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Abstract We investigate cloning in the general operator algebra framework in arbi-
trary dimension assuming only positivity instead of strong positivity of the cloning
operation, generalizing thus results obtained so far under that stronger assumption.
The weaker positivity assumption turns out quite natural when considering cloning in
the general C∗-algebra framework.
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1 Introduction

Cloning and broadcasting of quantum states has recently become an important topic in
Quantum Information Theory. Since its first appearance in [5,14] in the form of a no-
cloning theorem it has been investigated in various settings. The most interesting ones
are the Hilbert space setup considered in [3,8], and the setup of generic probabilistic
models considered in [1,2]. A common feature of these approaches consists in restrict-
ing attention to the finite-dimensional models; moreover, in the Hilbert space setup
the map defining cloning or broadcasting is assumed to be completely positive. In [6]
cloning and broadcasting are investigated in the general operator algebra framework,
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e-mail: anluczak@math.uni.lodz.pl

http://crossmark.crossref.org/dialog/?doi=10.1007/s11117-014-0297-1&domain=pdf


318 A. Łuczak

i.e. instead of the full algebra of all linear operators on a finite-dimensional Hilbert
space an arbitrary von Neumann algebra on a Hilbert space of arbitrary dimension is
considered;moreover, the cloning (broadcasting) operation is assumed to be a Schwarz
(called also strongly positive) map instead of completely positive. The present paper
can be viewed as a supplement to [6]; we follow the same approach weakening further
the assumption on positivity of the cloning operation, namely, we assume only that it is
positive. This weaker assumption is all we can hope for while considering the general
problem of cloning inC∗-algebras (cf. [7]), thus the main theorem of the present paper
(Theorem 8) is of importance for cloning in C∗-algebras. However, in our approach
interesting results are obtained only for cloning, the problem of broadcasting in such
a setup is still an open question.

It is probably worth mentioning that although cloning and broadcasting have their
origins in quantum information theory, they are nevertheless purely mathematical
objects concerning states on some C∗- or W ∗-algebras, and thus their investigation
is of independent mathematical interest. This is the approach taken in the present
paper—we do not refer to any physical notions, however it is still possible (and hoped
for) that the results obtained can find some physical applications.

Themain results of thiswork are as follows. It is shown that all states cloneable by an
operation are extreme points of the set of all states broadcastable by this operation, and
a description of some algebra associated with the cloneable states is given. Moreover,
for an arbitrary subset� of the normal states of a vonNeumann algebra it is proved that
the states in� are cloneable if and only if they havemutually orthogonal supports—the
result obtained in [6] under the assumption that the cloning operation is a Schwarz
map. Finally, the problem of uniqueness of the cloning operation is considered.

2 Preliminaries and notation

LetM be an arbitrary von Neumann algebra with identity 1 acting on a Hilbert space
H. The predualM∗ ofM is a Banach space of all normal, i.e. continuous in the σ -weak
topology linear functionals on M.

A state onM is a bounded positive linear functional ρ : M → C of norm one. For
a normal state ρ its support, denoted by s(ρ), is defined as the smallest projection in
M such that ρ(s(ρ)) = ρ(1). In particular, we have

ρ(s(ρ)x) = ρ(x s(ρ)) = ρ(x), x ∈ M,

and if ρ(s(ρ)x s(ρ)) = 0 for s(ρ)x s(ρ) � 0 then s(ρ)x s(ρ) = 0.
Let {ρθ : θ ∈ �} be a family of normal states on a von Neumann algebraM. Define

the support of this family by

e =
∨

θ∈�

s(ρθ ).

The family {ρθ : θ ∈ �} is said to be faithful if for each positive element x ∈ M

from the equality ρθ (x) = 0 for all θ ∈ � it follows that x = 0. It is seen that the
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faithfulness of this family is equivalent to the relation e = 1; moreover, if ρθ (exe) = 0
for all θ ∈ � and exe � 0 then exe = 0.

