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Abstract Wegive a solution to the isoperimetric problem for the exponential measure
on the plane with the �1-metric. As it turns out, among all sets of a given measure,
the simplex or its complement (i.e. the ball in the �1-metric or its complement) has
the smallest boundary measure. The proof is based on a symmetrisation (along the
sections of equal �1-distance from the origin).
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1 Introduction and main result

For a metric space (X, d) equipped with a Borel measure μ we define the boundary
measure μ+ of a Borel set A as

μ+(A) := lim inf
h→0+

μ(Ah) − μ(A)

h
,

where Ah := {x ∈ X : ∃y ∈ A d(x, y) < h} is an h-neighbourhood of A with
respect to d. It is interesting to study the isoperimetric problem: among all sets of a
given measure find a set with the smallest boundary measure. In other words, we want
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to find a set which measure grows the slowest among all sets of a given measure. Such
a set is said to be extremal.

This problem seems to be difficult in general and the solution to it is known only in
a few cases. If μ is the Lebesgue measure in the n-dimensional Euclidean space, then
balls are extremal sets. This follows for example by the Brunn–Minkowski inequality
and can be proven in many other ways (see for example [10, Sect. 2]). Lévy [9] and
Schmidt [11] proved that the extremal sets with respect to the Haar measure on the n-
dimensional sphere equipped with the geodesic metric are balls in the geodesic metric,
i.e. the intersections of half-spaces in Rn+1 with the sphere.

Another example of the full solution to the isoperimetric problem is the Gaus-
sian measure in the Euclidean space R

n , i.e. the product measure with the density
(2π)−n/2e−|x |2/2, where | · | is the Euclidean norm inRn . Borell [5] and Sudakov with
Tsirelson [12] proved that in this case half-spaces {x : 〈x, u〉 ≥ λ} are extremal. As
Bobkov and Houdré proved in [4], on the real line this result can be generalized into
the case of an arbitrary symmetric log-concave measure. Bobkov [3] also studied the
isoperimetric problem in the product metric space (Xn, dsup) equipped with a product
probability measure, where dsup(x, y) := supi≤n d(xi , yi ). In this case, if the extremal
sets in X2 are of the form A× X and A are extremal in X , then A× Xn−1 are extremal
in Xn .

The discrete version of the isoperimetric problem on the cube {−1, 1}n (with the
uniformmeasure and theHammingdistance)was considered byHarper in [7].Roughly
speaking, he showed that balls in the Hamming distance are extremal. This was gen-
eralized to sets {0, 1, . . . , d − 1}n (instead of {−1, 1}n) by Wang and Wang in [13].

The isoperimetric problem for the product exponential measure was investigated by
Bobkov, who showed in [1] that forRn+ = [0,∞)n equipped with the �∞-distance, the
cubes (i.e. the balls in �∞) have the smallest boundary measure among all monotone
Borel sets of a given measure (for an analogue of this result in R2+ with �1-metric see
Remark 2 below). Recall that a set A ⊂ R

n+ is called monotone, if for every x ∈ A all
the points y ∈ R

n+ satisfying y1 ≤ x1, . . . , yn ≤ xn belong to A.
It should be noted, that once we know the solution to the isoperimetric problem,

we can obtain concentration properties for the measure μ (see for example Chapter
2.1 of [8]). However, it is probably the most difficult way to derive concentration
inequalities, since it relies on finding the exact value of the isoperimetric function
(and the sets which achieve the smallest boundary measure), not only a reasonable
estimate on it.

In this note we will find the extremal sets in the case of the exponential measure on
the plane with �1-metric. Let ν be the product exponential measure onRn+ = [0,∞)n ,

i.e. the measure with the density e−∑n
i=1 xi 1x∈Rn+ , and let Bn

1 be the unit ball in the
�1-distance (centred at the origin).

Definition 1 For a Borel set A ⊂ R we define the set BA by a formula

BA :=
{
t Bn

1 if ν(A) ≥ 1
2

R
n+ \ t Bn

1 if ν(A) < 1
2

,
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where t is the unique positive number for which ν(BA) = ν(A).We call such a number
t the radius of BA.

In other words BA is a simplex or a complement of a simplex, and has the same
measure as A. As will be clear from Lemma 2 below, out of these two sets we pick
the one of smaller boundary measure.

