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Abstract We consider a nonlinear Neumann problem driven by the p-Laplacian
and with a Carathéodory reaction which satisfies only a unilateral growth restriction.
Using the principal eigenvalue of an eigenvalue problem involving the Neumann
p-Laplacian plus an indefinite potential, we produce necessary and sufficient condi-
tions for the existence and uniqueness of positive smooth solutions.
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1 Introduction

Let � ⊆ R
N be a bounded domain with a C2-boundary ∂�. In this paper we study

the following nonlinear Neumann problem:

L. Gasiński’s research has been partially supported by the Ministry of Science and Higher Education of
Poland under Grants no. N201 542438 and N201 604640.

L. Gasiński (B)
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{−�pu(z) = f
(
z, u(z)

)
in �,

∂u
∂n = 0 on ∂�, u > 0.

(1.1)

Here �p denotes the p-Laplace differential operator, defined by

�pu = div
(‖∇u‖p−2∇u

) ∀u ∈ W 1,p(�),

with p ∈ (1,+∞). Also, the reaction f (z, ζ ) is a Carathéodory function, i.e., for all
ζ ∈ R, z �−→ f (z, ζ ) is measurable and for almost all z ∈ �, ζ �−→ f (z, ζ ) is
continuous.

We are interested in the existence and uniqueness of positive solutions when the
nonlinearity f (z, ·) is only unilaterally restricted (only from above). Problems like this
were studied primarily in the context of semilinear (i.e., p = 2) equations with Di-
richlet boundary conditions. We mention the works of Amann [2], Brézis and Oswald
[4], Dancer [6], de Figueiredo [7], Hess [16], Krasnoselskii [19], Laetsch [20], and
Simpson and Cohen [24]. Extensions to the Dirichlet p-Laplacian can be found in the
works of Guo [14], Guo and Webb [15] and Kamin and Veron [18], but for special
classes of equations, such as logistic equations. To the best of our knowledge, there
are no such results for the Neumann p-Laplacian. Some other existence results for
Neumann p-Laplacian problems, but with no information on the sign of solutions can
be found in Gasiński and Papageorgiou [9–11] and with some sign information on the
solution (but without uniqueness) can be found in Gasiński and Papageorgiou [12,13].

As it is remarked in de Figueiredo [7], the problem of uniqueness for elliptic equa-
tions, is in general a difficult one and requires special structure on the reaction term.
Our work here is closely related to that of Brézis and Oswald [4]. In fact our result is
a twofold generalization of that in [4]. First, we pass from the Laplacian (semilinear
equation; i.e., p = 2) to the p-Laplacian (nonlinear equation; i.e., p ∈ (1,+∞)).
Second, we pass from the Dirichlet to the Neumann boundary condition. We should
mention that sufficient conditions for the uniqueness of the positive solutions of the
Dirichlet p-Laplacian were obtained by Belloni and Kawohl [3], were the authors
exploited in a direct way the convexity of the energy functional u �−→ ϕ(u) in u p.

2 An eigenvalue problem

In this section we discuss the first eigenvalue of the nonlinear eigenvalue problem
involving the negative Neumann p-Laplacian plus an indefinite potential. This quan-
tity plays a central role in our subsequential considerations, but it is also of independent
interest.

The eigenvalue problem under consideration is the following:

{−�pu(z)+ β(z)
∣∣u(z)|p−2u(z) = λ̂

∣∣u(z)|p−2u(z) in �,
∂u
∂n = 0 on ∂�.

(2.1)
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Proposition 2.1 If β ∈ L∞(�), then problem (2.1) has a smallest eigenvalue λ̂1 =
λ̂1(β) ∈ R which is simple, has a corresponding L p-normalized eigenfunction û1 ∈
C1,α(�), 0 < α < 1 with û1(z) > 0 for all z ∈ �.

Proof Let ξ : W 1,p(�) −→ R be the C1-functional, defined by

ξ(u) = ‖∇u‖p
p +

∫
�

β|u|p dz

and let M ⊆ W 1,p(�) be the C1-Banach manifold, defined by

M = {
u ∈ W 1,p(�) : ‖u‖p = 1

}
.

We set

λ̂1 = λ̂1(β) = inf
{
ξ(u) : u ∈ M

}
. (2.2)

Because for u ∈ M , we have

∣∣∣∣∣∣
∫
�

β|u|p dz

∣∣∣∣∣∣ �
∫
�

|β||u|p dz � ‖β‖∞‖u‖p
p = ‖β‖∞,

so

ξ(u) = ‖∇u‖p
p +

∫
�

β|u|p dz � ‖∇u‖p
p − ‖β‖∞ � −‖β‖∞ ∀u ∈ M.

Thus λ̂1 � −‖β‖∞. We will show that the infimum in (2.2) is realized at a û1 ∈
W 1,p(�), with ‖û1‖p = 1. To this end, let {un}n�1 ⊆ M be a minimizing sequence,
i.e.,

ξ(un) −→ λ̂1.

Clearly the sequence {un}n�1 ⊆ W 1,p(�) is bounded and so by passing to a suitable
subsequence if necessary, we may assume that

un
w−→ û1 in W 1,p(�), (2.3)

un −→ û1 in L p(�). (2.4)

From (2.3) and (2.3), we have

‖∇û1‖p
p � lim inf

n→+∞ ‖∇un‖p
p and lim

n→+∞

∫
�

β|un|p dz =
∫
�

β |̂u1|p dz,
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so

ξ(̂u1) � λ̂1.

