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Abstract Let (�,�,μ) be a finite atomless measure space, and let E be an ideal of
L0(μ) such that L∞(μ) ⊂ E ⊂ L1(μ). We study absolutely continuous linear oper-
ators from E to a locally convex Hausdorff space (X, ξ). Moreover, we examine the
relationships between μ-absolutely continuous vector measures m : � → X and the
corresponding integration operators Tm : L∞(μ) → X. In particular, we characterize
relatively compact sets M in caμ(�, X) (= the space of all μ-absolutely continuous
measures m : � → X ) for the topology Ts of simple convergence in terms of the
topological properties of the corresponding set {Tm : m ∈ M} of absolutely continu-
ous operators. We derive a generalized Vitali–Hahn–Saks type theorem for absolutely
continuous operators T : L∞(μ) → X.
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1 Introduction and terminology

For terminology concerning vector lattices and function spaces we refer the reader
to [1], [2], [10]. Throughout the paper we assume that (�,�,μ) is a complete finite
atomless measure space and L0(μ) denotes the corresponding space of μ-equiva-
lence classes of all �-measurable real valued-functions defined on �. Let E be an
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ideal of L0(μ) such that L∞(μ) ⊂ E ⊂ L1(μ), and let E∼ and E∼
n stand for

the order dual and order continuous dual of E respectively. Then E∼
n separates the

points of E and it can be identified with the Köthe dual E ′ of E through the mapping
E ′ � v 	→ ϕv ∈ E∼

n , where ϕv(u) = ∫
�

uvdμ for all u ∈ E . It is known that the
Mackey topology τ(E, E∼

n )(= τ(E, E ′)) is a locally solid Lebesgue topology.
The so-called order-bounded topology τ0 can be defined on E as the finest locally

convex topology on E for which every order interval in E is a bounded set (see [11]). A
local base B0 at zero for τ0 is the class of all absolutely convex subsets of E that absorb
all order bounded sets in E . Then τ0 coincides with the Mackey topology τ(E, E∼).

Note that if un, u ∈ E and un → u uniformly on �, then un → u for τ0.

From now on we assume that (X, ξ) is a locally convex Hausdorff space (for short,
lcHs) and let Pξ denote the set of all ξ -continuous seminorms on X. By X ′

ξ we denote
the topological dual of (X, ξ). We denote by σ(L , K ) and τ(L , K ) the weak topology
and the Mackey topology on L with respect to a dual pair 〈L , K 〉.

Recall that a linear operator T : E → X is said to be order-bounded (resp. order-
weakly compact), if for each u ∈ E+, the set T ([−u, u]) is ξ -bounded (resp. relatively
σ(X, X ′

ξ )-compact) in X (see [6]).

Proposition 1.1 For a linear operator T : E → X the following statements are
equivalent:

(i) T is order-bounded.
(ii) T is (τ0, ξ)-continuous.

Proof (i)�⇒(ii) Assume that T is order-bounded. Let p ∈ Pξ and ε > 0. We shall
show that there is V ∈ B0 such that T (V ) ⊂ Bp(ε)(= {x ∈ X : p(x) ≤ ε}).
Indeed, let V = T −1(Bp(ε)). Since T (V ) ⊂ T (T −1(Bp(ε)) ⊂ Bp(ε), it is enough
to show that V absorbs every order interval in E . Given u ∈ E+ there is ru > 0
such that T ([−u, u]) ⊂ Bp(ru). Then for λu = ε

ru
and for all v ∈ [−u, u] we get

p(T (λuv)) = λu p(T (v)) ≤ ε, so λuv ∈ V . This means that λu[−u, u] ⊂ V, i.e., V
absorbs [−u, u], as desired.

(ii)�⇒(i) Assume that T is (τ0, ξ)-continuous and p ∈ Pξ . Then there is Vp ∈ B0
such that T (Vp) ⊂ Bp(1). Given u ∈ E+ there exists λu > 0 such that λu[−u, u] ⊂
Vp. Hence T (λu[−u, u]) ⊂ T (Vp) ⊂ Bp(1), so T ([−u, u]) ⊂ Bp(

1
λu

). It follows
that the set T ([−u, u]) is ξ -bounded in X . ��

Following [13] a linear operator T : E → X is said to be absolutely continuous
if for each u ∈ E, T (1An u) → 0 for ξ whenever μ(An) → 0, (An) ⊂ �. Abso-
lutely continuous operators on Orlicz spaces and Frechét function spaces have been
examined by Orlicz and Wnuk (see [12,13]).