By a W ∗-algebra of operators acting on a Hilbert space we shall mean a
C∗-subalgebra of B(H) with identity, closed in the weak-operator topology. A typical
example (and in fact the only one utilized in the paper) is the algebra pMp, where
p is a projection in M. For arbitrary R ⊂ B(H) we denote by W ∗(R) the smallest
W ∗-algebra of operators onH containing R.

A projection p in a W ∗-algebra M is said to be minimal if it majorizes no other
nonzero projection inM. A W ∗-algebraM is said to be atomic if the supremum of all
minimal projections inM equals the identity of M.

For x, y ∈ B(H) we define the Jordan product x ◦ y as follows

x ◦ y = xy + yx

2
.

(The same symbol “◦” will also be used for a linear functional ϕ and a map T on M,
namely, ϕ ◦ T will stand for the functional defined as (ϕ ◦ T )(x) = ϕ(T (x)), x ∈ M,
however, it should not cause any confusion.) Let A ⊂ B(H) be a linear space. A is
said to be a J W ∗-algebra if it is weak-operator closed, contains an identity p, i.e.
pa = ap = a for each a ∈ A, and is closed with respect to the Jordan product, i.e.
for any a, b ∈ A we have a ◦ b ∈ A.

LetM andN be W ∗-algebras. A linear map T : M → N is said to be normal if it
is continuous in the σ -weak topologies on M and N , respectively. It is called unital
if it maps the identity of M to the identity of N .

Let T be a positivemap onM. [4, Proposition 3.2.4] yields that for any x = x∗ ∈ M

we have

‖T ‖T (x2) � T (x)2.

For arbitrary x ∈ M we obtain, applying the inequality above to the selfadjoint ele-
ments x + x∗ and i(x − x∗), the following Schwarz inequality

‖T ‖T (x∗ ◦ x) � T (x)∗ ◦ T (x),

(cf. [11, Lemma 7.3]).
Let T be a normal positive unital map on a W ∗-algebra M. By analogy with the

case where T is completely positive, we define the multiplicative domain of T as

A = {x ∈ M : T (x∗ ◦ x) = T (x)∗ ◦ T (x)}.

From [10, Theorem 1] it follows that A is a J W ∗-subalgebra ofM.
Let M be a von Neumann algebra, and consider the tensor product M⊗M. We

have obvious counterparts �1,2 : (M⊗M)∗ → M∗ of the partial trace on (M⊗M)∗
defined as

(�1ρ̃)(x) = ρ̃(x ⊗ 1), (�2ρ̃)(x) = ρ̃(1 ⊗ x), ρ̃ ∈ (M⊗M)∗, x ∈ M.
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The main objects of our interest are the following two operations of broadcasting
and cloning of states.

A linear map K∗ : M∗ → (M⊗M)∗ sending states to states, and such that its dual
K : M⊗M → M is a unital positive map will be called a channel. (This terminology
is almost standard, because by a “channel” is usually meant the map K as above,
however, with some additional assumption of complete- or at least two-positivity.) A
state ρ ∈ M∗ is broadcast by channel K∗ if (�i K∗)(ρ) = ρ, i = 1, 2; in other words,
ρ is broadcast by K∗ if for each x ∈ M

ρ(K (x ⊗ 1)) = ρ(K (1 ⊗ x)) = ρ(x).

A family of states is said to be broadcastable if there is a channel K∗ that broadcasts
each member of this family.

A state ρ ∈ M∗ is cloned by channel K∗ if K∗ρ = ρ ⊗ρ. A family of states is said
to be cloneable if there is a channel K∗ that clones each member of this family.

3 Broadcasting

The discussion in this section has an auxiliary character and is in main part a repetition
for positivemaps of the reasoning from [6] performed there for Schwarz maps. Itsmain
purpose is to analyze some properties of broadcasting channels employed in Sect. 4.

