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Abstract
Models of rail travel demand take one of three generic functional forms: the generalised 
cost (GC) function where price and the various time variables are combined into a 
composite term through the use of appropriate values of time; the generalised journey 
time and fare (GJT-Fare) approach, where the time-related variables are combined into a 
single term and fare remains separate; and the specification of separate elasticities for all 
terms, termed the separate components (SC) approach. This research extends that reported 
by Wardman and Toner (Transportation 47:75–108, 10.1007/s11116-017-9850-7, 2020) 
in exploring more flexible functional forms where appropriate parameterisation of the 
standard GC, GJT and SC models allows them to have more general elasticity properties. 
Whilst the aforementioned study discounted the standard GC approach on the grounds 
of inferior fit and undesirable elasticity properties, the analysis reported here, based on 
large datasets, finds best-fitting more flexible models to have elasticity properties that 
resemble those of the GC approach. Indeed, the preferred functions can deliver elasticities 
that are somewhat different from those of the GJT-Fare approach that has long provided 
the basis of official rail demand forecasts in Great Britain. In addition, the study adds 
to the existing evidence base by providing credible and precise elasticities for GJT and 
fare, and importantly for the rarely estimated GC and SC elasticities, reaffirms the need 
of GC models to directly estimate demand consistent values of time, and indicates that 
the weights currently attached to headway and interchange in formulating GJT are in need 
of significant amendment. Although the context is rail in Great Britain, the results have 
relevance to demand analysis of other modes and in other countries as well as to other 
transport modelling approaches.
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Introduction

Research background

The rail travel market in Great Britain provides a fertile context for the econometric 
analysis of travel behaviour stemming from two key attractions of the availability of very 
large amounts of time-series demand data and ample variation in the key demand drivers.1 
This is evidenced in the large amount of empirical evidence covering a wide range of 
variables (Wardman 2022a, 2022b; Wardman and Batley 2021; Rail Delivery Group 2018).

The price and timetable related features of journey time, service frequency and 
interchange that characterise train services can be represented within demand models in 
different ways. At one extreme is the generalised cost (GC) function, which collapses these 
variables into a single term, in contrast to what might be termed the separate components 
(SC) approach where each variable enters the demand model separately. Between the 
two is the specification of the timetable related variables within a composite Generalised 
Journey Time (GJT) term alongside a separate fare variable. These different representations 
possess somewhat different elasticity properties, as subsequently discussed, whereupon we 
might expect that a desirable feature of any demand analysis would be the identification, 
where possible, of the most appropriate of these generic specifications rather than default 
adoption of one of them.

In this context, Wardman and Toner (2020) reported innovative research that tested 
whether the longstanding practice in transport planning, analysis and appraisal of adopting 
the GC formulation could be justified or whether the GJT-Fare approach, widely used in 
the railway industry in Great Britain, or the SC representation, typical of discrete choice 
modelling, are preferable in terms of explanatory performance and the credibility of 
implied elasticities and forecasts.

They found strong support for the GJT-Fare specification over the GC formulation, and 
indeed demonstrated that the credibility of the latter was critically dependent upon being 
able to directly estimate the value of time used in constructing GC. The SC approach, 
rarely adopted in econometric rail demand analysis in Great Britain, emerged as promising.

Wardman and Toner (2020) concluded:

“We have restricted our investigations to the standard constant elasticity models that 
dominate the analysis and forecasting practice based around aggregate models of the 
direct demand form. More flexible functions which allow the GC elasticity to vary 
can be estimated which also permit closer approximation of the GC, GJT-Fare, and 
the SC models through appropriate parameterisation of each model. For example, we 
might reject the strong elasticity variation forced by the conventional GC approach 
and here tested, but a more limited degree of variation might be supported using a 
more flexible functional form. Equally, interaction terms within the GJT-Fare and SC 
approaches can bestow elasticity properties similar to the GC approach”.

1 The car and bus markets exhibit insufficient variations in journey times over time to estimate robust time 
elasticities, which is apparent in the lack of evidence, whilst demand data at best lacks spatial detail and 
at worst does not exist. Whilst time and price vary cross-sectionally, there is a longstanding preference for 
demand data with a time-series dimension since it is much less likely to suffer from the endogeneity issues 
that are typically suspected and indeed observed to afflict pure cross-sectional models.
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The research reported here was inspired by these recommendations and provides 
original insights into the performance of more flexible demand functions.

Elasticity properties of conventional demand functions

We here set out the three principal demand specifications, already mentioned, of the typical 
constant elasticity form, along with their implied elasticity properties.

The Passenger Demand Forecasting Handbook (PDFH) sets out a forecasting framework 
and recommended demand parameters that have been in use in Great Britain since the early 
1980s and are regularly updated according to latest evidence (Rail Delivery Group 2018). 
The timetable related aspects of service quality are combined into a composite GJT,2 
specified at the level of station-to-station movements:

Tij,  Hij and  Iij respectively denote the journey time, service headway and number of 
interchanges for travel between station i and j, and the μ and τ parameters convert headway 
and interchange into equivalent amounts of travel time. The other key variable of interest 
here is fare (F)3 with the demand function almost invariably specified as:

V denotes the volume of rail demand, α and β are the elasticities to GJT and fare 
respectively, and other relevant explanatory variables are included in the demand model 
but not elaborated here.

Whilst the GJT elasticity is constant, the implied elasticities to its constituent variables 
can vary appreciably as follows:

where ηT, ηH, and ηI are the implied elasticities to time, headway and interchange on a 
specific flow.4 Note that I is often zero whereupon it makes more sense to deal in term 

(1)GJTij = Tij + �Hij + �Iij

(2)Vij = �GJT�

ij
F
�

ij

(3)�Tij = �
Tij

GJTij

(4)�Hij = �
�Hij

GJTij

(5)�Iij = �
�

GJTij

2 This function dominates econometric rail demand analysis in Great Britain, and a recent meta-analysis of 
British time-related elasticities illustrates the very large amount of available empirical evidence (Wardman 
2022a).
3 Since rail demand data relates to inter-station movements, access and egress times and costs cannot 
be included. Whilst other terms relating to crowding, station facilities and rolling stock quality could be 
included, historic and detailed data on them is generally not readily available, whilst reliability is entered as 
a separate term with its own elasticity.
4 The large variations in actual implied time, headway and interchange elasticities are illustrated in Table 9.
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of the proportionate change in rail demand after a change in the number of interchanges 
which is how the demand responsiveness measure is calculated throughout.

Following Wilson (1969), the GC composite term can here be specified as:

GJT is converted into money terms using the value of time ( � ). The latter can be 
expected to vary by flow, not least due to journey purpose and distance characteristics, and 
over time due to income variation.

