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Abstract We derive Khinchine type inequalities for even moments with optimal
constants from the result of Walkup (J Appl Probab 13:76–85, 1976) which states that
the class of log-concave sequences is closed under the binomial convolution.
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1 Introduction

Let α1, α2, . . . , αn ∈ R and let r1, r2, . . . , rn be independent symmetric ±1 random
variables. The classical Khinchine inequality [8], states that for any positive p > q
there exists a constant C p,q (which does not depend on n, α1, α2, . . . , αn) such that

(E|S|p)1/p ≤ C p,q · (E|S|q)1/q ,

where S = ∑n
i=1 αi ri .
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There was a long pursuit for the optimal values of the constants C p,q . The best
values of C p,2 for p ≥ 3 were established by Whittle [16] while the optimal C2,1

constant was proved to be equal to
√

2 by Szarek [14] (see also [12] for a short proof
which extends to the normed linear space setting; this approach was later extended in
[10,13]). Finally, Haagerup [6], found best values of C p,2 for all p ∈ (2, 3), and of
C2,q for all q ∈ (0, 2), thus solving the part of the problem which is most important
for applications since E S2 = ∑n

i=1 α2
i is a quantity particularly easy to deal with.

However, the general problem of finding optimal values of the constants C p,q is open
and probably quite difficult. Its special case when both p and q are even numbers,
and p is divisible by q, was settled by Czerwiński in his unpublished Master thesis
[4]. His method was based on some algebraic-combinatorial identities and does not
seem to generalize to other situations. On the other hand, König and Kwapień [9],
and Baernstein and Culverhouse [1], have obtained comparison of moments inequal-
ities with best constants, similar in spirit to Haagerup’s result but with the symmetric
Bernoulli random variables replaced by some multidimensional rotationally invari-
ant random vectors of special form (for example, uniformly distributed on spheres or
balls). Again, as in Haagerup’s approach, it was crucial for their main argument to
work to have p = 2 or q = 2. In the present paper we establish the optimal values
of C p,q for even p > q > 0 (the assumption of q | p no longer needed) both in the
classical Khinchine inequality and its high-dimensional counterparts.

The main tool in our approach is Walkup’s theorem (Theorem 1 of [15]) which states
that the binomial convolution of two log-concave sequences is also log-concave:

Definition 1 A sequence (ai )
∞
i=0 of non-negative real numbers is called log-concave

if a2
i ≥ ai−1ai+1 for i ≥ 1 and the set {i ≥ 0 | ai > 0} is an interval of integers.

Theorem 1 (Walkup [15]) Let (ai )
∞
i=0 and (bi )

∞
i=0 be two log-concave sequences of

positive real numbers. Define

cn =
n∑

i=0

(
n

i

)

ai bn−i .

Then the sequence (cn)∞n=0 is log-concave.

Using Liggett’s terminology [11] we may also rephrase this to another statement:
the class of ultra log-concave sequences is closed under standard convolution opera-
tion, where a sequence of positive numbers (ai )

∞
i=0 is called ultra log-concave if and

only if the sequence (i ! · ai )
∞
i=0 is log-concave.

There are at least three proofs of this theorem in the literature. Walkup’s original
proof is a bit difficult for non-experts whereas Liggett’s proof [11] is very elementary
but quite long, as it covers a more general result than just Theorem 1. Recently, Gurvits
[5] published a short proof which, however, relies on the powerful Alexander-Fenchel
inequalities for mixed volumes of convex bodies. For reader’s convenience we pro-
vide yet another proof, more similar to Liggett’s than to Walkup’s, but shorter than
Liggett’s proof and very direct. We postpone it till Sect. 3.
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2 Main results

Now we will present an application of Theorem 1. Let us denote the standard Euclid-
ean norm on R

d by ‖ · ‖. In what follows we consider rotation invariance with respect
to the same standard Euclidean structure. Furthermore, let G be a Gaussian random
variable with the standard N (0, 1) distribution while by G we denote an R

d -valued
Gaussian vector with the standard N (0, I dd) distribution.

