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Abstract In (Zajkowski, Positivity 19:529–537, 2015) it has been proved some varia-
tional formula on theLegendre–Fenchel transformof the cumulant generating function
(the Cramér function) of Rademacher series with coefficients in the space �1. In this
paper we show a generalization of this formula to series of a larger class of any inde-
pendent random variables with coefficients that belong to the space �2.
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1 Introduction

The Legendre–Fenchel transforms of cumulant generating functions of given random
variables are at the core of the large deviations theory (see e.g. [3,4]). The Cramér
function gives the rate of the exponentially decay of tails of distributions for the
empirical means of sequences of i.i.d. random variables. It provides a nice connection
between convex analysis and statistics.

Donsker and Varadhan in [5] proved that the Legendre–Fenchel transform ψ∗
X of

the cumulant generating function ψX (s) = ln Ees X of a random variable X satisfies
the following variational principle
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ψ∗
X (a) = inf

m�μX ,
∫

xdm=a
D(m‖μX ), (1)

where D(m‖μX ) = ∫
ln dm

dμX
dm is the relative entropy of a probability distribution

m with respect to the distribution μX of X .
The aim of this paper is to prove some variational formula for the Cramér functions

of series of independent random variables that depends on coefficients and Cramér
functions of summands of a given series; see Theorem 2.3.

For series
∑

ti gi of independent standard normal r.v.s, where
∑

t2i < ∞ and
gi ∈ N (0, 1), it is known their tail estimation of the form

Pr
(∑

ti gi > α
)

≤ exp

(

− α2

2
∑

t2i

)

;

see for instance [10]. The function α2

2
∑

t2i
is the Cramér function of the random series

∑
ti gi (see Example 2.5).
To realize our purposes we will need the general notion of the Legendre–Fenchel

transform in topological spaces (see [6] or [1]). LetV be a real locally convexHausdorff
space and V ∗ its dual space. By 〈·, ·〉 we denote the canonical pairing between V
and V ∗. Let f : V 
→ R ∪ {∞} be a function non-identically ∞. By D( f ) we
denote the effective domain of f , i.e. D( f ) = {u ∈ V : f (u) < ∞}. A function
f ∗ : V ∗ 
→ R ∪ {∞} defined by

f ∗(u∗) = sup
u∈V

{〈
u, u∗〉 − f (u)

} = sup
u∈D( f )

{〈
u, u∗〉 − f (u)

}
(u∗ ∈ V ∗)

is called the Legendre–Fenchel transform (convex conjugate) of f and a function
f ∗∗ : V 
→ R ∪ {∞} defined by

f ∗∗(u) = sup
u∗∈V ∗

{〈
u, u∗〉 − f ∗(u∗)

} = sup
u∗∈D( f ∗)

{〈
u, u∗〉 − f ∗(u∗)

}
(u ∈ V )

is called the convex biconjugate of f .
The functions f ∗ and f ∗∗ are convex and lower semicontinuous in the weak* and

weak topology on V ∗ and V , respectively. Moreover, the biconjugate theorem states
that the function f : V 
→ R∪ {∞} not identically equal to +∞ is convex and lower
semicontinuous if and only if f = f ∗∗.

Let us mention additional properties of the convex conjugates; see 4.3 Examples
in [6]. Let V be a normed space. We denote by ‖ · ‖ the norm of V and by ‖ · ‖∗ the
norm of V ∗. For conjugate exponents p, q ∈ (1,∞) ( 1p + 1

q = 1), a function 1
q ‖u∗‖q∗

is the convex conjugate of 1
p ‖u‖p.

Remark 1.1 Let us emphasize that in Hilbert spaces a function 1
2‖u‖2 one can treat

as the function invariant with respect to the Legendre–Fenchel transform.
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Let us list two properties and the notion of the infimal convolution. The convex-
conjugation is order-reversing:

if f ≤ g then f ∗ ≥ g∗ (2)

and

if g(u) = f (au) where (a �= 0) then g∗(u∗) = f ∗
(

u∗

a

)

. (3)

Let functions f1, . . . , fn are convex, lower semicontinuous and not identically equal
to+∞. Suppose there is a point in

⋂n
i=1D( fi ) at which f1, . . . , fn−1 are continuous.