It is clear from (2.3) that ‖û1‖p = 1, i.e., û1 ∈ M . Hence ξ(̂u1) = λ̂1.
The Lagrange multiplier rule (see, e.g., Papageorgiou and Kyritsi [23, p. 76]) implies

that λ̂1 is an eigenvalue of problem (2.1), with the corresponding eigenfunction û1 ∈
W 1,p(�). Using the Moser iteration technique, we show that û1 ∈ L∞(�) (see, e.g.,
Hu and Papageorgiou [17]) and the nonlinear regularity theorem of Lieberman [21],
implies that û1 ∈ C1,α(�) for some α ∈ (0, 1). Moreover, since

ξ(|u|) = ξ(u) ∀u ∈ M,

we infer that û1 does not change sign and we may assume that û1 � 0. Invoking the
nonlinear maximum principle of Vázquez [25], we conclude that

û1(z) > 0 ∀z ∈ �.

Next, we show the simplicity of λ̂1. So, let v̂1 ∈ W 1,p(�) be another eigenfunction
corresponding to λ̂1. As above, we show that v̂1 ∈ C1(�) and v̂1(z) > 0 for all z ∈ �.
We introduce

R(̂u1, v̂1)(z) = ‖∇û1(z)‖p − ‖∇v̂1(z)‖p−2
(

∇v̂1(z), ∇
(

û1(z)p

v̂1(z)p−1

))
RN
. (2.5)

From the generalized Picone identity of Allegretto and Huang [1] and the nonlinear
Green’s identity (see Casas and Fernández [5]), we have

0 �
∫
�

R(̂u1, v̂1) dz

=
∫
�

[
‖∇û1‖ p − ‖∇v̂1‖p−2

(
∇v̂1, ∇

(
û p

1

v̂
p−1

1

))
RN

]
dz

=
∫
�

[
‖∇û1‖ p +�p v̂1

(
û p

1

v̂
p−1

1

)]
dz

=
∫
�

[
‖∇û1‖p + (

β(z)− λ̂1
)̂
v

p−1
1

û p
1

v̂
p−1

1

]
dz

=
∫
�

[‖∇û1‖p + βû p
1

]
dz − λ̂1‖û1‖p

p

= ξ(̂u1)− λ̂1‖û1‖p
p = 0,



Existence and uniqueness of positive solutions 313

so
∫
�

R(̂u1, v̂1) dz = 0

and thus

R(̂u1, v̂1) = 0 ∀z ∈ �,

so finally û1 = kv̂1 for some k > 0 (see Allegretto and Huang [1]). This proves that
λ̂1 is simple (i.e., it is a principal eigenvalue). 
�

From the above proof, we have

λ̂1(β) = inf

⎧⎨
⎩

∫
�

‖∇u‖p dz +
∫
�

β|u|p dz : u ∈ W 1,p(�), ‖u‖p = 1

⎫⎬
⎭

= inf

⎧⎪⎨
⎪⎩

∫
�

‖∇u‖p dz +
∫

{u �=0}
β|u|p dz : u ∈ W 1,p(�), ‖u‖p = 1

⎫⎪⎬
⎪⎭ . (2.6)

Note that in the second infimum in (2.6), the integral
∫
{u �=0} β|u|p dz makes sense

even when β is only a measurable function and there exists ĉ > 0, such that

β(z) � ĉ for almost all z ∈ �

or

β(z) � −ĉ for almost all z ∈ �.

In the first case λ̂1(β) ∈ [−∞,+∞) and in the second case λ̂1(β) ∈ (−∞,+∞].
In what follows by A : W 1,p(�) −→ W 1,p(�)∗ we denote the nonlinear map,

defined by

〈A(u), y〉 =
∫
�

‖∇u‖p−2(∇u, ∇ y)RN dz ∀u, y ∈ W 1,p(�).

This map is continuous and maximal monotone (see [8] or [23]).

3 Existence of positive solutions

In this section we prove the existence of a positive smooth solution. The hypotheses
on the reaction f are the following:

H f : f : �× R −→ R is a Carathéodory function, such that
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(i) for all ζ � 0, f (·, ζ ) ∈ L∞(�) and there exists c > 0, such that

f (z, ζ ) � c(1 + ζ p−1) for almost all z ∈ �, all ζ � 0;

(ii) for almost all z ∈ �, the function ζ −→ f (z,ζ )
ζ p−1 is strictly decreasing on (0,+∞);

(iii) if η(z) = limζ→+∞ f (z,ζ )
ζ p−1 , then λ̂1(−η) > 0;

(iv) if η0(z) = limζ→0+ f (z,ζ )
ζ p−1 , then λ̂1(−η0) < 0.

Remark 3.1 Since we are looking for positive solutions and hypotheses H f concern
only the positive semiaxis R+ = [0,+∞), by truncating if necessary, we may (and
will) assume that

f (z, ζ ) = f (z, 0) for almost all ζ � 0.