In Sect. 2 we study absolutely continuous operators T : E → X. We show that a
linear operator T : E → X is absolutely continuous if and only if T is (τ (E, E∼

n ), ξ)-
continuous. We characterize relatively compact sets in the space Lτ,ξ (E, X) of all
(τ (E, E∼

n ), ξ)-continuous linear operators T : E → X, provided with the topology
of simple convergence. In Sect. 3 we examine the relationships between μ-absolutely
continuous vector measures m : � → X and the corresponding integration operators
Tm : L∞(μ) → X.
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2 Absolutely continuous operators on function spaces

We start with the following result.

Proposition 2.1 Assume that T : E → X is an absolutely continuous linear operator.
Then T is (τ0, ξ)-continuous.

Proof In view of Proposition 1.1 it is sufficient to show that T ([−u, u]) is ξ -bounded
in X for every u ∈ E+. For this purpose one can repeat the proof of Theorem 1 in
[13].

Now we present a characterization of absolutely continuous operators on E . ��
Proposition 2.2 For a linear operator T : E → X the following statements are
equivalent:

(i) x ′ ◦ T ∈ E∼
n for each x ′ ∈ X ′

ξ .

(ii) T is (σ (E, E∼
n ), σ (X, X ′

ξ ))-continuous.
(iii) T is (τ (E, E∼

n ), ξ)-continuous.

(iv) T is smooth, i.e., T (uα) → 0 for ξ whenever uα
(o)−→ 0 in E .

(v) T is σ -smooth, i.e., T (un) → 0 for ξ whenever un
(o)−→ 0 in E .

(vi) T is absolutely continuous.

Proof (i)⇐⇒(ii) See [1, Theorem 9.26].
(ii)�⇒(iii) Assume that T is (σ (E, E∼

n ), σ (X, X ′
ξ ))-continuous. It follows that T

is (τ (E, E∼
n ), τ (X, X ′

ξ ))-continuous (see [1, Exercise 11, p. 149]), and hence T is
(τ (E, E∼

n ), ξ)-continuous because ξ ⊂ τ(X, X ′
ξ ).

(iii)�⇒(iv) Assume that T is (τ (E, E∼
n ), ξ)-continuous, and let (uα) be a net in E

such that uα
(o)−→ 0 in E . Then uα → 0 for τ(E, E∼

n ) because τ(E, E∼
n ) is a Lebesgue

topology on E . Hence T (uα) → 0 for ξ, as desired.
(iv)�⇒(v) It is obvious.
(v)⇐⇒(vi) It is enough to repeat the reasoning in the proof of Proposition 4 in

[13] and use Proposition 2.1 and the fact that un → 0 in E for τ0 whenever un → 0
uniformly on �.

(v)�⇒(i) It is obvious. ��
Corollary 2.3 Every absolutely continuous operator T : E → X is order-weakly
compact.

Proof Note that for each u ∈ E+, the order interval [−u, u] in E is relatively
σ(E, E∼

n )-compact because τ(E, E∼
n ) is a Lebesgue topology (see [2], Theorem

6.62]). Hence by Proposition 2.2 the set T ([−u, u]) is relatively σ(X, X ′
ξ )-compact

in X, as desired. ��
Let Lτ,ξ (E, X) stand for the space of all (τ (E, E∼

n ), ξ)-continuous linear operators
from E to X, equipped with the topology Ts of simple convergence. Let Pξ be the
family of all ξ -continuous seminorms on X. Then Ts is generated by the family {qp,u :
p ∈ Pξ , u ∈ E} of seminorms, where qp,u(T ) = p(T (u)) for all T ∈ Lτ,ξ (E, X).

The following result will be of importance (see [15, Theorem 2]).
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Theorem 2.4 Let K be a Ts -compact subset of Lτ,ξ . If C is a σ(X ′
ξ , X)-closed and

ξ -equicontinuous subset of X ′
ξ , then {x ′ ◦T : T ∈ K, x ′ ∈ C} is a σ(E∼

n , E)-compact
subset of E∼

n .

