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Abstract
A classical fact in the weighted theory asserts that a weight w belongs to the Muck-
enhoupt class A∞ if and only if its logarithm logw is a function of bounded mean
oscillation. We prove a sharp quantitative version of this fact in dimension one: for a
weight w defined on some interval J ⊂ R, we provide best lower and upper bounds
for the BMO norm of logw in terms of A∞ characteristics of w. The proof rests on
the precise evaluation of associated Bellman functions.
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1 Introduction

A real-valued locally integrable function ϕ defined on R
n is said to be in BMO , the

space of functions of bounded mean oscillation, if

sup
Q

〈|ϕ − 〈ϕ〉Q |〉Q < ∞. (1.1)

Here the supremum is taken over all cubes Q inRn with edges parallel to the coordinate
axes and

〈ϕ〉Q = 1

|Q|
∫

Q
ϕ(x)dx

denotes the average ofϕ over Q. The BMO class, introduced by John andNirenberg in
[7], plays an important role in analysis and probability, since many classical operators
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712 A. Osękowski

(maximal, singular integral, etc.) map L∞ into BMO . Another remarkable result, due
to Fefferman [4], asserts that BMO is a dual to the Hardy space H1. It is well-known
that the functions of boundedmean oscillation have very strong integrability properties
(see e.g. [7]). In particular, the p-oscillation

||ϕ||BMO p := sup
Q

〈|ϕ − 〈ϕ〉Q |p〉1/pQ , 1 < p < ∞,

is finite for any ϕ ∈ BMO . It turns out that || · ||BMO p forms an equivalent quasinorm
on BMO(Rn). In what follows, we will work with || · ||BMO2 and denote it simply
by || · ||BMO . One of the reasons we choose this particular norm is that we have the
identity

||ϕ||BMO2 = sup
Q

{〈ϕ2〉Q − 〈ϕ〉2Q
}1/2

, (1.2)

which makes the norm very convenient to handle. We will also restrict ourselves to the
localized setting. That is, ifQ ⊂ R

n is a fixed cubewith edges parallel to the coordinate
axes, we define the class BMO(Q) as the collection of all integrable ϕ : Q → R for
which the expression (1.2) is finite, this time the supremum being taken over all cubes
Q ⊆ Q with edges parallel to the coordinate axes.

There is a well-known connection between BMO and weights satisfying the so-
called A∞ condition of Muckenhoupt [9]. In what follows, the word ‘weight’ refers to
a nonnegative, locally integrable function on some base spaceB (which is typicallyRn

or some cube Q ⊂ R
n). Following [8], we say that a weight w satisfies the condition

A∞ (or belongs to the class A∞(B)), if

[w]A∞(B) = sup
Q

〈
w〉Q exp(−〈logw〉Q) < ∞,

where, as above, the supremum is taken over all cubes Q contained in the base spaceB,
having edges parallel to the coordinate axes. The aforementioned connection between
the space BMO and the class A∞ can be (a little informally) stated as

BMO = log A∞.

More precisely, a weight w satisfies the condition A∞ if and only if logw belongs
to the class BMO . The principal goal of this paper is to provide a sharp quantitative
version of this result in the case n = 1. In this particular setting, the cubes become
intervals; to stress that we work in the one-dimensional case, we will use the letters I ,
J instead of Q.

Here is our main result. For a given c ≥ 1, let d± = d±(c) be the constants
introduced in Lemma 3.1 below.

Theorem 1.1 Let J ⊂ R be a given interval. If w is a weight on J , then we have

− d−([w]A∞(J )) ≤ || logw||BMO(J ) ≤ d+([w]A∞(J )). (1.3)
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A sharp estimate for Muckenhoupt class A∞ and BMO 713

Both estimates are sharp: for any c ≥ 1 there are weights w± satisfying [w±]A∞ = c
such that || logw±||BMO = ± d±(c).

Actually, we will prove more. Our approach will rest on the so-called Bellman
function method, a powerful technique which is now used widely in various con-
texts of analysis and probability theory. Roughly speaking, this technique enables
to extract the optimal constants in a given estimate from the existence of a certain
special function enjoying an appropriate size condition and concavity. The method
originates from the theory of optimal control (the theory of dynamic programming):
see [1]. The connection of this approach to the estimates for martingale transforms
was observed in the eighties by Burkholder [3] and then it was exploited in the study
of other semimartingale inequalities (consult [12] for an overview of the results in this
direction). A decisive step towards the application of the Bellman function method
to general problems of harmonic analysis was made by Nazarov et al. [11] (see also
[10]). Since then, the technique has been successfully applied in numerous settings:
see e.g. [2,5,6,13–17] and consult the references therein.