Let M be a von Neumann algebra, and let � ⊂ M∗ be a broadcastable family of
states. Then there is a channel K∗ which broadcasts the states in �. Denote by B(K∗)
the set of all normal states broadcastable by K∗. We have � ⊂ B(K∗), thus our main
object of interest will be the set B(K∗). In the rest of this section we assume that we
are given a fixed channel K∗. Define maps L , R : M → M as

L(x) = K (x ⊗ 1), R(x) = K (1 ⊗ x), x ∈ M.

Then L and R are unital normal positive maps on M. Observe that for a state ρ

broadcast by K∗ we have, for each x ∈ M,

(ρ ◦ L)(x) = ρ(K (x ⊗ 1)) = ρ(x), (ρ ◦ R)(x) = ρ(K (1 ⊗ x)) = ρ(x),

i.e. ρ ◦ L = ρ ◦ R = ρ. Consequently,

B(K∗) = {ρ — normal state : ρ ◦ L = ρ ◦ R = ρ}.

Set
p =

∨

ρ∈B(K∗)
s(ρ). (1)

Then B(K∗) is a faithful family of states on the algebra pMp.
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Define maps K (p) : M⊗M → pMp and L(p), R(p) : M → pMp by

K (p)(̃x) = pK (̃x)p, x̃ ∈ M⊗M,

L(p)(x) = pL(x)p, R(p)(x) = pR(x)p, x ∈ M.

Then K (p), L(p), R(p) are normal positivemaps of normone such that for each x ∈ M

K (p)(x ⊗ 1) = L(p)(x), K (p)(1 ⊗ x) = R(p)(x),

and

K (p)(1 ⊗ 1) = L(p)(1) = R(p)(1) = p.

Moreover, we have

p − pL(p)p = p(1 − L(p))p � 0,

and for each ρ ∈ B(K∗) the L-invariance of ρ yields

ρ(p − pL(p)p) = 0,

which means that
pL(p)p = p, (2)

since B(K∗) is faithful on pMp. The same relation holds also for R, thus

L(p)(p) = R(p)(p) = p.

Consequently,

K (p)(1 ⊗ 1) = L(p)(1) = L(p)(p) = R(p)(1) = R(p)(p) = p.

Another description of B(K∗) is given by the following lemma.

Lemma 1 The following formula holds

B(K∗) = {ρ — normal state : ρ ◦ L(p) = ρ ◦ R(p) = ρ}.

Proof Assume that ρ ∈ B(K∗). Then, since s(ρ) � p, we have for each x ∈ M

ρ(x) = ρ(L(x)) = ρ(pL(x)p) = ρ(L(p)(x)),

and the same holds for R(p).
Conversely, if ρ ◦ L(p) = ρ ◦ R(p) = ρ, then

ρ(1) = ρ(L(p)(1)) = ρ(p),
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showing that s(ρ) � p, so for each x ∈ M

ρ(L(x)) = ρ(pL(x)p) = ρ(L(p)(x)) = ρ(x),

and by the same token ρ ◦ R = ρ, which means that ρ ∈ B(K∗). 	

For a map T on M denote by F(T ) its fixed-point space, i.e.

F(T ) = {x ∈ M : T (x) = x}.

Let A be the multiplicative domain of K (p).

Lemma 2 The following relations hold

(i) For each x ∈ F(L(p)) we have x ⊗ 1 ∈ A,
(ii) For each x ∈ F(R(p)) we have 1 ⊗ x ∈ A.

Proof It is enough to prove (i) since a proof of (ii) is analogous. Let x ∈ F(L(p)). Then
L(p)(x) = x and x = px = xp. We have ‖L(p)‖ = 1, and the Schwarz inequality for
the map L(p) yields

x∗ ◦ x = L(p)(x)∗ ◦ L(p)(x) � L(p)(x∗ ◦ x),

hence

p(x∗ ◦ x)p = x∗ ◦ x � L(p)(x∗ ◦ x) = pL(p)(x∗ ◦ x)p,

or in other words

p(L(p)(x∗ ◦ x) − x∗ ◦ x)p � 0.

