∫

A p(t, x, y) dy, where
p(t, x, y) = pt(y − x) is the transition density of Xt.

For α < d the process Xt is transient and the potential kernel of Xt is given by

Kα(y − x) =
∫ ∞

0
p(t, x, y) dt = A(d, α)

|y − x|d−α
, x, y ∈ Rd, (5)

where A(d, γ ) = �((d − γ )/2)/(2γ πd/2|�(γ /2)|) [5]. When α ≥ d the process is re-
current and it is appropriate to consider the so-called compensated kernels. Namely
for α ≥ d we put

Kα(y − x) =
∫ ∞

0
(p(t, x, y) − p(t, 0, x0)) dt,

where x0 = 0 for α > d = 1, x0 = 1 for α = d = 1 and x0 = (0, 1) for α = d = 2. For
α = d = 1 we have

Kα(x) = 1

π
log

(
1

|x|
)

.

For any open set D ⊂ Rd we put τD = inf{t ≥ 0 : Xt /∈ D} the first exit time of Xt

from D and we denote by pD(t, x, y) the transition density of the process Xt killed
on exiting D. The transition density is given by the formula

pD(t, x, y) = p(t, x, y) − Ex(p(t − τD, X(τD), y), τD < t), x, y ∈ D, t > 0.

We put pD(t, x, y) = 0 if x ∈ Dc or y ∈ Dc. It is known that for each fixed t > 0 the
function pD(t, ·, ·) is bounded and continuous on D × D. When d > α and D ⊂ Rd

is an open set or d = 1 ≤ α and D ⊂ Rd is an open bounded set we put

GD(x, y) =
∫ ∞

0
pD(t, x, y) dt, x, y ∈ D,

GD(x, y) = 0 if x ∈ Dc or y ∈ Dc. We call GD(x, y) the Green function for D. It is
known that GD(x, ·) is continuous on D \ {x}. For any open bounded set D ⊂ Rd we
define the Green operator GD for D by

GD f (x) =
∫

GD(x, y) f (y) dy.
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We assume here that f is a bounded Borel function f : D → R. We have

GD f (x) = Ex
∫ τD

0
f (Xs) ds.

Now we briefly present basic definitions and facts concerning the fractional
Laplacian and the fractional Schrödinger operator. We follow the approach from
[8]. We denote by L1 the space of all Borel functions f on Rd satisfying∫

Rd

| f (x)|
(1 + |x|)d+α

dx < ∞.

For f ∈ L1 and x ∈ Rd we define

�α/2 f (x) = A(d,−α) lim
ε↓0

∫
|y−x|>ε

f (y) − f (x)

|y − x|d+α
dy,

whenever the limit exists.
We say that a Borel function q : Rd → R belongs to the Kato class Jα iff q satisfies

lim
r↓0

sup
x∈Rd

∫
|y−x|≤r

|q(y)Kα(y − x)| dy = 0.

For any α ∈ (0, 2), q ∈ Jα we call �α/2 + q the fractional Schrödinger operator.
Let α ∈ (0, 2), q ∈ Jα and D ⊂ Rd be an open set. For u ∈ L1 such that uq ∈

L1
loc(D) we define the distribution (�α/2 + q)u in D by the formula

((�α/2 + q)u, ϕ) = (u,�α/2ϕ + qϕ), ϕ ∈ C∞
c (D),

(cf. Definition 3.14 in [8]). We will say that u is a weak solution of

(�α/2 + q)u = 0 (6)

on D iff u ∈ L1, uq ∈ L1
loc(D) and Eq. 6 holds in the sense of distributions in D. We

will say that u is a strong solution of Eq. 6 on D iff u ∈ L1, uq ∈ L1
loc(D) and Eq. 6

holds for any x ∈ D.
For α ∈ (0, 2), q ∈ Jα the multiplicative functional eq(t) is defined by eq(t) =

exp
(∫ t

0 q(Xs) ds
)

, t ≥ 0. For any open bounded set D ⊂ Rd the function

uD(x) = Ex(eq(τD))

is called the gauge function for (D, q); when it is bounded in D we say that (D, q)

is gaugeable. There are several other equivalent conditions for gaugeability, in
particular there is a condition in terms of the first Dirichlet eigenvalue of �α/2 + q
on D, see below.

Let u be a Borel function on Rd and let q ∈ Jα . We say that u is q-harmonic in an
open set D ⊂ Rd iff

u(x) = Ex [
eq(τW)u(XτW )

]
, x ∈ W, (7)

for every bounded open set W with W ⊂ D. u is called regular q-harmonic in D iff

u(x) = Ex [
eq(τD)u(XτD); τD < ∞]

, x ∈ D. (8)

We understand that the expectation in Eqs. 7 and 8 is absolutely convergent.
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By the strong Markov property any regular q-harmonic function in D is a
q-harmonic function in D. By [9, Theorem 4.1] any q-harmonic function in D is
continuous in D. By [9, (4.7)] any q-harmonic function in D belongs to L1 (when
D �= ∅). It follows that if u is a q-harmonic function in D then uq ∈ L1

loc(D).
Let α ∈ (0, 2), q ∈ Jα . If u is a q-harmonic function in an open set D ⊂ Rd then

it is a weak solution of (�α/2 + q)u = 0 on D. Conversely assume that D ⊂ Rd is
an open bounded set and (D, q) is gaugeable. If a function u is a weak solution of
(�α/2 + q)u = 0 on D then after a modification on a set of Lebesgue measure zero, u
is q-harmonic in D (see [8, Theorem 5.5]).

It is known that if u is q-harmonic in open set D ⊂ Rd then, unless u = 0 on D and
u = 0 a.e. on Dc, (W, q) is gaugeable for any open bounded set W such that W ⊂ D
(see [9, Lemma 4.3]). We will often use the following representation of q-harmonic
functions. If u is q-harmonic in an open set D ⊂ Rd then for every open bounded W
with the exterior cone property such that W ⊂ D we have

u(x) = Exu(XτW ) + GW(qu)(x), x ∈ D. (9)

This follows from [9, Proposition 6.1] and continuity of q-harmonic functions.
By saying that q : D → R is Hölder continuous with Hölder exponent η > 0 we

understand that there exists a constant c such that for all x, y ∈ D we have |q(x) −
q(y)| ≤ c|x − y|η.

We finish this section with some basic information about the spectral problem
for �α/2 + q. Assume that D ⊂ Rd is an open bounded set, α ∈ (0, 2), q ∈ Jα . Let us
consider the eigenvalue problem for the fractional Schrödinger operator on D with
zero exterior condition

�α/2ϕ + qϕ = −λϕ on D, (10)

ϕ = 0 on Dc. (11)

It is well known that for the problem 10 and 11 there exists a sequence of eigenvalues
{λn}∞n=1 satisfying

λ1 < λ2 ≤ λ3 ≤ . . . , lim
n→∞ λn = ∞,

and a sequence of corresponding eigenfunctions {ϕn}∞n=1, which can be chosen so that
they form an orthonormal basis in L2(D). All ϕn are bounded and continuous on D
and ϕ1 is strictly positive on D. It is also well known that gaugeability of (D, q) is
equivalent to λ1 > 0 see [12, Theorem 3.11], cf. [15, Theorem 4.19]. We understand
that Eq. 11 holds for all x ∈ Dc and Eq. 10 holds for almost all x ∈ D. The eigenvalue
problem 10 and 11 was studied in e.g. [12, 22] and very recently in [19].

For more systematic presentation of the potential theory of fractional Schrödinger
operators we refer the reader to [8] or to [7].

3 Estimates of the Green Function

In this section we fix i ∈ {1, . . . , d} and use the following notation

H = {(y1, . . . , yd) ∈ Rd : yi > 0},

H0 = {(y1, . . . , yd) ∈ Rd : yi = 0}.
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Let R : Rd → Rd be the reflection with respect to H0. For any x ∈ Rd we put

x̂ = R(x).

We have x̂ = x − 2xiei, where (e1, . . . , ed) is the standard basis in Rd and x =
(x1, . . . , xd). We say that a set D ⊂ Rd is symmetric with respect to H0 iff R(D) = D.
For any set D ⊂ Rd, which is symmetric with respect to H0 we put

D+ = {(y1, . . . , yd) ∈ D : yi > 0}, D− = {(y1, . . . , yd) ∈ D : yi < 0}. (12)

Let Bt be the d-dimensional Brownian motion starting from x ∈ Rd (with the
transition density (4π t)−d/2e−|x−y|2/(4t)) and ηt be the α/2-stable subordinator starting
from zero, α ∈ (0, 2), independent of Bt (E−sηt = e−tsα/2

). It is well known that the d-
dimensional symmetric α-stable process Xt, α ∈ (0, 2), starting from x ∈ Rd has the
following representation

Xt = Bηt .