Note that H f (i) is a unilateral growth condition. Hypothesis H f (ii) implies that
both functions η and η0 are measurable. Moreover, we have

f (z, ζ )

ζ p−1 � f (z, 1) �
∥∥ f (·, 1)

∥∥∞ = ĉ for almost all z ∈ �, all ζ � 1,

so

η(z) � ĉ for almost all z ∈ �

and thus

λ̂1(−η) ∈ (−∞,+∞].

Similarly, we have

f (z, ζ )

ζ p−1 � f (z, 1) � −∥∥ f (·, 1)
∥∥∞ = −ĉ for almost all z ∈ �, all ζ ∈ (0, 1],

so

η0(z) � −ĉ for almost all z ∈ �

and thus

λ̂1(−η0) ∈ [−∞,+∞).

If η, η0 ∈ L∞(�), then λ̂1(−η), λ̂(−η0) ∈ R and are the principal eigenvalues of
(2.1) when β = −η and β = −η0 respectively. If f (z, ζ ) = f (ζ ) (autonomous case),
then hypotheses H f (iii) and H f (iv) are equivalent to saying that

η < λ̂1 = 0 < η0
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(recall that the first eigenvalue of the negative Neumann p-Laplacian (i.e., problem
(2.1) with β ≡ 0) is zero).

Example 3.2 Let

f (ζ ) = λ
(
ζ p−1 − ζ q−1) ∀ζ � 0,

with 1 < p < q, λ > 0. Then f satisfies hypotheses H f . This function corresponds to
the equidiffusive p-logistic equation and η0 = λ > 0, η = −∞. More generally, let

f (ζ ) =
{
ζ p−1 − ζ q−1 if ζ ∈ [0, 1],
ζ p−1 − eζ−1 if ζ � 1,

with 1 < p � q. Note that this f has no polynomial growth restriction from below.

We introduce the following truncation–perturbation of f :

g(z, ζ ) =
{

f (z, 0) if ζ � 0,
f (z, ζ )+ ζ p−1 if ζ > 0,

(3.1)

This is a Carathéodory function. We set

F(z, ζ ) =
ζ∫

0

f (z, s) ds and G(z, ζ ) =
ζ∫

0

g(z, s) ds.

Note that hypothesis H f (i) and (3.1) imply that

G(z, ζ ) � c1(1 + ζ p) for almost all z ∈ �, all ζ ∈ R (3.2)

and some c1 > 0. Because of (3.2), we see that we can introduce the functional
ϕ̂ : W 1,p(�) −→ R = R ∪ {∞}, defined by

ϕ̂ = 1

p
‖∇u‖p

p + 1

p
‖u‖p

p −
∫
�

G(z, u) dz ∀u ∈ W 1,p(�).

Proposition 3.3 If hypotheses H f hold, then ϕ̂ is coercive, i.e., ϕ̂(u) −→ +∞ as
‖u‖ → +∞.

Proof We argue by contradiction. So, suppose that we can find a sequence {un}n�1 ⊆
W 1,p(�), such that

‖un‖ −→ +∞ and ϕ̂(un) � M1 ∀n � 1, (3.3)

for some M1 > 0. We have

1

p

(‖∇un‖p
p + ‖un‖p

p
)

� c2
(
1 + ‖un‖p

p
) ∀n � 1, (3.4)
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for some c2 > 0 (see (3.2) and (3.3)).
It is clear from (3.3) and (3.4) that ‖un‖p −→ +∞. We set

yn = un

‖un‖p
∀n � 1.

Then

‖yn‖p = 1 ∀n � 1 (3.5)

and from (3.4), we have

1

p

(‖∇ yn‖p
p + ‖yn‖p

p
)

� c2

(
1

‖un‖p
p

+ 1

)
,

so the sequence {yn}n�1 ⊆ W 1,p(�) is bounded.
So, passing to a subsequence if necessary, we may assume that

yn
w−→ y in W 1,p(�), (3.6)

yn −→ y in L p(�), (3.7)

hence ‖y‖p = 1. We have

1

p

(‖∇ yn‖p
p + ‖yn‖p

p
)

� M1

‖un‖p
p

+
∫
�

G(z, un)

‖un‖p
p

dz

� M1

‖un‖p
p

+
∫

{un>0}

(
F(z, un)

‖un‖p
p

+ 1

p
y p

n

)
dz +

∫
{un�0}

f (z, 0)un

‖un‖p
p

dz (3.8)

(see (3.1)). Note that

f (z, ζ )

ζ p−1 � f (z, 1) for almost all z ∈ �, all ζ ∈ (0, 1]

(see hypothesis H f (ii)). Hence

f (z, ζ ) � f (z, 1)ζ p−1 � −∥∥ f (·, 1)
∥∥∞ζ

p−1 for almost all z ∈ �, all ζ ∈ (0, 1].