The use of GC is commonplace in transport planning although it is rarely used in the rail 
market in Great Britain. If the GC demand model is specified in the conventional constant 
elasticity form:

then the implied elasticities to GJT and F are:

If instead the composite term is expressed in time units, termed generalised time (GT), 
its elasticity would be the same as that for GC since it is simply a change of units, and the 
same implied elasticity relationships would apply. Again, the elasticities to the constituent 
variables can vary considerably even though the elasticity to the composite variable is 
constant.5

In the extensive world of discrete choice modelling, composite terms such as GC or 
GJT are rarely estimated.6 Instead, separate terms are specified for each variable and the 
analogous SC demand model would here be:

Interchange is entered in exponential form since it can be zero. The elasticities to time, 
headway and interchange are here directly estimated rather than inferred, although in this 
typical functional form would be constant in stark contrast to the appreciable variation 
implied by the GC and GJT-Fare formulations.

Objectives of this research

The use of composite terms, as demonstrated, forces what can be appreciable variation in 
the elasticities to the constituent variables without any explicit empirical justification. In 
contrast, the typical constant elasticity position for the SC model is potentially restrictive.

(6)GCij = �ijGJTij
+ Fij

(7)Vij = �GC�

ij

(8)�GJTij = �
�ijGJTij

GCij

(9)�Fij = �
Fij

GCij

(10)Vij = �T�

ij
H

�

ij
e�IijF

�

ij

5 Table 8 illustrates the large variations in actual implied GJT and fare elasticities.
6 An exception is forecasting applications of choice models, as in TAG Unit 2.1 (Department for Transport 
2020), where composite terms such as GC are used rather than separate components.
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The aim of this paper is to explore whether there is empirical justification for variant 
specifications of the GC, GJT-Fare and SC functions with more flexible properties which, 
through appropriate parameterisation, allow a function to move towards or be a special 
case of an ‘adjacent’ function.7 Specifically, we test model formulations that:

• Allow the elasticity properties of the GC model to move towards those of the GJT-Fare 
model.

• Allow the elasticity properties of the GJT-Fare model either to move towards those of 
the GC model or separately towards those of the SC model.

• Allow the elasticity properties of the SC model to move towards those of the GJT-Fare 
model and of the GC model.

We are not aware of such previous research, and although focussed upon the rail 
market the research has more general relevance. Whilst there are more aspects of potential 
elasticity variation than are encompassed within the functions here explored, such as how 
price and time elasticities vary with the levels they take, with each other and with factors 
such as distance, the competitive environment, ticket type, geography and over time, the 
emphasis here is specifically upon generalising the Wardman and Toner (2020) analysis.8

Structure of paper

Section “Candidate functional forms” sets out various functional forms to be tested to 
address the aims of the research. Section “Data and foundation models” discusses the 
data used in this research and reports standard models that illustrate that we have a firm 
foundation for the intended econometric investigation. The more flexible GC models, 
GJT-Fare models and SC models that have been estimated are reported in Sections 
“Generalising the GC approach towards the GJT-Fare approach: results” to “Generalising 
the SC approach towards the GJT-Fare approach: results”. Section “Synthesis” provides a 
synthesis of the findings and concluding remarks are presented in Section “Conclusions”.

Candidate functional forms

Generalising the GC approach towards the GJT‑Fare approach

A more general specification of the GC demand function, termed a damped negative 
exponential function, is:

This has implied GJT and fare elasticities of:

(11)Vij = �e
�GC

�

ij

7 Bruzelius (1981) addressed the appropriate functional form of GC models in terms of consistency with 
conventional economic theory. In contrast, the research reported here is entirely empirical.
8 We should though acknowledge that econometric demand modelling in the published literature rarely 
explores elasticity variation.
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As β tends to zero, the model tends to the standard GC function and the strong 
dependency of the GJT and fare elasticities upon the proportion these variables respectively 
form of GC as set out in Eqs. (8) and (9). As β tends to one, the effect of the GC proportion 
is diminished and at β = 1 the GJT and fare elasticities are independent of the proportion 
they form of GC albeit with the potentially undesirable feature that they are then directly 
proportional to the levels of GJT and fare respectively. The latter property can be addressed 
if the GC function is generalised to be:

The elasticities to GJT and fare then become:

This seems an attractive GC formulation, allowing flexible elasticity properties whilst 
retaining some dependence on the proportion that GJT and fare form of GC. If β is 1, the 
GJT and fare elasticities respectively tend to those of the GJT-Fare approach as θ and � 
tend to zero.

Generalising the GJT‑Fare approach towards the GC approach

The GJT-Fare approach can be generalised to allow the GJT and fare elasticities to depend 
upon GC by appropriately entering GC into Eq. (2). However, this would complicate the 
interpretation of results since the GJT and fare elasticities would enter the model directly 
and additionally through GC. A pragmatic solution is to specify GC to be some reference 
route-specific and time-invariant level whereupon it can be treated as an interaction effect 
in a straightforward manner. The GJT-Fare model would then be specified as:

where GCij is the reference level of GC on the flow in question.9 The elasticities to GJT and 
Fare would then be:

(12)�GJTij = ��
�ijGJTij

GC
1−�

ij

(13)�Fij = ��
Fij

GC
1−�

ij

(14)GCij = �ijGJT
�

ij
+F

�

ij

(15)�GJTij = ��
��ijGJT

�

ij

GC
1−�

ij

(16)�Fij = ��
�F

�

ij

GC
1−�

ij

(17)Vij = �e
�

(

�ijGJTij

GCij

)�

+�

(

Fij

GCij

)�

9 The data sets cover the years 2009 through to 2016 and the first year is taken as the reference.
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An attraction compared to amending the GC approach is that the impacts of GC on the 
GJT and fare elasticities are readily different. If the standard GC approach is justified then 
both δ and ω would be one. At the other extreme, as δ and ω respectively tend to zero then the 
elasticity properties tend to the GJT-Fare approach.

An alternative approach would be to specify the demand function as:

where ΠGJTij and ΠFij are reference levels of the proportion that GJT and fare respectively 
form of GC on a route, whereupon the GJT and fare elasticities are:

This function allows the GJT and fare elasticities to depend upon the proportion that their 
variables form of GC to the extent that is empirically warranted. Wardman and Toner (2020) 
did allow the GJT and fare elasticities to vary respectively with categories of  ΠGJTij and ΠFij 
but did not estimate the continuous function of Eq. (20).

Generalising the GJT‑Fare approach towards the SC approach

The same approach can here be used as in Section “Generalising the GC approach towards the 
GJT-Fare approach” where the GC approach was generalised towards the GJT-Fare approach. 
If GJT is specified as:

then the implied time, headway and interchange elasticities are:

(18)�GJTij = ��

(

�ijGJTij

GCij

)�

(19)�Fij = ��

(

Fij

GCij

)�

(20)Vij = �GJT
�+�ΠGJTij

ij
F
�+�ΠFij

ij

(21)�GJTij = � + �ΠGJTij

(22)�Fij = � + �ΠFij

(23)Vij = �e
�GJT

�

ij

(24)�Tij = ��
Tij

GJT
1−�

ij

(25)�Hij = ��
�Hij

GJT
1−�

ij

(26)�Iij = ��
�

GJT
1−�

ij
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where the interchange elasticity is again specified as the proportionate change in demand 
after a change in interchange. As β tends to zero then the standard elasticities of the GJT-
Fare method are approached and if β equals one then the GJT-Fare approach collapses 
to the SC approach albeit with elasticities dependent upon the level of the variable in 
question.

