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Abstract This paper develops and applies a practical method to estimate the benefits of

improved reliability of road networks. We present a general methodology to estimate the

scheduling costs due to travel time variability for car travel. In contrast to existing practical

methods, we explicitly consider the effect of travel time variability on departure time

choices. We focus on situations when only mean delays are known, which is typically the

case when standard transport models are used. We first show how travel time variability

can be predicted from mean delays. We then estimate the scheduling costs of travellers,

taking into account their optimal departure time choice given the estimated travel time

variability. We illustrate the methodology for air passengers traveling by car to Amsterdam

Schiphol Airport. We find that on average planned improvements in network reliability

only lead to a small reduction in access costs per trip in absolute terms, mainly because

most air passengers drive to the airport outside peak hours, when travel time variability

tends to be low. However, in relative terms the reduction in access costs due to the

improvements in network reliability is substantial. In our case we find that for every 1 Euro

reduction in travel time costs, there is an additional cost reduction of 0.7 Euro due to lower

travel time variability, and hence lower scheduling costs. Ignoring the benefits from

improved reliability may therefore lead to a severe underestimation of the total benefits of

infrastructure improvements.
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Introduction

Past studies have shown that the economic benefits from more reliable travel times are

substantial, as they usually amount to 10–25% of the benefits associated with shorter

travel times (e.g. Fosgerau et al. 2008; Eliasson 2006; Peer et al. 2012). The results of

transport project appraisals may thus be significantly underestimated if travel time

variability is not considered. In recent years various countries such as the US, the UK,

the Netherlands and Sweden have introduced guidelines on how to include travel time

variability in appraisals of transport projects (see De Jong and Bliemer 2015, for an

overview). The proposed methods with the aim to quantify the costs associated with

travel time variability differ in terms of their complexity as well as feasibility; the latter

mainly being determined by the limitations of existing transport models. This paper

suggests a practical method that uses standard output of transport models, but yet models

the underlying scheduling decisions of travellers in more realistic ways than existing

models.

De Jong and Bliemer (2015) suggest to categorize the available methods used to

quantify the costs of travel time variability according to four criteria:

1. Are network users assumed to take into account travel time variability in their travel

choices (e.g. concerning departure time, route, mode or destination)?

2. Is (the response mechanism to) travel time variability formulated in terms of a simple

measure of dispersion (usually the standard deviation), or is it expressed in terms of

schedule delays with respect to the preferred arrival time? The latter requires the

presence of a departure time model.

3. Is the relationship between travel times and travel time variability exogenous (e.g.

empirically estimated), or endogenous (e.g. generated via Monte Carlo simulations)?

4. Does the method consider only a single ‘‘average weekday’’, or does it distinguish

between different scenarios (e.g. different weekdays, different weather conditions,

holidays)?

Based on these four criteria, De Jong and Bliemer (2015) derive three different methods,

which differ in their overall complexity, with Method 1 being the simplest and hence most

feasible method, Method 2 being of intermediate complexity, and Method 3 representing

the most complex and ideal model setup, which currently cannot yet be introduced at a

wider scale. Method 1 corresponds to a ‘‘post-processing module’’, which uses the output

of standard transport models. It assumes that travellers do not take into account travel time

variability in their travel choices, and it represents travel time variability in terms of a

simple dispersion measure. The relationship between travel times and the dispersion

measure is exogenously given, and usually assumed to be linear (‘‘reliability ratio

approach’’). Moreover, it typically only considers one scenario. Methods 2 and 3 relax

these restrictions, with the main difference between these two being the definition of

variability in terms of schedule delays and the endogenous relationship between travel

times and variability, which are both only introduced in Method 3.

In this paper, we develop a method to quantify the costs of travel time variability that

essentially still corresponds to Method 1, as it undoubtedly is a post-processing module

1434 Transportation (2018) 45:1433–1448

123



using standard output of transport models.1 However, it extends existing approaches that

belong to Method 1 by adding various characteristics of Methods 2 and 3.