Lemma 1 Let � : R
d → R be the projection to the first coordinate. For p > 0 assume

that X is a rotation invariant R
d -valued random vector with finite pth moment. Then

E|�X |p

E|G|p
= E‖X‖p

E‖G‖p
.

Proof Let θ be a random vector uniformly distributed on the unit sphere of (Rd , ‖ · ‖)
and independent of X . Since X is rotation invariant it has the same distribution as
‖X‖ · θ and thus �X has the same distribution as ‖X‖ · �θ . Therefore E|�X |p =
E‖X‖p · E|�θ |p. The same argument used for G instead of X yields

E|G|p = E|�G|p = E‖G‖p · E|�θ |p.

	

Definition 2 We will say that an R

d -valued random vector X is ultra sub-Gaussian if
either X = 0 a.s., or X is rotation invariant (i.e. symmetric if d = 1), has all moments
finite, and the sequence (ai )

∞
i=0 defined by

ai = E‖X‖2i/E‖G‖2i for i ≥ 1, and a0 = 1, is log-concave.

Lemma 2 If X and Y are independent ultra sub-Gaussian R
d-valued random vectors

then X + Y is also ultra sub-Gaussian.

Proof If X or Y is equal to zero a.s. then the assertion is obvious. Let

ai = E‖X‖2i/E‖G‖2i = E(�X)2i/EG2i ,

bi = E‖Y‖2i/E‖G‖2i = E(�Y )2i/EG2i ,

ci = E‖X + Y‖2i/E‖G‖2i = E(�X + �Y )2i/EG2i

for i ≥ 1, and let a0 = b0 = c0 = 1. It remains to notice that

cn = E(�X + �Y )2n

EG2n
= 1

(2n − 1)!!
n∑

i=0

(
2n

2i

)

E(�X)2i
E(�Y )2n−2i

=
n∑

i=0

(2n)!!
(2i)!!(2n − 2i)!!ai bn−i =

n∑

i=0

(
n

i

)

ai bn−i ,

where we have used the fact that �X and �Y are independent and symmetric. The dou-
ble factorial N !! denotes the product of all positive integers which have the same parity
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as N and do not exceed N . We adopt the standard convention that (−1)!! = 0!! = 1.

The assertion immediately follows from Theorem 1. 	

Lemma 3 Assume that an R

d-valued random vector X and a non-negative random
variable R are independent, and that R · X has distribution N (0, I dd). Then X is
ultra sub-Gaussian.

Proof Clearly, X is rotation invariant. Note that for p > 0 we have

E‖X‖p · ER p = E‖G‖p ∈ (0,∞),

so that X has all moments finite and strictly positive. Let ai = E‖X‖2i/E‖G‖2i . By
the Schwarz inequality for i ≥ 1 we have

1/a2
i = (ER2i )2 ≤ ER2(i−1) · ER2(i+1) = 1/(ai−1ai+1)

which proves that the sequence (ai )
∞
i=0 is log-concave. 	


Corollary 1 Assume that X is a random vector uniformly distributed on

(i) the Euclidean sphere r · Sd−1 (if d = 1 this is symmetric ±r distribution)
or

(ii) the Euclidean ball r · Bd

for some r > 0. Then X is ultra sub-Gaussian.

Proof Distribution of any R
d -valued random vector which is rotation invariant and

unimodal (i.e. it has a rotation invariant density which is non-increasing as a function
of distance to zero) can be expressed as an integral mean of measures uniformly dis-
tributed on balls with center in zero. Since the standard normal distribution N (0, I dd)

is rotation invariant and unimodal the corollary is established in the case (ii).
For the reader’s convenience, however, we provide an explicit description of this

factorization. Let us denote the volume of the unit ball Bd by vd = πd/2/�( d
2 + 1)

and let ϕd(s) = (2π)−d/2e−s2/2, i.e. ϕd(‖x‖) is a density of N (0, I dd). Furthermore,
for s > 0 set us(x) = v−1

d s−d1{x∈Rd :‖x‖≤s}, so that us is a density of a random vector
uniformly distributed on s · Bd . Hence

ϕd(‖x‖) =
∞∫

‖x‖
(−ϕ′

d(s)) ds =
∞∫

0

1{x∈Rd :‖x‖≤s}sϕd(s) ds

=
∞∫

0

vdsd+1ϕd(s)us(x) ds.