Then the convex conjugate of their sum is given by the so called infimal (in this case
even minimal) convolution, i.e.

( f1 + · · · + fn)∗(u∗) = min
u∗
1+···+u∗

n=u∗{ f ∗
1 (u∗

1) + · · · + f ∗
n (u∗

n)}

(see e.g. [7, Th. 1]).
It will turn out (see Remark 2.8) that the variational formula for the Cramér func-

tion of series of independent random variables is an example of an application of a
generalization of the infimal convolution to the infinite case of summands.Often gener-
alizations of formulas from finite numbers parameters (variables) to the case of infinite
ones are not obvious. Other examples of generalizations of the convex conjugates of
the logarithm of series of analytic functions, with applications to investigations of the
convex conjugates of the spectral radius of the functions of weighted composition
operators, one can find in [8,12].

2 Main theorem

The cumulant generating function ψX (s) = ln Ees X of any random variable X is
convex and lower semicontinuous onR (analytic on intD(ψX )). ItmapsR intoR∪{∞}
and takes value zero at zero but it is possible that ψX (s) = ∞ when s �= 0. We will
assume that it is finite on some neighborhood of zero, i.e. X satisfies condition: ∃λ>0
s.t. Eeλ|X | < ∞. Let us emphasize that if E X = 0 then ψX ≥ 0 but the Cramér
function ψ∗

X is always nonnegative and attains 0 at the value E X .
Let I ⊂ N and (Xi )i∈I be a sequence of independent r.v.s. For t = (ti )i∈I ∈

�2(I ) ≡ �2 consider Xt = ∑
i∈I ti Xi (convergence in L2 and almost surely). The

cumulant generating function of Xt we will denote by ψt, i.e. ψt = ψXt . Notice that
for fixed s we can considerψt(s) as a functional of the variable t in �2. We will denote
it by ψ s . Let us emphasize that ψ s(t) = ψt(s).

Before proving our main theorem, we show forms of the cumulant generating func-
tion and the Legendre–Fenchel transform of series of independent random variables.

Proposition 2.1 Let (Xi )i∈I be a sequence of zero-mean independent random vari-
ables with common bounded second moments. Let for each i ∈ I the cumulant
generating function ψi (s) := ψXi (s) = ln Ees Xi is finite on some neighborhood
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of zero. Then for each t = (ti )i∈I ∈ �2 the cumulant generating function of a random
series Xt = ∑

i∈I ti Xi is given by the following equality

ψt(s) := ψXt (s) =
∑

i∈I

ψi (sti ).

Proof Because (Xi ) are independent, centered and have common bounded second
moments then for every t ∈ �2 the series Xt = ∑

i∈I ti Xi converges in L2 and
a.s.. Let us emphasize that the convergence of series Xt in L2 is equivalent to the
convergence of sequences t in �2. Fixing s we can consider the cumulant generating
function ψt(s) as a functional of the variable t in �2. We will denote it by ψ s(t), i.e.
ψ s(t) = ψt(s). We show that for every s ∈ R the functional ψ s is convex and lower
semicontinuous on �2.

Convexity one may check by using the Hölder inequality. Let t, u ∈ �2 and λ ∈
(0, 1) then

ψ s(λt + (1 − λ)u) = ln Ees
∑

i∈I (λti +(1−λ)ui )Xi

= ln E

[(
es

∑
i∈I ti Xi

)λ (
es

∑
i∈I ui Xi

)1−λ
]

= ln E

[(
es Xt

)λ (
es Xu

)1−λ
]

.

By the Hölder inequality for exponents 1/λ and 1/(1 − λ) we get

E

[(
es Xt

)λ (
es Xu

)1−λ
]

≤
(

Ees Xt
)λ (

Ees Xu
)1−λ

and, in consequence,

ψ s(λt + (1 − λ)u) ≤ λ ln Ees Xt + (1 − λ) ln Ees Xu

= λψ s(t) + (1 − λ)ψ s(u).