We will identify the explicit formula for the Bellman functions associated with the
double inequality (1.3). As usual in this type of problems, the argumentation splits
naturally into two parts. The first part, which contains an informal reasoning leading to
the discovery (or the guess) of the Bellman functions, is presented in the next section.
The formal verification that these guessed objects are indeed the desired Bellman
functions, is the contents of Sect. 3.

2 Associated Bellman functions

The purpose of this section is to rephrase both estimates in (1.3) in the language of
the associated Bellman functions and to describe the main steps which lead to the
discovery of these crucial objects. For the reader’s convenience, we split the reasoning
into several separate parts.

Step 1. Geometric interpretation of A∞ weights We follow the work [17] by
Vasyunin; the reader can also find in that paper the related interpretation for Ap

weights in the range 1 ≤ p < ∞. For a given c ≥ 1, introduce the domain

�c =
{
(x, y) ∈ (0,∞) × R : y ≤ log x ≤ y + log c

}
.

Then aweightw : J → R+ satisfies [w]A∞(J ) ≤ c if and only if for any interval I ⊆ J
we have (〈w〉I , 〈logw〉I ) ∈ �c. Indeed, the inequality log〈w〉I ≤ 〈logw〉I + log c is
guaranteed directly by the A∞ condition, while the left estimate 〈logw〉I ≤ log〈w〉I
is a mere consequence of Jensen’s inequality.

We will require the following well-known fact (we include an easy proof for the
sake of completeness).

Lemma 2.1 For any (x, y) ∈ �c and any interval J , there is a weight w : J → R+
satisfying [w]A∞(J ) ≤ c such that 〈w〉J = x and 〈logw〉J = y.
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714 A. Osękowski

Proof If y = log x , then the constant weight w ≡ x does the job. Suppose then, that
y < log x . Let PR be a line segment, passing through (x, y), tangent to the lower
boundary of �c, with P , R lying on the upper boundary of this set (i.e., such that
Py = log Px , Ry = log Rx ). (If (x, y) does not belong to the lower boundary, then
there are two such line segments; take any of them). Then PR is entirely contained
in �c and there is a number α ∈ (0, 1) such that αP + (1 − α)R = (x, y). Split the
interval J into two subintervals J± such that |J−| = α|J | and |J+| = (1− α)|J |, and
define w = PxχJ− + RxχJ+ . Then

〈w〉J = αPx + (1 − α)Rx = x,

〈logw〉J = α log Px + (1 − α) log Rx = αPy + (1 − α)Ry = y

and hence it is enough to check that [w]A∞(J ) ≤ c. To this end, pick an arbitrary
subinterval I of J and note that

〈w〉I = |I ∩ J−|
|I | Px + |I ∩ J+|

|I | Rx

and

〈logw〉I = |I ∩ J−|
|I | log Px + |I ∩ J+|

|I | log Rx = |I ∩ J−|
|I | Py + |I ∩ J+|

|I | Ry .

This means that (〈w〉I , 〈logw〉I ) lies on the line segment PR, and hence is contained
in �c. This is exactly what we need.

Let us briefly note that if (x, y) does not lie on the upper boundary of �c, then
the weight w constructed above actually satisfies the equality [w]A∞(J ) = c. Indeed,
it follows from Darboux property that if I is chosen appropriately, then the average
(〈w〉I , 〈logw〉I ) is the point of tangency of PR to the lower boundary of �c. This
amounts to saying that 〈w〉I exp(−〈logw〉I ) = c, which gives the desired reverse
estimate [w]A∞(J ) ≥ c. 
�

Step 2. Abstract Bellman functions Fix c ≥ 1, an interval J ⊂ R and consider the
functions Bc± : �c → R given by the abstract formulas

B
c−(x, y) = inf

{
〈log2 w〉J

}
, B

c+(x, y) = sup

{
〈log2 w〉J

}
, (2.1)

where the infimum (supremum) is taken over all weights w ∈ A∞(J ) such that
[w]A∞(J ) ≤ c, 〈w〉J = x and 〈logw〉J = y. By the previous lemma, Bc± are well-
defined objects on the whole �c. It is clear that the above functions do not depend on
the base interval J . Indeed, for any two intervals J1 and J2, there is an affine mapping
putting J1 onto J2; such amapping preserves the averages and puts the classes A∞(J1)
and A∞(J2) in one-to-one correspondence. To describe the relation between B

c± and
(1.3), observe that
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A sharp estimate for Muckenhoupt class A∞ and BMO 715

B
c−(x, y) − y2 = inf

{
〈log2 w〉J − 〈logw〉2J

}
,

B
c+(x, y) − y2 = sup

{
〈log2 w〉J − 〈logw〉2J

}
,

where the infimum and supremum are taken over the same class as previously. In
particular, this shows that d2+(c) = sup(x, y)∈�c

(
B
c+(x, y) − y2

)
. Indeed, given an

arbitrary weight w with [w]A∞(J ) = c, we see that [w]A∞(I ) ≤ c for any subinterval
I ⊆ J and hence

〈log2 w〉I − 〈logw〉2I ≤ B
c+(〈w〉I , 〈logw〉I ) − 〈logw〉2I ≤ sup

(x, y)∈�c

(
B
c+(x, y) − y2

)
.