Our main result is the following theorem, which states that among all Borel sets
of a given measure, a simplex or its complement has the smallest boundary measure.
Unfortunately, we are able to give the complete proof only in the case n = 2, but a
part of our reasoning works also for a general n.

Theorem 1 If A is a Borel set in R2+, then

ν+(A) ≥ ν+(BA). (1)

We call a Borel subset A ⊂ R
n 1-unconditional if x ∈ A implies that

(ε1x1, . . . , εnxn) ∈ A for every choice of signs (εi )
n
i=1 ∈ {−1, 1}n . Note that if A is

such a set and x ∈ Ah∩R
n+, then there exists y ∈ A∩R

n+ such that ‖x− y‖1 < h. This
together with the previous theorem implies the following isoperimetric inequality.

Corollary 1 Letμbe the symmetric exponentialmeasure on the plane, i.e. themeasure
with density 1

4e
−|x |−|y|. Then, among all 1-unconditional Borel sets A, a ball or its

complement has the smallest boundary measure.

However, the balls are not extremal sets for the symmetric exponential measure
on the plane. An example is the set A := {x + y ≤ 3}, which boundary measure is
smaller than the boundary measure of the simplex of the same measure.

We believe that Theorem 1 holds also in higher dimensions.

Conjecture 1 If A is a Borel set in R
n+, then

ν+(A) ≥ ν+(BA).

Remark 1 In the next section we prove in fact the isoperimetric inequality (1) for the
exponential measure not only in R

2+, but also in R+. Indeed, Lemmas 2 and 3 are
valid for any n, and in the case n = 1 they imply (1) directly, since the only connected
compact subsets of R are the closed intervals, i.e. one-dimensional trapezoids. This
result is a special case of [2, Proposition 2.1].

Note that in R the �1-metric and the �2-metric coincide. Therefore Corollary 1
remains true also for the symmetric exponential measure on R.

Corollary 2 Letμbe the symmetric exponentialmeasure (i.e. themeasurewith density
1
2e

−|x |) on the one-dimensional Euclidean space. Then, among all 1-unconditional
Borel sets A, the symmetric interval or its complement has the smallest boundary
measure.

Remark 2 In the proof of Theorem 1 we justify inequality (13), which states in par-
ticular that for every p ∈ (0, 1) among all connected Borel sets A ⊂ R

2+ containing



1428 M. Strzelecka

the origin, and with ν(A) = p the smallest boundary measure is attained by t B2
1 ∩R

2+
with t such that ν(t B2

1 ∩ R
2+) = p. Thus, as a by-product of Theorem 1 we obtain a

two-dimensional analogue of Bobkov’s result for monotone sets, cf. [1].

The organization of this paper is the following. First in Sect. 2.1 we prove that
among all trapezoids (i.e. the sets of the form RBn

1 \r Bn
1 for 0 ≤ r < R ≤ ∞) of

a givenmeasure the simplex t Bn
1 or its complement has the smallest boundarymeasure

(see Lemma 2). Then we show that in order to prove the isomerimetric inequality (1),
it suffices to consider connected compact sets only. After that in Sect. 2.2 we restrict
our attention to the case n = 2. We do symmetrisations, which lead us from a given
connected compact set A to a trapezoid of the same measure (see Lemma 5 and proof
of Theorem 1).

2 Proof of Theorem 1

2.1 Initial simplifications

Define the function I : [0, 1] → R by the formula I (p) = ν+(BA), where A is
any Borel set with ν(A) = p. Note that I is continuous on [0, 1] and smooth on
(0, 1

2 ) ∪ ( 12 , 1). Indeed, one can calculate that

ν
(
t Bn

1

) = ν
(
R
n+ ∩ t Bn

1

) = Cn

∫ t

0
e−x xn−1dx

and therefore

ν+ (
t Bn

1

) = ν+ (
R
n+ ∩ t Bn

1

) = Cne
−t tn−1 = ν+ (

R
n+ \ t Bn

1

) = ν+ ((
t Bn

1

)c)
,

where

Cn =
(∫ ∞

0
e−x xn−1dx

)−1

= 1

(n − 1)! .