So, it follows that

f (z, 0) � 0 for almost all z ∈ �.
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Then

∫
{un�0}

f (z, 0)un

‖un‖p
p

dz � 0 ∀n � 1. (3.9)

Using (3.9) in (3.8), we obtain

1

p

(‖∇ yn‖p
p + ‖yn‖p

p
)

� M1

‖un‖p
p

+ 1

p
‖y+

n ‖p
p +

∫
�

F(z, u+
n )

‖un‖p
p

dz ∀n � 1. (3.10)

Suppose that the sequence {u+
n }n�1 ⊆ L p(�) is bounded. Then y � 0. From

hypothesis H f (i), we have

F(z, ζ ) � c3(1 + ζ p) for almost all z ∈ �, all ζ � 0 (3.11)

and some c3 > 0. Then using (3.11), we have

∫
�

F(z, u+
n )

‖un‖p
p

dz � c3|�|N

‖un‖p
p

+ c3‖y+
n ‖p

p

(| · |N denotes the Lebesgue measure on R
N ), so

lim sup
n→+∞

∫
�

F(z, u+
n )

‖un‖p
p

dz � 0

(see (3.7) and recall that y � 0). So, if in (3.10) we pass to the limit as n → +∞, we
obtain

1

p

(‖∇ y‖p
p + ‖y‖p

p
)

� 0,

so y = 0, which contradicts (3.5) and (3.7).
Therefore we may assume that ‖u+

n ‖p −→ +∞. From the inequality in (3.3), we
have

1

p
‖∇ y+

n ‖p
p � M1

‖u+
n ‖p

p
+

∫
�

F(z, u+
n )

‖u+
n ‖p

p
dz ∀n � 1 (3.12)



318 L. Gasiński, N. S. Papageorgiou

(see (3.9)). We have

∫
�

F(z, u+
n )

‖u+
n ‖p

p
dz =

∫
{y+=0}

F(z, u+
n )

‖u+
n ‖p

p
dz

+
∫

{y>0}∩{yn>0}

F(z, u+
n )

(u+
n )

p
(y+

n )
p dz ∀n � 1. (3.13)

Since

y+
n −→ y+ in L p(�)

(see (3.7)), by passing to a further subsequence if necessary, we may also assume that

y+
n (z) −→ y+(z) for almost all z ∈ �. (3.14)

From (3.11), we have

∣∣∣∣∣∣∣
∫

{y+=0}

F(z, u+
n )

‖u+
n ‖p

p
dz

∣∣∣∣∣∣∣
� c3

∫
{y+=0}

(
1

‖u+
n ‖p

p
+ (y+

n )
p
)

dz −→ 0. (3.15)

Note that

u+
n (z) −→ +∞ almost everywhere on {y+ > 0} (3.16)

and

χ{y>0}∩{yn>0}(z) −→ χ{y>0}(z) almost everywhere in �. (3.17)

Moreover, we claim that

lim sup
ζ→+∞

F(z, ζ )

ζ p
� 1

p
η(z) for almost all z ∈ �. (3.18)

Indeed, first let z ∈ {η > −∞}\D, with |D|N = 0 be such that

f (z, ζ )

ζ p−1 −→ η(z) as ζ → +∞.

(see hypotheses H f (ii) and (iii)). For a given ε > 0, we can find M2 = M2(ε, z) > 0,
such that

f (z, ζ ) �
(
η(z)+ ε

)
ζ p−1 ∀ζ � M2,
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so

F(z, ζ ) � 1

p

(
η(z)+ ε

)
ζ p ∀ζ � M2,

thus

F(z, ζ )

ζ p
� 1

p

(
η(z)+ ε

) ∀ζ � M2

and so

lim sup
ζ→+∞

F(z, ζ )

ζ p
� 1

p

(
η(z)+ ε

)
.

Since ε > 0 was arbitrary, we let ε ↘ 0 to conclude that

lim sup
ζ→+∞

F(z, ζ )

ζ p
� 1

p
η(z) for almost all z ∈ {η > −∞}.

If z ∈ {η = −∞} \ D, with |D|N = 0 is such that

f (z, ζ )

ζ p−1 −→ −∞ = η(z) as ζ → +∞,

then for every ξ > 0, we can find M3 = M3(ξ, z) > 0, such that

f (z, ζ ) � −ξζ p−1 ∀ζ � M3,

so

F(z, ζ )

ζ p
� − ξ

p
∀ζ � M3

and thus

lim sup
ζ→+∞

F(z, ζ )

ζ p
� − ξ

p
.

Since ξ > 0 was arbitrary, we let ξ → +∞ to conclude that

lim
ζ→+∞

F(z, ζ )

ζ p
= −∞ for almost all z ∈ {η = −∞}.

Therefore, finally we have proved (3.18).
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Using Fatou’s lemma in (3.18) (which is legitimate because of (3.11)) as well as
(3.16), (3.17) and (3.14), we have

lim sup
n→+∞

∫
{y>0}∩{yn>0}

F(z, u+
n )

(u+
n )

p
(y+

n )
p dz � 1

p

∫
{y>0}

ηy p dz = 1

p

∫
{y+�=0}

η(y+)p dz.

(3.19)

Hence, if in (3.13) we pass to the limit as n → +∞ and use (3.15) and (3.19), we
obtain

lim sup
n→+∞

∫
�

F(z, u+
n )

‖u+
n ‖p

dz � 1

p

∫
{y+�=0}

η(y+)p dz. (3.20)

Returning to (3.12), taking limits as n → +∞ and using (3.6) and (3.20), we have

‖∇ y+‖p
p � 1

p

∫
{y+�=0}

η(y+)p dz. (3.21)

If y+ = 0, then from (3.10), we have

1

p

(‖∇ y−‖p
p + ‖y−‖p

p
)

� 0,

so y− = 0, i.e., y = 0 which contradicts (3.6).
So y+ �= 0 and then from (3.21), it follows that

λ̂1(−η) � 0

(see (2.6)), which contradicts hypothesis H f (iii). This proves that ϕ̂ is coercive. 
�
Proposition 3.4 If hypotheses H f hold, then ϕ̂ is sequentially weakly lower semicon-
tinuous.