Thus the product of a random vector uniformly distributed on Bd with an indepen-
dent positive random variable R̃ with density vdsd+1ϕd(s)1(0,∞)(s) has distribution
N (0, I dd). Setting R = R̃/r ends the construction.
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The case (i) is simpler, it just suffices to note that

G = ‖G‖
r

· r
G

‖G‖ ,

where the factors are independent, and the second of them is uniformly distributed on
r · Sd−1. 	

Corollary 2 For α > 0 let X be an R

d -valued random vector with density

gX (x) = �( d
2 + 1)

�( d
α

+ 1)
π−d/2e−‖x‖α

.

If α > 2 then X is ultra sub-Gaussian.

Proof Let β ∈ (0, α) and let Y be an R
d -valued random vector with density

gY (x) = �( d
2 + 1)

�( d
β

+ 1)
π−d/2e−‖x‖β

.

It is a well-known fact that Y is a mixture of dilatations of X and thus (for β = 2 < α)
the assertion follows. For the sake of completeness we provide a detailed argument.
Let Z be a standard positive β/α-stable random variable, so that Ee−wZ = e−wβ/α

for
every w ≥ 0. Note that for μ > 0 we have

EZ−μ = E
1

�(μ)

∞∫

0

e−t Z tμ−1 dt = 1

�(μ)

∞∫

0

tμ−1
Ee−t Z dt

= 1

�(μ)

∞∫

0

tμ−1e−tβ/α

dt = α�(αμ/β)

β�(μ)
.

Let gZ denote the density of Z and let W be a positive random variable independent
of X with density

gW (t) = β�(d/α)

α�(d/β)
t−d/αgZ (t).

We will prove that W −1/α X has the same distribution as Y . Since both random vectors
are rotation invariant it suffices to prove that W −1/α‖X‖ has the same distribution as
‖Y‖ which immediately follows from the fact that the Laplace transforms of logarithms
of these random variables are equal:

E(W −1/α‖X‖)λ = EW −λ/α · E‖X‖λ = E‖Y‖λ
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for every λ ≥ 0. Indeed, by a standard and direct computation we obtain E‖X‖λ =
�(λ+d

α
)/�(d/α) and E‖Y‖λ = �(λ+d

β
)/�(d/β), whereas

EW −λ/α = β�(d/α)

α�(d/β)
EZ−(λ+d)/α = �(d/α)�(λ+d

β
)

�(d/β)�(λ+d
α

)
.

	

Now we are in position to state and prove our main results:

Theorem 2 Let n and d be positive integers and let p > q ≥ 2 be even integers. Let
X1, X2, . . . , Xn be independent R

d-valued ultra sub-Gaussian random vectors. Then

(E‖S‖p)1/p ≤ (E‖G‖p)1/p

(E‖G‖q)1/q
· E(‖S‖q)1/q

where S = X1 + X2 + · · · + Xn.

Theorem 3 Let n and d be positive integers and let p > q ≥ 2 be even integers. Let
X1, X2, . . . , Xn be independent R

d -valued random vectors and assume that each of
them is either uniformly distributed on a Euclidean sphere or uniformly distributed
on a Euclidean ball. Then

(E‖S‖p)1/p ≤ (E‖G‖p)1/p

(E‖G‖q)1/q
· E(‖S‖q)1/q

where S = X1 + X2 + · · · + Xn.