Also following the approach in Section “Generalising the GC approach towards the 
GJT-Fare approach”, the GJT function could be generalised to amend the impacts of each 
variable on its elasticity:

whereupon the implied elasticities are:

If β tends to one, � and � tend to zero, and � tends to one then the GJT-Fare approach 
approximates the standard SC approach.

Generalising the SC approach towards the GJT‑Fare approach

We can use the same procedures in generalising the SC approach to have elasticity 
properties that approximate the GJT-Fare approach as used in Section “Generalising the 
GJT-Fare approach towards the GC approach” in generalising the GJT-Fare approach 
towards the GC approach. The demand function would be specified as:

where GJT  ij is the reference level of GJT on the flow in question invariant across years. 
The elasticities to time, headway and interchange would then be:

(27)GJTij = T�

ij
+ �H�

ij
+ �I

�

ij

(28)�Tij = ��
�T�

ij

GJT
1−�

ij

(29)�Hij = ��
��H�

ij

GJT
1−�

ij

(30)�Iij = ��
��I

�−1

ij

GJT
1−�

ij

(31)Vij = �e
�

(

Tij

GJTij

)�

+�

(

�Hij

GJTij

)�

+�

(

�

GJTij

)�

I

(32)�Tij = ��

(

Tij

GJTij

)�

(33)�Hij = ��

(

�Hij

GJTij

)�
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As � , � and � tend to 1 (0) then the respective elasticities tend to those implied by the 
GJT-Fare (SC) approach.

Alternatively, incremental terms can be specified for each of time, headway and 
interchange, along the lines of the generalisation of the GJT-Fare approach in Section 
“Generalising the GJT-Fare approach towards the GC approach”. This would take the form:

The ΠTij , ΠHij and ΠIij denote the reference proportions that time, headway and 
interchange form of GJT on each route but which are invariant over years. The elasticities 
to time, headway and interchange would then be:

These elasticities can then have the dependence upon the proportion that they 
respectively form of GJT to the extent that is empirically warranted. It would be 
a  straightforward matter to re-define the Π terms to reflect the proportion that time, 
headway and interchange form of GC.

Data and foundation models

The data here analysed represents annual demand between stations covering 2009 through 
to 2016 for flows with sufficient variations in timetable-related service quality and fares to 
support the econometric analysis of the issues here under investigation.10 These are:

• 3964 Non-London long distance flows over 20 miles and 1327 short distance flows up 
to 20 miles covering non-season tickets;

• 2113 Non-London season ticket flows up to 60 miles;
• 564 longer distance non-season ticket flows to and from airports.

Table  1 reports fixed-effects panel models estimated to these large datasets for the 
three conventional functional forms set out in Section “Elasticity properties of conven-
tional demand functions”. The previous paper (Wardman and Toner 2020) compared 
fixed and random-effects models and concluded that, “random-effects specifications were 
rejected convincingly based on the Hausman test”. Not only do we here have far more 

(34)�Iij = �

(

�

GJTij

)�

(35)Vij = �T
�+�ΠTij

ij
H

�+�ΠHij

ij
e�Iij+�IijΠIij

(36)�Tij = � + �ΠTij

(37)�Hij = � + �ΠHij

(38)�Iij = � + �ΠIij

10 Whilst London based flows are highly important from a revenue perspective, the variations in GJT over 
time are very limited and do not support the investigation here being undertaken.
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cross-sections, which further favours the fixed-effects approach, but the extensively used 
non-linear least squares estimation is readily applied to the fixed-effects specification.

The dependent variable is the logarithm of annual demand between stations. The 
independent variables enter in logarithmic form with the exception of the time trend, the 
performance measure and the number of interchanges.11 Fare is defined as revenue per trip 
which will represent an average across a range of different ticket types, particularly on the 
longer distance flows, modified to the extent to which railcards that provide fare discounts 
are used. The CPI was used to allow for inflation.

We would be placing the GJT-Fare approach, and indeed the GC approach, at a 
disadvantage if we did not test whether PDFH’s recommended � and �  parameters used 
in constructing GJT were appropriate. Hence scales have been estimated to both these 
parameters, denoted  SH and  SI in Table 1, which indicate that better explanations of demand 
can be achieved with different � for all flow types and different � for long distance and 
airport flows. The variations from current recommendations, which are based on dated and 
specifically Stated Preference evidence, are substantial and lead to large improvements in 
the residual sum of squares (RSS) from the 214.31, 1985.17, 461.14 and 61.24 respectively 
in models without these scales. In all subsequent modelling, these estimated scales on 
headway and interchange are used to create revised GJT measures which in turn will 
impact upon GC measures. The GJT and fare elasticities are estimated very precisely and 
are plausible across the four flow categories and in line with previous evidence (Wardman 
2022a, 2022b).

Turning to the GC models, the � in 2009 pence per minute are directly estimated using 
non-linear least squares,12 with the headway and interchange components of GJT scaled 
according to the findings of the GJT-Fare model.

The GC elasticities are estimated with a very high degree of precision and are broadly 
similar to the sum of the estimated GJT and fare elasticities. A number of points can be 
made about the � estimates. Firstly, they are very precisely estimated. Secondly, whilst we 
might expect � to increase with GVA over time and with distance across routes, it was 
not possible to additionally estimate credible income and distance elasticities for � . As a 
result, the income elasticity of � was constrained to be one, in line with widespread official 
appraisal guidance, and the distance elasticity of � was fixed at 0.15, on the basis of meta-
analysis evidence (Abrantes and Wardman 2011; Wardman et  al. 2016).13 Thirdly, the 
scales applied to the � and � parameters made little difference to the �  estimates. Finally, 
the � are consistent with the findings of Wardman and Toner (2020) in not resembling 
standard behavioural values (Arup et al. 2015; Wardman et al. 2016). It would seem that the 
� relevant at the margin to behavioural change are not the average values typically reported 

13 The income effect is an index varying from 1 in 2009 whilst the distance term is specified relative to the 
mean level across flows. Hence the reported ν is for 2009 and the mean distance. Without the distance and 
income effects, the estimates of the GC elasticity and ν were little different, at -1.96 and 5.18, -1.20 and 
6.98, -1.83 and 6.84 and -1.64 and 6.26 respectively. The model fits were slightly better when the income 
and distance elasticity constraints were introduced.