For an arbitrary ρ ∈ B(K∗) we have on account of the L(p)-invariance of ρ

ρ(p(L(p)(x∗ ◦ x) − x∗x)p) = ρ(L(p)(x∗ ◦ x) − x∗ ◦ x)

= ρ(L(p)(x∗ ◦ x)) − ρ(x∗ ◦ x) = 0,

and since the family B(K∗) is faithful on the algebra pMp we obtain

p(L(p)(x∗ ◦ x) − x∗ ◦ x)p = 0,

which amounts to the equality

L(p)(x∗ ◦ x) = x∗ ◦ x .

Taking into account the definition of K (p) we get

K (p)(x∗ ⊗ 1) ◦ K (p)(x ⊗ 1) = L(p)(x∗) ◦ L(p)(x) = x∗ ◦ x = L(p)(x∗ ◦ x)

= pK (x∗ ◦ x ⊗ 1)p = K (p)(x∗ ◦ x ⊗ 1) = K (p)((x∗ ⊗ 1) ◦ (x ⊗ 1)),

showing that x ⊗ 1 belongs to A. 	
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To simplify the notation let us agree on the following convention. For a positive map
T : M → pMp such that

T (1) = T (p) = p

denote by Tp the restriction T |pMp, so that Tp : pMp → pMp. Now the positive
unital maps from pMp to pMp will also be denoted with the use of index p, thus Tp

will stand for a positive map on the algebra pMp such that Tp(p) = p. To justify this
abuse of notation let us define for such a map Tp the map T as follows

T (x) = Tp(pxp), x ∈ M. (3)

It is clear that we have T |pMp = Tp, so for the consistency of our notation we only
need the relation

T (x) = T (pxp), x ∈ M,

which is a consequence of the following well-known fact whose proof can be found
e.g. in [9, Lemma 2]).

Lemma 3 Let T : M → M be positive, and let e be a projection in M such that

T (1) = T (e) = e.

Then for each x ∈ M

T (x) = T (ex) = T (xe) = eT (x) = T (x)e.

In the sequelwhile dealingwithmaps denoted by the same capital letterwith orwithout
index p we shall always assume that they are connected by relation (3). If T , Tp, V
and Vp are maps as above then it is easily seen that

(T V )p = TpVp,

in particular, for each positive integer m we have

(T m)p = (Tp)
m .

The same convention will be adopted also for states with supports contained in p, i.e.
if ϕ is a state on M such that s(ϕ) � p, then ϕp will denote its restriction to pMp,
and for an arbitrary state ϕp on pMp the state ϕ will be defined as

ϕ(x) = ϕp(pxp), x ∈ M.

Now we fix attention on the algebra pMp. In accordance with our convention, we
define maps L(p)

p , R(p)
p : pMp → pMp as
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L(p)
p = L(p)|pMp, R(p)

p = R(p)|pMp.

Clearly, L(p)
p and R(p)

p are normal positive unital maps such that for ρ ∈ B(K∗) the ρp

are L(p)
p - and R(p)

p -invariant. It is obvious that F(L(p)
p ) = F(L(p)) and F(R(p)

p ) =
F(R(p)). Let Sp be the semigroup of normal positive maps on pMp generated by

L(p)
p and R(p)

p . Then B(K∗)p defined as B(K∗)p = {ρp : ρ ∈ B(K∗)} is a faithful
family ofSp-invariant normal states on pMp. Denote byF(Sp) the fixed-point space
of Sp, i.e.

F(Sp) = {x ∈ pMp : Sp(x) = x for each Sp ∈ Sp}.

From the ergodic theorem for W ∗-algebras (cf. [13]) we infer that F(Sp) is a
J W ∗-algebra, and there exists a normal faithful projectionEp from pMp ontoF(Sp)

such that
Ep Sp = SpEp = Ep, for each Sp ∈ Sp, (4)

and

ρp ◦ Ep = ρp, for each ρ ∈ B(K∗).