Since I was arbitrary, this gives ‖ logw‖2BMO ≤ sup(x, y)∈�c

(
B
c+(x, y) − y2

)
and

hence also d2+(c) ≤ sup(x, y)∈�c

(
Bc+(x, y)− y2

)
, by taking the supremum over all w.

To get the reverse bound, take ε > 0 and a point (x0, y0) ∈ �c such that Bc+(x0, y0)−
y20 ≥ sup(x, y)∈�c

(
Bc+(x, y) − y2

) − ε. There is a weight w on J satisfying [w]A∞ ≤
c, 〈w〉J = x0, 〈logw〉J = y0 and B

c+(x0, y0) ≤ 〈log2 w〉J + ε. Putting all these
properties together, we see that w satisfies

‖ logw‖2BMO ≥ 〈log2 w〉J − 〈logw〉2J ≥ sup
(x, y)∈�c

(
B
c+(x, y) − y2

) − 2ε.

This proves d2+(c) ≥ sup(x, y)∈�c

(
B
c+(x, y) − y2

)
, since ε was arbitrary. A similar

reasoning establishes an analogous relation between B
c− and d−(c). Thus, having

found the explicit formulas for Bc±, we immediately extract the solution to our main
problem. As we will see now, the identification of these formulas is possible due to
certain structural properties of Bellman functions.

Step 3. Properties of Bellman functions Suppose that (x, y) belongs to the upper
boundary of �c. Then for any interval J , by Jensen’s inequality, there is only one
weight w : J → R+ satisfying 〈w〉J = x and 〈logw〉J = y: the constant w ≡ x .
Consequently, directly from the definition of Bc±, we have

B
c±(x, y) = y2

on the upper boundary of �c. The next observation is a certain homogeneity-type
condition, which allows to express Bc± in terms of some functions of one variable.
Namely, fix aweightw : J → R+ satisfying [w]A∞(J ) ≤ c, 〈w〉J = x and 〈logw〉J =
y. Then for any λ > 0 we have [λw]A∞(J ) ≤ c, 〈λw〉J = λx and 〈log(λw)〉J =
y + log λ, so

〈log2 w〉J = 〈log2(λw)〉J − 2y log λ − log2 λ ≤ B
c+(λx, y + log λ) − 2y log λ − log2 λ.

Since w was arbitrary, this yields

B
c+(x, y) ≤ B

c+(λx, y + log λ) − 2y log λ − log2 λ
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716 A. Osękowski

and replacing x , y, λ by λx , y + log λ and λ−1, respectively, gives the reverse bound.
Consequently, setting λ = x−1, we see that

B
c+(x, y) − y2 = B

c+(1, y − log x) − (y − log x)2 = �c+(y − log x), (2.2)

for some function �c+ : [− log c, 0] → R to be found. The same reasoning shows that
B
c−(x, y) − y2 = �c−(y − log x), for some unknown �c− : [− log c, 0] → R.
To find �c±, we go back to the structure of the “whole” function B

c±. In a typical
situation, Bellman functions are locally convex/concave on their domains (here the
phrase “local convexity/concavity” means the convexity/concavity along any line seg-
ment contained in the domain of the function). Let us describe informally how the idea
works for the function Bc+. Suppose that the line segment PR is entirely contained in
�c, α ∈ (0, 1) is a fixed parameter and let S = αP+ (1−α)R. Letw− be a weight on
the interval [0, α), satisfying [w]A∞([0,α)) ≤ c, 〈w〉[0,α) = Px , 〈logw〉[0,α) = Py . Let
w+ be a weight on [α, 1], satisfying [w]A∞([α,1]) ≤ c, 〈w〉[α,1] = Rx , 〈w〉[α,1] = Ry .
Splicing these two weights into one weight w on [0, 1], we see that

〈log2 w〉[0,1] = α〈log2 w−〉[0,α) + (1 − α)〈log2 w+〉[α,1].