11 Correlations of estimated coefficients were mostly low, with the largest being between the estimates of 
the GVA elasticity and the time trend which tended to be around − 0.5 and, in the GC model, the estimates 
of the GVA elasticity and � which were also around that magnitude.
12 Non-linear least squares is also required to estimate the non-linear in parameters demand functions of 
Eqs. (11), (17), (23) and (31). In order to assist convergence in the ‘challenging’ estimation of these func-
tions and to avoid local optima, extensive grid searches covering a range of pre-specified levels of relevant 
parameters were conducted using ordinary least squares to identify the set of estimates that yielded a best 
fit. These then served as sensible starting values in the iterative non-linear least squares estimation.
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in empirical studies that estimate them. Imposing the latter in constructing GC would place 
the GC model at a distinct disadvantage and would imply GJT (Fare) elasticities that are 
somewhat larger (smaller) and inconsistent with the findings of the GJT-Fare approach.

It is encouraging to find that all three timetable related variables have significant, and 
mainly highly significant, coefficient estimates in each of the four SC models, and the 
elasticities are credible. This SC model specification is essentially an extension of the 
constant elasticity PDFH approach. In contrast, the elasticities of discrete choice models 
tend to depend upon the level of the variable in question, and an analogous approach here 
would be to specify time, headway and fare in the exponential form used for interchange in 
Eq. (10). When this was done, the fit was inferior for all but airport flows, with respective 
RSS of 224.45, 1999.97, 491.68 and 60.43.

Turning to the other variables commonly included in rail demand models, there was 
strong support for the inclusion of a time trend over and above the GVA per capita term 
specified at the NUTS3 level relevant to the origin station. Rail demand grew strongly 
in the period, despite moderate GVA growth, and this can be attributed to increases in 
rail attractiveness due to the digital revolution and rail travel being in a position to 
exploit increasing possibilities to use travel time in a worthwhile manner (Wardman et al. 
2020; Wardman and Lyons 2016) and also inter-temporal changes in socio-economic, 
demographic and land-use characteristics that would have benefitted rail travel (Williams 
and Jahanshahi 2018). Accounting for these impacts with relevant explanatory variables 
available over time at the level of station-to-station movements is an issue that continues to 
challenge those studies whose main purpose is to determine the impact of external factors. 
The unaccounted for annual growth is here substantial, varying between 2.3% for season 
tickets to 5.7% for airport access.

The GVA per capita elasticities for the GJT-Fare and SC models are credible and in 
line with other evidence. Those for the GC models are impacted by the presence of GVA 
within the � function; setting the � income elasticity to zero brings the GC models’ GVA 
elasticities in line with the other models and makes very little difference to the other 
parameter estimates or model fit.

Population at the origin (Pop) defined at local authority level enters non-season models 
and employment at the destination (Emp) also defined at the local authority level is the 
main driver of commuting and replaces GVA in the season ticket model. We would expect 
these elasticities to be 1 and they are constrained to be such. Allowing free estimation 
leads to somewhat different, and not credible, values due to correlation with GVA and 
the time trend. It was though possible to obtain credible employment elasticities for the 
short distance non-season ticket models, reflecting the use of non-season tickets by some 
commuters.

The remaining two factors are fuel cost and a variable termed average performance 
minutes (APM) which represents the average amount of late arrival time (Wardman 
and Batley 2021). APM is unlogged, in line with current industry modelling practice. 
A significant and correct sign effect can be recovered for all but airport flows. Fuel cost 
cross-elasticities are expected to be relatively low which makes them difficult to estimate. 
Nonetheless, significant estimates are obtained for two sets of flow and for the other two 
the effect is isolated by constraining the parameter to PDFH recommendations.

The estimated models do not distinguish between short and long run effects. Specifying 
dynamic effects would add further complexity to some already challenging non-linear 
estimations in a context where we would not expect large differential impacts across the 
various model forms being compared. Moreover, annual data is analysed and it is generally 
accepted that, at least for non-season demand, a large proportion of the long run effect 
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is achieved within a year (Rail Delivery Group 2018). An exception is for season tickets, 
where the behavioural responses of home and workplace relocation can take substantially 
longer, and in this market we have to assume that our comparative findings based on one-
year effects would not be materially altered if allowance had been made for the longer term 
effects.

This section cannot conclude without making a comparison of the statistical 
performance of the three model forms in Table  1. Where the models have different 
numbers of parameters, they can be assessed using the F test to compare the restricted and 
unrestricted RSS:

with r denoting the number of restrictions imposed, n the number of observations and k the 
number of estimated parameters.

Comparing the GJT-Fare and GC models, the calculated F statistic far exceeds the 
tabulated F value at the usual 5% level for all four flow types, indicating that the GJT-Fare 
model is statistically superior.

As for the comparison of the GJT-Fare and SC models, they have the same number 
of estimated parameters for long distance and airport flows whereupon the former is 
superior due to its lower RSS. Note that when the scales within GJT were not estimated, 
F tests indicated that the SC model would be superior, thereby denoting the importance of 
estimating the scales. For the two short distance flow types, the GJT-Fare model achieves 
a better fit than the SC model despite having one fewer parameter. However, F tests would 
again indicate the latter model to be superior if the scales within GJT were not estimated.

These comparative fits are in stark contrast to Wardman and Toner (2020) where across 
all seven model types estimated the SC model was best followed by GJT-Fare model. These 
results might well have stemmed from the use of unscaled GJT measures.

In summary, the results across the standard models reported in Table  1 are highly 
plausible, generally very precisely estimated and largely consistent with each other. 
These findings, along with ample variation in the variables expressed as proportions of 
the composite GC and GJT terms, provide a very firm foundation for the investigation of 
the flexible functional forms set out in Section “Candidate functional forms” which is the 
primary purpose of the research reported here.

Generalising the GC approach towards the GJT‑Fare approach: results

Table  2 reports GC model results generalised using demand Eq.  (11) along with the 
standard GC function of Eq. (6) and also with the more general function of Eq. (14).

The estimation of the more flexible demand Eq. (11) with GC Eq. (6) achieves a better 
fit, as would be expected, than the standard GC model of Table 1 in all cases except for 
Model I which did not converge. The evidence indicates that for all but airport flows the 
estimate of β is low and hence the GC function approximates the conventional form where 
the GJT and Fare elasticities are strongly dependent upon the proportion each variable 
forms of GC. This seems odd given that all but the airport model have an inferior fit than 
the GJT-Fare model of Table 1 where there is independence from the GC effect.

When the revised GC function of Eq. (14) was investigated, there were either conver-
gency problems or else the parameters were far from significant. We therefore resorted 

(39)F =

(

RSSR − RSSU
)

∕r

RSSU∕(n − k)
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to constraining both � and � to equal 1-β which reduces the number of parameters to be 
estimated yet still tests the extent to which the GJT and fare elasticities depend upon the 
proportion these variables form of GC. This improves model fit compared to the use of 
GC Eq. (6) for all four flow types and, with the exception of Model II, the β estimates are 
somewhat larger indicating a movement towards the properties of the GJT-Fare specifica-
tion and a superior fit compared to the standard GC model. Models VI and VIII, which 
have the largest β estimates and most closely approximate the elasticity properties of the 
GJT-Fare models, also have a better fit than the latter, although it is surprising that Model 
IV, which has elasticity properties farther from those of the GJT-Fare approach, has a 
worse fit than the GJT-Fare model of Table 1.