Furthermore,Ep is positive and has the following property reminiscent of an analogous
property of conditional expectation: for any x ∈ pMp, y ∈ F(Sp) we have

Ep(x ◦ y) = (Epx) ◦ y.

Moreover, if ϕp is an arbitrary Ep-invariant normal state on pMp then from relation
(4) we see that ϕp is Sp-invariant. Conversely, if ϕp is an arbitrary Sp-invariant
normal state on pMp then another consequence of the ergodic theorem is that ϕp is
also Ep-invariant (this follows from the fact that for each x ∈ pMp, Epx lies in the
σ -weak closure of the convex hull of {Spx : Sp ∈ Sp}). Consequently, we have the
following equivalence for a normal state ϕp on pMp: ϕp is Sp-invariant if and only
if it is Ep-invariant.

Now we want to transfer these results from the algebra pMp to the algebra M.
Each element Sp of Sp has the form

Sp = (L(p)
p )r1(R(p)

p )r2 . . . (L(p)
p )rm−1(R(p)

p )rm ,

where the integers r1, . . . , rm satisfy r1, rm � 0 and r2, . . . rm−1 > 0, m = 1, 2, . . . .
Consequently,

Sp = ((L(p))r1)p((R(p))r2)p . . . ((L(p))rm−1)p((R(p))rm )p

= ((L(p))r1(R(p))r2 . . . (L(p))rm−1(R(p))rm )p,

showing that S defined in accordance with our convention as

S(x) = Sp(pxp), x ∈ M,
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is an element of the semigroupS generated by the maps L(p) and R(p). Thus we have

Sp = {Sp : S ∈ S}.

It is easily seen that F(S) = F(Sp), where F(S) denotes the fixed-points of S.
Again in accordance with our convention, we define a map E : M → F(S) by the
formula

Ex = Ep(pxp), x ∈ M. (5)

Then E is a normal positive projection onto the J W ∗-algebra F(S) such that E(1) =
p. In the following proposition we obtain a characterization of B(K∗) in terms of the
projection E.

Proposition 4 Let ϕ be a normal state on M. The following conditions are equivalent

(i) ϕ belongs to B(K∗),
(ii) ϕ is S-invariant,

(iii) ϕ = ϕ ◦ E.

Proof (i)�⇒(ii). It follows from Lemma 1.
(ii)�⇒(iii). We have

ϕ(1) = ϕ(L(p)(1)) = ϕ(p),

which means that s(ϕ) � p. Consider the state ϕp. We have for each x ∈ M

ϕp(L(p)
p (pxp)) = ϕ(L(p)(pxp)) = ϕ(pxp) = ϕp(pxp),

showing that ϕp is L(p)
p -invariant. In the same way it is shown that ϕp is R(p)

p -
invariant, thus ϕp is Sp-invariant. Since the Sp-invariance of ϕp is equivalent to
its Ep-invariance, we have for each x ∈ M

ϕ(x) = ϕ(pxp) = ϕp(pxp) = ϕp(Ep(pxp)) = ϕ(Ep(pxp)) = ϕ(Ex).

(iii)�⇒(i). Observe first that we have

EL(p) = E = ER(p).

Indeed, taking into account (4), the fact that L(p) has its range contained in pMp, and
Lemma 3 we obtain for each x ∈ M

E(L(p)(x)) = Ep(p(L(p)(x))p) = Ep((L(p)(x))

= Ep(L(p)
p (pxp)) = Ep(pxp) = Ex,

and similarly for the second equality. Now we have

ϕ(L(p)(x)) = ϕ(E(L(p)(x))) = ϕ(Ex) = ϕ(x),

and the same for R(p), which shows that ϕ ∈ B(K∗). 	
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It turns out that the map K (p) has a special form on the tensor product algebra
F(S)⊗F(S) (this is the weak closure of the algebra of operators

{∑m
i=1 xi ⊗ yi :

xi , yi ∈ F(S)
}
acting on H ⊗ H).