Moreover, if A is a finite sum of �1-balls, we can write the true limit in the definition
of μ+(A). We use these facts to deduce the following technical lemma.

Lemma 1 (i) Inequality (1) holds for every Borel set A of measure at least 1
2 if and

only if for every finite union B of �1-balls, such that ν(B) ≥ 1
2 , we have

ϕ−1(ν(Bh)
) ≥ ϕ−1(ν(B)

) + h, for all h > 0, (2)

where ϕ(t) := ν(t Bn
1 ) = Cn

∫ t
0 e

−x xn−1dx. Moreover, inequalities (1) for finite
unions of �1-balls of measure at least 1

2 and (2) for finite unions of �1-balls of
measure at least 1

2 are equivalent.
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(ii) Inequality (1) holds for every Borel set A of measure less than 1
2 if and only if for

every h > 0 and every finite union B of �1-balls, such that ν(Bh) < 1
2 , we have

ψ−1(ν(Bh)
) ≤ ψ−1(ν(B)

) − h, (3)

where ψ(t) := ν(Rn \ t Bn
1 ) = Cn

∫ ∞
t e−x xn−1dx. Moreover, inequalities (1) for

finite unions of �1-balls of measure less than
1
2 and (2) for finite unions of �1-balls

of measure less than 1
2 are equivalent.

Proof We will only show (i), since the proof of (ii) is similar.
Assume first that (1) holds for Borel sets of measure at least 1

2 . To prove inequality
(2) let us introduce the function h �→ ϕ−1(ν(Bh)) and note that (1) for Bh (which is
also a finite union of balls) implies that the derivative of this function is bounded from
below by 1. Note that we use (1) only for finite unions of balls, so we also proved the
second part of (i).

Now suppose that (2) holds for finite unions of balls with measure at least 1
2 . It is

obvious that (2) for a set A implies (1) for this A, so we only have to show (2) for
the set A instead of B. Note that for r > 0 the set Ar is open and therefore it can be
represented as a countable union of balls

⋃Ur . Let Ur,m be a subfamily of the family
Ur containing the first m balls (so that Ur,m+1 \ Ur,m contains a single ball). Then, by
the continuity and the monotonicity of ϕ, and the inequality (2) for

⋃Ur,m , we have

ϕ−1(ν(Ar+h)
) ≥ ϕ−1

(

ν
(( ⋃

Ur,m

)h)
)

≥ ϕ−1
(
ν
( ⋃

Ur,m
)) + h

m→∞−→ ϕ−1(ν(Ar )
) + h ≥ ϕ−1(ν(A)

) + h

for sufficiently large n (depending on r > 0) . We take r → 0 on the left-hand side of
this estimate to get (2) for Ah . In particular, for any h > ε > 0 we have (2) for Ah−ε,
so ϕ−1

(
ν(Ah)

) ≥ ϕ−1
(
ν(A)

) + h − ε. We take ε → 0 to get (2) for A. This finishes
the proof. ��
Corollary 3 It suffices to prove the isoperimetric inequality (1) for finite unions of
�1-balls.

We start the main part of the proof of the isoperimetric inequality by showing that
the simplex or its complement is the set growing most slowly among all trapezoids of
a given measure.

Lemma 2 The isoperimetric inequality (1) holds for sets A of the form {x ∈ R
n+ :

a < ‖x‖1 < b}, where 0 ≤ a < b ≤ ∞.

Proof Let c be the radius of the set BA (see Definition 1). We consider three cases.

Case 1Assume a = 0 or b = ∞. To prove the isoperimetric inequality in this case we
need only to prove that if

∫ x
0 e−t tn−1dt = ∫ ∞

y e−t tn−1dt < 1
2

∫ ∞
0 e−t tn−1dt , then

e−x xn−1 ≥ e−y yn−1 (in the other case we can consider the complements of these
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sets). Note that this means that in the definition of BA, among the simplex and the
complement of the simplex, we always pick the set of smaller boundary measure.

Let us first show that the condition
∫ ∞
y e−t tn−1dt < 1

2

∫ ∞
0 e−t tn−1dt implies that

y ≥ n− 1. To this end we only have to show that
∫ ∞
n−1 e

−t tn−1dt ≥ 1
2

∫ ∞
0 e−t tn−1dt .