A potential limitation of this generalisation of the GC approach is that there has to be 
strong variation in the GC elasticity with the level of GC for a weak impact of GC on 
the GJT and fare elasticities and such strong variation might not exist. A more appealing 
approach is to directly allow the GJT and fare elasticities to depend upon the proportion 
their variables form of GC to the extent empirically justified, and it is to this that we now 
turn.

Generalising the GJT‑Fare approach towards the GC approach: results

Table  3 reports models based on Eqs.  (17) and (20), and as would be expected these 
generalisations of the GJT-Fare approach achieve better goodness of fit than the 
corresponding standard GJT-Fare models of Table 1.

Two models of each are reported; the first allows the parameters that drive the elasticity 
variation (δ and ω) to differ whereas the second, on account of the large correlation that 
can be expected between the terms that specify the GC effect, constrains the two to be the 
same. The � used in creating the reference level of GC are those estimated in the models 
reported in Table 1 which vary by distance but with income fixed at 2009 levels.

Table 2  Generalised GC model results

Other parameter estimates were very similar to Table 1 and are not here reported
a Model failed to converge and the results of the final 500th iteration are reported

Urban non-London non-
seasons

Urban non-London 
seasons

Inter-urban non-
London non-seasons

Airports

Eqn 11 and  6a 11 and  14a 11 and 6 11 and 14 11 and 6 11 and 14 11 and 6 11 and 14

Model I II III IV V VI VII VIII
� − 169.20 

(0.2)
− 94.01 
(0.3)

− 2.21 
(0.7)

− 0.79 
(3.8)

− 15.47 
(3.0)

− 3.41 
(9.6)

− 0.15 
(1.5)

− 1.85 
(2.5)

� 0.01 
(0.1)

0.02 
(0.3)

0.16 
(1.5)

0.43 
(3.4)

0.07 
(4.7)

0.85 
(79.9)

0.40 
(6.5)

0.80 
(14.5)

� 5.34 
(15.1)

5.19 
(6.8)

5.08 
(5.8)

2.40 
(3.1)

7.14 
(36.2)

1.22 
(25.9)

5.62 
(11.8)

1.20 
(6.9)

GVA 1.70 
(14.1)

1.72 
(12.8)

n.a. n.a. 1.62 
(29.5)

6.48 
(16.9)

1.71 
(11.3)

4.36 
(4.8)

RSS 216.70 216.64 1994.58 1993.26 459.69 452.27 60.67 60.46
Adj  R2 0.978 0.978 0.912 0.912 0.985 0.986 0.986 0.986
OBS 10,616 16,904 31,712 4512
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Where δ and ω are separately estimated, in models Ia, IIa through to VIIIa, they tend to 
have opposite signs which in most cases are very much different or they are not significant. 
These results are a symptom of the very large correlations between the δ and ω estimates. 
We therefore concentrate on the models denoted Ib, IIb through to VIIIb where δ and ω are 
constrained to be the same.

Considering Eq.  (17) first, Model Ib has a wrong sign effect for the constrained 
parameter whilst it is insignificant for Models Vb and VIIb. Only in Model IIIb is there a 
case for a movement towards the elasticity properties of the GC approach.

As for Eq. (20), with δ and ω constrained to be the same, two models (IIb and IVb) have 
incremental effects indicating that the GJT and fare elasticities would actually fall as their 
variables form a larger proportion of GC, whilst the incremental effect in Model VIb is 
insignificant. However, Model VIIIb for airport flows suggests that a movement towards 
GC is warranted.

The best fit model with δ and ω constrained is Eq. (17) for seasons and long distance 
flows and Eq. (20) for the remaining two flow types. For season tickets and airport flows 
there is support for a movement towards the GC approach.

Generalising the GJT‑Fare approach towards the SC approach: results

Table  4 reports the models that allow the GJT-Fare approach to have implied timetable 
related elasticities that approximate those of the SC approach.

Models I, III, V and VII are based on the demand function of Eq. (23) along with the 
standard GJT function. In three cases, the model failed to converge and this is most likely 
due to the β parameter being very close to zero. Only in Model I is β not close to zero, 
and generally the results support a strong impact from GJT on the time, headway and 
interchange elasticities.

Adopting the more general GJT function of Eq. (27), the non-linear least squares esti-
mation procedure cannot handle the zero interchange values and removes them as missing 

Table 4  Generalised GJT-Fare model results (towards the SC Approach)

Other parameter estimates were very similar to Table 1 and are not reported here
a Model failed to converge and the results of the final iteration are reported

Urban Non-London 
Non-Seasons

Urban Non-London 
Seasons

Inter-Urban Non-
London Non-Seasons

Airports

Eqn 23 and 1 23 and 27 23 and 1 23 and 27 23 and 1 23 and 27 23 and 1 23 and 27

Model I II IIIa IVa Va VIa VIIa VIIIa

� − 0.96 
(1.2)

− 15.93 
(1.5)

− 84.07 
(0.1)

− 76.02 
(0.2)

− 77.36 
(0.3)

− 88.14 
(1.1)

− 70.70 
(0.1)

− 65.19 
(0.3)

� 0.32 
(2.7)

0.06 
(1.7)

0.01 
(0.1)

0.01 
(0.2)

0.01 
(0.3)

0.01
(1.2)

0.01 
(0.1)

0.01 
(0.3)

Fare − 1.18 
(32.8)

− 1.18 
(32.6)

− 0.57 
(17.6)

− 0.57 
(17.6)

− 1.01 
(73.6)

− 1.09 
(73.8)

− 0.87 
(25.1)

− 0.88 
(25.3)

RSS 211.73 211.49 1984.80 1985.10 455.43 455.66 60.79 61.53
Adj  R2 0.979 0.979 0.912 0.912 0.986 0.986 0.986 0.986
OBS 10,616 16,904 31,712 4512
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observations. To overcome this, we added 0.05 to the interchange value. The estimated β 
parameter was not particularly sensitive to the figure added.14 Unfortunately, the models 
could not converge, nor even yield remotely credible results at final iteration, when � , � , 
� , and � were freely estimated. Even when � , � and � − 1 were constrained to equal 1 − � 
to simplify estimation yet still test the GJT influence, only Model II converged and then 
the estimated β is low. The issue again seems to be that the constrained parameter approxi-
mates zero.