Proof From the expression of ϕ̂ and since the norm in a Banach space is sequen-
tially weakly lower semicontinuous, it suffices to show that the integral functional
ψ : W 1,p(�) −→ R = R ∪ {+∞}, defined by

ψ(u) = −
∫
�

G(z, u) dz

is sequentially weakly lower semicontinuous. To this end, we need to show that for
every λ ∈ R, the sublevel set

Lλ = {
u ∈ W 1,p(�) : ψ(u) � λ

}
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is sequentially weakly closed. To this end, let {un}n�1 ⊆ Lλ and assume that

un
w−→ u in W 1,p(�).

Then

un −→ u in L p(�)

(by the Sobolev embedding theorem) and since L p(�) is a Banach lattice, we also
have that

u±
n −→ u± in L p(�). (3.22)

We may also assume that

u±
n (z) −→ u±(z) almost everywhere in �. (3.23)

We have

λ � −
∫
�

G(z, un) dz = −
∫
�

F(z, u+
n ) dz − 1

p
‖u+

n ‖p
p −

∫
�

f (z, 0)(−u−
n ) dz.

(3.24)

Note that

1

p
‖u+

n ‖p
p −→ 1

p
‖u+‖p

p (3.25)

and
∫
�

f (z, 0)(−u−
n ) dz −→

∫
�

f (z, 0)(−u−) dz (3.26)

(see (3.22)). Also, from (3.23) and Fatou’s lemma, we have

lim inf
n→+∞

(
−

∫
�

F(z, u+
n ) dz

)
= − lim sup

n→+∞

∫
�

F(z, u+
n ) dz � −

∫
�

F(z, u+) dz.

(3.27)

Then, from (3.24) and using (3.25) and (3.27), in the limit as n → +∞, we have

λ � −
∫
�

F(z, u+) dz − 1

p
‖u+‖p

p −
∫
�

f (z, 0)(−u−) dz = −
∫
�

G(z, u) dz,

so u ∈ Lλ and so ψ is sequentially weakly lower semicontinuous. 
�
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Now we are ready to establish the existence of positive solutions.

Proposition 3.5 It hypotheses H f hold, then problem (1.1) has a positive solution
u0 ∈ C1(�) with u0(z) > 0 for all z ∈ �.

Proof Propositions 3.3, 3.4 and the Weierstrass theorem, imply that we can find u0 ∈
W 1,p(�), such that

ϕ̂(u0) = inf
{
ϕ̂(u) : u ∈ W 1,p(�)

} = m̂. (3.28)

Claim 1. u0 � 0, u0 �= 0.
Note that, if u−

0 �= 0, then

ϕ̂(u+
0 ) = 1

p
‖∇u+

0 ‖p
p −

∫
�

F(z, u+
0 ) dz

<
1

p
‖∇u0‖p

p + 1

p
‖u−

0 ‖p
p −

∫
�

F(z, u+
0 ) dz −

∫
�

f (z, 0)(−u−
0 ) dz

= ϕ̂(u0)

(see (3.6) and recall that f (z, 0) � 0 for almost all z ∈ �), which contradicts (3.28).
Therefore u0 � 0.

Next we show that u0 �= 0. By hypothesis H f (iv) and (2.6), we see that we can
find u ∈ W 1,p(�), such that

‖∇u‖p
p −

∫
{u �=0}

η0|u|p dz < 0, (3.29)

with ‖u‖p=1. Replacing u with |u| ∈ W 1,p(�) if necessary, we may assume that
u � 0, u �= 0. Let {un}n�1 ⊆ C1(�) be a sequence, such that

un −→ u in W 1,p(�)

(see e.g., Gasiński and Papageorgiou [8, p. 189]). Since

u+
n −→ u+ = u in W 1,p(�),

we may assume that un � 0 for all n � 1. Let us set

ûn = min{u, un} ∈ W 1,p(�) ∩ L∞(�) ∀n � 1.

Then

ûn −→ u in W 1,p(�)
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(see e.g., Gasiński and Papageorgiou [8, p. 198]). We may also assume that

ûn(z) −→ u(z) for almost all z ∈ �.

By virtue of hypothesis H f (iv), we have

η0(z) � f (z, 1) � −‖ f (·, 1)‖∞ for almost all z ∈ �,

so

η0(z)̂un(z)
pχ{un �=0}(z) � −‖ f (·, 1)‖∞u(z)p for almost all z ∈ �. (3.30)

Note that ‖ f (·, 1)‖∞u p ∈ L1(�). Also, we have

η0(z)̂un(z)
pχ{un �=0}(z) −→ η0(z)u(z)

pχ{u �=0}(z) for almost all z ∈ �. (3.31)

From (3.30), (3.31) and Fatou’s lemma, we have

lim inf
n→+∞

∫
{un �=0}

η0û p
n dz �

∫
{u �=0}

η0u p dz. (3.32)

Since ûn −→ u in W 1,p(�), we have

‖∇ûn‖p
p −→ ‖∇û‖p

p.