Integration by parts yields

∫ ∞
n−1 e

−t tn−1dt
∫ ∞
0 e−t tn−1dt

= e−(n−1)
(

(n − 1)n−1

(n − 1)! + (n − 1)n−2

(n − 2)! + . . . + n − 1

1! + 1

)

,

so we only have to show that P(Poiss(k) ≤ k) ≥ 1
2 , where Poiss(λ) is the random

variable of Poisson distriubution with parameter λ. Due to [6, Theorem 1], the smallest
integer l for which P(Poiss(λ) ≤ l) ≥ 1

2 satisfies λ − log 2 ≤ l < λ + 1
3 . This implies

that P(Poiss(k) ≤ k) ≥ 1
2 and therefore finishes the proof of the inequality y ≥ n−1.

One can easily check that the function tn−1e−t is decreasing on the half-line [n −
1,∞), so if n − 1 ≤ x ≤ y, then e−x xn−1 ≥ e−y yn−1 and we are done. Otherwise
x ≤ n − 1 ≤ y (since x ≤ y and n − 1 ≤ y). Let us consider this case now. Note
that the equation

∫ x
0 e−t tn−1dt = ∫ ∞

y e−t tn−1dt determines y as a function of x

and e−x xn−1 = −y′e−y yn−1. For x = 0 the inequality e−x xn−1 ≥ e−y yn−1 holds
(and is in fact an equality, since y(0) = ∞). For x = n − 1 the function e−x xn−1

attains its maximum on [0,∞], so e−x xn−1 ≥ e−y yn−1 if x = n − 1. Therefore it

suffices to check whether e
x−y
n−1 y

x ≤ 1 for every x ≤ n − 1 at which the derivative of
e−x xn−1 − e−y yn−1 vanishes. This derivative is equal to

e−x xn−2 (−x + (n − 1)) − y′e−y yn−2 (−y + (n − 1))

= e−x xn−2
(

−x + (n − 1) + x

y
(n − 1) − x

)

,

so we should check values of x satisfying y(x) = x(n−1)
2x−(n−1) . In particular, these values

are greater than n−1
2 . Note that if y(x) = x(n−1)

2x−(n−1) , then e
x−y
n−1 · yx = e−2λ 1−λ

2λ−1 /(2λ−1),

where λ := x
n−1 ∈ ( 12 , 1]. The derivative of e−2λ 1−λ

2λ−1 /(2λ − 1) is equal to 4(1 −
λ)2e−2λ 1−λ

2λ−1 /(2λ−1)3 ≥ 0, so this function is non-decreasing and therefore less than
its value in 1 (for λ ∈ ( 12 , 1]). Hence the inequality e−x xn−1 ≥ e−y yn−1 holds for x

such that y(x) = x(n−1)
2x−(n−1) and the claim is proved.

Case 2 Assume ν(A) ≤ 1
2 . Then we have

∫ b

a
e−t tn−1dt =

∫ ∞

c
e−t tn−1dt. (4)

For a fixed b > 0 this equality determines a as a function of c and a′e−aan−1 =
e−ccn−1. If c is such that a(c) = 0, then the inequality we want to prove, e−aan−1 +
e−bbn−1 ≥ e−ccn−1, holds as we proved in Case 1. Therefore it suffices to show that
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the derivative of e−aan−1 − e−ccn−1 as a function of c is non-negative. Integration by
parts of (4) yields

(n−1)
∫ b

a
e−t tn−2dt − (n−1)

∫ ∞

c
e−t tn−2dt = −e−aan−1 + e−bbn−1 + e−ccn−1,

so the derivative of e−aan−1 − e−ccn−1 is equal to

(n − 1)(a′e−aan−2 − e−ccn−2) = (n − 1)e−ccn−2
( c

a
− 1

)
.

Since c ≥ a, the derivative we consider is indeed non-negative.

Case 3 Assume ν(A) ≥ 1
2 . We proceed similarly as in Case 2. Since ν(A) ≥ 1

2 , we
have

∫ b

a
e−t tn−1dt =

∫ c

0
e−t tn−1dt.