Let

T = inf{s ≥ 0 : Bs ∈ H0}.
Assume that the Brownian motion Bt starts from x ∈ H. We define

B̂t =
⎧⎨
⎩

R(Bt) for t ≤ T

Bt for t > T.

That is B̂t is the mirror reflection of Bt with respect to H0 before T and coincides
with Bt afterwards. It is well known that B̂t is the Brownian motion starting from x̂.
Now set

X̂t = B̂ηt .

X̂t is the symmetric α-stable process starting from x̂. The above construction is taken
from Section 2 in [11]. When discussing probabilities of Bt, B̂t, ηt, Xt, X̂t we will use
Px

B, Px̂
B, Pη, Px, Px̂ respectively.

Now we need to consider another process, which is a subordinated killed Brown-
ian motion. We define it as follows

X̃t = (
BH)

ηt
,

where BH
t is the Brownian motion Bt (starting from x ∈ H) killed on exiting H and ηt

is the α/2-stable subordinator starting from zero, independent of Bt. When discussing
probabilities of BH

t , X̃t we will use Px
BH , P̃x respectively. The general theory of

subordinated killed Brownian motions was studied in [28].
For any open set D ⊂ Rd, which is symmetric with respect to H0 we put

τ̃D+ = inf
{
t ≥ 0 : X̃t /∈ D+

}
,

where D+ is given by Eq. 12.
By p̃D+(t, x, y) we denote the transition density of the process X̃t killed on exiting

D+. The idea of considering p̃D+(t, x, y) comes from [1, Section 4].
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Recall that pD(t, x, y) is the transition density of the symmetric α-stable process
killed on exiting D.

Lemma 3.1 Let D ⊂ Rd be an open set which is symmetric with respect to H0. Then
we have

p̃D+(t, x, y) = pD(t, x, y) − pD(t, x̂, y), x, y ∈ D+, t > 0.

Proof The proof is based on the reflection principle for the Brownian motion. Put

τ̂D = inf
{
s ≥ 0 : (B̂)ηs /∈ D

}
.

Note that

τD = inf{s ≥ 0 : Bηs /∈ D},
τ̃D+ = inf{s ≥ 0 : (BH)ηs /∈ D+},

Fix x ∈ D+, t > 0 and a Borel set A ⊂ D+. We have

P̃x
(

X̃t ∈ A, τ̃D+ > t
)

= Eη Px
BH

((
BH)

ηt
∈ A, τ̃D+ > t

)

= Eη Px
B

(
Bηt ∈ A, ηt < T, τD > t

)
= Eη Px

B

(
Bηt ∈ A,τD > t

)−Eη Px
B

(
Bηt ∈ A,ηt >T,τD > t

)
. (13)

Note that
{

Bηt ∈ A, ηt > T, τD > t
} =

{
B̂ηt ∈ A, τ̂D > t

}
.

Hence Eq. 13 equals

Eη Px
B

(
Bηt ∈ A, τD > t

) − Eη Px̂
B

(
B̂ηt ∈ A, τ̂D > t

)

= Px (Xt ∈ A, τD > t) − Px̂
(

X̂t ∈ A, τ̂D > t
)

=
∫

A
pD(t, x, y) − pD(t, x̂, y) dy.

��

Let D ⊂ Rd be an open set which is symmetric with respect to H0. If d = 1 ≤ α

we assume additionally that D is bounded. We define the Green function for D+ for
the process X̃t by

G̃D+(x, y) =
∫ ∞

0
p̃D+(t, x, y) dt, x, y ∈ D+,

G̃D+(x, y) = 0 if x ∈ (D+)c or y ∈ (D+)c. For an open bounded set D ⊂ Rd which
is symmetric with respect to H0 we define the corresponding Green operator for
D+ by

G̃D+ f (x) =
∫

D+
G̃D+(x, y) f (y) dy.



q-Harmonic Functions of Fractional Schrödinger Operator 77

We assume here that f is a bounded Borel function f : D+ → R. Clearly we have

G̃D+ f (x) = Ex
∫ τ̃D+

0
f (X̃s) ds.

By Lemma 3.1 we obtain the following corollary.

Corollary 3.2 Let D ⊂ Rd be an open set which is symmetric with respect to H0. If
d = 1 ≤ α we assume additionally that D is bounded. Then we have

G̃D+(x, y) = GD(x, y) − GD(x̂, y), x, y ∈ D+. (14)

Lemma 3.3 Let B = B(0, r), r > 0. Assume that f : B → R is Borel and bounded.
Then we have

GB f (x) − GB f (x̂) =
∫

B+
G̃B+(x, y)( f (y) − f (ŷ)) dy.

Proof Note that GB(x̂, ŷ) = GB(x, y) and GB(x̂, y) = GB(x, ŷ) for any x, y ∈ B+.
We have

GB f (x̂) =
∫

B+
GB(x̂, y) f (y) dy +

∫
B−

GB(x̂, y) f (y) dy

=
∫

B+
GB(x̂, y) f (y) dy +

∫
B+

GB(x̂, ŷ) f (ŷ) dy

=
∫

B+
GB(x̂, y) f (y) dy +

∫
B+

GB(x, y) f (ŷ) dy.

Similarly, we have

GB f (x) =
∫

B+
GB(x, y) f (y) dy +

∫
B+

GB(x, ŷ) f (ŷ) dy

=
∫

B+
GB(x, y) f (y) dy +

∫
B+

GB(x̂, y) f (ŷ) dy.

Using the above equalities and Eq. 14 we obtain the assertion of the lemma. ��

Lemma 3.4 Let d > α and V ⊂ W ⊂ Rd be open sets symmetric with respect to H0.
Then we have

G̃V+(x, y) ≤ G̃W+(x, y), x, y ∈ V+.

Proof Let A ⊂ V+ be a Borel bounded set. For any x ∈ V+ we have

∫
A

G̃V+(x, y) dy = Ex
∫ τ̃V+

0
1A(X̃s) ds ≤ Ex

∫ τ̃W+

0
1A(X̃s) ds =

∫
A

G̃W+(x, y) dy.

Now the lemma follows from Eq. 14 and continuity of GD(x, ·) on D \ {x} (for
D = V, W). ��
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Lemma 3.5 Let d > α ∈ (0, 1]. Fix r > 0 and put B = B(0, r), B+ = B+(0, r). Then
we have

0 ≤ GB(x, y) − GB(x̂, y) ≤ c
|x − x̂|

|x − y|d−α|x̂ − y| , x, y ∈ B+,

where c = c(d, α).

Proof Using Corollary 3.2, Lemma 3.4 and Eq. 5 we obtain

GB(x, y) − GB(x̂, y) = G̃B+(x, y)

≤ G̃Rd+(x, y)

= GRd(x, y) − GRd(x̂, y)

= A(d, α)
|x̂ − y|d−α − |x − y|d−α

|x − y|d−α|x̂ − y|d−α
.

One can show that for any p ≥ q ≥ 0 and β > 0

pβ − qβ ≤ (2 ∨ 2β)pβ−1(p − q)

(we omit an elementary justification of this inequality). Using this one obtains for
any x, y ∈ B+

|x̂ − y|d−α − |x − y|d−α ≤ (2 ∨ (2d − 2α))|x − x̂||x̂ − y|d−α−1,

which implies the assertion of the lemma. ��

Now we prove similar lower bound estimates of GB(x, y) − GB(x̂, y). These lower
bound estimates will be needed in the proof of Proposition 1.2. We prove these
estimates only for x ∈ B+(0, r/4) and y belonging to some truncated cone lying inside
B+(0, r). This will be enough for our purposes. The lower bound estimates are based
on the results of Song [27].

Lemma 3.6 Let α ∈ (0, 1], d > α. Fix r > 0 and for any x ∈ B+(0, r/4) put

K(r, x) = {
y = (y1, . . . , yd) ∈ Rd : r/2 > yi > 2|x|, |y| <

√
2yi

}
.

For any x ∈ B+(0, r/4) and y ∈ K(r, x) we have

GB(0,r)(x, y) − GB(0,r)(x̂, y) ≥ c
|x − x̂|

|x − y|d−α|x̂ − y| ,

where c = c(d, α).