The constant (E‖G‖p)1/p/(E‖G‖q)1/q =
(
�(

p+d
2 )

) 1
p
(
�(

q+d
2 )

)− 1
q (

�( d
2 )

) 1
q − 1

p

is obviously optimal, as indicated by the example of i.i.d. centered Xi ’s with n → ∞
(by the Central Limit Theorem). For d = 1 this is the classical Khinchine inequality.

Proof of Theorems 2 and 3 Without loss of generality we may and will assume that
all the spheres and balls mentioned in the assumptions of Theorem 3 are centered at
zero, i.e. Xi ’s are rotationally invariant. Indeed, it suffices to notice that S − ES =∑n

i=1(Xi − EXi ) is rotation invariant and thus ‖S‖ has the same distribution as
‖(S − ES) + ‖ES‖ · θ‖, where θ is uniformly distributed on the unit sphere and inde-
pendent of S. Thus by increasing number of variables by one we have reduced the
problem to the case of rotationally invariant random vectors. Corollary 1 allows us to
deduce Theorem 3 from Theorem 2.

Now it is enough to note that S is ultra log-concave by Lemma 2, so that the
sequence (ak)

∞
k=0 given by ak = E‖S‖2k/E‖G‖2k (with a0 = 1) is log-concave.

By multiplying inequalities a2k
k ≥ ak

k−1ak
k+1 for k = 1, 2, . . . , s we deduce that the

sequence (a1/s
s )∞s=1 is non-increasing. In particular, a2/p

p/2 ≤ a2/q
q/2 which is equivalent

to the assertion of Theorem 2. 	
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3 Proof of Walkup’s theorem

We assume that
(n

k

) = 0 for k < 0 and k > n, where n ≥ 0, k, n ∈ Z. Let us also set
ai = bi = 0 for i < 0, i ∈ Z.

Lemma 4 Let n ≥ 1 and k ≤ n be non-negative integers. Then

(
n + 1

i

)(
n − 1

k − i

)

≥
(

n + 1

k − i + 1

)(
n − 1

i − 1

)

(1)

for 0 ≤ i ≤ �k/2.

Proof For i = 0 the inequality (1) is obvious. For i > 0 it is equivalent to

(n − k + i)(k − i + 1) ≥ i(n + 1 − i).

Since n ≥ k and i ≤ k/2 we have

(n − k + i)(k − i + 1) − i(n + 1 − i) = (n − k)(k − 2i + 1) ≥ 0.

	

Lemma 5 For n ≥ 1, k ≤ n and 0 ≤ i ≤ �k/2 consider a sequence

si = 2

(
n

i

)(
n

k − i

)

−
(

n − 1

i

)(
n + 1

k − i

)

−
(

n + 1

i

)(
n − 1

k − i

)

.

Then the sequence (sgn(si ))
�k/2
i=0 is non-decreasing.

Proof After some simple reductions we get

sgn(si ) = sgn

[
2n

n + 1
− n − i

n − k + i + 1
− n − k + i

n + 1 − i

]

.

Let m = n − k ≥ 0. We have

n−i

n−k+i +1
+ n−k+i

n+1−i
= m+n+1

m+i +1
−1+ m+n+1

n+1−i
−1 = (m+n+1)(m+n+2)

(m+i +1)(n+1−i)
−2

therefore it suffices to notice that the function i �→ (m + i + 1)(n + 1 − i) is positive
and non-decreasing on [0, k/2]. 	

Lemma 6 Let (si )

n
i=0, (li )

n
i=0 be two sequences of real numbers. Assume that 0 ≤

l1 ≤ l2 · · · ≤ ln,
∑n

i=0 si = 0 and the sequence (sgn(si ))
n
i=0 is non-decreasing. Then∑n

i=0 si li ≥ 0.
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Proof Let i0 = min{0 ≤ i ≤ n | si ≥ 0}. Then

n∑

i=0

si li =
∑

i<i0

si li +
∑

i≥i0

si li ≥ li0

∑

i<i0

si + li0

∑

i≥i0

si = 0.