For a fixed a > 0 this equality determines b as a function of c and b′e−bbn−1 =
e−ccn−1. For c such that b(c) = ∞ the inequality e−aan−1 + e−bbn−1 ≥ e−ccn−1,
holds, what we proved in Case 1. Therefore it suffices to prove that the derivative of
(e−bbn−1 − e−ccn−1) is negative. Calculations similar to those carried out in Case 2
show that this derivative is equal to (n − 1)e−ccn−2( cb − 1), which is negative, since
b > c. ��

The next lemma allows us to restrict our attention to connected compact sets.

Lemma 3 If for every connected compact set A the inequality

ν(Ah) ≥ ν(Bh
A) − Lh2 (5)

holds for every h ≤ h0 with some L ≥ 0 and h0 > 0 depending on A only, then the
isoperimetric inequality (1) holds for every Borel set A.

Proof Let A be a Borel set of positive measure. Assuming (5) for connected bounded
Borel sets, we are going to prove (1) for A.

ByCorollary 3 it suffices to prove (1) for finite unions of balls.Moreover, if we show

(1) for A, the inequality for A will follow (since ν(A
h
) = ν(Ah) and ν(A) ≥ ν(A)).

Since (5) implies (1), it suffices to prove (5) for a compact set A with finitely many
connected components A1, . . . , AN , each of non-empty interior. Then for sufficiently
small h0 > 0 the sets Ah0

j are pairwise disjoint, so for any h ∈ (0, h0) we have

ν(Ah) = ∑N
j=1 ν(Ah

j ) ≥ ∑N
j=1 ν(Bh

A j
) − NLh2, because (5) holds for Ai . To finish

the proof we use Lemma 4 (see below), and an obvious induction. ��
Lemma 4 If the sets C and D are disjoint, then ν+(BC ) + ν+(BD) ≥ ν+(BC∪D).
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Proof By x, y, z we denote the radii of BC , BD and BD∪C respectively. Note that if
ν(C) ≥ 1

2 , then ν(D) < 1
2 and ν(C ∪ D) > 1

2 . Therefore it suffices to consider the
following three cases.

Case 1 Assume ν(C), ν(D), ν(C ∪ D) < 1
2 . Without loss of generality we may

assume x ≥ y. By the definition of the sets BC , BD and BC∪D we have

∫ ∞

x
e−t tn−1dt +

∫ ∞

y
e−t tn−1dt =

∫ ∞

z
e−t tn−1dt. (6)

Integration by parts implies that the inequality e−x xn−1 + e−y yn−1 = ν+(BC ) +
ν+(BD) ≥ ν+(BC∪D) = e−z zn−1 is equivalent to

∫ ∞

x
e−t tn−2dt +

∫ ∞

y
e−t tn−2dt ≤

∫ ∞

z
e−t tn−2dt. (7)

We will prove that (6) implies (7) for x, y, z ≥ 0 such that x ≥ y. Fix z ≥ 0. Then
equality (6), determines x as a smooth function of y and x ′e−x xn−1 + e−y yn−1 = 0.
Note that x(z) = 0 and thus for y = z inequality (7) holds (and is in fact an equality).
To end the proof in Case 1 we will show that the left-hand side of (7) is a decreasing
function of y for y > z such that x(y) > y. The derivative of the left-hand side of (7)
is equal to−(x ′e−x xn−2 + e−y yn−2) = e−y yn−2(

y
x −1)which is negative for x > y.

Note that in this case we have used the fact that ν(BC ), ν(BD), ν(BC∪D) ≤ 1
2 only to

obtain (6).

Case 2 Assume ν(C), ν(D) < 1
2 , ν(C ∪ D) ≥ 1

2 . Let v be such that
∫ z
0 e−t tn−1dt =

∫ ∞
v

e−t tn−1dt . Then (6), and consequently (7), holds with v in place of z and thus
e−x xn−1 + e−y yn−1 ≥ e−vvn−1 ≥ e−z zn−1 – the last inequality holds by Lemma 2
applied to a = v and b = ∞.