Suppose that the weight w satisfies [w]A∞(0,1) ≤ c (unfortunately, this cannot be
formally proved; however, let us proceed under this assumption). This would yield

B
c+(S) ≥ α〈log2 w−〉[0,α) + (1 − α)〈log2 w+〉[α,1]

and taking the supremum over all w± as above, we would obtain

B
c+(S) ≥ αBc+(P) + (1 − α)Bc+(R),

i.e., the desired local concavity of Bc+. A similar heuristic argument indicates that Bc−
should be locally convex.

Beforewe proceed, let usmake a crucial comment.We expect theBellman functions
B
c± to yield the best constants in (1.3). In such a situation, one typically assumes that

for each point (x, y) lying in the interior of the domain, the convexity/concavity
assumption degenerates in some direction; that is, there is a (short) line segment
passing through (x, y) along which the Bellman function is linear. As we shall see,
this assumption leads to the key second-order differential equation for �c± which can
be solved explicitly, and hence it identifies the formulas for Bc±.

Step 4. On the search of B
c± We put all the above facts together. Let us assume

that Bc± are of class C2. Then the local convexity/concavity can be reformulated
in terms of the corresponding Hessian matrices. Furthermore, the aforementioned
degeneration condition implies that the determinant of the Hessian must vanish at
each point belonging to the interior of the domain. We compute that

D2
B
c±(x, y) =

[
((�c±)′′(t) + (�c±)′(t))x−2 −(�c±)′′(t)x−1

−(�c±)′′(t)x−1 (�c±)′′(t) + 2

]
,
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A sharp estimate for Muckenhoupt class A∞ and BMO 717

where, for brevity, we denoted y − log x by t . Then the requirement det D2
B
c± = 0

yields the following ODE for �c±:

(�c±)′′(t)((�c±)′(t) + 2) + 2(�c±)′(t) = 0.

This equation can be easily solved, taking into account the initial condition obtained
from the behavior of Bc± at the upper boundary of �c. This gives us the candidates for
�c±, which in turn yield the candidates for theBellman functionsBc±. These candidates,
denoted from now on by 	c± and Bc±, will be explicitly introduced and studied in the
next section.

3 Formal verification

Now we will present the formal proof of Theorem 1.1 and the rigorous identification
of the explicit formulas for the Bellman functions Bc±. Throughout, c ≥ 1 is a fixed
parameter.

3.1 Special functions and their properties

Introduce the auxiliary function G : (−1,∞) → R by G(x) = x − log
(
c(1 +

x)
)
. One easily computes that G ′(x) = x/(1 + x), so G is strictly decreasing on

(−1, 0) and strictly increasing on (0,∞). Furthermore, one checks immediately that
limx↓−1 G(x) = limx↑∞ G(x) = ∞ and G(0) = − log c ≤ 0, so in particular we
have the following fact, which we formulate as a separate statement.

Lemma 3.1 There are unique d− = d−(c) ∈ (−1, 0] and d+ = d+(c) ∈ [0,∞) such
that

d± = log
(
c(1 + d±)

)
. (3.1)

Furthermore, the function G maps each of the intervals [d−, 0], [0, d+]monotonically
onto [− log c, 0].

We are ready to introduce explicitly the functions 	c± : [− log c, 0] → [0,∞) we
have constructed in the preceding section. These functions are defined by

	c±(x) = d2± − (G−1(x))2,

where G−1 is the inverse to G (considered as a function from [− log c, 0] to [d−, 0]
in the case of 	c−, and from [− log c, 0] to [0, d+] in the case of 	c+). In other words,
the functions 	c± satisfy

	c−
(
x − log

(
c(1 + x)

)) =d2− − x2, for x ∈ [d−, 0], (3.2)

	c+
(
x − log

(
c(1 + x)

)) =d2+ − x2, for x ∈ [0, d+]. (3.3)
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718 A. Osękowski

The (candidates for) Bellman functions are given explicitly by

Bc±(x, y) = 	c±(y − log x) + y2. (3.4)

Let us verify formally the local convexity/concavity of these objects.

Lemma 3.2 The Hessian matrix of Bc+ is nonpositive-definite. The Hessian matrix of
Bc− is nonnegative-definite.

Proof Actually, we have already performed all the necessary calculations in the pre-
ceding section, but we rewrite the computations for the sake of completeness. Setting
t := y − log x , the Hessian matrix of Bc± is given by

D2Bc±(x, y) =
[

((	c±)′′(t) + (	c±)′(t))x−2 −(	c±)′′(t)x−1

−(	c±)′′(t)x−1 (	c±)′′(t) + 2

]
.