	

Before we give a proof of Theorem 1, let us make some remarks. Let (ai )

∞
i=0, (bi )

∞
i=0

be log-concave. Fix 1 ≤ i ≤ j . Observe that

ai a j ≥ ai−1a j+1, for 0 ≤ i ≤ j. (2)

Indeed, it suffices to consider the case when ai−1 and a j+1 are positive. Then {i −
1, i, . . . , j, j +1} ⊂ {k ≥ 0 | ak > 0}. By multiplying the inequalities a2

k ≥ ak−1ak+1

for k = i, . . . , j and dividing by ai a2
i+1 · . . . a2

j−1a j > 0 we arrive at (2). Note that
we have used the fact that {k ≥ 0 | ak > 0} is an interval of integers.

If 0 ≤ i ≤ j and 0 ≤ k ≤ l then from (2) we get

(ai a j − ai−1a j+1)(bkbl − bk−1bl+1) ≥ 0,

therefore

ai a j bkbl +ai−1a j+1bk−1bl+1 ≥ai a j bk−1bl+1 + ai−1a j+1bkbl , 0≤ i ≤ j, 0≤k ≤ l.

(3)

For fixed k, n, k ≤ n we will use the notation Li = ai ak−i bn−i bn−k+i and Ri =
ai ak−i bn−i+1bn−k+i−1. Note that Li = Lk−i and L−1 = 0.

Proof of Theorem 1 It is easy to check that the set {i ≥ 0 | ci > 0} is an interval of
integers. Therefore, for n ≥ 1 we have to prove the inequality

∑

j=0,...,n
i=0,...,n

(
n

i

)(
n

j

)

ai a j bn−i bn− j ≥
∑

j=0,...,n−1
i=0,...,n+1

(
n+1

i

)(
n−1

j

)

ai a j bn+1−i bn−1− j .

It suffices to prove that

k∑

i=0

(
n

i

)(
n

k − i

)

ai ak−i bn−i bn−k+i ≥
k∑

i=0

(
n + 1

i

)(
n − 1

k − i

)

ai ak−i bn+1−i bn−1−k+i

(4)

for k = 0, . . . , 2n. Inequality (4) for k ≥ n and a pair ((ai )
∞
i=0, (bi )

∞
i=0) is equivalent

to (4) for k̃ = 2n −k ≤ n and a pair ((bi )
∞
i=0, (ai )

∞
i=0), so we can consider only k ≤ n.
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For i = 0, . . . , �k/2 we have i ≤ k − i and n − k + i ≤ n − i, therefore (3) yields

(
n + 1

k − i + 1

)(
n − 1

i − 1

)

(ai ak−i bn−i bn−k+i + ai−1ak−i+1bn−i+1bn−k+i−1)

≥
(

n + 1

k − i + 1

)(
n − 1

i − 1

)

(ai ak−i bn−i+1bn−k+i−1 + ai−1ak−i+1bn−i bn−k+i ).

Moreover, using Lemma 4 and (2) we have

[(
n + 1

i

)(
n − 1

k − i

)

−
(

n + 1

k − i + 1

)(
n − 1

i − 1

)]

ai ak−i bn−i+1bn−k+i−1

≤
[(

n + 1

i

)(
n − 1

k − i

)

−
(

n + 1

k − i + 1

)(
n − 1

i − 1

)]

ai ak−i bn−i bn−k+i .