Case 3 Assume ν(C) < 1
2 , ν(D), ν(C ∪ D) ≥ 1

2 . Then

∫ ∞

x
e−t tn−1dt +

∫ y

0
e−t tn−1dt =

∫ z

0
e−t tn−1dt. (8)

Fix any x > 0 satisfying
∫ ∞
x e−t tn−1dt ≤ 1

2 . Equality (8) determines z as a function of
y and e−y yn−1 = z′e−z zn−1. We want to show that e−x xn−1 + e−y yn−1 ≥ e−z zn−1.
Note that for y such that ν(yBn

1 ) = 1
2 we have ν(z(y)Bn

1 ) ≥ 1
2 and Case 2 implies that

then e−x xn−1+e−y yn−1 ≥ e−z zn−1. Thus it suffices to show that e−y yn−1−e−z zn−1

is increasing in y. We integrate (8) by parts and get

(n − 1)
∫ ∞

x
e−t tn−2dt + e−x xn−1 −

(
e−y yn−1 − e−z zn−1

)

= (n − 1)
∫ z

0
e−t tn−2dt − (n − 1)

∫ y

0
e−t tn−2dt. (9)



Isoperimetric problem for exponential measure on the plane… 1433

Therefore we only need to show that the derivative of the right-hand-side of (9) is
negative. This derivative is equal to

(n − 1)
(
z′e−z zn−2 − e−y yn−2

)
= (n − 1)e−y yn−2

(
y

z
− 1

)

,

what is negative since y < z. ��

2.2 Symmetrisation

From now on we assume n = 2. Otherwise the symmetrisation described below, as
well as the final argument, does not work. Let

T := B2
1 ∩ ([0,∞)2 ∪ (−∞, 0]2) = {

(x, y) ∈ R : |x | + |y| ≤ 1, sgn x = sgn y
}
.

Remark 3 Note that for sets A of the form r B2
1 ∩R

2+ orR2+\r B2
1 we have ν(A+hT ) =

ν(Ah), and for any compact set A the inequality ν(A+hkT ) ≤ ν(Ahk ) holds for some
sequence (hk)k≥0 (depending on A) which tends to 0. (We pick a sequence (hk)k≥0,
because it may happen that

ν(A + hT ) �= ν
(
A + h

(
B2
1 ∩ ([0,∞)2 ∪ (−∞, 0]2))

)
,

but only for finitely many h > 0.) Therefore in order to prove (5) it suffices to show
that every connected compact set A satisfies

ν(A + hT ) ≥ ν(BA + hT ) − Lh2 for h ≤ h0, (10)

where L is an absolute constant and h0 depends on A only.

Definition 2 For a Borel set A ⊂ R
2+ and t > 0 we define

f A(t) := H1(A ∩ St ),

whereH1 is the one-dimensionalHausdorffmeasure and St := {(x, y) ∈ R
2+ : x+y =

t}.
Clearly, f A is a measurable function. Moreover, for any Borell set A of R2+ we

have

μ(A) =
∫

(x,y)∈A
e−(x+y)dxdy =

∫ ∞

0

∫

y:(t−y,y)∈A
e−t dydt =

∫ ∞

0

1√
2
f A(t)e−t dt.

The next lemma introduces a symmetrisation which preserves the function f A.
Moreover, the lemma states that this symmetrisation does dot increase the boundary
measure of the symmetrised set. This symmetrisation is illustrated on next two figures
(Fig. 1).
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a b

Fig. 1 a Set A before the symmetrisation. b Set C = CA

Lemma 5 For any Borel set A ⊂ R
2+ we introduce

C = CA :=
⋃

t>0

{

(x, y) ∈ St : y � f A(t)√
2

}

.

Then μ(C) = μ(A) and μ(C + hT ) � μ(A + hT ) for every h > 0.

Proof By the definition of C we get f A = fC , so μ(A) = μ(C).
We will prove that for all s, t, h > 0 we have

H1
(
Ss ∩ (A ∩ St + hT )

)
� H1

(
Ss ∩ (C ∩ St + hT )

)
. (11)

This implies (since all the sets Ss ∩ (C ∩ St + hT ) are intervals with endpoints at
(s, 0)) that f A+hT ≥ fC+hT and thus

μ(A + hT ) =
∫ ∞

0

1√
2
f A+hT (t)e−t dt ≥

∫ ∞

0

1√
2
fC+hT (t)e−t dt = μ(C + hT ).