Lower semicontinuity follows from Fatou’s lemma. Let tn → t0 in �2. Note that
Xtn converges a.s. to Xt0 . Then

lim inf
n→∞ ψ s(tn) = lim inf

n→∞ ln Ees Xtn ≥ ln E(lim inf
n→∞ es Xtn )

= ln E(es limn→∞ Xtn ) = ψ s(t0).

It means that ψ s is lower semicontinuous on �2.
Let �0 denote the space of sequences with finite supports. Observe that �0 is a dense

subset of �2. For t ∈ �0 we have

ψ s(t) = ln Ees Xt = ln
∏

i∈I

Eesti Xi

=
∑

i∈I

ψi (sti ).
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For t ∈ �2 consider a series
∑

i∈I ψi (sti ). Since E Xi = 0, ψi ≥ 0, it follows that∑
i∈I ψi (sti ) is convergent or divergent to plus infinity. Sinceψi are convex, this series

defines a convex function on the whole �2. Let tn → t0 in �2. Hence for every i ∈ I
tn
i → t0i . By superadditivity of the limit inferior and, next, by lower semicontinuity
of each ψi , we get

lim inf
n→∞ ψ s(tn) = lim inf

n→∞
∑

i∈I

ψi (stn
i ) ≥

∑

i∈I

lim inf
n→∞ ψi (stn

i )

≥
∑

i∈I

ψi (st0i ) = ψ s(t0).

Notice that both functions: ψ s(t) and the series
∑

i∈I ψi (sti ) are convex and lower
semicontinuous on �2 and moreover coincide on �0 (a dense subset of �2). It follows
that these functions are equal on whole �2, i.e.

ψ s(t) =
∑

i∈I

ψi (sti )

for every t in �2. ��

Let us observe that for s = 0 we haveψ0 ≡ 0 and its convex conjugate (ψ0)∗(a) =
0 for a = 0 and ∞ otherwise. From now on we assume that s �= 0. A form of (ψ s)∗
for s �= 0 is described in the following:

Proposition 2.2 Under the assumptions of Proposition 2.1 the convex conjugate of
ψ s(t) = ∑

i∈I ψi (sti ) defined on �2 equals

(ψ s)∗(a) =
∑

i∈I

ψ∗
i

(ai

s

)
(s �= 0)

for a ∈ �2, where ψ∗
i ’s are the Cramér functions of Xi ’s.

Proof The convex conjugate (ψ s)∗ is convex and lower semicontinuous on (�2)∗ � �2.
Assume first that I is a finite set. By virtue of the form of ψ s , the convex conjugate of
a separated sum (see e.g. [2, Prop. 13.27]) and the property (3), for a in �2(I ), we get

(ψ s)∗(a) =
∑

i∈I

ψ∗
i

(ai

s

)
(s �= 0).

Define now a functional
∑

i∈I ψ∗
i (

ai
s ) on whole space �2. Since ψ∗

i ’s are convex
and lower semicontinuous, this functional is convex and, similarly as in the case
of

∑
i∈I ψi , one can show that it is also lower semicontinuous on �2. Because this

functional coincides with (ψ s)∗ on the dense subspace �0 then both functionals are
equal on �2. ��
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Let us emphasize that the functions (ψ s)∗ are nonnegative and lower semicontinuous.
In large deviation theory such functions are called rate functions (good rate functions
when sublevel sets are not only closed but also compact). In themain theorembelowwe
show that the contraction principle applied to the function (ψ1)∗ by using a functional
〈t, ·〉 over �2 gives the Cramér function of Xt.

Theorem 2.3 Let a sequence of r.v.’s (Xi )i∈I satisfies the assumptions of Proposi-
tion 2.1. Then for every t = (ti )i∈I ∈ �2 the Cramér function ψ∗

Xt
= ψ∗

t of a random
series Xt = ∑

i∈I ti Xi is given by the following variational formula

ψ∗
t (α) = inf

b∈�2: 〈t,b〉=α

∑

i∈I

ψ∗
i (bi ),

for α ∈ intD(ψ∗
t ), where ψ∗

i ’s are the Cramér function of Xi ’s.