Proposition 5 For each x, y ∈ F(S) we have

K (p)(x ⊗ y) = x ◦ y. (6)

Proof Considering the semigroups
{(

R(p)
p

)n : n = 0, 1, . . .
}
and

{(
T (p)

p
)n : n =

0, 1, . . .
}
generated by R(p)

p and T (p)
p we immediately notice that the fixed-point

spaces of these semigroups are equal to F(R(p)
p ) and F(T (p)

p ), respectively, and

the above-mentioned ergodic theorem shows that F(R(p)
p ) and F(T (p)

p ) are J W ∗-
algebras. Moreover,

F(S) = F(Sp) = F(R(p)
p ) ∩ F(T (p)

p ).

Let x, y ∈ F(S). Then by virtue of Lemma 2 we have x ⊗1,1⊗ y ∈ A, and thus

K (p)(x ⊗ y) = K (p)((x ⊗ 1) ◦ (1 ⊗ y)) = K (p)(x ⊗ 1) ◦ K (p)(1 ⊗ y)

= R(p)(x) ◦ T (p)(y) = x ◦ y,

showing the claim. 	

The next result is well-known in the case p = 1 (cf. [13, Lemma1]). Its proof for
arbitrary p is similar, so we omit it.

Lemma 6 For each ρ ∈ B(K∗) we have s(ρ) ∈ F(S).

4 Cloning

LetM be a vonNeumann algebra, and let K∗ : M∗ → (M⊗M)∗ be a channel. Denote
by C(K∗) the set of all states cloneable by K∗, and put

e =
∨

ρ∈C(K∗)
s(ρ).

The cloneable states and an associated algebra are described by

Theorem 7 The following conditions hold true:

1. The states in C(K∗) have mutually orthogonal supports, and are extreme points of
B(K∗).

2. The algebra eF(S)e is an atomic abelian W ∗-subalgebra of F(S), generated by
{s(ρ) : ρ ∈ C(K∗)}, and such that eF(S)e ⊂ F(S)′ — the commutant of F(S).
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Proof 1. Since C(K∗) ⊂ B(K∗)we may use the analysis of the preceding section. In
particular, we adopt the setup and notation introduced there. For each ρ ∈ C(K∗)
we have K∗ρ = ρ ⊗ρ, so taking into account Proposition 5 we obtain the equality

ρ(x)ρ(y) = ρ ⊗ ρ(x ⊗ y) = (K∗ρ)(x ⊗ y) = ρ(K (x ⊗ y))

= ρ(pK (x ⊗ y)p) = ρ(K (p)(x ⊗ y)) = ρ(x ◦ y) (7)

for all x, y ∈ F(S). The equality above yields that for each z ∈ F(S) and any
ρ ∈ C(K∗) we have

ρ(z2) = ρ(z)2. (8)

Let x be an arbitrary selfadjoint element of F(S). For each ρ ∈ C(K∗) we have
by (8)

ρ
(
(x − ρ(x)1)2

) = ρ
(
x2 − 2ρ(x)x − ρ(x)21

) = ρ(x2) − ρ(x)2 = 0,

which yields the equality

s(ρ)
(
x − ρ(x)1

)2 s(ρ) = 0,

i.e.
s(ρ)x = ρ(x) s(ρ). (9)

Since for an element x of a J W ∗-algebra x + x∗ and x − x∗ are also elements of
this algebra the equality above holds for all x ∈ F(S) as well.
Let ρ and ϕ be two distinct states from C(K∗). Then by (9)

s(ρ) s(ϕ) = ρ(s(ϕ)) s(ρ) and s(ϕ) s(ρ) = ϕ(s(ρ)) s(ϕ),

which after taking adjoints yields the equality

s(ρ) s(ϕ) = s(ϕ) s(ρ).