Observe that

det D2Bc±(x, y) = x−2 [
(	c±)′′(t)((	c±)′(t) + 2) + 2(	c±)′(t)

] = 0,

because by (3.2) and (3.3),

(	c±)′
(
x − log

(
c(1 + x)

)) = −2(1 + x), (	c±)′′
(
x − log

(
c(1 + x)

)) = −2(1 + x)/x .

(Here the identities are valid for all x ∈ [0, d+] if 	c+ is concerned; and for all
x ∈ [d−, 0] if 	c− is considered). So, to establish the assertion of the lemma, it is
enough to prove that (	c+)′′ +(	c+)′ is nonpositive and (	c−)′′ +(	c−)′ is nonnegative.
But this follows immediately from the identity

(	c±)′′
(
x − log

(
c(1 + x)

)) + (	c±)′
(
x − log

(
c(1 + x)

)) = −2(1 + x)2/x

(with the same restrictions on the range of x as above, depending on whether 	c+ or
	c− is studied). 
�

We will also exploit the following size estimate for Bc±.

Lemma 3.3 We have y2 ≤ Bc±(x, y) ≤ d2± + y2 for all (x, y) ∈ �c.

Proof As shown in the proof of the previous lemma, the functions 	c+ and 	c− are
decreasing on [− log c, 0]. Consequently,

Bc±(x, y) ≥ 	c±(0) + y2 = y2 and Bc±(x, y) ≤ 	c±(− log c) + y2 = y2

and we are done. 
�
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A sharp estimate for Muckenhoupt class A∞ and BMO 719

3.2 Proof of the inequalitiesBc+ ≤ Bc+,Bc− ≥ Bc− and (1.3)

The argument rests on the inductive use of the local convexity/concavity of theBellman
functions. We will need the following technical fact (see Lemma 4∞ in [17]).

Lemma 3.4 For any ε > c and an arbitrary weight on J with [w]A∞(J ) ≤ c there
exists a splitting J = J− ∪ J+, |J±| = α±|J |, such that the entire interval with the
endpoints p± = (〈w〉J± , 〈logw〉J±) is in �ε. Moreover, the splitting parameters α±
can be chosen bounded away from 0 and 1 uniformly with respect to w and, therefore,
with respect to J as well.

Proof of Bc+ ≤ Bc+. Fix an A∞ weight w on J , satisfying [w]A∞(J ) ≤ c, 〈w〉J = x
and 〈logw〉J = y. Furthermore, pick an arbitrary ε > c.

Step 1. Consider the following family {J n}n≥0 of partitions of J , generated by
the inductive use of Lemma 3.4. We start with J 0 = {J }; then, given J n =
{Jn,1, Jn,2, . . . , Jn,2n }, we split each Jn,k according to Lemma 3.4, applied to the
function w and the parameter ε. Finally, put

J n+1 = {
Jn,1
− , Jn,1

+ , Jn,2
− , Jn,2

+ , . . . , Jn,2n
− , Jn,2n

+
}
.

Next, we define the sequences ( fn)n≥0, (gn)n≥0 of functions on J by

fn(t) = 1

|Jn(t)|
∫

Jn(t)
w(s)ds, gn(t) = 1

|Jn(t)|
∫

Jn(t)
logw(s)ds.

Here Jn(t) ∈ J n is an interval containing t ; if there are two such intervals, we pick the
onewhich has t as its right endpoint. Since [w]A∞(J ) ≤ c, we have ( fn(t), gn(t)) ∈ �ε

for each n and almost all t ∈ J .
Step 2. Let Bε+ be the Bellman function studied in the previous section, correspond-

ing to the parameter ε. We will prove that for any nonnegative integer n and any
Jn,k ∈ J n we have

∫

Jn,k
Bε+( fn+1(t), gn+1(t)) dt ≤

∫

Jn,k
Bε+( fn(t), gn(t)) dt . (3.5)

To this end, observe that the pair ( fn, gn) is constant on Jn,k (equal to p =
(〈w〉Jn,k , 〈logw〉Jn,k ) there), while ( fn+1, gn+1) takes two values on this interval:
p± = (〈w〉Jn,k

±
, 〈logw〉Jn,k

±
)). By Lemma 3.4, the entire interval with the endpoints

p± is contained within �ε, and hence Bε+ is concave along this interval. It remains to
note that (3.5) follows immediately from this concavity.

Step 3. Summing (3.5) and (3.7) over k, we get

∫

J
Bε+( fn+1(t), gn+1(t)) dt ≤

∫

J
Bε+( fn(t), gn(t)) dt .
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720 A. Osękowski

Consequently, for any nonnegative integer n we have

1

|J |
∫

J
Bε+( fn(t), gn(t)) dt ≤ 1

|J |
∫

J
Bε+( f0(t), g0(t)) dt

= Bε+ (〈w〉J , 〈logw〉J ) = Bε+(x, y).