Proof Let BD
t be the d-dimensional Brownian motion killed on exiting a connected

bounded open set D ⊂ Rd, ηt - α/2-stable subordinator starting from zero inde-
pendent of BD

t and put Z D
t = (BD)ηt . Z D

t is a Markov process with the generator
−(−�|D)α/2 where �|D is the Dirichlet Laplacian in D. The process Z D

t has been
intensively studied see e.g. [27, 28]. Let GZ

D(x, y) be the Green function of the set D
of the process Z D

t . Note that X̃t = (BH)ηt = Z H
t . It follows that

G̃B+(0,r)(x, y) ≥ GZ
B+(0,r)(x, y), x, y ∈ B+(0, r).



q-Harmonic Functions of Fractional Schrödinger Operator 79

Let us first consider the case r = 1. Let us fix an auxiliary set U ⊂ Rd such that
U is an open, bounded, connected set with C1,1 boundary satisfying B+(0, 9/10) ⊂
U ⊂ B+(0, 1). We need to introduce the auxiliary set U because B+(0, 1) is not a
C1,1 domain for d ≥ 2 and results from [27] which we use are for C1,1 domains.

By [27, Theorem 4.1] we have for any x, y ∈ U

GB(0,1)(x, y) − GB(0,1)(x̂, y) = G̃B+(0,1)(x, y) (15)

≥ GZ
B+(0,1)(x, y) (16)

≥ GZ
U (x, y) (17)

≥
(

δU (x)δU (y)

|x − y|2 ∧ 1

)
c

|x − y|d−α
, (18)

where c = c(d, α). Assume that x ∈ B+(0, 1/4) and y ∈ K(1, x). We have

1 ≥ |x − x̂|
2|x̂ − y| ,

δU (x) = δB+(0,1)(x) = xi = 1

2
|x − x̂|,

|x̂ − y| ≥ |x − y|,

δU (y) ≥ yi

4
≥ 1

16
(|x| + |y|) ≥ 1

16
|x − y|.

It follows that

δU (x)δU (y)

|x − y|2 ∧ 1 ≥ |x − x̂|
32|x̂ − y| .

Using this and Eqs. 15–18 we obtain for x ∈ B+(0, 1/4), y ∈ K(1, x)

GB(0,1)(x, y) − GB(0,1)(x̂, y) ≥ c
|x − x̂|

|x − y|d−α|x̂ − y| , (19)

where c = c(d, α).
Now let r > 0 be arbitrary. Assume that x ∈ B+(0, r/4) and y ∈ K(r, x). Note that

x/r ∈ B+(0, 1/4) and y/r ∈ K(1, x/r). By scaling and Eq. 19 we get

GB(0,r)(x, y) − GB(0,r)(x̂, y) = rα−d
(

GB(0,1)

( x
r
,

y
r

)
− GB(0,1)

(
x̂
r
,

y
r

))

≥ crα−d

∣∣∣ x
r − x̂

r

∣∣∣
∣∣ x

r − y
r

∣∣d−α
∣∣∣ x̂

r − y
r

∣∣∣
= c

|x − x̂|
|x − y|d−α|x̂ − y| .

��

To obtain estimates of G̃B+(x, y) for d = α = 1 we do not use probabilistic
methods but we use the explicit formula for the Green function for an interval.
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Lemma 3.7 Let d = α = 1. Fix r > 0. For x ∈ R let x̂ = −x. Put B = (−r, r) and B+ =
(0, r). Then for any x, y ∈ B+ we have

0 ≤ GB(x, y) − GB(x̂, y) ≤ 1

π
min

(
4|x|

|x − y| , log

(
2|x + y|
|x − y|

))
. (20)

For any x, y ∈ (0, r/2) we have

GB(x, y) − GB(x̂, y) ≥ 1

π
min

(
2|x|

15|x − y| , log

( |x + y|
4|x − y|

))
.

For any x ∈ (0, r/4) and y ∈ (2x, r/2) we have

GB(x, y) − GB(x̂, y) ≥ 2

15π

|x|
|x − y| .

Proof By scaling we have

G(−r,r)(x, y) = G(−1,1)

( x
r
,

y
r

)

so we may assume that r = 1. We have [6]

GB(x, y) = 1

π
log

(√
w(x, y) + √

1 + w(x, y)
)

,

where

w(x, y) = (1 − |x|2)(1 − |y|2)
|x − y|2 .

Let x, y ∈ B+ = (0, 1). Put t2 = w(x, y), t1 = w(x̂, y). Note that t2 > t1. It follows
that

0 ≤ GB(x, y) − GB(x̂, y) = 1

π
log

(√
t2 + √

1 + t2√
t1 + √

1 + t1

)

= 1

π
log

(
1 +

√
t2 + √

1 + t2 − √
t1 − √

1 + t1√
t1 + √

1 + t1

)
. (21)

It is elementary to show that
√

1 + t2 − √
1 + t1 ≤ √

t2 − √
t1. Hence Eq. 21 is

bounded from the above by

1

π

√
t2 + √

1 + t2 − √
t1 − √

1 + t1√
t1 + √

1 + t1
≤ 2

π
√

t1
(
√

t2 − √
t1) (22)

= 2|x + y|
π

(
1

|x − y| − 1

|x + y|
)

(23)

≤ 4|x|
π |x − y| . (24)

Now assume that x ∈ (0, 1/4), y ∈ (2x, 1/2). We will show that GB(x, y) −
GB(x̂, y) ≥ 2|x|/(15π |x − y|). Note that 4|x|/|x − y| ≤ 4. It is elementary to show
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that for 0 ≤ z ≤ 4 we have log(1 + z) ≥ z/5. Using this and Eqs. 22–24 we obtain
that Eq. 21 is bounded from below by

1

5π

√
t2 + √

1 + t2 − √
t1 − √

1 + t1√
t1 + √

1 + t1
. (25)

Note that (1 − |x̂|2)(1 − |y|2) ≥ 1/2 ≥ |x̂ − y|2/2, so 2t1 ≥ 1, which implies 2
√

t1 ≥√
1 + t1. Hence Eq. 25 is bounded from below by

1

5π

√
t2 − √

t1
3
√

t1
= |x + y|

15π

(
1

|x − y| − 1

|x + y|
)

= 2|x|
15π |x − y| .

Now again let x, y ∈ B+ = (0, 1). We have

GB(x, y) − GB(x̂, y) = 1

π
log

(√
t2 + √

1 + t2√
t1 + √

1 + t1

)
(26)

≤ 1

π
log

(
2
√

1 + t2√
1 + t1

)

= 1

π
log

(
2

√
|x + y|2
|x − y|2

( |x − y|2 + (1 − |x|2)(1 − |y|2)
|x + y|2 + (1 − |x|2)(1 − |y|2)

))
. (27)

One can easily show that |x + y|2 + (1 − |x|2)(1 − |y|2) ≥ 1 and |x − y|2 + (1 −
|x|2)(1 − |y|2) ≤ 1. Hence Eq. 27 is bounded from above by

1

π
log

(
2|x + y|
|x − y|

)
.

Now let x, y ∈ (0, 1/2). By Eq. 26 we obtain

GB(x, y) − GB(x̂, y) ≥ 1

π
log

( √
1 + t2

2
√

1 + t1

)

= 1

π
log

(
1

2

√
|x + y|2
|x − y|2

( |x − y|2 + (1 − |x|2)(1 − |y|2)
|x + y|2 + (1 − |x|2)(1 − |y|2)

))
. (28)

One can easily show that |x + y|2 + (1 − |x|2)(1 − |y|2) ≤ 2 and |x − y|2 + (1 −
|x|2)(1 − |y|2) ≥ 1/2. Hence Eq. 28 is bounded from below by

1

π
log

( |x + y|
4|x − y|

)
.

��

The estimates of the Green function obtained in this section are crucial in proving
the main result of this paper. To get these estimates in the transient case we used
probabilistic methods. There is alternative way of obtaining these estimates. Namely,
one can use explicit formulas for the Green function of a ball for symmetric α-
stable processes (in fact this formula was used in the case d = α = 1). We decided
to use probabilistic methods instead of explicit formulas for two reasons. First, the
probabilistic methods are much simpler. Secondly, it seems that it can be generalized
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to some other processes, which are subordinated Brownian motions. Especially in-
teresting in this context is the relativistic process, which generator is −(

√−� + m2 −
m), see e.g. [13, 23, 25]. This operator is called relativistic Hamiltonian and is used
in some models of relativistic quantum mechanics see e.g. [24]. For the relativistic
process the explicit formula for the Green function of a ball is not known, but it seems
that the probabilistic methods from this paper could be used to study Schrödinger
equations based on the relativistic Hamiltonian −(

√−� + m2 − m).

4 Proof of The Main Result

We will need the following technical lemma.