Now we can state a characterization of relative Ts-compactness in Lτ,ξ (E, X).

Theorem 2.5 Let K be a subset of Lτ,ξ (E, X). Then the following statements are
equivalent:

(i) K is relatively Ts -compact.
(ii) K is (τ (E∼

n , E), ξ)-equicontinuous and for each u ∈ E, the set {T (u) : T ∈ K}
is relatively ξ -compact in X.

Proof (i)�⇒(ii) Assume that K is relatively Ts-compact. Let W be an absolutely con-
vex and ξ -closed neighbourhood of 0 for ξ in X. Then the polar W 0 of W (with respect
to the dual pair 〈E, E ′

ξ 〉), is a σ(X ′
ξ , X)-closed and ξ -equicontinuous subset of X ′

ξ (see

[1, Theorem 9.21]). Then by Theorem 2.4 the set H = {x ′ ◦ T : T ∈ K, x ′ ∈ W 0} in
E∼

n is σ(E∼
n , E)-compact. Hence in view of the Nakamo theorem (see [2, Corollary

6.31]) the σ(E∼
n , E)-closed absolutely convex hull (abs conv H)− of H is σ(E∼

n , E)-
compact in E∼

n . The the polar V = ((absconv H)−)0 (with respect to the dual pair
〈E, E∼

n 〉) is a τ(E, E∼
n )-neighbourhood of 0 in E and H ⊂ V 0. Then for each T ∈ K

we have that {x ′ ◦ T : x ′ ∈ W 0} ⊂ V 0, i.e., if x ′ ∈ W 0, then |x ′(T (u))| ≤ 1 for
all u ∈ V . This means that for each T ∈ K we have W 0 ⊂ T (V )0. Hence T (V ) ⊂
T (V )00 ⊂ W 00 = W for each T ∈ K, i.e., K is (τ (E, E∼

n ), ξ)-equicontinuous.
Clearly, for each u ∈ E, the set {T (u) : T ∈ K} is relatively ξ -compact in X.

(ii)�⇒(i) It follows from [3, Chap. 3, § 3.4, Corollary 1], [4, Chap. 3.2.2, Corollary,
p. 89]. ��
Corollary 2.6 Assume that K is a relatively Ts -compact subset of Lτ,ξ (E, X). Then
K is uniformly μ-absolutely continuous, i.e., for each u ∈ E and p ∈ Pξ we have

sup
T ∈K

p(T (1An u)) −→ 0 whenever μ(An) −→ 0, (An) ⊂ �.

Proof In view of Theorem 2.4, K is (τ (E, E∼
n ), ξ)-equicontinuous. Let p ∈ Pξ and

ε > 0 be given. Then there exists a τ(E, E∼
n )-neigbourhood V of 0 in E such that for

each T ∈ K we have p(T (u)) ≤ ε for all u ∈ V . Let u ∈ E and μ(An) → 0 and
let un = 1An u for n ∈ N. Note that un → 0(μ) and |un(ω)| ≤ |u(ω)|μ-a.e. for all
n ∈ N. Hence by the Riesz theorem for every subsequence (ukn ) of (un) there exists a

subsequence (ulkn
) of (ukn ) such that ulkn

(ω) → 0μ-a.e. This means that ulkn

(o)−→ 0
in E (see [10, Chap. 10, §1]). Hence ulkn

→ 0 for τ(E, E∼
n ) because τ(E, E∼

n ) is a
Lebesgue topology. It follows that un → 0 for τ(E, E∼

n ). Then there exists nε ∈ N

such un ∈ V for n ≥ nε, and hence supT ∈K p(T (1An u)) ≤ ε for n ≥ nε. ��

3 Absolutely continuous vector measures

Let (X, ξ) be a quasicomplete lcHs and m : � → X be a ξ -bounded vector measure
(i.e., the range of m is ξ -bounded in X ) and m(A) = 0 if μ(A) = 0, A ∈ � (in
symbols, m � μ).
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For u ∈ L∞(μ) let ‖u‖∞ = ess supω∈� |u(ω)|. Given u ∈ L∞(μ), let (sn) be a
sequence in S(μ) (= the space of all μ-simple functions on �) such that ‖u−sn‖∞ → 0
(see [10, Chap. 1, §6, Theorem 3]). Define

∫

�

udm := ξ − lim
∫

�

sn dm.