Combining this estimate with Lemma 3.3, we get

1

|J |
∫

J
g2n(t)dt ≤ Bε+ (x, y) . (3.6)

However, recall that the splitting ratios α± of Lemma 3.4 were bounded away from
0 and 1. Therefore, the diameter of J n tends to 0 as n → ∞, i.e., we have
limn→∞ sup1≤k≤2n |Jn,k | = 0.Consequently, by Lebesgue’s differentiation theorem,
we have gn(t) → logw(t) for almost all t ∈ J . By Fatou’s lemma, (3.6) yields

〈log2 w〉J ≤ Bε+ (x, y)

and since w was arbitrary, we get Bc+(x, y) ≤ Bε+(x, y). It remains to let ε → c to
get the desired bound. 
�
Proof of (1.3), the right estimate. Let w be an A∞ weight on J with [w]A∞(J ) ≤ c.
Then for any subinterval I ⊆ J , we have [w]A∞(I ) ≤ c and hence, by Lemma 3.3 and
the inequality B

c+ ≤ Bc+,

〈log2 w〉I ≤ B
c+(〈w〉I , 〈logw〉I ) ≤ Bc+(〈w〉I , 〈logw〉I ) ≤ d2+(c) + 〈logw〉2I .

Since I was arbitrary, this gives the desired upper bound for ‖ logw‖BMO(J ). 
�
Proof of the inequality B

c− ≥ Bc−. The argument is very similar to that used above,
however, there are some small differences, so we have decided to write the proof
separately. Let w be an A∞ weight with [w]A∞(J ) ≤ c. Set x = 〈w〉J , y = 〈logw〉J
and let ε > c. Construct the partitions {J n}n≥0 of J and the functional sequences
( fn)n≥0, (gn)n≥0 using the same formulas as previously. Let Bε− be the Bellman
function corresponding to the parameter ε. Then Lemma 3.2 shows that for any n
and k, ∫

Jn,k
Bε−( fn+1(t), gn+1(t)) dt ≥

∫

Jn,k
Bε−( fn(t), gn(t)) dt (3.7)

and hence, summing over k,

∫

J
Bε−( fn+1(t), gn+1(t)) dt ≥

∫

J
Bε−( fn(t), gn(t)) dt .

This proves that for any n ≥ 0 we have

∫

J
Bε−( fn(t), gn(t)) dt ≥

∫

J
Bε−( f0(t), g0(t)) dt = |J |Bε−(x, y). (3.8)
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Now we use Lebesgue’s differentiation theorem and Lebesgue’s dominated conver-
gence theorem. The function Bε− is continuous on �ε, so we have

Bε−( fn(t), gn(t))
n→∞−−−→ Bε−(w(t), logw(t)) = log2 w(t)

for almost all t ∈ J . In addition, by Lemma 3.3,

0 ≤ Bε−( fn(t), gn(t)) ≤ d2−(ε) + g2n(t) ≤ d2−(ε) + (M logw(t)
)2

,

where M is the Hardy–Littlewood maximal operator. The expression on the right is
integrable on J : indeed, logw is square-integrable as a function from the class BMO
and M is L2-bounded. Therefore, letting n → ∞ in (3.8) yields, by Lebesgue’s
dominated convergence theorem,

〈log2 w〉J ≥ Bε−(x, y).

Since w was arbitrary, this implies Bc−(x, y) ≥ Bε−(x, y). It remains to let ε → c to
get the claim. 
�
Proof of (1.3), the left estimate. Pick a weight w on J such that logw belongs to the
class BMO . Then w is an A∞ weight. Set c = [w]A∞ ; we may assume that c > 1,
since otherwise there is nothing to prove (indeed, if c = 1, thenw, and hence also logw,
are constant). Pick c′ ∈ (1, c) and choose I ⊂ J such that 〈w〉I exp(−〈logw〉I ) ≥ c′;
such a choice is possible by the very definition of the A∞ condition. Since Bc− ≥ Bc−,
we get, by the very definition of Bc−,

〈log2 w〉I ≥ B
c−(〈w〉I , 〈logw〉I )

≥ Bc−(〈w〉I , 〈logw〉I )
= 	c−(〈logw〉I − log〈w〉I ) + 〈logw〉2I
≥ 	c−(− log c′) + 〈logw〉2I ,

where in the last passage we have exploited the fact that 	c− is a decreasing function.
This shows that ‖ logw‖BMO(J ) ≥ 	c−(− log c′) and it remains to let c′ → c and
note that 	c−(− log c) = −d−(c) (see (3.2)). 
�

3.3 Sharpness of (1.3) and proofs of the inequalitiesBc+ ≥ Bc+,Bc− ≤ Bc−

Let us split this subsection into two parts.
The constants d±(c) in (1.3) cannot be improved. Fix c ≥ 1 and consider the weight
w on (0, 1) given by w(s) = sd , where d ∈ {d−(c), d+(c)}. We will prove that

[w]A∞(0,1) = c and ‖ logw‖BMO(0,1) = d, (3.9)
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Fig. 1 The point pa,b belongs to
�c . Furthermore, it lies above
the line tangent to the lower
boundary of �c at the point pb

which clearly gives the announced sharpness of (1.3). To show the first part of (3.9),
fix a > 0 and compute that

pa = (xa, ya) :=
(
1

a

∫ a

0
w(s)ds,

1

a

∫ a

0
logw(s)ds

)
=

(
ad

d + 1
, d log a − d

)
.

(3.10)
We easily check that pa lies at the lower boundary of �c: log xa = ya + log c, or
〈w〉(0,a) exp

( − 〈logw〉(0,a)

) = c, directly by (3.1). Thus, the A∞ constant of w is at
least c and all we need is the estimate [w]A∞(0,1) ≤ c. We will check that

〈w〉[a,b] exp(−〈logw〉[a,b]) ≤ c. (3.11)

for any a < b. Consider the point

pa,b = (xa,b, ya,b) :=
(

1

b − a

∫ b

a
w(s)ds,

1

b − a

∫ b

a
logw(s)ds

)
.

The estimate (3.11) is equivalent to showing that pa,b ∈ �c. By Jensen’s inequality,
pa,b cannot lie above the upper boundary of�c, i.e., we have ya,b ≤ log xa,b. To show
that ya,b ≥ log xa,b − log c, it suffices to note that the lower boundary of �c is a graph
of a concave function y = log x − c and

pb = a

b
pa + b − a

b
pa,b.

This proves the first equality in (3.9); actually, it proves a little more (which will be
useful later): the point pa,b lies above the line which is tangent to the lower boundary
of �c at the point pb. See Fig. 1.
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To show the second equality in (3.9), let 0 ≤ a < b ≤ 1. We have

〈logw〉[a,b] = 1

b − a

∫ b

a
logw(s)ds = d

b − a
(b log(b/e) − a log(a/e))

and similarly

〈log2 w〉[a,b] = d2

b − a

[
b log2 b − a log2 a − 2(b log(b/e) − a log(a/e))

]
. (3.12)

After some lengthy but rather straightforward computations, one obtains

〈log2 w〉[a,b] − 〈logw〉2[a,b] − d2 = −d2ab log2(b/a)

(b − a)2
≤ 0.

Since a and b were arbitrary, we obtain || logw||BMO ≤ d; furthermore, taking a = 0
we see that actually equality holds here. This is precisely the desired assertion. 
�
Proof of Bc+ ≥ Bc+, Bc− ≤ Bc−. Fix c ≥ 1, d ∈ {d−(c), d+(c)}, κ ≥ 1 and consider
a modification of the above weight, given by w(s) = sdχ(0,1](s) + χ[1,κ)(s). This
weight satisfies [w]A∞(0,κ) = c. Indeed, we have [w]A∞(0,κ) ≥ [w]A∞(0,1) = c and,
as we will prove now,

pa,b = (xa,b, ya,b) :=
(

1

b − a

∫ b

a
w(s)ds,

1

b − a

∫ b

a
logw(s)ds

)
∈ �c (3.13)

for any 0 ≤ a < b ≤ κ . This is clear if a ≥ κ (then pa,b = (1, 0)), we have also
checked the inclusion if b ≤ 1. Therefore, it remains to check (3.13) for a < 1 < b.
We have proved above that pa,1 lies above the line which is tangent to the lower
boundary of �c at the point p1 (where p1 is given by (3.10)): see Fig. 1 above. The
tangent line has the equation

y = (d + 1)x − 1 − log(c(d + 1)),

and hence, by (3.1), it contains the point (1, 0) = ( 1
b−1

∫ b
1 w, 1

b−1

∫ b
1 logw). There-

fore, the point

pa,b = 1 − a

b − a
pa,1 + b − 1

b − a
(1, 0)

must lie above this line, and hence (3.13) holds.
Next, we derive directly that

〈w〉(0,κ) = 1 − d

κ(d + 1)
, 〈logw〉(0,κ) = −d

κ

123



724 A. Osękowski

and, by (3.12), 〈logw〉(0,κ) = 1
κ
〈log2 w〉(0,1) = 2d2

κ
. This, directly from the definition

of Bc±, yields the estimates

B
c+

(
1 − d+(c)

κ(d+(c) + 1)
,−d+(c)

κ

)
≥ 2d+(c)2

κ

and

B
c−

(
1 − d−(c)

κ(d−(c) + 1)
,−d−(c)

κ

)
≤ 2d−(c)2

κ
.