Lemma 4.1 Fix r ∈ (0, 1], i ∈ {1, . . . , d} and z = (z1, . . . , zd) ∈ Rd. For any x =
(x1, . . . , xd) ∈ Rd denote x̂ = x − 2ei(xi − zi). Put B = B(z, r). Assume that the func-
tion f : B → R is Borel and bounded on B and satisf ies

| f (x) − f (x̂)| ≤ A|x − z|β, x ∈ B(z, r/2), (29)

for some constants A ≥ 1 and β ≥ 0.
If α ∈ (0, 1) and β ∈ [0, 1 − α) then there exists c = c(d, α, β) such that for any x ∈

B we have

|GB f (x) − GB f (x̂)| ≤ cA|x − z|β+α + c
supy∈B | f (y)|

r
|x − z|β+α. (30)

If α ∈ (0, 1] and β > 1 − α then there exists c = c(d, α, β) such that for any x ∈ B we
have

|GB f (x) − GB f (x̂)| ≤ cA|x − z| + c
supy∈B | f (y)|

r
|x − z|. (31)

If α = 1 and β = 0 then there exists c = c(d) such that for any x ∈ B we have

|GB f (x) − GB f (x̂)| ≤ cA|x − z|1/2 + c
supy∈B | f (y)|

r
|x − z|1/2. (32)

Proof Put B+ = {y = (y1, . . . , yd) ∈ B : yi > 0}. We may assume that z = 0 and x =
(x1, . . . , xd) ∈ B+. By Lemma 3.3 we have

|GB f (x) − GB f (x̂)| ≤
∫

B+
G̃B+(x, y)| f (y) − f (ŷ)| dy,

where G̃B+(x, y) = GB(x, y) − GB(x̂, y). We will consider two cases: case 1: d > α ∈
(0, 1], case 2: d = α = 1. We will often use the fact that r ∈ (0, 1] and |x| < r ≤ 1.

Case 1 d > α ∈ (0, 1].

Note that

|x − x̂| ≤ 2|x|. (33)
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For any y ∈ B+ we have

|x̂ − y| ≥ |x − y|, |x̂ − y| ≥ |x − x̂|/2. (34)

Put U1 = B(x, |x|) ∩ {y ∈ B+ : |y| ≤ r/2}, U2 = Bc(x, |x|) ∩ {y ∈ B+ : |y| ≤ r/2},
U3 = {y ∈ B+ : |y| ≥ r/2}. By Lemma 3.5, Eqs. 29, 33 and 34 we obtain

∫
B+

G̃B+(x, y)| f (y) − f (ŷ)| dy ≤ c|x − x̂|
∫

B+

| f (y) − f (ŷ)|
|x − y|d−α|x̂ − y| dy

≤ cA
∫

U1

|y|β dy
|x − y|d−α

+ cA|x|
∫

U2

|y|β dy
|x − y|d−α+1

+ c sup
y∈B

| f (y)|
∫

U3

|x − x̂| dy
|x − y|d−α|x̂ − y|

= I + II + III,

where c = c(d, α).
For y ∈ U1 we have |y| ≤ |y − x| + |x| ≤ 2|x|. Hence

I ≤ cA|x|β
∫

U1

dy
|x − y|d−α

= cA|x|α+β, (35)

where c = c(d, α, β). When |x| > r/4 we get by Eq. 34

III ≤ c sup
y∈B

| f (y)|
∫

B(x,2r)

dy
|x − y|d−α

= c sup
y∈B

| f (y)|rα ≤ c sup
y∈B

| f (y)||x|rα−1,

where c = c(d, α). If |x| < r/4 then U3 ⊂ Bc(x, r/4) ∩ B(x, 2r) and by Eqs. 33 and 34
we get

III ≤ c sup
y∈B

| f (y)||x|
∫

Bc(x,r/4)∩B(x,2r)

dy
|x − y|d−α+1

≤ c sup
y∈B

| f (y)||x|rα−1,

where c = c(d, α). Recall that r ≤ 1. It follows that for x ∈ B+ we have

III ≤ c
r

sup
y∈B

| f (y)||x|, (36)

where c = c(d, α).
For y ∈ U2 we have |y| ≤ |y − x| + |x| ≤ 2|y − x|. Hence

II ≤ cA|x|
∫

U2

dy
|x − y|d−α−β+1

,

where c = c(d, α, β). If α ∈ (0, 1), β ∈ [0, 1 − α) then II ≤ cA|x|α+β , where c =
c(d, α, β). This, Eqs. 35 and 36 imply Eq. 30. If α ∈ (0, 1], β > 1 − α then II ≤
cA|x|rα+β−1 ≤ cA|x|, where c = c(d, α, β). This, Eqs. 35 and 36 imply Eq. 31. If α = 1,
β = 0 we have

II = cA|x|
∫

U2

dy
|x − y|d ≤ cA|x|

∫ 2r

|x|
ρ−1 dρ ≤ cA|x|(| log(2r)| + | log |x||) ≤ cA|x|1/2,

where c = c(d). This, Eqs. 35 and 36 imply Eq. 32.
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Case 2 d = α = 1.

Subcase 2a: x ∈ (0, r/4) We have
∫

B+
G̃B+(x, y)| f (y) − f (ŷ)| dy ≤ A(2x)β

∫ 2x

0
G̃B+(x, y) dy + A

∫ r/2

2x
yβG̃B+(x, y) dy

+ 2

(
sup
y∈B

| f (y)|
)∫ r

r/2
G̃B+(x, y) dy

= I + II + III.

By Eq. 20 we have

I ≤ cAxβ

∫ 2x

0
log

(
6x

|x − y|
)

dy ≤ cAxβ(x + x| log x|),

where c = c(β). By Eq. 20 we also have

II ≤ cAx
∫ r/2

2x

yβ dy
|x − y| ≤ cAx

∫ r/2

2x
yβ−1 dy,

where c = c(β). Since x ∈ (0, r/4) by Eq. 20 we also get

III ≤ c

(
sup
y∈B

| f (y)|
)

x
∫ r

r/2

dy
|x − y| ≤ c(sup

y∈B
| f (y)|)x,

where c is an absolute constant.
Now, if β > 0 then

I + II + III ≤ cAx + c
x
r

sup
y∈B

| f (y)|,

for some c = c(β). If β = 0 then

I + II + III ≤ cAx1/2 + c
x1/2

r
sup
y∈B

| f (y)|,

where c is an absolute constant.

Subcase 2b: x ∈ (r/4, r) We have
∫

B+
G̃B+(x, y)| f (y) − f (ŷ)| dy ≤ cAxβ

∫ r/2

0
G̃B+(x, y) dy

+ c

(
sup
y∈B

| f (y)|
)∫ r

r/2
G̃B+(x, y) dy

= I + II,

where c = c(β).
By Eq. 20 for any x, y ∈ B+ we have

G̃B+(x, y) ≤ c − log |x − y|, (37)

where c is an absolute constant.
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By Eq. 37 we obtain

I ≤ cAxβ

(
cr −

∫ r/2

0
log |x − y| dy

)

≤ cAxβ

(
cr − 2

∫ r/2

0
log y dy

)

= cAxβ(cr + r − r log(r/2))

≤ cArβ(r + r| log r|),
where c = c(β). Similarly, by Eq. 37 we obtain

II ≤ c

(
sup
y∈B

| f (y)|
)(

cr −
∫ r

r/2
log |x − y| dy

)
≤ c

(
sup
y∈B

| f (y)|
)

(r + r| log r|),

where c = c(β).
If β > 0 then

I + II ≤ cAr + c sup
y∈B

| f (y)| ≤ cAx + c
x
r

sup
y∈B

| f (y)|,

for some c = c(β). If β = 0 then

I + II ≤ cA(r + r| log r|) + c sup
y∈B

| f (y)| ≤ cAx1/2 + c
x1/2

r
sup
y∈B

| f (y)|,

where c is an absolute constant. ��

Lemma 4.2 Fix r ∈ (0, 1], i ∈ {1, . . . , d} and z = (z1, . . . , zd) ∈ Rd. For any x =
(x1, . . . , xd) ∈ Rd denote x̂ = x − 2ei(xi − zi). Put B = B(z, r). Assume that a Borel
function f satisf ies

| f (x) − f (y)| ≤ A|x − y|η, x, y ∈ B,

for some A > 0 and η ∈ (1 − α, 1]. If d > α ∈ (0, 1] then for any ε ∈ (0, r] we have∫
B(z,ε)

∣∣∣∣ ∂

∂zi
GB(z, y)

∣∣∣∣ | f (y) − f (ŷ)| dy < cAεη+α−1,

for some c = c(d, α, η). If d = α = 1 then for any ε ∈ (0, r] we have∫
B(z,ε)

∣∣∣∣ ∂

∂zi
GB(z, y)

∣∣∣∣ | f (y) − f (ŷ)| dy < cAεη(1 + | log ε|),

for some c = c(η).