We can rewrite these inequalities in the form of

(
n + 1

k − i + 1

)(
n − 1

i − 1

)

(Li + Li−1) ≥
(

n + 1

k − i + 1

)(
n − 1

i − 1

)

(Ri + Rk−i+1) (5)

and

[(
n + 1

i

)(
n − 1

k − i

)

−
(

n + 1

k − i + 1

)(
n − 1

i − 1

)]

Li ≥
[(

n + 1

i

)(
n − 1

k − i

)

−
(

n + 1

k − i + 1

)(
n − 1

i − 1

)]

Ri (6)

for i = 0, . . . , �k/2. Note that if k is odd then L�k/2 = R�k/2+1. In order to estimate
the RHS of (4) we add (5) and (6) for i = 0, . . . , �k/2, and the equality

(
n − 1

�k/2
)(

n + 1

k − �k/2
)

L�k/2 =
(

n − 1

�k/2
)(

n + 1

k − �k/2
)

R�k/2+1

in the case of k odd. We arrive at

k∑

i=0

(
n+1

i

)(
n−1

k−i

)

Ri ≤
�k/2−1∑

i=0

[(
n − 1

i

)(
n + 1

k − i

)

+
(

n + 1

i

)(
n − 1

k − i

)]

Li

+θk

[(
n−1

�k/2
)(

n+1

k−�k/2
)

+
(

n+1

�k/2
)(

n−1

k−�k/2
)]

L�k/2,

where θk = 1/2 if k is even and θk = 1 when k is odd. Since the LHS of (4) is equal to

�k/2−1∑

i=0

2

(
n

i

)(
n

k − i

)

Li + 2θk

(
n

�k/2
)(

n

k − �k/2
)

L�k/2,
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it suffices to prove the inequality

�k/2−1∑

i=0

si Li + θks�k/2L�k/2 ≥ 0.

We have

�k/2−1∑

i=0

si + θks�k/2 = 1

2

k∑

i=0

si = 0

and 0 ≤ L0 ≤ L1 ≤ · · · ≤ L�k/2. To finish the proof it suffices to use Lemma 5 and
Lemma 6. 	

Remark 1 Consider sequences (an)∞n=0 = (1, 0, 0, 1, 0, 0, . . .) and (bn)∞n=0 =(1, 1,

1, . . .) and note that the binomial convolution of these sequences is not log-concave.
Therefore, without the second assumption in the Definition (1) it is impossible to prove
Walkup’s Theorem.

4 Inequalities for factorial moments

For a positive integer n and any real number x we define the Pochhammer symbol
(x)n = x(x − 1) · . . . · (x − n + 1), with (x)0 = 1, and in a standard way we put(x

n

) = (x)n/n!. Let n be a non-negative integer and let X be a nonnegative random
variable X with E|X |n < ∞. Then E(X)n is called the nth factorial moment of X .

Definition 3 Let κ ∈ R. We will say that a nonnegative integer-valued random vari-
able X is κ-good if the sequence Eeκ X (X)n for n ≥ 0 is log-concave (we assume that
all the expectations are finite).

Lemma 7 If X and Y are independent κ-good random variables then X + Y is also
κ-good.

Proof Multiplying the obvious identity

eκ(X+Y )

(
X + Y

k

)

=
k∑

i=0

eκ X
(

X

i

)

· eκY
(

Y

k − i

)

by k! we arrive at

eκ(X+Y )(X + Y )k =
k∑

i=0

(
k

i

)

eκ X (X)i · eκY (Y )k−i .

To finish the proof it suffices to take expectation of both sides of this equality, use
Theorem 1 and independence of X and Y . 	




Khinchine type inequalities with optimal constants 369

Now we can conclude with the following inequality:

Theorem 4 Let κ ∈ R and let X1, X2, . . . , Xn be independent κ-good random vari-
ables (e.g. {0, 1} Bernoulli random variables) and let p be a positive integer. Then for
S = X1 + X2 + · · · + Xn we have

(EeκS(S)p)
2 ≥ EeκS(S)p−1 · EeκS(S)p+1.

Since limκ→−∞ e−κp
Eeκ X (X)p = p! · P(X = p) the case of κ → −∞ refers to

the ultra log-concavity of the sequence P(X = p) which was carefully investigated
and successfully applied for example in a recent paper of Johnson [7]. In fact, the
log-concavity of the sequence EeκS(S)p may be easily deduced from the ultra log-
concavity of the sequence P(S = p), which in particular covers the case of Bernoulli
sums. However, sometimes the sequence E(X)p or, more generally, E(X)peκ X may
be log-concave even though the sequence P(X = p) is not ultra log-concave.