From (3.29), (3.32) and (3.33), we see that

‖∇ûn‖p
p −

∫
{̂un �=0}

η0û p
n dz < 0 for large n � 1. (3.33)

This means that we can find u ∈ W 1,p(�) ∩ L∞(�), such that

‖∇u‖p
p −

∫
{u �=0}

η0u p dz < 0, u � 0. (3.34)

Moreover, dividing with ‖u‖p
p if necessary, we may assume that ‖u‖p = 1. For

ζ > 0, we have

F(z, ζ ) =
1∫

0

d

dt
F(z, tζ ) dt =

1∫
0

f (z, tζ )ζ dt,
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so, using hypothesis H f (ii), we have

F(z, ζ )

ζ p
=

1∫
0

f (z, tζ )

ζ p−1 dt � f (z, ζ )

ζ p−1

1∫
0

t p−1 dt,= 1

p

f (z, ζ )

ζ p−1

and thus

lim inf
ζ→0+

F(z, ζ )

ζ p
� 1

p
η0(z) for almost all z ∈ �. (3.35)

Consider u ∈ W 1,p(�)∩ L∞(�), ‖u‖p = 1 satisfying (3.34). For r ∈ (0, 1) small,
we will have ru(z) ∈ [0, 1] for almost all z ∈ �. Then, using hypothesis H f (iii), we
have

F(z, ru(z))

r p
= 1

r p

ru(z)∫
0

f (z, s) ds � − 1

r p
‖ f (·, 1)‖∞

ru(z)∫
0

s p−1 ds

� −‖ f (·, 1)‖∞
p

u(z)p � −‖ f (·, 1)‖∞
p

‖u‖p∞. (3.36)

From (3.35), (3.36) and Fatou’s lemma, we have

lim inf
r→0+

∫
{u �=0}

F(z, ru)

r p
dz � 1

p

∫
{u �=0}

η0u p dz,

so, using also (3.34), we have

1

p
‖∇u‖p

p −
∫
�

F(z, ru)

r p
dz < 0 for small r ∈ (0, 1),

thus

ϕ̂(ru) < 0 for small r ∈ (0, 1)

(recall that ru � 0 and see (3.1)). Using also (3.28), we see that

m̂ = ϕ̂(u0) < 0 = ϕ̂(0)

and so u0 �= 0.
This completes the proof of Claim 1.

Claim 2. u0 ∈ L∞(�)
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For k � 1, we introduce the truncation

fk(z, ζ ) =
{

f (z, 0) if ζ � 0,
max

{
f (z, ζ ), −kζ p−1

}
if ζ > 0.

(3.37)

Evidently this is a Carathéodory function, fk(·, ζ ) ∈ L∞(�) for all ζ ∈ R and

∣∣ fk(z, ζ )
∣∣ � c4

(
1 + |ζ |p−1) for almost all z ∈ �, all ζ ∈ R, (3.38)

for some c4 > 0. We set

ηk
0(z) = lim inf

ζ→0+
fk(z, ζ )

ζ p−1 and ηk(z) = lim sup
ζ→+∞

fk(z, ζ )

ζ p−1 .

Since

fk(z, ζ ) � f (z, ζ ) for almost all z ∈ �, all ζ ∈ R,

we see that ηk
0 � η0 and so

λ̂1(−ηk
0) � λ̂1(−η0) < 0 ∀k � 1

(see (2.6) and hypothesis H f (iv)).
Moreover, from (3.37), we see that ηk ↘ η and so

λ̂1(−ηk) −→ λ̂1(−η) > 0

(see (2.6) and hypothesis H f (iii)). Hence, we have

λ̂1(−ηk) > 0 for large k � 1.

Reasoning as before, we obtain u0k ∈ W 1,p(�), u0k � 0, u0k �= 0 which mini-
mizes ϕ̂k (here ϕ̂k is defined as ϕ̂ with f (z, ζ ) replaced by fk(z, ζ )). Note that because
of (3.38), we have ϕ̂k ∈ C1(W 1,p(�)) and so for k � 1 large, we have

ϕ̂ ′
k(u0k) = 0,

so

A(u0k) = N fk (u0k)

with N fk (u)(·) = fk
(·, u(·)) for all u ∈ W 1,p(�) (recall that u0k � 0). Thus

{−�pu0k(z) = fk
(
z, u0k(z)

)
in �,

∂u0k
∂n = 0 on ∂�.
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Nonlinear regularity theory implies that u0k ∈ C1(�) for all k � 1 (see Lieberman
[21] and Gasiński and Papageorgiou [8, pp. 738–739]). We set

vk = min{u0, u0k} ∈ W 1,p(�) ∩ L∞(�) ∀k � 1.

Since u0k is a minimizer of ϕ̂k , we have

ϕ̂k(u0k) � ϕ̂k(h) ∀h ∈ W 1,p(�).