Proof By [10, Corollary 3.3] we have∣∣∣∣ ∂

∂zi
GB(z, y)

∣∣∣∣ ≤ d
GB(z, y)

|z − y| ∧ r
= d

GB(z, y)

|z − y| , y ∈ B, y �= z.

By the assumption on f we have for y ∈ B

| f (y) − f (ŷ)| ≤ A|y − ŷ|η = 2η A|yi − zi|η.
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If d > α ∈ (0, 1] for any y ∈ B we have
∣∣∣∣ ∂

∂zi
GB(z, y)

∣∣∣∣ | f (y) − f (ŷ)| ≤ cA
GB(z, y)

|z − y|1−η
≤ cA|z − y|α+η−1−d,

for some c = c(d, α, η).
If d = α = 1 we obtain from [9, Corollary 3.2] that for any y ∈ B we have
∣∣∣∣ ∂

∂zi
GB(z, y)

∣∣∣∣ | f (y) − f (ŷ)| ≤ cA
GB(z, y)

|z − y|1−η
≤ cA|z − y|η−1 log

(
1 + |z − y|−1),

for some c = c(η). The above estimates imply the assertion of the lemma. ��

Lemma 4.3 Let α ∈ (0, 1]. Fix r ∈ (0, 1], z = (z1, . . . , zd) ∈ Rd and i ∈ {1, . . . , d}. Put
B = B(z, r). Assume that f is bounded and Hölder continuous in B with Hölder
exponent η > 1 − α, that is

| f (x) − f (y)| ≤ A|x − y|η, x, y ∈ B.

Then ∇GB f (z) exists and we have

∂

∂zi
GB f (z) =

∫
B+

∂

∂zi
GB(z, y)( f (y) − f (ŷ)) dy, (38)

where B+ ={(y1, . . . , yd)∈ B : yi−zi > 0}, and ŷ= y−2(yi−zi)ei for y=(y1, . . . , yd).
We also have

|∇GB f (z)| ≤ cArη+α−1(1 + | log r|), (39)

where c = c(d, α, η).

Proof Let g(y) = f (y) − f (z). By our assumption on f we obtain

|g(y)| ≤ A|y − z|η, y ∈ B(z, r). (40)

Let h ∈ (−r/8, r/8). We have

GB f (z + eih) − GB f (z) = (GB1B(z + eih) − GB1B(z)) f (z)

+ GBg(z + eih) − GBg(z).

By a well known [18] explicit formula for GB1B(x) we get

lim
h→0

1

h
(GB1B(z + eih) − GB1B(z)) f (z) = f (z)

∂

∂zi
GB1B(z) = 0.

We also have

1

h
(GBg(z + eih) − GBg(z)) = 1

h

∫
B(z,2|h|)

(GB(z + eih, y) − GB(z, y))g(y) dy

+ 1

h

∫
B(z,r)\B(z,2|h|)

(GB(z + eih, y) − GB(z, y))g(y) dy

= I + II.
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We will consider 2 cases: 1: d > α, 2: d = α = 1.

Case 1 d > α.

By Eq. 40 and the standard estimate GB(x, y) ≤ Kα(x − y) we obtain

|I| ≤ A2η|h|η−1
∫

B(z,2|h|)
GB(z + eih, y) + GB(z, y) dy

≤ cA|h|η−1
∫

B(z,2|h|)
|z + eih − y|α−d + |z − y|α−d dy

≤ cA|h|η+α−1,

where c = c(d, α, η). By our assumption on η it follows that limh→0 I = 0.
We also have

II =
∫

B(z,r)\B(z,2|h|)
∂GB

∂zi
(z + eihθ, y)g(y) dy, (41)

where θ = θ(y, z, h, i, α, d, r) ∈ (0, 1). Note that for y ∈ B(z, r) \ B(z, 2|h|) we have
|y − (z + eihθ)| ≥ |y − z|/2. Using this, Eq. 40 and [10, Corollary 3.3] we obtain for
y ∈ B(z, r) \ B(z, 2|h|) and θ as in Eq. 41∣∣∣∣∂GB

∂zi
(z + eihθ, y)g(y)

∣∣∣∣ ≤ cA|y − z|α+η−d−1,

where c = c(α, d, η). Note that by our assumption on η the function y → |y −
z|α+η−d−1 is integrable on B = B(z, r). By the bounded convergence theorem we get

lim
h→0

II =
∫

B

∂

∂zi
GB(z, y)g(y) dy.

It follows that

∂

∂zi
GB f (z) =

∫
B

∂

∂zi
GB(z, y)g(y) dy. (42)

Note that

∂

∂zi
GB(z, ŷ) = lim

h→0

GB(z + eih, ŷ) − GB(z, ŷ)

h

= lim
h→0

GB(z − eih, y) − GB(z, y)

h
= − ∂

∂zi
GB(z, y).

This and Eq. 42 implies Eq. 38.

Case 2 d = α = 1.

Recall that h ∈ (−r/8, r/8) and r ∈ (0, 1]. By [9, Corollary 3.2] we have

GB(x, y) ≤ c(1 + | log |x − y||), x, y ∈ B, x �= y, (43)

where c is an absolute constant.
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By Eq. 40 we obtain

|I| ≤ A2η|h|η−1
∫

B(z,2|h|)
GB(z + h, y) + GB(z, y) dy

≤ cA|h|η−1
∫

B(z,2|h|)
1 + | log |z + h − y|| + | log |z − y|| dy

≤ cA|h|η(1 + | log |h||),
where c = c(η). By our assumption on η it follows that limh→0 I = 0.

We also have

II =
∫

B(z,r)\B(z,2|h|)
dGB

dz
(z + hθ, y)g(y) dy, (44)

where θ = θ(y, z, h, r) ∈ (0, 1). Note that for y ∈ B(z, r) \ B(z, 2|h|) we have |y −
(z + hθ)| ≥ |y − z|/2. Using this, Eqs. 40, 43 and [10, Corollary 3.3] we obtain for
y ∈ B(z, r) \ B(z, 2|h|) and θ as in Eq. 44

∣∣∣∣dGB

dz
(z + hθ, y)g(y)

∣∣∣∣ ≤ cA|y − z|η−1(1 + | log |y − z||),

where c is an absolute constant. Note that by our assumption on η the function
y → |y − z|η−1(1 + | log |y − z||) is integrable on B = B(z, r). By the bounded con-
vergence theorem we get

lim
h→0

II =
∫

B

d
dz

GB(z, y)g(y) dy.

It follows that

d
dz

GB f (z) =
∫

B

d
dz

GB(z, y)g(y) dy. (45)

Note that d
dz GB(z, ŷ) = − d

dz GB(z, y), y ∈ B. This and Eq. 45 implies Eq. 38.
This finishes the justification of Eq. 38 in both cases. Inequality 39 follows from

Eq. 38 and Lemma 4.2. ��

Lemma 4.4 Let α ∈ (0, 2) and D be an open set in Rd. For every function f which is
α-harmonic in D we have

|∇ f (x)| ≤ d
‖ f‖∞
δD(x)

, x ∈ D.

The proof of Lemma 4.4 is almost the same as the proof of Lemma 3.2 in [10] and
is omitted.