Let us first consider the case s ≥ t . It suffices to consider h = s − t , since for
h > s − t both sides of (11) do not change, while for h < s − t both sides of (11)
vanish. Let x be the point (t − u, u), where u is the smallest possible non-negative
number such that the point (t − u, u) belongs to A (see Fig. 2a). Since h = s − t , we
have

(A ∩ St + he2) ∪ (x + Sh) ⊂ Ss ∩ (A ∩ St )
h,

where e2 = (0, 1).
Moreover, this inclusion becomes an equality if we replace A by C . Therefore

H1
(
Ss ∩ (A ∩ St + hT )

)
� H1(A ∩ St ) + √

2h = H1(C ∩ St ) + √
2h

= H1
(
Ss ∩ (C ∩ St )

h),
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Eu'

u D
x+Sh

he2

t s

x

ts

a b

Fig. 2 a Case s ≥ t . b Case s < t

which shows that (11) is satisfied in the case t ≤ s.
Let us assume now that t > s. Again, it suffices to consider h = t − s. Suppose

(11) does not hold. Let u′ ≥ 0 be such that E := Ss ∩ (A ∩ St )h has the same
Hausdorff measure as D := Ss ∩ {(y1, y2) : y2 � u′} (see Fig. 2b). Let u be given by
C ∩ St = St ∩ {(y1, y2) : y2 � u}. Since (11) does not hold, u′ < u ∧ s (note that
in Fig. 2b we have u′ ≥ u, since this figure reflects the true situation, whereas we are
arguing by contradiction). By the conclusion of the first case (in which we had t � s),
we have

H1
(
(Ss \ E + hT ) ∩ St

)
� H1

(
(Ss \ D + hT ) ∩ St

)

= H1
({(y1, y2) : y2 � u′} ∩ St

)
,

since the sets Ss \ E and Ss \ D are of the same Hausdorff measure.
Moreover, by the definition of the set E we get (Ss \ E + hT ) ∩ St ⊂ St \ A.

Therefore

H1(A ∩ St ) � H1
(
St \ {(y1, y2) : y2 � u′}) = H1

(
St ∩ {(y1, y2) : y2 � u′})

< H1
(
St ∩ {(y1, y2) : y2 � u}) = H1(St ∩ C),

which contradicts the propertyH1(A∩ St ) = H1(St ∩C). Hence (11) is satisfied also
in the case s < t . ��

Note that in higher dimensions the above proof works in the case s ≥ t (we only
have to additionally use the Brunn–Minkowski inequality for an arbitrary set and a
simplex). However, the same reasoning as above shows, that the analogue of (11) for
s < t holds if we consider Rn+ \ D (where Rn+ \ D has the same measure as C , and
D is such that CD = D) instead of C . Therefore (11) fails in general if s < t and
n > 2. The reason why (11) works for n = 2 is that St is an interval and therefore the
sections of C and D (at the level t) are both intervals starting from an end point of St .
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Now we are ready to prove the main theorem. Its proof clarifies, how to replace the
setCA by a trapezoid. This reasoning fails in higher dimensions too. Also the induction
over n does not work, since a section parallel to the hyperplane lin(e1, . . . , en−1) of a
connected set does not have to be connected.

Proof of of Theorem 1 Due to Lemma 3 and Remark 3 it suffices to prove ν(A +
hT ) ≥ ν(BA +hT )− Lh2 for connected bounded compact sets A and for sufficiently
(depending on A) small h > 0. By Lemma 5 it suffices to prove that for sufficiently
small h the inequality ν(C + hT ) ≥ ν(BC + hT ) − Lh2 holds for C = CA. Let
f := f A = fC .
Note that for every Borel set A and h > 0 we have ν(A + he1) = ν(A + he2) =

e−hν(A). Moreover, if A−he1 ⊂ R
2+ (or A−he2 ⊂ R

2+), then ν(A−he1) = ehν(A)

(or ν(A − he2) = ehν(A), respectively). We will use this observation throughout the
proof.