Then the integral
∫
�

udm is well defined and the corresponding integration opera-
tor Tm : L∞(μ) → X given by Tm(u) = ∫

�
udm is (‖ · ‖∞, ξ)-continuous and linear,

and for each x ′ ∈ X ′
ξ ,

x ′
⎛

⎝
∫

�

udm

⎞

⎠ =
∫

�

u d(x ′ ◦ m) for u ∈ L∞(μ),

(see [9], [14, Lemma 6]). Conversely, let T : L∞(μ) → X be a (‖ · ‖∞, ξ)-con-
tinuous linear operator, and let m(A) = T (1A) for A ∈ �. Then m : � → X is a
ξ -bounded vector measure such that m � μ (called the representing measure of T )
and Tm(u) = T (u) for all u ∈ L∞(μ).

An important example of a quasicomplete lcHs is the space L(Y, Z) of all bounded
linear operators between Banach spaces Y and Z , provided with the strong operator
topology.

Recall that a vector measure m : � → X is said to be μ-absolutely continuous
m(An) → 0 for ξ whenever μ(An) → 0, (An) ⊂ � (see [5, Definition 3, p. 11]).

Now we characterize μ-absolutely continuous measures in terms of the properties
of the corresponding integration operators.

Proposition 3.1 Assume that (X, ξ) is a quasicomplete lcHs. Let m : � → X be
a ξ -bounded vector measure such that m � μ. Then the following statements are
equivalent:

(i) x ′ ◦ m ∈ caμ(�) for each x ′ ∈ X ′
ξ .

(ii) x ′ ◦ Tm ∈ L∞(μ)∼n for each x ′ ∈ X ′
ξ .

(iii) Tm is (τ (L∞(μ), L1(μ)), ξ)-continuous.
(iv) Tm is σ -smooth.
(v) Tm is absolutely continuous.

(vi) m is μ-absolutely continuous.

Proof (i)�⇒(ii) Let x ′ ∈ X ′
ξ and x ′ ◦ m ∈ caμ(�). Then by the Radon–Nikodym

theorem there exists vx ′ ∈ L1(μ) such that (x ′ ◦ m)(A) = ∫
A vx ′dμ for all A ∈ �. It

follows that

(x ′ ◦ Tm)(u) =
∫

�

u d(x ′ ◦ m) =
∫

�

uvx ′dμ for all u ∈ L∞(μ),

and this means that x ′ ◦ Tm ∈ L∞(μ)∼n .
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(ii)⇐⇒(iii)⇐⇒(iv) ⇐⇒(v) See Proposition 2.1.
(v)�⇒(vi) Assume that Tm is absolutely continuous, and letμ(An) → 0, (An)⊂ �.

Then m(An) = Tm(1An ) → 0 for ξ, as desired.
(vi)�⇒(i) It is obvious. ��
As a consequence of Proposition 3.1 we get the following Pettis type theorem for

countably additive measures (see [5, Theorem 1, p. 10]).

Corollary 3.2 Assume that (X, ξ) is a quasicomplete lcHs. Let m : � → X be a
ξ -countably additive measure. Then the following statements are equivalent:

(i) m � μ.

(ii) m is μ-absolutely continuous.

Let ca(�, X) stand for the space of all ξ -countably additive measures m : � → X.

By caμ(�, X) we denote the subspace of ca(�, X) consisting of all m ∈ ca(�, X)

that are μ-absolutely continuous. Denote by Ts the topology of simple convergence in
ca(�, X). Then Ts is generated by the family {qp,A : p ∈ Pξ , A ∈ �} of seminorms,
where

qp,A(m) := p(m(A)) for all m ∈ ca(�, X).

Proposition 3.3 caμ(�, X) is a closed set in (ca(�, X), Ts).

Proof Let m ∈ ca(�, X) and m ∈ clTs (caμ(�, X)). Then there is a net (mα) in
caμ(�, X) such that mα → m for Ts, i.e., for each p ∈ Pξ and A ∈ � we have
qp,A(m −mα) = p(m(A)−mα(A)) −→

α
0. Assume that μ(A) = 0. Then mα(A) = 0

for all α, and it follows that p(m(A)) = 0 for each p ∈ Pξ , i.e., m(A) = 0. In view
of Corollary 3.2 m ∈ caμ(�, X). ��

Now we establish some terminology (see [14, pp. 92–93]). For p ∈ Pξ let X p =
(X, p) be the associated seminormed space. Denote by (X̃ p, ‖ · ‖∼

p ) the completion
of the quotient normed space X/p−1(0). Let �p : X p → X/p−1(0) ⊂ X̃ p be the
canonical quotient map.