The models here indicate that moving from the GJT-Fare approach towards the SC 
approach is not warranted, and indeed this is reflected in a worse fit than the standard GJT-
Fare model of Table 1 for all but the urban non-season models. However, there remains a 
possibility that these results are in fact due to the lack of any relationship between the GJT 
elasticity and the level of GJT as forced in Eq. (23). The generalisation of the SC approach 
towards the GJT-Fare approach offers more flexibility and is now discussed.

Table 5  Generalised SC Model Results

Other parameter estimates were very similar to Table 1 and are not here reported

Urban non-London 
non-seasons

Urban non-London 
seasons

Inter-urban non-
London non-seasons

Airports

Eqn 31 35 31 35 31 35 31 35

Model I II III IV V VI VII VIII
� − 1.06 

(3.3)
n.s. − 0.46 

(5.5)
− 0.46 
(5.4)

0.41 
(2.7)

− 0.53 
(22.1)

− 0.32 
(3.9)

− 0.30 
(3.7)

� 0.76 
(2.1)

− 0.86 
(11.4)

n.s. n.s. − 0.82 
(4.2)

n.s n.s n.s

� − 1.78 
(7.3)

n.s. − 1.06 
(7.1)

n.s. − 0.96 
(16.1)

n.s − 0.93 
(5.8)

n.s

� 2.33 
(7.7)

− 0.66 
(12.2)

1.07 
(2.4)

− 0.62 
(7.5)

1.02 
(7.4)

− 0.59 
(16.9)

0.74 
(2.3)

− 0.56 
(7.5)

� − 0.47 
(7.4)

− 0.48 
(7.7)

− 0.23 
(3.6)

n.s. − 0.84 
(12.1)

− 0.11 
(2.7)

− 0.78 
(3.3)

n.s

� n.s. n.s. n.s. − 1.50 
(3.8)

0.82 
(8.5)

− 0.71 
(7.3)

1.06 
(2.8)

− 0.75 
(13.9)

Fare − 1.18 
(32.8)

− 1.18 
(32.7)

− 0.58 
(17.5)

− 0.57 
(17.5)

− 1.02 
(73.3)

− 1.02 
(73.8)

− 0.88 
(25.2)

− 0.88 
(25.3)

RSS 210.73 211.60 1984.34 1984.55 455.38 455.36 60.72 60.73
Adj  R2 0.979 0.979 0.912 0.912 0.986 0.986 0.986 0.986
OBS 10,616 16,904 31,712 4512

14 Indeed, when estimating on the reduced datasets after zero interchanges were removed as missing val-
ues, the β estimates were 0.18 (4.5) for Model II, 0.08 (0.1) for Model IV, 0.11 (10.9) for Model VI and 
0.17 (2.9) for Model VIII, for respective sample sizes of 953, 3936, 16,470 and 3251. These β estimates 
are broadly in line with those reported in Table 4 where 0.05 was added to the interchange value in order to 
retain all observations.
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Generalising the SC approach towards the GJT‑Fare approach: results

The results of the estimations of the demand functions represented by Eqs.  31 and 
35 that allow the SC approach’s elasticities to take on the properties of the GJT-Fare 
approach are reported in Table  5. All eight models are statistically superior to the 
corresponding standard SC models of Table  1, with a large number of parameters 
statistically significant, suggesting that movement away from the latter is empirically 
justified.

There is a high degree of correspondence between the elasticity variation recovered 
by the two functions, as represented by the � , � and � parameters, and we discuss the 
results for each flow type in turn.

Equations  31 and 35 are entirely consistent for urban non-season models in finding 
strong evidence that the elasticities to time and headway but not interchange are dependent 
upon the proportion these variables form of GJT. Strong consistency is also apparent for 
airport flows, where both models find the headway and interchange elasticities to increase 
with the proportion they form of GJT and for the time elasticity to be constant.

As for urban season ticket demand, both functions recovered a constant time elasticity 
and found the headway elasticity to increase in line with the proportion headway forms 
of GJT, although the results for interchange are contrasting.

Finally, with respect to the inter-urban flows, both equations find the headway and 
interchange elasticities to depend upon the proportion their variable forms of GJT. 
However, whereas Eq. (35) detects no variation in the time elasticity Eq. (31) indicates 
a wrong sign effect.

Equation  (35) is the best fitting model for all flows except urban non-seasons. In 
summary, there is empirical support for some allowance of the SC elasticities to have 
properties that approximate the GJT-Fare approach.

As mentioned in Section “Generalising the SC approach towards the GJT-
Fare approach”, Eqs.  (36–38) could instead specify the Π variables in terms of the 
proportions that time, headway and interchange form of GC. When this was done, the 
goodness of fit was worse for all four flow types. Adding in fare dependency upon the 
proportion it forms of GC led to an improved fit for all but airport flows but in each case 
the incremental effect did not have the expected sign.

Synthesis

Best fit demand functions

Table  6 provides the RSS for each of the models estimated along with the number 
of included parameters (k) other than the fixed effects which indicates the number 
of restrictions that enter the F test of Eq.  (39). The best fit models are indicated in 
underlined bold. The standard models, whether GC, GJT-Fare or SC, never provide the 
best fit and a more flexible variant is preferable.

In two cases, covering the long distance and the airport flows, a generalisation of 
the GC approach towards the GJT-Fare approach provides the best fit whilst for season 
tickets it is a generalisation of the GJT-Fare approach towards the GC approach. A 
generalisation of the SC approach provides the best fit for the remaining urban flows.
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These are interesting findings. If analysis is restricted to standard (base) models then 
the GC approach would be written-off, as it was by Wardman and Toner (2020). But it 
emerges that some influence from GC on elasticities is warranted in three out of the four 
flow types examined when more flexible functions are permitted.

It would be desirable for the different demand specifications to be telling a consistent 
story. Table  7 summarises, in broad terms, the direction in which the more flexible 
generalised models are taking the implied elasticities. The scenario with the best fit is 
again indicated in underlined bold.

With respect to the urban Non-London non-season ticket models, Scenarios B, C 
and D point to elasticities that take on the properties of the GJT-Fare approach, with 
the statistically superior model exhibiting a movement towards the GJT-Fare approach. 
Whilst the generalised GC approach in Scenario A indicates that the elasticity properties 
of the standard GC approach are preferred, we have previously recognised that this could 
be because the GC elasticity does not increase with the level of GC regardless of the 
appropriate elasticity properties.15

As for the season ticket models, Scenarios A and B indicate elasticity properties 
between the GC and GJT-Fare approaches. Scenario C remains at the ‘upper bound’ of the 
GJT-Fare approach whilst Scenario D moves towards it. The same can be said to apply for 
long distance flows.

Scenarios A and B of the airport models indicate movement to somewhere between 
the GJT-Fare and GC formulations, with Scenario C consistent in remaining at the ‘upper 
bound’ of the GJT-Fare approach and Scenario D providing some movement towards it.

There is a reasonable degree of consistency between the results of the different demand 
formulations in terms of appropriate elasticity properties.