Proof of Theorem 1.1 Fix arbitrary z = (z1, . . . , zd) ∈ D and i ∈ {1, . . . , d}. Similarly
like in Lemma 4.1 for any x = (x1, . . . , xd) ∈ Rd put x̂ = x − 2ei(xi − zi). Using [9,
Lemma 3.5] let us choose r0 = r0(d, α, ‖q‖∞) ∈ (0, 1] such that for any r ∈ (0, r0] and
any ball od radius r contained in D the conditional gauge function for that ball is
bounded from below by 1/2 and from above by 2.
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Let r = (δD(z) ∧ r0)/2 and B = B(z, r). By Eq. 9 we get

u(x) = f (x) + GB(qu)(x), x ∈ B, (46)

where f (x) = Exu(XτB). The function f is α-harmonic on B.
When u is nonnegative on Rd by our choice of r0 and by (2.15) in [9] we obtain

f (x) ≤ 2u(x), x ∈ B. By [10, Lemma 3.2] it follows that

|∇ f (x)| ≤ d
f (x)

δB(x)
≤ 4d

u(x)

δB(z)
≤ c

u(x)

δD(z) ∧ 1
, x ∈ B(z, r/2),

where c = c(d, α, ‖q‖∞).
If u is not nonnegative on Rd but ‖u‖∞ < ∞ by Lemma 4.4 we get

|∇ f (x)| ≤ d
‖ f‖∞
δB(x)

≤ c
‖u‖∞

δD(z) ∧ 1
, x ∈ B(z, r/2),

where c = c(d, α, ‖q‖∞).
Let K = B when u is nonnegative and K = Rd when u is not nonnegative in Rd

and ‖u‖∞ < ∞. It follows that for any x ∈ B(z, r/2) we have

|Exu(XτB) − Ex̂u(XτB)| ≤ c
supy∈K |u(y)|

δD(z) ∧ 1
|x − x̂| ≤ c

supy∈K |u(y)|
δD(z) ∧ 1

|x − z|, (47)

where c = c(d, α, ‖q‖∞).
Let us consider the following inequality

|u(x) − u(x̂)| ≤ c
supy∈K |u(y)|

δD(z) ∧ 1
|x − z|β x ∈ B(z, r/2), (48)

for some β ∈ [0, 1] and c = c(d, α, β, q, η).
Note that |x − x̂| ≤ 2|x − z|. Recall that r ≤ 1/2 so |x − z| ≤ 1/2 for x ∈ B(z, r). If

Eq. 48 holds then for any x ∈ B(z, r/2) we have

|q(x)u(x) − q(x̂)u(x̂)| ≤ |u(x)||q(x) − q(x̂)| + |q(x̂)||u(x) − u(x̂)|

≤ c sup
y∈K

|u(y)||x − x̂|η + c sup
y∈D

|q(y)| supy∈K |u(y)|
δD(z) ∧ 1

|x − z|β

≤ c
supy∈K |u(y)|

δD(z) ∧ 1
|x − z|β∧η, (49)

where c = c(d, α, β, q, η). Note that if β < 1 − α then β ∧ η = β and if β > 1 − α then
β ∧ η > 1 − α.

Assume now that Eq. 48 holds for some (α ∈ (0, 1), β ∈ [0, 1 − α)) or (α ∈ (0, 1],
β ∈ (1 − α, 1)) and c = c(d, α, β, q, η).

If α ∈ (0, 1), β ∈ [0, 1 − α) then by Eq. 49 and Lemma 4.1 we obtain for x ∈ B

|GB(qu)(x) − GB(qu)(x̂)| ≤ c
supy∈K |u(y)|

δD(z) ∧ 1
|x − z|β+α,
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where c = c(d, α, β, q, η). If α ∈ (0, 1], β ∈ (1 − α, 1) then by Eq. 49 and Lemma 4.1
we obtain for x ∈ B

|GB(qu)(x) − GB(qu)(x̂)| ≤ c
supy∈K |u(y)|

δD(z) ∧ 1
|x − z|,

where c = c(d, α, β, q, η).
Joining this with Eq. 47 we obtain in view of Eq. 46 that if Eq. 48 holds for some

(α ∈ (0, 1), β ∈ [0, 1 − α)) or (α ∈ (0, 1], β ∈ (1 − α, 1)) and c = c(d, α, β, q, η) then

|u(x) − u(x̂)| ≤ c
supy∈K |u(y)|

δD(z) ∧ 1
|x − z|(β+α)∧1 x ∈ B(z, r/2), (50)

for c = c(d, α, β, q, η).
Note that Eq. 48 holds trivially for β = 0. Assume first that α ∈ (0, 1) and kα �=

1 − α for any k ∈ N. Then repeating the above procedure we obtain that Eq. 48 holds
for β = 0, α, 2α, . . . and finally for β = 1.

Assume now that α ∈ (0, 1) and k0α = 1 − α for some k0 ∈ N. Then we obtain
that Eq. 48 holds for β = 0, α, 2α, . . . , k0α. Then Eq. 48 holds for any β ∈ [0, k0α].
In particular, it holds for β = k0α − α/2. By Eq. 50 we obtain that Eq. 48 holds for
β = k0α + α/2 ∈ (1 − α, 1). Then, again by Eq. 50 we obtain that Eq. 48 holds for
β = 1.

Finally assume that α = 1. Eq. 32 gives that Eq. 48 holds for β = 1/2. Then by
Eq. 50 we obtain that Eq. 48 holds for β = 1.

Now let us fix arbitrary w ∈ D and put s = (δD(w) ∧ r0)/8. We will show that
∇u(w) exists. Let us take x, y ∈ B(w, s). Since z ∈ D was arbitrary one can take
z = (x + y)/2 and choose the Cartesian coordinate system and i so that y = x̂ =
x − 2ei(xi − zi). We put r = (δD(z) ∧ r0)/2 as before. Note that

δD(z) ≥ δD(w) − δD(w)

8
= 7δD(w)

8
≥ 7s, s ≤ r0

8
.

We also have

|x − z| = |x − y|
2

≤ s ≤
(

δD(z)

7
∧ r0

8

)
<

r
2
,

so x ∈ B(z, r/2). On the other hand we have δD(z) ≤ s + δD(w) so

r = δD(z) ∧ r0

2
≤ (s + δD(w)) ∧ r0

2
≤ s

2
+ δD(w) ∧ r0

2
= 9s

2
, and |w − z| ≤ s.

Hence B(z, r) ⊂ B(w, 11s/2) which gives supp∈B(z,r) |u(p)| ≤ supp∈B(w,11s/2) |u(p)|.
By Eq. 48 for β = 1 we obtain

|u(x) − u(y)| ≤ c
supp∈K′ |u(p)|

δD(z) ∧ 1
|x − z| ≤ c

supp∈K′ |u(p)|
δD(w) ∧ 1

|x − y|,

where c = c(d, α, q, η) and K′ = B(w, 11s/2) when u is nonnegative in Rd and K′ =
Rd when u is not nonnegative in Rd and ‖u‖∞ < ∞. Since x, y ∈ B(w, s) were
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arbitrary we obtain that qu is Hölder continuous with Hölder exponent η ∧ 1 in
B(w, s).

Using Eq. 9 for W = B(w, s) and Lemma 4.3 for B(w, s) we obtain that ∇u(w)

exists. Since w ∈ D was arbitrary this implies that ∇u is well defined on D.
Now again let us fix arbitrary z ∈ D, i ∈ {1, . . . , d} and put r = (δD(z) ∧ r0)/2, B =

B(z, r), K = B when u is nonnegative and K = Rd when u is not nonnegative and
‖u‖∞ < ∞.

When u is nonnegative, by the Harnack principle (see [9, Theorem 4.1]) we have

sup
y∈K

|u(y)| = sup
y∈B

u(y) ≤ cu(z). (51)

By the proof of [9, Theorem 4.1] it follows that c = c(d, α, ‖q‖∞).
Put x = z + hei, h ∈ (0, r/2). By Eq. 48 for β = 1 we get

|u(z + hei) − u(z − hei)| ≤ c
supy∈K |u(y)|

δD(z) ∧ 1
h,

where c = c(d, α, q, η). Since i ∈ {1, . . . , d} is arbitrary it follows that

|∇u(z)| ≤ c
supy∈K |u(y)|

δD(z) ∧ 1
. (52)

Of course this gives Eq. 4. When u is nonnegative Eqs. 52 and 51 imply Eq. 3. ��

5 Proof of Proposition 1.2 and Theorem 1.3

First we prove Proposition 1.2. By saying that ∇u(x) exists we understand that for
each i ∈ {1, . . . , d} limh→0(u(x + hei) − u(x))/h exists and is finite. We say that a
function is 0 Hölder continuous if it is bounded and measureable.

Proof of Proposition 1.2 Let us choose arbitrary point w ∈ D and r ∈ (0, δD(w)/3).
Put

q(x) = 1B(w,r)(x)
(
r2 − |x − w|2)1−α

, x ∈ Rd. (53)

It may be easily shown that q(x) is (1 − α) Hölder continuous. We may assume that r
is sufficiently small so that (D, q) is gaugeable. (The fact that (D, q) is gaugeable for
small r follows by Khasminski’s lemma, see page 57 in [8].) Put u(x) = Ex(eq(τD)),
x ∈ Rd. u(x) is the gauge function for (D, q). By Theorem 4.1 in [9] u(x) is regular
q-harmonic in D. Note that u is continuous and bounded on D.