5 Tail to moments log-concavity trick

We finish with a discussion of a result of Borell ([3], formulated there in a slightly
different and more general setting) which, in fact, can be traced back to the work of
Barlow, Marshall, and Proschan [2, p. 384] although there it appears with a slighlty
restricting additional assumption. It is very standard by now and has many different
proofs, some of them very simple, but still we think that it may be of some interest to
provide yet another argument, especially because it is quite similar in spirit to the one
we used in our proof of Walkup’s theorem.

Theorem 5 [2,3] Assume that ϕ : (0,∞) → (0,∞) is a log-concave function
(i.e. log ϕ is concave). Then also � : (0,∞) → (0,∞) defined by

�(q) = 1

�(q)

∞∫

0

tq−1ϕ(t) dt

is log-concave.

Proof It suffices to prove that �(q)2 ≥ �(q − ε)�(q + ε) for q > ε > 0, which
obviously follows from

1

�(q)2

t∫

0

sq−1(t − s)q−1ϕ(s)ϕ(t − s) ds

≥ 1

�(q − ε)�(q + ε)

t∫

0

sq−ε−1(t − s)q+ε−1ϕ(s)ϕ(t − s) ds

by integration over t > 0 and using the Fubini theorem.
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Since ϕ is log-concave the function s �→ ϕ(s)ϕ(t −s) is non-decreasing on (0, t/2]
and non-increasing on [t/2, t). Also, it is obviously symmetric with respect to t/2.
Hence it suffices to prove that

1

�(q)2

t−a∫

a

sq−1(t − s)q−1 ds ≥ 1

�(q − ε)�(q + ε)

t−a∫

a

sq−ε−1(t − s)q+ε−1 ds

for 0 < a < t/2, which upon using the homogeneity reduces to proving that

f (α)= B(q−ε, q+ε)

1−α∫

α

wq−1(1−w)q−1dw−B(q, q)

1−α∫

α

wq−ε−1(1−w)q+ε−1dw

is non-negative for α ∈ [0, 1/2]. Obviously, f (0) = f (1/2) = 0. Now it is enough
to notice that f ′(α) > 0 if and only if

(
α

1 − α

)ε

+
(

1 − α

α

)ε

> 2B(q − ε, q + ε)/B(q, q). (7)

The left hand side of (7) is decreasing in α, so that there exists some α0 ∈ (0, 1/2)

such that f is increasing on [0, α0] and then decreasing on [α0, 1/2]. Thus f ≥ 0 on
[0, 1/2] and the proof is finished. 	


The following well known corollary follows (note that it reveals some intrigu-
ing similarity to a way in which we used Walkup’s theorem to derive the Khinchine
inequalities):

Corollary 3 Assume that Z is a positive random variable with log-concave tails, i.e.
the function ϕ(t) = P(Z > t) is log-concave on (0,∞). Let E be an exponential
random variable with parameter 1. Then

(EZ p)1/p ≤ (EE p)1/p

(EEq)1/q
· (EZq)1/q

for all p > q > 0.

The constant (EE p)1/p/(EEq)1/q = �(p + 1)1/p/�(q + 1)1/q obviously cannot
be improved in general since E has log-concave tails.

Proof From Theorem 5 we infer that � : [0,∞) → (0,∞) defined by

�(q) = 1

�(q)

∞∫

0

tq−1ϕ(t) dt = EZq

EEq

for q > 0, and by �(0) = 1, is log-concave (it is an easy exercise to check that �

is right-continuous at zero). Hence g(q) = log �(q) is concave with g(0) = 0, so
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that q �→ g(q)/q is a non-increasing function on (0,∞), which is equivalent to the
assertion of Corollary 3. 	
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