Table 6  Comparative model fits

k denotes the number of estimated parameters

Model Equations Urban non-
London non-
seasons

Urban non-
London seasons

Inter-urban 
non-London 
non-seasons

Airports

RSS k RSS k RSS k RSS k

Base GC 216.62 8 1994.87 6 460.05 7 61.10 6
Base GJT-Fare 211.82 9 1984.77 7 455.40 9 60.78 8
Base SC 213.30 10 1986.80 8 457.83 9 61.10 8
Generalised GC 11 and 6 216.70 9 1994.58 7 459.69 8 60.67 7
Generalised GC 11 and 14 216.64 9 1993.26 7 452.27 8 60.46 7
Generalised GJT 17 211.03 9 1979.00 7 455.37 8 60.76 7
Generalised GJT 20 210.99 9 1980.20 7 455.39 8 60.72 7
Generalised GJT 23 and 1 211.73 9 1984.80 7 455.43 8 60.79 7
Generalised GJT 23 and 27 211.49 9 1985.10 7 455.66 8 61.53 7
Generalised SC 31 210.73 12 1984.34 9 455.38 12 60.72 10
Generalised SC 35 211.60 10 1984.55 8 455.36 10 60.73 8

15 These flows exhibit the least variation in GC over time of the four flow types considered.
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Comparing elasticities

This paper is primarily concerned with the elasticity properties of demand models and 
Table 8 provides the implied GJT and fare elasticities for the standard GC and GJT-Fare 
models along with those of the best fitting model.16 The railway industry in Great Britain 
routinely forecasts changes in GJT and fare; the elasticities to the component parts of GJT 
are subsequently addressed.

The implied GJT and fare elasticities can vary considerably across different model 
forms, although encouragingly the mean values are broadly similar. The standard GC 
model imposes appreciable GJT and fare elasticity variation compared to the rail industry’s 
GJT-Fare approach but without any empirical testing. Nonetheless, it can here be seen that 
the more flexible, preferred models exhibit elasticity variation more in line with the GC 
approach than the GJT-Fare approach. Although the preferred generalised GJT model for 
season ticket demand actually implies more variation in the implied GJT and fare elasticity 
than does the standard GC model, we note that the latter recovered a low GC elasticity 
compared to the sum of directly estimated GJT and fare elasticities and this will limit the 
implied GJT and fare elasticity variation.

The significance of the elasticity differences in Table 8 will depend upon the size of 
those differences, and the findings here are indicating that the differences can sometimes 

Table 8  Implied GJT and fare elasticities

Figures are GJT elasticity and Fare elasticity. Each are provided for various percentiles and the mean

Urban non-London non-seasons Urban non-London seasons

Std GC Gen SC (I) Std GJT-Fare Std GC Gen GJT (IIIb) Std GJT-Fare

1% − 0.46: − 0.68 − 0.56: − 1.18 − 0.98: − 1.19 − 0.30: − 0.28 − 0.45: − 0.35 − 0.91: − 0.57
10% − 0.58: − 0.93 − 0.68: − 1.18 − 0.98: − 1.19 − 0.38: − 0.42 − 0.58: − 0.53 − 0.91: − 0.57
25% − 0.67: − 1.07 − 0.70: − 1.18 − 0.98: − 1.19 − 0.43: − 0.48 − 0.65: − 0.61 − 0.91: − 0.57
Mean − 0.81: − 1.18 − 0.73: − 1.18 − 0.98: − 1.19 − 0.50: − 0.55 − 0.73: − 0.68 − 0.91: − 0.57
75% − 0.92: − 1.32 − 0.75: − 1.18 − 0.98: − 1.19 − 0.57: − 0.62 − 0.81: − 0.76 − 0.91: − 0.57
90% − 1.06: − 1.41 − 0.80: − 1.18 − 0.98: − 1.19 − 0.63: − 0.67 − 0.90: − 0.81 − 0.91: − 0.57
99% − 1.31: − 1.53 − 1.05: − 1.18 − 0.98: − 1.19 − 0.77: − 0.75 − 1.05: − 0.94 − 0.91: − 0.57

Inter-urban non-London non-seasons Airports

Std GC Gen GC (VI) Std GJT-Fare Std GC Gen GC (VIII) Std GJT-Fare

1% − 0.43: − 0.53 − 0.62: − 0.81 − 0.93: − 1.02 − 0.39: − 0.51 − 0.39: − 0.66 − 0.75: − 0.87
10% − 0.60: − 0.72 − 0.68: − 0.86 − 0.93: − 1.02 − 0.56: − 0.70 − 0.52: − 0.73 − 0.75: − 0.87
25% − 0.74: − 0.84 − 0.74: − 0.89 − 0.93: − 1.02 − 0.65: − 0.79 − 0.58: − 0.78 − 0.75: − 0.87
Mean − 0.87: − 0.98 − 0.85: − 0.96 − 0.93: − 1.02 − 0.74: − 0.87 − 0.67:− 0.83 − 0.75: − 0.87
75% − 1.01: − 1.11 − 0.95: − 1.02 − 0.93: − 1.02 − 0.82: − 0.96 − 0.74: − 0.88 − 0.75: − 0.87
90% − 1.13: − 1.25 − 1.05: − 1.09 − 0.93: − 1.02 − 0.91: − 1.05 − 0.83: − 0.93 − 0.75: − 0.87
99% − 1.32: − 1.42 − 1.18: − 1.17 − 0.93: − 1.02 − 1.10: − 1.22 − 0.95: − 1.03 − 0.75: − 0.87

16 For the generalised SC model and urban non-seasons, the implied GJT elasticity is calculated as the sum 
of the time, headway and interchange elasticities, where the latter is here calculated as the proportionate 
change in demand after a proportionate change in interchange ( �I).
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be large. Given that comparing differences is easier when the means are the same, 
which is not always the case here, and that deriving confidence intervals for some of 
the more general functions is not straightforward, we note that the confidence intervals 
of the standard GJT-Fare model expressed as a proportion of the central estimate are 
less than ± 10% in six out of the eight cases and hence many of the preferred models’ 
elasticities where they vary will be outside the confidence interval of the standard 
model. But ultimately, even if quite large differences in elasticities are generally not 
significant, reasons would have to be advanced for preferring a model that is statistically 
inferior, such as lesser modelling complexity, particularly when, as is the case here, the 
preferred models’ parameters are estimated precisely.

In summary, the preferred model can imply somewhat different elasticities than the 
GJT-Fare approach used by the railway industry in Great Britain. The potential for 
discrepancies in GJT elasticities is noticeable on all but the airport flows although they 
are less for the fare elasticities where the largest differences are for season tickets.

Even though GJT elasticities are central to forecasting rail demand in Great Britain, 
and sometimes timetable changes involve all the aspects of GJT, there are instances 
when forecasts are required for timetable changes that do not cover all variables. Table 9 
provides time elasticities, headway elasticities and interchange demand effects implied 
by the preferred and standard GJT-Fare models and directly estimated by the standard 
SC models. Again, the mean elasticities tend to be similar across the different functions.