Most importantly, we define a reduced-form function of expected travel costs that defines

travel time variability in terms of schedule delays,2 which De Jong and Bliemer (2015) see as

a characteristic of the most ideal and advanced method. Our cost function thus takes into

account explicitly the travellers’ trip timing decisions: travellers are assumed to schedule

their trips in such a way that they trade off the costs associated with arriving early at their

destination against the costs of arriving late. Everything else equal, in our model travellers

will leave earlier from home if travel times becomemore unreliable.3 Ourmodeling approach

allows us to include a discrete penalty for lateness in the expected travel cost function (which

is particularly relevant in our application). Moreover, it allows us to combine it with the

output of a standard transport model: mean travel times. If we had followed Fosgerau and

Karlström (2010)—who showed that the scheduling approach is (under certain conditions)

theoretically equivalent to the so-called reliability ratio approach, which is based on the

assumption of a linear relation between the costs of travel time variability and the standard

deviation of the delays—we would also have needed to predict the mean lateness factor.

Although we assume that the relation between travel times and travel time variability is

exogenous (see criterion 3 in the list above), we introduce two features that go beyond

most existing approaches to quantify the costs of travel time variability. First, we assume

that the travel time distributions are log-normal rather than normal (as assumed in most

existing models), implying that we are able to approximate the right-skewed nature of the

distributions that are frequently observed in empirical analysis of travel time data [see for

example Rakha et al. (2010) and Emam and Ai-Deek (2006)]. Using a log-normal dis-

tribution allows us as well to compare the costs of travel time variability across different

scenarios without assuming that the standardized distributions are the same before and

after the change in the transport network. Second, we assume that the relationship between

mean delay and variability is origin–destination (OD)-pair-specific and dependent on the

time of the day. The empirically calibrated relationships are based on the work of

Kouwenhoven and Warffemius (2015). Their research has confirmed a strong positive

correlation between mean delay and travel time variability, which has also been identified

in an earlier study by Peer et al. (2012).

While the method developed in this paper is generic in its nature, we illustrate how it can

be applied to measure the costs due to unreliable travel times for Dutch car travellers going to

Amsterdam Schiphol Airport to travel by plane from there. In 2013, about 40% of the

travellers to Amsterdam Schiphol Airport accessed the airport by car (taxi travel excluded).

This is a situation inwhich travellers incur potentially large costs of unreliability, particularly

when they miss their flight. As a consequence, most use a safety margin (buffer time), which

is the additional time that the travellers leave earlier from home due to delays. The intuitive

1 Our method uses the mean delays on links and origin–destination-paths that are predicted by the equi-
librium assignment (Wardrop equilibrium) module of a standard transport model. While the transport model
does account for the effects of traffic congestion in the road network, it does not include any feedback of the
variability effect back to the route choice of the car drivers or to other choices represented within the
transport demand model.
2 Note that travel time variability itself (i.e. its extent) is still defined in terms of the standard deviation of
the travel time distribution.
3 Noland and Small (1995) were the first to develop this idea by employing an expected utility model of
departure time choice based on the scheduling model of Vickrey (1969) and Small (1982). Noland and Small
(1995) assumed that delays follow a uniform or exponential distribution. Their model was later extended by
Fosgerau et al. (2010) for general travel time distributions.
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behavioural response that this buffer becomes larger as travel time variability increases was

already suggested more than 45 years ago by Thomson (1968), Gaver (1968) and Knight

(1974). As far as we are aware, Hall (1983) was the first author to apply this principle to

departure time choices of air passengers travelling to the airport. Koster et al. (2011) adapted

the linear scheduling model with random travel times of Noland and Small (1995) to air

passengers driving to the airport, by adding a penalty for missing a flight.