Proof The functional ψ s is convex and lower semicontinuous on �2. By virtue of the
biconjugate theorem we have

ψ s(t) = sup
a∈�2

{〈t, a〉 − (ψ s)∗(a)},

where (ψ s)∗(a) = ∑
i∈I (ψi )

∗( ai
s ) (s �= 0). Substituting a = sb we get

(ψ s)∗(a) =
∑

i∈I

ψ∗
i

(ai

s

)
=

∑

i∈I

ψ∗
i (bi ) = (ψ1)∗(b)

and we can rewrite the above as follows

ψ s(t) = sup
b∈�2

{s 〈t, b〉 − (ψ1)∗(b)}. (4)

Let us return to the function ψt which is convex and lower semicontinuous on R.
By the biconjugate theorem we have

ψt(s) = sup
α∈R

{sα − ψ∗
t (α)}.

Let us recall that ψt(s) = ψ s(t). If we split the supremum of (4) into two parts: over
R and hyperplanes {b ∈ �2 : 〈b, t〉 = constant} then we get

ψt(s) = ψ s(t) = sup
α∈R

sup
b∈�2:〈t,b〉=α

{s 〈t, b〉 − (ψ1)∗(b)}

= sup
α∈R

{sα − inf
b∈�2: 〈t,b〉=α

(ψ1)∗(b)}.

Let ϕt(α) denote the function infb∈�2: 〈t,b〉=α(ψ1)∗(b). The functional (ψ1)∗ is convex
on �2. Convexity is preserved under contraction by linear transformation (see [4,
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Th. III.32]). It suffices to state that ϕt and ψ∗
t coincide on intD(ψ∗

t ) (both ones take
∞ on a complement of clD(ψ∗

t )) that is

ψ∗
t (α) = inf

b∈�2: 〈t,b〉=α

(ψ1)∗(b),

for α ∈ intD(ψ∗
t ), where (ψ1)∗(b) = ∑

i∈I ψ∗
i (bi ). ��

Remark 2.4 We cannot prove in general that ϕt is lower semicontinuous. Sometimes
it is obvious when for instance the effective domain ofψ∗

t is open subset ofR (or even
whole R; see Examples 2.5 and 2.6). Under an assumption that (ψ1)∗ is a good rate
function with respect to weak* topology we can state lower-semicontinuity of ϕt (see
Example 2.7).

Example 2.5 The moment generating function of a standard normal r.v. g ∈ N (0, 1)

equals Eesg = 1√
2π

∫
R

est− t2
2 dt = e

s2
2 and its cumulant generating function to be

ψg(s) := ln Eesg = s2

2
.

The function s2
2 is invariant with respect to Legendre transform (see Remark 1.1) that

is the Cramér function of g is given by

ψ∗
g (α) = α2

2
.

By virtue of Proposition 2.1 the cumulant generating function of the series Xt =∑
i∈I ti gi , where gi are independent and standard normal distributed, equals

ψt(s) =
∑

i∈I

ψg(sti ) = 1

2
s2

∑

i∈I

t2i = 1

2
s2‖t‖2.

By the scaling property (3) we obtain the evident form of the Cramér function

ψ∗
t (α) = α2

2‖t‖2 .

On the other hand by Theorem 2.3 we get

ψ∗
t (α) = 1

2
inf

b∈�2:〈t,b〉=α

‖b‖2.

Using theLagrangemultipliers technique one can check that this infimum is attained
at a sequence b = (

αti
‖t‖2 )i∈I .
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Example 2.6 Let X be r.v. with the Laplace density 1
2e−|x |. Its moment generating

function Ees X = 1
1−s2

for |s| < 1 and ∞ otherwise. Let us observe that

Ees X = 1

1 − s2
=

∞∑

n=0

s2n ≥
∞∑

n=0

s2n

n!2n
= e

s2
2 = Eesg,

where g is standard normal distributed. Thus ψX ≥ ψg and, since the Legendre–
Fenchel transform is order-reversing, we have

ψ∗
X (α) ≤ ψ∗

g (α) = α2

2
. (5)

Moreover by using the classical Legendre transform we can calculate an evident form
of ψ∗

X and get

ψ∗
X (α) = α2

√
1 + α2 + 1

+ ln
2√

1 + α2 + 1
.