Recall that C is compact and connected. Therefore, if for every u > 0 we have
f (u) <

√
2u and supp f ⊂ (0,∞), then there exists ε > 0 such that f (u) <√

2(u − ε) for every u > ε and f (u) = 0 for every u ≤ ε (this means that C
does not intersect the strip [0, ε) × [0,∞)). Hence for every h ∈ (0, ε) we have
(C − he1) ⊂ Ch ∩ R

2+, where e1 = (1, 0), so

ν(Ch) ≥ ν(C − he1) = ν(C)eh = ν(D)eh ≥ ν(D + hT ),

where ν(D) = ν(C) and D is the complement of r Bn
1 , and the last inequality follows

since D+ hT ⊂ D− he1. Therefore we can restrict our attention to the case in which
there exists u ≥ 0 such that f (u) = √

2u. Let u be the smallest value for which√
2u = f (u) (the minimal u exists since C is compact).
Let a ≤ u ≤ b be such that ν(uB2

1 \ aB2
1 ) = ν(C ∩ uB2

1 ) and ν(bB2
1 \ uB2

1 ) =
ν(C \ uB2

1 ). In other words we pick such a and b, that the trapezoid between a and u
has the same measure as C below u (and similarly the trapezoid between u and b has
the same measure as C above u). We will show that

ν
(
C ∪ (R2+ \ uB2

1 ) + hT
) ≥ ν

(
R
2+ \ (a − h)Bn

1

)
for 0 < h < min{h0, a} (12)

and
ν

(
C ∪ uB2

1 + hT
)

≥ ν
(
(b + h)B2

1

) − Lh2 for h > 0, (13)

where h0 := min {max{λ : ν1(Rλ) ≤ ν1([a, u])}, h1} and Rλ := {t ∈ (λ, u) : t −
f (t)√
2

< λ}, and ν1 is the marginal distribution of ν, i.e. the exponential measure on

the half-line, and h1 is such that supp f ⊂ (h1,∞). By Lemma 2, inequalities (12)
and (13) will finish the proof of the theorem (we will see below that h0 > 0 if
a �= 0), since (12) says that the hT neighbourhood of C below u is not less than the
hT neighbourhood of the trapezoid between a and u (and similarly (13) gives us an
analogous estimate above u, up to a term Lh2).

Let us first show (12) (Fig. 3a is attached for the reader’s convenience). If a = 0
or a = u, we have nothing to prove. Suppose therefore that u > a > 0 and h < h0.
Note that h0 > 0, since 0 < a < u and for every 0 < t < u we have f (t) <

√
2t .
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Fig. 3 a Proof of (12). b Proof of (13)

Moreover,

((
C ∩ uB2

1 − he1
) ∩ R

2+
) ∪ (

R
2+\(u − h)Bn

1

) ⊂ (
C ∪ (

R
2+\uB2

1

)) + hT

and, since h ≤ h1, the set R2+ \ (C ∩ uB2
1 − he1) (see the hatched set in Fig. 3a) is

contained in the set
⋃h

δ=0

({0} × (Rh − h) + ( − δ, δ
))
, which is the translation by

the vector −he1 of a set of measure hν1(Rh). By the definition of h0 we know that for
h ≤ h0 we have ν1(Rh) ≤ ν1([a, u]). Therefore

ν
(
(C ∪ (R2+\uB2

1 )) + hT
)

≥ ν
(
R
2+\(u − h)B2

1

) + ehν(C ∩ uBn
1 ) − ehh · ν1(Rh)

≥ ν
(
R
2+\(u − h)B2

1

) + ehν(uBn
1 \aBn

1 ) − ehh · ν1([a, u])
= ν

(
R
2+\(a − h)Bn

1

)
,

what yields inequality (12).
We will prove inequality (13) (Fig. 3b may be helpful to follow the estimates).

Note that the fact that C is connected implies that supp f is connected, and let c :=
sup supp f . Obviously c ≥ b and supp f ∪ [0, u] = [0, c]. Moreover we have ((C ∪
uB2

1 ) + he2) ∪ [0, c] × [0, h] ⊂ (C ∪ uB2
1 ) + hT , so

ν
((
C ∪ uB2

1

) + hT
) ≥ ν

(((
C ∪ uB2

1

) + he2
) ∪ [0, c] × [0, h])

≥ ν
((
C ∪ uB2

1

) + he2) + ν([0, b] × [0, h])

= ν(bBn
1 + he2) + ν([0, b] × [0, h]) ≥ ν

(
(b + h)Bn

1

) − Lh2,

where L is an absolute constant. The proof of the theorem is finished. ��
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