Fix z ∈ ∂ B(w, r). We may assume that the Cartesian coordinate system
(x1, . . . , xd) is chosen so that z = (0, . . . , 0) and w = (r, 0, . . . , 0). Let B = B(0, r).
We will show that ∇u(0) does not exist. On the contrary assume that ∇u(0) exists. By
Eq. 9 we have

u(x) = Ex(u(XτB)) + GB(qu)(x), x ∈ B. (54)
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Of course ∇Ex(u(XτB)) exists for x ∈ B (see (10) and Lemma 3.2 in [10]). Put f0(y) =
u(0)q(y) and f1(y) = (u(y) − u(0))q(y). We have

u(y)q(y) = f0(y) + f1(y). (55)

For any s > 0 put B+(0, s) = {(y1, . . . , yd) ∈ B(0, s) : y1 > 0}, B+ = B+(0, r) and
ŷ = y − 2e1 y1 for y = (y1, . . . , yd) ∈ Rd. Recall that we have assumed that ∇u(0)

exists. By this and boundedness of u we get |u(y) − u(0)| ≤ c|y| for some c =
c(w, z, r, D, d, α, q) and any y ∈ Rd. It follows that for y ∈ B+(0, r/2)

| f1(y) − f1(ŷ)| = | f1(y)| = |u(y) − u(0)||q(y)| ≤ c‖q‖∞|y|,
where c = c(w, z, r, D, d, α, q). By Eq. 31 for any x ∈ B(0, r/2) we have

|GB f1(x) − GB f1(x̂)| ≤ c|x| + c
supy∈B | f1(y)|

r
|x| ≤ c|x|, (56)

for some c = c(w, z, r, D, d, α, q).
Now let us consider the case α ∈ (0, 1], d > α. By Lemmas 3.3 and 3.6 we get for

x ∈ B+(0, r/4)

GB f0(x) − GB f0(x̂) =
∫

B+
(GB(x, y) − GB(x̂, y))( f0(y) − f0(ŷ)) dy

= u(0)

∫
B+

(GB(x, y) − GB(x̂, y))q(y) dy

≥ cu(0)

∫
K(r,x)

|x − x̂|
|x − y|d−α|x̂ − y|q(y) dy, (57)

where c = c(w, z, r, D, d, α, q) and K(r, x) is defined in Lemma 3.6 for i = 1. Since u
is positive on D we have u(0) > 0.

Note that for x ∈ B+(0, r/4) and y ∈ K(r, x) we have |x − y| ≤ (3/2)|y|, |x̂ − y| ≤
(3/2)|y|. Hence Eq. 57 is bounded from below by

cu(0)|x − x̂|
∫

K(r,x)

|y|α−d−1q(y) dy,

where c = c(w, z, r, D, d, α, q). One can easily show that for any x ∈ B+(0, r/4)

and y ∈ K(r, x) we have q(y) ≥ c|y|1−α , where c = c(d, α, r). Let x = (x1, 0 . . . , 0) ∈
B+(0, r/4). It follows that

GB f0(x) − GB f0(x̂)

|x − x̂| ≥ cu(0)

∫
K(r,x)

|y|−d dy, (58)

where c = c(w, z, r, D, d, α, q). It is clear that if x = (x1, 0 . . . , 0) tends to 0 then the
right-hand side of Eq. 58 tends to ∞. This, Eq. 54, the fact that ∇Ex(u(XτB)) exists
for x ∈ B, Eqs. 55 and 56 give contradiction with the assumption that ∇u(0) exists.

Now we will consider the case d = α = 1. Recall that in this case q(y) =
1B(w,r)(y) = 1(0,2r)(y). By Lemmas 3.3 and 3.7 we get for x ∈ (0, r/4)

GB f0(x) − GB f0(x̂)

|x − x̂| = u(0)

2|x|
∫

B+
(GB(x, y) − GB(x̂, y))q(y) dy

≥ u(0)

15π

∫ r/2

2x

dy
y

. (59)
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It is clear that if x → 0 then Eq. 59 tends to ∞. This, Eq. 54, the fact that
d

dx Ex(u(XτB)) exists for x ∈ B, Eqs. 55 and 56 give contradiction with the assumption
that u′(0) exists. ��

Now we will prove lower bound gradient estimates. The idea of the proof is to
some extent similar to the proof of lower bound gradient estimates in [10]. The main
difference is the use of Lemma 5.1 below instead of [10, Lemma 5.4]. There are
essential differences in proofs of Lemma 5.1 and [10, Lemma 5.4]. The key arguments
in the proof of Lemma 5.1 are based on Lemma 4.3.

We will use the notation as in [10]. For x = (x1, . . . , xd) ∈ Rd we write x = (x̃, xd),
where x̃ = (x1, . . . , xd−1). In order to include the case d = 1 in the considerations
below we make the convention that for x ∈ R, x̃ = 0 and we set R0 = {0}.

We fix a Lipschitz function � : Rd−1 → R with a Lipschitz constant λ, so that
|�(x̃) − �(ỹ)| ≤ λ|x̃ − ỹ| for x̃, ỹ ∈ Rd−1. We put ρ(x) = xd − �(x̃). D denotes the
special Lipschitz domain defined by D = {x ∈ Rd : ρ(x) > 0}. The function ρ(x)

serves as vertical distance from x ∈ D to ∂ D. We define the “box”

�(x, a, r) = {
y ∈ Rd : 0 < ρ(y) < a, |x̃ − ỹ| < r

}
,

where x ∈ Rd and a, r > 0. We note that �(x, a, r) is a Lipschitz domain. We also
define the “inverted box”

∇(x, a, r) = {
y ∈ Rd : −a < ρ(y) ≤ 0, |x̃ − ỹ| < r

}
.

The same symbol ∇ is used for the gradient but the meaning will be clear from the
context.

For r > 0 and Q ∈ ∂ D we set �r = �(Q, r, r) and Gr = G�r . For a nonnegative
function u we put

u�r (x) = Exu(Xτ�r
), x ∈ Rd.

Fix Q ∈ ∂ D and assume that a Borel function q satisfies

|q(x) − q(y)| ≤ A|x − y|η, (60)

for some A > 0, η ∈ (1 − α, 1] and all x, y ∈ �s0 for some s0 ∈ (0, 1].
Now we will repeat the assertion of Lemma 5.3 [10]. Note that the assertion of

Lemma 5.3 in [10] holds for all α ∈ (0, 2) under the condition that q1�s0
∈ Jα for

some s0 ∈ (0, 1]. This condition follows from Eq. 60.
For every ε > 0 there exists a constant r0 = r0(d, λ, α, η, q, s0, ε) ≤ s0 ≤ 1 such that

if r ∈ (0, r0] and u : Rd → [0,∞) is q-harmonic and bounded in �r then

(1 − ε)u�r (x) ≤ u(x) ≤ (1 + ε)u�r (x), x ∈ Rd, (61)

and

Gr(|q|u)(x) ≤ εu�r (x), x ∈ Rd, (62)

Lemma 5.1 Let α ∈ (0, 1] and ε ∈ (0, 1/2]. There exist constants c = c(d, α, η, q) and
κ = κ(d, λ, α, η, q, r0, s0, ε) ≤ r0 such that if 0 < r ≤ κ , u : Rd → [0, ∞) is q-harmonic
and bounded in �r then

|∇Gr(qu)(x)| ≤ εc
u(x)

δ�r (x)
, x ∈ �r.
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Proof Let us choose

κ = max{s ∈ (0, r0] : sup
0<a≤s

aη+α−1(1 + | log a|) ≤ ε}.

Fix r ∈ (0, κ] and x0 ∈ �r. Note that δ�r (x0) ≤ r ≤ 1. Let B = B(x0, δ�r (x0)/2). We
have

Gr(qu)(x0) = GB(qu)(x0) + Ex0 Gr(qu)(XτB). (63)

We will estimate gradient of two terms on the right-hand side of Eq. 63 separately.
Let PB(x, z), x ∈ B, z ∈ int(Bc) be the Poisson kernel for B (that is the density of

the Px distribution of X(τB) [6]). By Lemma 3.1 in [10] we have

∣∣∇ (
Ex0 Gr(qu)(XτB)

)∣∣ =
∣∣∣∣∇x

∫
Bc

PB(x0, z)Gr(qu)(z) dz

∣∣∣∣
≤

∫
Bc

|∇x PB(x0, z)|Gr(|q|u)(z) dz

≤ c
δ�r (x0)

∫
Bc

PB(x0, z)Gr(|q|u)(z) dz

= c
δ�r (x0)

Ex0 Gr(|q|u)(XτB), (64)

where c = c(d, α).
By Eq. 63 for |q| instead of q we obtain that Ex0 Gr(|q|u)(XτB) ≤ Gr(|q|u)(x0).

Using this and Eqs. 61 and 62 we obtain that Eq. 64 is bounded from above by
cεu(x0)/δ�r (x0), where c = c(d, α).