Consequently,

ρ(s(ϕ)) s(ρ) = ϕ(s(ρ)) s(ϕ) = s(ϕ) s(ρ),

showing that either s(ρ) = s(ϕ) or s(ρ) and s(ϕ) are orthogonal.
If s(ρ) = s(ϕ) then on account of (9) we would have

ρ(x) s(ρ) = s(ρ)x = s(ϕ)x = ϕ(x) s(ϕ) = ϕ(x) s(ρ)

for each x ∈ F(S), i.e.
ρ|F(S) = ϕ|F(S). (10)

Let E be the projection onto F(S) defined by formula (5). We have ρ = ρ ◦ E

and ϕ = ϕ ◦ E, thus equality (10) yields
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ρ = ρ ◦ E = ϕ ◦ E = ϕ

contrary to the assumption that ρ and ϕ are distinct. Consequently, ρ and ϕ have
orthogonal supports.
Now take an arbitrary ρ ∈ C(K∗), and assume that

ρ = λϕ1 + (1 − λ)ϕ2,

for some 0 < λ < 1 and ϕ1, ϕ2 ∈ B(K∗). Then

1 = ρ(s(ρ)) = λϕ1(s(ρ)) + (1 − λ)ϕ2(s(ρ)),

showing that ϕ1(s(ρ)) = ϕ2(s(ρ)) = 1, which means that s(ϕ1), s(ϕ2) � s(ρ).
From equality (9) we obtain for x ∈ F(S)

ϕ1,2(x) = ϕ1,2(s(ρ)x) = ρ(x)ϕ1,2(s(ρ)) = ρ(x),

giving the relation

ρ|F(S) = ϕ1,2|F(S).

We have ρ = ρ ◦ E and ϕ1,2 = ϕ1,2 ◦ E, and thus

ρ = ρ ◦ E = ϕ1,2 ◦ E = ϕ1,2,

showing that ρ is an extreme point of B(K∗).
2. From equality (9) we obtain that s(ρ) ∈ F(S)′ for all ρ ∈ C(K∗), and that

ex =
∑

ρ∈C(K∗)
ρ(x) s(ρ),

for all x ∈ F(S), which means that eF(S) = eF(S)e is a W ∗-algebra generated
by {s(ρ) : ρ ∈ C(K∗)}. By virtue of Lemma 6 we have s(ρ) ∈ F(S) for each
ρ ∈ C(K∗) thus eF(S)e is a subalgebra ofF(S), and eF(S)e ⊂ F(S)′. Finally,
s(ρ) is a minimal projection in eF(S)e. Indeed, for any projection f ∈ F(S)

equality (8) yields

ρ( f ) = 0 or 1.

Now ifq is a projection in eF(S)e such thatq � s(ρ) andq �= s(ρ)wecannot have
ρ(q) = 1, thusρ(q) = 0, and the faithfulness ofρ on the algebra s(ρ)M s(ρ)yields
q = 0. Consequently, algebra eF(S)e being generated by minimal projections is
atomic. 	


Theorem 8 Let � be an arbitrary subset of normal states on a von Neumann algebra
M. The following conditions are equivalent
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(i) � is cloneable,
(ii) The states in � have mutually orthogonal supports.

Proof The implication (i)�⇒(ii) follows from Theorem 7.
To prove (ii)�⇒(i) assume that the states from � have orthogonal supports {ei },

that is � = {ρi } and s(ρi ) = ei . Define a channel K∗ : M∗ → (M⊗M)∗ as follows

K∗ϕ =
∑

i

ϕ(ei ) ρi ⊗ ρi + ϕ(e⊥) ω̃, ϕ ∈ M∗, (11)

where

e =
∑

i

ei ,

and ω̃ is a fixed normal state on M⊗M. Since ρi (e⊥) = 0, we have

K∗ρi =
∑

j

ρi (e j ) ρ j ⊗ ρ j + ρi (e
⊥) ω̃ = ρi ⊗ ρi ,

showing that K∗ clones the ρi . 	