So, if we choose h = max{u0, u0k} ∈ W 1,p(�), then

1

p

∫
{u0k<u0}

‖∇u0k‖p dz −
∫

{u0k<u0}
Fk(z, u0k) dz

� 1

p

∫
{u0k<u0}

‖∇u0‖p dz −
∫

{u0k<u0}
Fk(z, u0) dz,

so

1

p

∫
{u0k<u0}

(‖∇u0k‖p − ‖∇u0‖p) dz

�
∫

{u0k<u0}

(
Fk(z, u0k)− Fk(z, u0)

)
dz. (3.39)

We have

ϕ̂(vk)− ϕ̂(u0) = 1

p

∫
{u0k<u0}

(‖∇u0k‖p − ‖∇u0‖p) dz

−
∫

{u0k<u0}

(
F(z, u0k)− F(z, u0)

)
dz

�
∫

{u0k<u0}

(
Fk(z, u0k)− Fk(z, u0)− F(z, u0k)− F(z, u0)

)
dz

(3.40)

(see (3.39)).
But on {u0k < u0}, we have

Fk(z, u0k)− Fk(z, u0)− F(z, u0k)+ F(z, u0) =
u0∫

u0k

( − fk(z, s)+ f (z, s)
)

dz � 0

(3.41)
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(recall that fk � f ). Using (3.41) in (3.40), we obtain

ϕ̂(vk) � ϕ̂(u0) = m̂,

so

ϕ̂(vk) = m̂.

Since vk ∈ L∞(�), we conclude that Claim 2 holds.
Next, let h ∈ C1(�) and t ∈ (−1, 1). We set

w(h) =
∫
�

(
G(z, u0 + th)− G(z, u0)− g(z, u0)h

)
dz,

so

∣∣w(h)∣∣ �
∫
�

1∫
0

∣∣g(z, u0 + th)− g(z, u0)
∣∣ dt |h| dz

�
1∫

0

∥∥Ng(u0 + th)− Ng(u0)
∥∥

p′ dt ‖h‖,

where Ng(u)(·) = g(·, u(·)) for all u ∈ W 1,p(�). Here we have used Fubini’s theorem
and Hölder’s inequality. Hypotheses H f (i), (ii) and the fact that h ∈ C1(�), imply
that

∣∣g(
z, u0(z)+ th(z)

)∣∣ � â(z) for almost all z ∈ �, all t ∈ (−1, 1),

with â ∈ L∞(�). From this it follows that

1∫
0

∥∥Ng(u0 + th)− Ng(u0)
∥∥

p dt −→ 0 as ‖h‖ → 0.

Therefore

|w(h)|
‖h‖ −→ 0 as ‖h‖ → 0

and so we see that the Gâteaux derivative exists at u0 in every direction h ∈ C1(�)

and is equal to A(u0)− N f (u0) (recall that u0 � 0 and see (3.1)). Moreover, by virtue
of (3.28), we have

〈
ϕ̂′

G(u0), h
〉 = 〈

A(u0)− Ng(u0), h
〉 = 0 ∀h ∈ C1(�).
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Since the embedding C1(�) ⊆ W 1,p(�) is dense, it follows that

A(u0) = N f (u0),

so

{−�pu0(z) = f
(
z, u0(z)

)
in �,

∂u0
∂n = 0 on ∂�

(3.42)

(see Motreanu and Papageorgiou [22]).
Note that f (·, u0(·)) ∈ L∞(�) (see hypothesis H f (i) and recall that by Claim 2,

u0 ∈ L∞(�)). So, from nonlinear regularity theory, we have that u0 ∈ C1(�). By
virtue of hypothesis H f (ii), we have

f (z, u0(z))

u0(z)p−1 � f (z, ‖u0‖∞)
‖u0‖p−1∞

for almost all z ∈ {u0 > 0},

so

f
(
z, u0(z)

)
� −‖ f (·, ‖u0‖∞)‖∞

‖u0‖p−1∞
u0(z)

p−1 for almost all z ∈ {u0 > 0}.

Also, recall that f (z, 0) � 0 for almost all z ∈ �. Therefore from (3.42), it follows
that

�pu0(z) � c5u0(z)
p−1 for almost all z ∈ �,

with c5 > 0 and so

u0(z) > 0 ∀z ∈ �

(see Vázquez [25]). 
�

4 Uniqueness of positive solutions

Next we show the uniqueness of positive solutions for problem (1.1). In fact, we show
that hypotheses H f (iii) and (iv) are both necessary and sufficient for the existence
and uniqueness of positive solutions for problem (1.1).

Proposition 4.1 If hypotheses H f hold, then problem (1.1) has a unique positive
solution u0 ∈ C1(�), such that u0(z) > 0 for all z ∈ �.

Proof Let u, v be two positive solutions for problem (1.1). Then we have u, v ∈
W 1,p(�) ∩ L∞(�) (see Motreanu and Papageorgiou [22]) and moreover, as before
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through nonlinear regularity theory and the nonlinear maximum principle of Vázquez
[25], we have that u(z) > 0 and v(z) > 0 for all z ∈ �. Let

R(u, v)(z) = ∥∥∇u(z)
∥∥p − ∥∥∇v(z)∥∥p−2

(
∇v(z), ∇

(
u(z)p

v(z)p−1

))
RN
. (4.1)

From Allegretto and Huang [1], we know that

R(u, v)(z) � 0 ∀z ∈ �.