Given a vector measure m : � → X with m � μ, let m p : � → X̃ p be given by

m p(A) := (�p ◦ m)(A) for A ∈ �.

Then m p is a Banach space-valued measure on �. We define the p-variation ‖m‖p

of m by

‖m‖p(A) := ‖m p‖(A) for A ∈ �,

where ‖m p‖ denotes the semivariation of m p : � → X̃ p. Note that m is ξ -bounded
if and only if ‖m‖p(�) < ∞ for each ξ -continuous seminorm p on X. Moreover, we
have (see [14, Lemma 7]):

‖m‖p(�) = ‖Tm‖p := sup

⎧
⎨

⎩
p

⎛

⎝
∫

�

udm

⎞

⎠ : u ∈ L∞(μ), ‖u‖∞ ≤ 1

⎫
⎬

⎭
. (3.1)
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For a subset M of caμ(�, X) let

KM = {
Tm ∈ Lτ,ξ (L∞(μ), X) : m ∈ M

}
.

Now we are ready to state a characterization of relative compactness in the space
(caμ(�, X), Ts) in terms of the topological properties of the set KM (see [8, Theorem
7], [15, Theorem 8], [16, Theorem 2.1]).

Theorem 3.4 Let (X, ξ) be a quasicomplete lcHs. Then for a set M in caμ(�, X)

the following statements are equivalent:

(i) KM is a relatively compact set in (Lτ,ξ (L∞(μ), X), Ts).

(ii) KM is (τ (L∞(μ), L1(μ)), ξ)-equicontinuous and for each u ∈ L∞(μ), the
set {Tm(u) : m ∈ M} is relatively ξ -compact in X.

(iii) M is uniformly μ-absolutely continuous and for each A ∈ �, the set {m(A) :
m ∈ M} is relatively ξ -compact in X.

(iv) M is a relatively compact set in (caμ(�, X), Ts).

Proof (i)⇐⇒(ii) See Theorem 2.5.
(ii)�⇒(iii) Assume that (ii) holds and let μ(An → 0, (An) ⊂ �. Then using

Proposition 3.1 and Corollary 2.6 for each p ∈ Pξ we have

sup
m∈M

p(m(An)) = sup
m∈M

p(Tm(1An )) −→n 0.

This means that the family M is uniformly μ-absolutely continuous.
(iii)�⇒(iv) Assume that (iii) holds. Then M ⊂ caμ(�, X) ⊂ ca(�, X) and M is

a uniformly ξ -countably additive set in ca(�, X). Hence by [8, Theorem 7] M is a rel-
atively compact set in (ca(�, X), Ts). Since caμ(�, X) is closed in (ca(�, X), Ts),

we obtain that M is a relatively compact set in (caμ(�, X), Ts).

(iv)�⇒(i) Assume that M is a relatively compact set in (caμ(�, X), Ts), and let
(Tmα ) be a net in KM. Without loss of generality, we can assume that mα → m for
Ts, where m ∈ caμ(�, X). We shall show that Tmα → Tm in (Lτ,ξ (L∞(μ), X), Ts).

Indeed, let p ∈ Pξ and fix ε > 0. Since M is a Ts-bounded subset of caμ(�, X),

for each A ∈ � we have supα p(mα(A)) = supα qp,A(mα) < ∞. Hence,
since the mapping �p : X → X̃ p is (p, ‖ · ‖∼

p )-continuous, we obtain that
supα ‖(mα)p(A)‖∼

p = supα ‖(�p ◦ mα)(A)‖∼
p < ∞. In view of the Nikodym bound-

edness theorem (see [5, Theorem 1, p. 14]) and 3.1 we get

c = sup
α

‖Tmα‖p = sup
α

‖mα‖p(�) < ∞.