The above theorem yields an interesting corollary. Namely, a usual assumption

about a channel is its complete (or at least two-) positivity, the assumption which we
have tried to avoid in this work. It turns out that a stronger form of positivity gives the
same cloneable states.

Corollary Let � be an arbitrary subset of normal states on a von Neumann algebra
M. The following conditions are equivalent

(i) � is cloneable by a completely positive channel,
(ii) � is cloneable by a positive channel.

Proof We need only to show the implication (ii)�⇒(i). From Theorem 8 (and with its
notation) we know that the supports ei of states ρi in� aremutually orthogonal. Define
a channel K∗ by formula (11). Then K∗ clones the ρi . Its dual map K : M⊗M → M

has the form

K (̃x) =
∑

i

ρi ⊗ ρi (̃x) ei + ω̃(̃x) e⊥, x̃ ∈ M⊗M,

thus its range lies in the abelian von Neumann algebra generated by the projections ei

and e⊥. Consequently, on account of [12, Corollary IV.3.5] K is completely positive.
	


Finally, let us say a few words about the uniqueness of the cloning operation.



330 A. Łuczak

Proposition 9 Let � = {ρi } be an arbitrary subset of normal states on a von Neumann
algebraM such that the states in � have mutually orthogonal supports. Put ei = s(ρi ),
and assume that

∑

i

ei = 1.

Let the cloning channel K ′∗ be defined as in Theorem 8, i.e.

K ′∗ϕ =
∑

i

ϕ(ei ) ρi ⊗ ρi , ϕ ∈ M∗.

Then for each channel K∗ that clones � we have

K ′∗ = (E ⊗ E)∗K∗,

where E is the projection from M onto F(S) defined by means of the dual K of K∗
as in Sect. 3 (it turns out that in our case E is actually a conditional expectation).

Proof Let K∗ be a channel cloning �. Since � ⊂ C(K∗) we get

e =
∨

ω∈C(K∗)
s(ω) = 1.

Theorem 7 asserts that the s(ω) for ω ∈ C(K∗) are minimal projections in eF(S)e =
F(S), thus the equality

∨

i

ei = 1 =
∨

ω∈C(K∗)
s(ω)

yields � = C(K∗).
Denoting by K ′ the dual of K ′∗ we have for all x, y ∈ M

K ′(x ⊗ y) =
∑

i

ρi (x)ρi (y) ei . (12)

From Theorem 7 it follows that F(S) is an abelian atomic W ∗-algebra generated
by {ei }, i.e.

F(S) =
{ ∑

i

αi ei : αi ∈ C, sup
i

|αi | < ∞
}
.

For the projection E defined as in Sect. 3, and arbitrary x ∈ M we have

Ex =
∑

i

αi ei ,
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for some coefficients αi ∈ C depending on x . Consequently,

ρ j (x) = ρ j (Ex) =
∑

i

αiρ j (ei ) = α j ,

thus

Ex =
∑

i

ρi (x)ei .

(From the formula above it immediately follows that E is a conditional expectation.)
Consequently, we obtain

ExEy =
∑

i

ρi (x)ρi (y)ei , (13)

for all x, y ∈ M.
By (6) we get for any x, y ∈ M

K (E ⊗ E(x ⊗ y)) = K (Ex ⊗ Ey) = Ex ◦ Ey = ExEy, (14)

and formulas (12), (13), and (14) yield

K ′(x ⊗ y) = K (E ⊗ E(x ⊗ y)),

for any x, y ∈ M, which means that

K ′∗ = (E ⊗ E)∗K∗,

finishing the proof. 	


Open Access This article is distributed under the terms of the Creative Commons Attribution License
which permits any use, distribution, and reproduction in any medium, provided the original author(s) and
the source are credited.
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