By Theorem 1.1 for any x, y ∈ B we have

|u(x) − u(y)| ≤ c
δ�r (x0)

(
sup
z∈B

u(z)

)
|x − y|,

for some c = c(d, α, η, q). Using this and Eq. 60 for any x, y ∈ B we get

|q(x)u(x) − q(y)u(y)| ≤ |q(x)||u(x) − u(y)| + |q(x) − q(y)||u(y)|

≤ c(A + 1)

δ�r (x0)

(
sup
z∈B

u(z)

)
|x − y|η,

for some c = c(d, α, η, q).
Hence by Lemma 4.3 we obtain

|∇GB(qu)(x0)| ≤ c(A + 1)

δ�r (x0)

(
sup
z∈B

u(z)

)
(δ�r (x0))

η+α−1(1 + | log(δ�r (x0))|), (65)

where c = c(d, α, η, q).
Note that δ�r (x0) ≤ r ≤ κ . By our choice of κ we have

(δ�r (x0))
η+α−1(1 + | log(δ�r (x0))|) ≤ ε.

Using this and the Harnack inequality (see Eq. 51 with y changed to z and z
changed to x0) we obtain that the right-hand side of Eq. 65 is bounded from above
by cεu(x0)/δ�r (x0), where c = c(d, α, η, q). ��



q-Harmonic Functions of Fractional Schrödinger Operator 95

The next lemma is similar to Lemma 5.6 in [10].

Lemma 5.2 Let α ∈ (0, 1]. There are constants c = c(d, α, λ), h = h(d, α, λ) and r1 =
r1(d, α, λ, η, q, s0) such that if 0 < r ≤ r1 and u is nonnegative in Rd, q-harmonic and
bounded in �r and vanishes in ∇(Q, r, r) then

|∇u(x)| ≥ c
u(x)

δ�r (x)
, x ∈ �(Q, rh, r/2).

Proof The function u satisfies Eq. 9 with W = �r. Using [10, Lemma 4.5] and
scaling, Eq. 61 and Lemma 5.1 we obtain the result by an appropriate choice of ε

in Lemma 5.1. ��

Proof of Theorem 1.3 The upper bound follows from Theorem 1.1. The lower bound
follows from Lemma 5.2 and compactness of ∂ D ∩ K. ��

6 Applications

As an application of the main results of this paper we obtain gradient estimates of
eigenfunctions of the fractional Schrödinger operator.

Corollary 6.1 Assume that α ∈ (0, 2), D ⊂ Rd is an open bounded set, q ∈ Jα−1 when
α ∈ (1, 2), or q is Hölder continuous on D with Hölder exponent η > 1 − α when α ∈
(0, 1]. Let {ϕn}∞n=1 be the eigenfunctions of the eigenvalue problem 10 and 11 for the
fractional Schrödinger operator on D with zero exterior condition. Then ∇ϕn(x) exist
for any n ∈ N, x ∈ D and we have

|∇ϕ1(x)| ≤ c
ϕ1(x)

δD(x) ∧ 1
, x ∈ D, (66)

where c = c(D, q, α, η) and

|∇ϕn(x)| ≤ cn

δD(x) ∧ 1
, x ∈ D, (67)

where cn = cn(D, q, α, η). Furthermore, if additionally D ⊂ Rd is a bounded Lipschitz
domain then there exists ε = ε(D, q, α, η) such that

|∇ϕ1(x)| ≥ c
ϕ1(x)

δD(x)
, x ∈ D, δD(x) ≤ ε, (68)

where c = c(D, q, α, η).

The result is new even for q ≡ 0. In that case this is the eigenvalue problem for
the fractional Laplacian with zero exterior condition. This eigenvalue problem have
been recently very intensively studied see e.g. [1, 3, 4, 14, 17, 20].

For α = 2, under additional assumptions that d ≥ 3, D is connected and Lipschitz,
inequalities 66 and 67 follow from [16, Theorem 1] and inequality 68 follows from [2,
Theorem 1].

Before we come to the proof of Corollary 6.1 we will need the following easy
addendum to the results obtained in [10].
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Lemma 6.2 Let α ∈ (1, 2), q ∈ Jα−1 and D ⊂ Rd be an open set. Assume that the
function u is q-harmonic in D and ‖u‖∞ < ∞. Then ∇u(x) exists for any x ∈ D and
we have

|∇u(x)| ≤ c
‖u‖∞

δD(x) ∧ 1
, x ∈ D,

where c = c(d, α, q).

Proof The proof of this lemma follows from the arguments used in [10]. First note
that the assertion of Lemma 5.4 in [10] remains true if we replace the assumption
that u is nonnegative in Rd by the assumption that ‖u‖∞ < ∞ and when we replace
u(x) by ‖u‖∞ on the right-hand side of the estimate of |∇Gr(qu)(x)|. Then the proof
of Lemma 6.2 is almost the same as the proof of Lemma 5.5 in [10]. ��

Proof of Corollary 6.1 It is clear that ϕn is not (q + λn)-harmonic on the whole D
because (D, q + λn) is not gaugeable. However by the definition of the Kato class
and standard arguments (see e.g. [9, p. 299]) for any n = 1, 2, . . . there exists r ∈ (0, 1]
and the finite number of balls B(x1, r), . . . , B(xM, r) such that x1, . . . , xM ∈ D,

D ⊂
M∑

m=1

B(xm, r)

and each (B(xm, 2r) ∩ D, q + λn) is gaugeable. This means that ϕn is (q + λn)-
harmonic on each B(xm, 2r) ∩ D. Note that for any x ∈ B(xm, r) ∩ D we have

δB(xm,2r)∩D(x) ∧ 1 ≥ δD(x) ∧ r ∧ 1 ≥ r(δD(x) ∧ 1).

Now, Eqs. 66 and 67 follow from Theorem 1.1 for α ∈ (0, 1] and from [10, Lemma
5.5], Lemma 6.2 for α ∈ (1, 2). Inequality 68 follows from similar arguments and
Lemma 5.2 for α ∈ (0, 1] and [10, Lemma 5.6] for α ∈ (1, 2). ��

As another application of our main result we show that under some assumptions
on q a weak solution of �α/2u + qu = 0 is in fact a strong solution. First we need the
following easy lemma.

Lemma 6.3 Let α ∈ (0, 1). Choose x0 ∈ Rd and r > 0. Assume that a Borel function
u : Rd → R satisf ies ∫

Rd

|u(y)|
(1 + |y|)d+α

dy < ∞,

∇u(x) exists and |∇u(x)| ≤ A for all x ∈ B(x0, r) and some constant A. Then �α/2u(x)

is well def ined and continuous on B(x0, r/2).

Proof Let x ∈ B(x0, r/2). Choose ε ∈ (0, r/2). We have∫
|x−y|<ε

|u(y) − u(x)|
|y − x|d+α

dy ≤
∫

|x−y|<ε

A|y − x|
|y − x|d+α

dy (69)

= cA
∫ ε

0
ρ−α dρ → 0, when ε → 0, (70)
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where c = c(d). By the definition of �α/2 (see Section 2) we obtain that �α/2u(x) is
well defined.

One can easily show that for any fixed ε ∈ (0, r/2) the function

fε(x) =
∫

|x−y|>ε

|u(y) − u(x)|
|y − x|d+α

dy

is continuous on B(x0, r/2). This and Eqs. 69 and 70 imply that �α/2u(x) is continuous
on B(x0, r/2). ��

Proof of Corollary 1.4 Choose arbitrary x0 ∈ D. It is clear that there exists r > 0
such that B(x0, 2r) ⊂⊂ D and (B(x0, 2r), q) is gaugeable. This can be done by
Khasminski’s lemma (see [9, p. 299]). Put B = B(x0, r). By [8, Theorem 5.5] we may
assume that u is a q-harmonic function on B(x0, 2r) (after a modification on a set of
Lebesgue measure zero). By Eq. 9 we get

u(x) = Exu(XτB) + GB(qu)(x), x ∈ Rd. (71)

By Theorem 1.1 and Lemma 6.3 �α/2u(x) is well defined and continuous on
B(x0, r/2). The function v(x) = Exu(XτB) is an α-harmonic function on B(x0, r/2),
so �α/2v(x) = 0 on B(x0, r/2). Hence by Eq. 71 we obtain

�α/2u(x) = �α/2(GB(qu))(x), x ∈ B(x0, r/2).

By Lemma 5.3 [9] we have

�α/2(GB(qu))(x) = −q(x)u(x),

for almost all x ∈ B(x0, r/2). But both sides of this equality are continuous so in fact
this equality holds for all x ∈ B(x0, r/2). ��
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