There are inevitably some large differences between the directly estimated SC 
elasticities and the implied elasticities since the former are constant but the latter are 
not. However, the more important comparison is between the preferred, flexible model 
and the standard GJT-Fare approach.

It is not uncommon for service frequencies to be varied in isolation. There are some 
noticeable differences between the headway elasticities for the preferred and GJT-Fare 
models on urban Non-Season ticket flows but for other flows the large differences where 
they occur are restricted to the more extreme elasticities.

Turning to journey time changes, which can also occur in isolation, there is a high 
degree of correspondence between the preferred and standard models for urban non-
season flows but some larger differences for the other flow types at the lower elasticity 
levels.

As far as interchange is concerned, and given that train time is specified as station-
to-station, changes in the provision of through trains invariably leads to changes, often 
quite large, in journey times. Focussing first just on the interchange demand effects, 
there is generally a good degree of correspondence between the preferred and standard 
GJT-Fare models for seasons and airports. However, given the preferred model for 
urban non-seasons has a constant interchange effect there can be large differences here, 
which is also the case for long distance flows at larger demand effects.

When more realistically considering interchange variations alongside journey time 
variations, the large differences in interchange effects in urban non-season ticket models 
detracts from the close correspondence of the time elasticities whilst there would also 
be noticeable widening of the difference between the preferred and standard GJT-Fare 
models for long distance flows throughout and season ticket and airport flows at larger 
elasticity levels.

In summary, large differences in the forecasts of timetable related demand effects can 
result from imposing the elasticity variations of the standard GJT-Fare approach rather 
than identifying the preferred form of elasticity variation.
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Conclusions

The main purpose of the research reported here was to extend that conducted by Wardman 
and Toner (2020) who recommended that more flexible functional forms should be 
explored where the elasticity properties would depart from those rigidly implied by the 
standard GC, GJT-Fare and SC approaches. We are not aware of such previous research.

The analysis has been based on large datasets that yield precise and credible parameter 
estimates, providing a firm basis for this research that generalises standard functions but 
also usefully adding to the existing evidence base, particularly for the rarely estimated GC 
and SC elasticities.

Whilst the standard GC approach, widely used in transport planning and appraisal, 
was discounted by Wardman and Toner (2020) as forcing unwarranted large variations 
in GJT and fare elasticities and achieving a worse fit than the GJT-Fare and SC models, 
and our initial standard models would here draw the same conclusion, we have found that 
the more flexible functions support variations in GJT, time, headway, interchange and fare 
elasticities that resemble the properties of GC models. Indeed, the standard models never 
provide the best fit.

The preferred generalised functions can imply elasticities to the key variables that are 
somewhat different to those of the GJT-Fare approach used by the rail industry in Great 
Britain and therefore challenge the longstanding recommendations of its Passenger Demand 
Forecasting Handbook. Rail demand analysis, of which there is a very considerable amount 
in Great Britain, should not restrict itself to the standard GJT-Fare approach, or indeed to 
any one specific approach across flows types, since more flexible functions provide a better 
fit to the data and “one size does not fit all”.

Further insights relate to the weights to be attached to the frequency and interchange 
components in creating the industry’s standard GJT measure and the results indicate that 
the current weights, based as they are on somewhat dated and SP-centric evidence, are in 
need of significant amendment. The evidence points to large reductions in the headway 
penalties of around two-thirds and one-third for urban non-season and season flows, with 
a reduction of around a quarter for inter-urban flows but a large increase of 82% for airport 
flows. As for the interchange penalties, these should be more than doubled on long distance 
and airport flows. It is worth noting that the currently used weights were never estimated 
specifically for airport flows. Indeed, without amending these frequency and interchange 
weights both the GC and GJT-Fare approaches would have been placed at a distinct 
disadvantage relative to the SC approach.

The railways, at least in Great Britain, are in the fortunate position of being able to 
investigate the functional form issues that are the subject of this paper since there is ample 
variation in price and time-related variables and reliable demand data is readily available. 
This is not generally the case for other modes, where only price varies and demand data is 
often less reliable, and hence there are concerns that the demand models and forecasting 
procedures used for those modes will not be based on the most appropriate functional 
forms. A way forward for other modes, and indeed of interest for rail demand analysis, 
would be to conduct similar analysis with disaggregate mode choice models. These could 
explore GC, GJT-Fare and variant functions, alongside the customary SC approach and 
generalisations upon it, but we are not aware that this has been conducted.

Although the econometric demand analysis reported here is focussed on rail travel 
in Great Britain, the functional form issues addressed and the findings obtained provide 
lessons more generally for demand analysis of other modes and in other countries. And 
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it would also seem that greater attention should be paid to the investigation of more 
flexible functional forms with more general elasticity properties in conventional urban 
transportation models, that often make use of the GC formulation, and disaggregate choice 
models, that tend to be based on the SC approach.

The specific focus of this paper was on extending the Wardman and Toner (2020) 
research, exploring the extent to which elasticities dependent upon GC and GJT are 
justified. Of course, there are other sources of elasticity variation which have not been 
covered here and their investigation is encouraged. These include: the impacts of journey 
length, journey purpose mix and the competitive environment; possible dependencies of 
a variable’s elasticity on the level of other variables, particularly the influence of income 
levels and local socio-demographic characteristics; whether there are inter-temporal 
variations in elasticities, and possible differences in elasticities according to the size and 
sign of variation.

Finally, the empirical findings here can be compared with the largely theoretical 
considerations of Bruzelius (1981) who concluded within the framework of conventional 
economic theory that “It is shown here that necessary and sufficient conditions for 
expressing travel demand in terms of generalised cost are that this cost, when measured 
in monetary units, is linear, and that the time variable is weighted by a constant marginal 
value of time. It is also shown that these conditions imply strong assumptions about the 
consumer’s behaviour—e.g., that the willingness to pay to save time whilst travelling is not 
a function of real income”. It was recognised that these are strong assumptions; the results 
presented here, based entirely on empirical investigation, challenge these conclusions.

In assessing whether these strong assumptions mean that GC should be viewed as a 
“useless toy”, Bruzelius refers to the assertions by Searle (1978) that the GC approach 
works in practice and superior performing alternative models had not been demonstrated. 
On the first point, Bruzelius questions whether the VTTS that are used to formulate GC 
are appropriate for use in evaluation. The results here reaffirm those in Wardman and 
Toner (2020) in indicating that they are not and that demand consistent VTTS must be 
directly estimated. On the second point, Bruzelius goes on to state, “Therefore, the use of 
generalised cost has to be based on the second type of argument: travel demand functions 
in terms of generalised costs seem to be working better than other types of travel demand 
models”. Unlike Wardman and Toner (2020), we have here found that elasticity properties 
resembling those of the GC approach can be empirically justified.
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