Let u ∈ L∞(μ) be given and choose s0 ∈ S(μ) such that ‖u − s0‖∞ ≤ ε
3a , where

a = max(c, ‖Tm‖p). Then there exists α0 such that p(Tmα (s0) − Tm(s0)) ≤ ε
3 for

α ≥ α0. Hence for α ≥ α0 we get

p(Tmα (u) − Tm(u))

≤ p(Tm(u − s0)) + p(Tm(s0) − Tmα (s0)) + p(Tmα (s0) − Tmα (u))
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≤ ‖Tm‖p · ‖u − s0‖∞ + p(Tm(s0) − Tmα (s0)) + ‖Tmα‖p · ‖s0 − u‖∞
≤ a · ε

3a
+ ε

3
+ a · ε

3a
= ε.

This means that Tmα −→
α

Tm in (Lτ,ξ (L∞(μ), X), Ts), as desired. ��
Recall that the general Vitali–Hahn–Saks theorem (see [7, Theorem 2.14’]) says

that if (mk) is a sequence of μ-absolutely continuous measures on a σ -algebra �

taking values in a lcHs (X, ξ), and m(A) := ξ − lim mk(A) for each A ∈ �, then
m : � → X is a μ-absolutely continuous measure and the family {mk : k ∈ N} is
uniformly μ-absolutely continuous.

Now we shall state a generalized Vitali–Hahn–Saks theorem for operators from
L∞(μ) to a quasicomplete lcHs (X, ξ).

Theorem 3.5 Assume that (X, ξ) is a quasicomplete lcHs. Let mk : � → X be μ-
absolutely continuous measures for k ∈ N and assume that m(A) := ξ − lim mk(A)

exists for each A ∈ �. Then the following statements hold:

(i) m : � → X is a μ-absolutely continuous measure, and the integration operator
Tm : L∞(μ) → X is absolutely continuous.

(ii) Tm(u) = ξ − limk Tmk (u) for all u ∈ L∞(μ).

(iii) The family {Tmk : k ∈ N} is (τ (L∞(μ), L1(μ)), ξ)-equicontinuous.
(iv) The family {Tmk : k ∈ N} is uniformly absolutely continuous.

Proof In view of the general Vitali–Hahn–Saks theorem (see [7, Theorem 2.14’])
m : � → X is μ-absolutely continuous, and by Proposition 3.1 Tm : L∞ → X is
absolutely continuous.

Let p ∈ Pξ and fix ε > 0. We show that p(Tmk (u) − Tm(u)) → 0 for each
u ∈ L∞(μ). Indeed, since p(mk(A) − m(A)) → 0 for all A ∈ �, we have

‖�p(mk(A) − m(A))‖∼
p → 0, i.e., ‖(mk)p(A) − m p(A)‖∼

p → 0 for all A ∈ �.

It follows that supk ‖(mk)p(A)‖∼
p < ∞ for all A ∈ �, and in view of the Nikodym

boundedness theorem (see [5, Theorem 1, p. 14]) and 3.1 we get

a = sup
k

‖Tmk ‖p = sup
k

‖mk‖p(�) < ∞.

Let u ∈ L∞(μ) be given and choose s0 ∈ S(μ) such that ‖u − s0‖∞ ≤ ε
3a , where

a = max(c, ‖Tm‖p). Then there is k0 ∈ N such that p(Tmk (s0) − Tm(s0)) ≤ ε
3 for

k ≥ k0. Hence for k ≥ k0 we have

p(Tmk (u) − Tm(u − s0))

≤ p(Tm(u − s0)) + p(Tm(s0) − Tmk (s0)) + p(Tmk (s0) − Tmk (u))

≤ ‖Tm‖p · ‖u − s0‖∞ + p(Tm(s0) − Tmk (s0)) + ‖Tmk ‖p · ‖s0 − u‖∞
≤ a · ε

3a
+ ε

3
+ a · ε

3a
= ε.
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It follows that Tmk → T for Ts in Lτ,ξ (L∞(μ), X). Since {Tmk : k ∈ N} ∪ {T }
is a Ts-compact subset of Lτ,ξ (L∞(μ), X), by Theorem 2.5 the set {Tmk : k ∈ N} is
(τ (L∞(μ), L1(μ)), ξ)-equicontinuous, and by Corollary 2.6 it is uniformly absolutely
continuous. ��
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which permits any use, distribution, and reproduction in any medium, provided the original author(s) and
the source are credited.
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