Using the nonlinear Green’s identity (see Casas and Fernández [5]), we have

∫
�

f (z, u)

u p−1 (u p − v p) dz = −
∫
�

�pu

(
u − v p

u p−1

)
dz

=
∫
�

‖∇u‖p−2
(

∇u, ∇u − ∇
(
v p

u p−1

))
RN

dz

= ‖∇u‖p
p −

∫
�

‖∇u‖p−2
(

∇u, ∇
(
v p

u p−1

))
RN

dz

= ‖∇u‖p
p − ‖∇v‖p

p +
∫
�

R(v, u) dz. (4.2)

Similarly, interchanging the roles of u and v, we also have

∫
�

f (z, v)

v p−1 (v p − u p) dz = ‖∇v‖p
p − ‖∇u‖p

p +
∫
�

R(u, v) dz. (4.3)

Adding (4.2) and (4.3), using hypothesis H f (ii) and recalling that R � 0, we obtain

0 �
∫
�

(
f (z, u)

u p−1 − f (z, v)

v p−1

)
(u p − v p) dz =

∫
�

(
R(v, u)+ R(u, v)

)
dz � 0,

so
∫
�

(
R(v, u)+ R(u, v)

)
dz = 0

and thus

R(v, u) = R(u, v) = 0 for almost all z ∈ �,

thus

u = kv,
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for some k > 0 (see Allegretto and Huang [1]). Hypothesis H f (ii) implies that k = 1
and so u = v. 
�

As we already remarked, we are going to show that hypotheses H f (iii) and (iv) are
also necessary for the uniqueness of positive solutions for problem (1.1).

Proposition 4.2 If f : �×R −→ R is a Carathéodory function satisfying hypotheses
H f (i) and (ii) and problem (1.1) has a unique positive solution u0 ∈ W 1,p(�), then
λ̂1(−η0) < 0 < λ̂1(−η), where

η0(z) = lim
ζ→0+

f (z, ζ )

ζ p−1 and η(z) = lim
ζ→+∞

f (z, ζ )

ζ p−1

Proof Note that u0 ∈ W 1,p(�) ∩ L∞(�) (see e.g., Hu and Papageorgiou [17]) and
as before via nonlinear regularity (see Lieberman [21]) and the nonlinear maximal
principle (see Vázquez [25]), we have u0 ∈ C1(�) with u0(z) > 0 for all z ∈ �.

Using (2.6) and hypothesis H f (ii), we have

λ̂1(−η0) �
‖∇u0‖p

p − ∫
�
η0u p

0 dz

‖u0‖p
p

=
∫
�

f (z, u0)u0 dz − ∫
�
η0u p

0 dz

‖u0‖p
p

<

∫
�
η0u p

0 dz − ∫
�
η0u p

0 dz

‖u0‖p
p

= 0.

This proves that λ̂1(−η0) < 0.
Next, let

β(z) = − f (z, ‖u0‖∞ + 1)

(‖u0‖∞ + 1)p−1 .

Then β ∈ L∞(�). By virtue of Proposition 2.1, problem (2.1) with this particular
weight β, has a principal eigenfunction û1 ∈ C1(�), such that û1(z) > 0 for all z ∈ �.
Let k > 0 be large enough, such that u0 < kû1 = ũ1. As before (see the proof of
Proposition 4.1), we have

∫
�

f (z, u0)

u p−1
0

(u p
0 − ũ p

1 ) dz = ‖∇u0‖p
p − ‖∇ũ1‖p

p +
∫
�

R(̃u1, u0) dz (4.4)

and
∫
�

(
λ̂1(β)− β

)
(̃u p

1 − u p
0 ) dz = ‖∇ũ1‖p

p − ‖∇u0‖p
p +

∫
�

R(u0, ũ1) dz. (4.5)
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Adding (4.4) and (4.5), we obtain

∫
�

(
f (z, u0)

u p−1
0

+ β − λ̂1(β)

)
(u p

0 − ũ p
1 ) dz =

∫
�

(
R(̃u1, u0)+ R(u0, ũ1)

)
dz � 0.

(4.6)

Note that by virtue of hypothesis H f (ii), we have

f (z, u0)

u p−1
0

>
f (z, ‖u0‖∞ + 1)

(‖u0‖∞ + 1)p−1 = −β(z) for almost all z ∈ �,

so

f (z, u0)

u p−1
0

+ β(z) > 0 for almost all z ∈ �. (4.7)

Also, recall that

(
u p

0 − ũ p
1

)
(z) < 0 for almost all z ∈ �. (4.8)

So, using (4.7) and (4.8) in (4.6), we infer that

λ̂1(β) > 0.

But β � −η (see hypothesis H f (ii)) and so λ̂1(β) � λ̂1(−η). Hence λ̂1(−η) > 0.

�

So, summarizing the situation for problem (1.1), we can state the following theorem.

Theorem 4.3 If f : �×R −→ R is a Carathéodory function which satisfies hypoth-
eses H f (i) and (i i), then problem (1.1) admits a unique positive solution if and only
if

λ̂1(−η0) < 0 < λ̂1(η),

where

η0(z) = lim
ζ→0+

f (z, ζ )

ζ p−1 and η(z) = lim
ζ→+∞

f (z, ζ )

ζ p−1 .
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