Consider a sequence (Xi )i∈I of independent r.v.swith the sameLaplace distribution.
By (5) we have

(ψ1)∗(b) =
∑

i∈I

ψ∗
X (bi ) ≤ 1

2
‖b‖2.

It means that (ψ1)∗ takes finite values on the whole space �2 and for every α ∈ R

there is a finite infimum:

inf
b∈�2: 〈t,b〉=α

∑

i∈I

⎛

⎝ b2i√
1 + b2i + 1

+ ln
2

√
1 + b2i + 1

⎞

⎠ ,

that is the finite value of ψ∗
t at α.

In the paper [11] one can find an example of the variational formula for the Cramér
function of series of weighted symmetric Bernoulli random variables but with coeffi-
cients belonging to the space �1. In the context of our Theorem 2.3, we recall the main
result of this paper but now with coefficients in the larger space �2.

Example 2.7 If X is a symmetric Bernoulli r.v., i.e. Pr(X = ±1) = 1
2 , then

Ees X = cosh s. By power series expansions one has cosh s ≤ exp( s2
2 ). In this exam-

ple, conversely as in previous one, we get that ψX (s) ≤ ψg(s) = s2
2 and

ψ∗
X (α) ≥ α2

2
. (6)
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One can check that

ψ∗
X (α) = 1

2
[(1 + α) ln(1 + α) + (1 − α) ln(1 − α)]

for |α| ≤ 1 and ∞ otherwise; we take 0 ln 0 = 0. Note that ψ∗
X (±1) = ln 2.

For a sequence of independent Bernoulli r.v.s, by the above inequality, we have

(ψ1)∗(b) ≥ 1

2
‖b‖2.

Since (ψ1)∗ is lower semicontinuous in the weak* topology, sublevel sets {b ∈ �2 :
(ψ1)∗(b) ≤ c} are weak* closed; for c < 0 are empty sets. By the above, for each
c ≥ 0 the sublevel set of (ψ1)∗ is contained in a closed ball B(0;√

2c) = {b ∈
�2 : ‖b‖ ≤ √

2c}. By virtue of the Banach–Alaoglo theorem (see [9, Th. 3.15]) balls
B(0;√

2c) are weak* compact (are polar sets of balls B(0; 1/√2c)). It follows that
the sublevel sets {b ∈ �2 : (ψ1)∗(b) ≤ c} are weak* compact as closed subsets
of compact sets. It means that in this topology (ψ1)∗ is a good rate function and by
the contraction principle (see [3, Th. 4.2.1]) ϕt is also good a rate function on R, in
particular, it is lower semicontinuous.

Let us emphasize that if we know that (ψ1)∗ is a good rate function then we can
prove lower-semicontinuity of ϕt.

Remark 2.8 Let assume now that I is a finite set and Yi = ti Xi then Xt = ∑
i∈I Yi .

Note that

ψt(s) =
∑

i∈I

ψYi (s).

The functions ψYi , i ∈ I , are convex, lower semicontinuous, not identically equals
+∞ and continuous at 0 that is ones satisfy the assumption of Theorem 1 [7]. The
convex conjugate of their sum is given by the infimal convolution

ψ∗
t (α) = min∑

αi =α

∑

i∈I

ψ∗
Yi

(αi ). (7)

Since ψYi (s) = ψti Xi (s) = ψXi (ti s), by scaling property (3), one has

ψ∗
Yi

(αi ) = ψ∗
ti Xi

(αi ) = ψ∗
Xi

(
αi

ti

)

.

Substituting αi = bi ti into (7) we obtain

ψ∗
t (α) = min∑

bi ti =α

∑

i∈I

ψ∗
Xi

(bi ).

It means that Theorem 2.3 one can treat as the special case of a generalization of the
infimal convolution to the situation of infinite numbers of summands.
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