On the other hand, by (3.3),

Bc+
(
1 − d+(c)

κ(d+(c) + 1)
,−d+(c)

κ

)

= 	+
(

−d+(c)

κ
− log

(
1 − d+(c)

κ(d+(c) + 1)

))
+

(
d+(c)

κ

)2

= 	+
(
d+(c) − d+(c)

κ
− log

(
c

(
1 + d+(c) − d+(c)

κ

)))
+

(
d+(c)

κ

)2

= d+(c)2 −
(
d+(c) − d+(c)

κ

)2

+
(
d+(c)

κ

)2

= 2d+(c)2

κ

and similarly

Bc−
(
1 − d−(c)

κ(d−(c) + 1)
,−d−(c)

κ

)
= 2d−(c)2

κ
.

In other words, we have proved the estimate B
c+ ≥ Bc+ at the set of all points of

the form
(
1 − d+(c)

κ(d+(c)+1) ,− d+(c)
κ

)
and the inequality B

c− ≤ Bc− at the set of all

points of the form
(
1 − d−(c)

κ(d−(c)+1) ,− d−(c)
κ

)
, where κ ranges from 1 to infinity. In

addition, these inequalities hold also for the limit case κ = ∞ (and becomeBc+(1, 0) ≥
Bc+(1, 0), Bc−(1, 0) ≤ Bc−(1, 0)): this follows at once from the formula for Bc± and
from Step 3 of the previous section. Now, as κ goes from 1 to infinity, the points(
1 − d+(c)

κ(d+(c)+1) ,− d+(c)
κ

)
form a continuous curve which starts at the lower boundary

of �c and terminates at the upper boundary of �c. Since both B
c+ and Bc+ satisfy the

homogeneity-type conditions (see (2.2) and (3.4)), the estimate Bc+ ≥ Bc+ propagates
from the curve to the whole domain �c. An analogous argument proves the second
inequality B

c− ≤ Bc− on �c. This completes the proof. 
�
Acknowledgements The author would like to thank an anonymous referee for the careful reading of the
paper and several helpful suggestions. The research was supported by Narodowe Centrum Nauki (Poland)
Grant DEC-2014/14/E/ST1/00532.

123



A sharp estimate for Muckenhoupt class A∞ and BMO 725

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

References

1. Bellman, R.: Dynamic Programming. Reprint of the 1957 Edition. Princeton Landmarks in Mathemat-
ics. Princeton University Press, Princeton (2010)

2. Borichev, A., Janakiraman, P., Volberg, A.: On Burkholder function for orthogonal martingales and
zeros of Legendre polynomials. Am. J. Math. 135, 207–236 (2012)

3. Burkholder, D.L.: Boundary value problems and sharp inequalities for martingale transforms. Ann.
Probab. 12, 647–702 (1984)

4. Fefferman, C.: Characterizations of bounded mean oscillation. Bull. Am. Math. Soc. 77, 587–588
(1971)

5. Ivanisvili, P., Stolyarov, D., Zatitskii, P.: Bellman vs Beurling: sharp estimates of uniform convexity
for L p spaces (Russian). Algebra i Analiz 27(2), 218–231 (2015); translation in St. Petersburg Math.
J. 27(2), 333–343 (2016)

6. Ivanisvili, P., Osipov, N., Stolyarov, D., Vasyunin, V., Zatitskiy, P.: Bellman function for extremal
problems in BMO. Trans. Am. Math. Soc. 368, 3415–3468 (2016)

7. John, F., Nirenberg, L.: On functions of bounded mean oscillation. Commun. Pure Appl. Math. 14,
415–426 (1961)

8. Khrushchev, S.V.: A description of weights satisfying the A∞ condition of Muckenhoupt. Proc. Am.
Math. Soc. 90, 253–257 (1984)

9. Muckenhoupt, B.: Weighted norm inequalities for the Hardy maximal function. Trans. Am.Math. Soc.
165, 207–226 (1972)

10. Nazarov, F.L., Treil, S.R.: The hunt for a Bellman function: applications to estimates for singular
integral operators and to other classical problems of harmonic analysis. St. Petersb. Math. J. 8, 721–
824 (1997)

11. Nazarov, F.L., Treil, S.R., Volberg, A.: The Bellman functions and two-weight inequalities for Haar
multipliers. J. Am. Math. Soc. 12, 909–928 (1999)
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