In our Amsterdam Schiphol Airport case study, we compare the airport access costs of

car travellers arising from mean delays and travel time unreliability for two different

network specifications: (1) the Dutch road network as it existed in 2010, and (2) an

improved version of that network as it is planned for 2020. The 2020 road network benefits

from considerable investments in additional road capacity, which are expected to decrease

mean delays and to induce higher reliability. By analysing the differences in access costs

between these two networks we learn how the reliability benefits of the road improvement

program add to the more traditional benefits due to decreases in mean travel time.

The paper proceeds as follows. ‘‘Behavioural scheduling responses to travel time

variability’’ section introduces the methodology, specifically the reduced-form function of

expected travel costs. ‘‘Parametrization’’ section discusses the assumptions that will be

made in the application of the method to air passengers accessing Amsterdam Schiphol

Airport by car concerning scheduling preferences as well as the relation between mean

delay and travel time variability. ‘‘Application: accessing Amsterdam Schiphol Airport by

car’’ section describes the background of the application and reports the numerical results.

Finally, ‘‘Conclusions’’ section concludes.

Behavioural scheduling responses to travel time variability

We first introduce the expected travel cost function that we use in our model. It is based on

the work of Noland and Small (1995), who extended the standard scheduling model of

Vickrey (1969) to allow for randomness in travel times. More specifically, we employ a

specification that has been introduced by Koster et al. (2011) to model expected airport

access costs, as we will apply our model in the context of air passengers travelling to the

airport.4 In their model, travellers minimize their expected access costs to the airport,

EðCðHÞÞ by deciding on the optimal safety margin H when departing from home. They

take into account this safety margin because travel times may exceed free-flow travel time.

For notational reasons, we assume that travel times consist of a fixed free-flow travel time

Tf , and a variable delay D. H is then defined as the additional minutes that a traveller leaves

earlier from home due to delays. When there is no variability in delays, the optimal safety

margin is equal to the mean delay l.
The expected access costs are then a function of the free-flow travel time Tf , the

expected delay EðDÞ, as well as the (expected) schedule delays early and late (denoted by

SDE and SDL), which are the costs associated with arriving earlier or later than the

(exogenously given) preferred arrival time at the airport. The (exogenous) preferred arrival

time pins down TAirport, which is the (exogenously given) final check-in time of the

traveller minus the preferred arrival time for a given scheduled flight time. It can thus be

interpreted as the time that travellers prefer to spend at the airport before the final check-in

time.

4 Note that the cost function used here can be adapted easily to fit a more generic setting.
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Since travellers may miss their flight if they arrive at the airport too late, a corre-

sponding penalty term (specified as the percentage probability of missing a flight

PMFðH; TAirportÞ) is included in the cost function. When TAirport equals 0, this penalty term

is similar to the additional discrete lateness penalty h proposed by Small (1982). Note that

for our analysis it is assumed that flights are not delayed and that travellers do not adjust

their preferred arrival time when the travel time distribution changes.

We further assume that delays follow a two-parameter log-normal distribution:

lnðDÞ�Nðs; jÞ, where s is the mean and j is the standard deviation of the underlying

normal distribution. The probability density function is further denoted by flognðDÞ, and the

cumulative probability distribution by FlognðDÞ). The shape of the distribution is assumed

to be independent of the time of the day. The parameters s and j, i.e. the shape and scale

parameter of the distribution, can be derived analytically if the expected delay EðDÞÞ
(equal to the mean delay l) and the estimated standard deviation r̂ of the travel time

distribution are known (we use a hat to indicate that the standard deviation is estimated):

s ¼ logðlÞ � 1

2
log 1þ r̂2

l2

� �
and j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log 1þ r̂2

l2

� �s
; ð1Þ

This implies that the log-normal distribution of delays is fully determined by the mean

delay l (which is a standard output of network models) and the standard deviation (which

we will estimate using the mean delays as inputs; see ‘‘Travel time distributions’’ section).

Note that a similar approach can be applied to other (travel delay) distributions that are

defined by two parameters.

The expected schedule delays (EðSDE;HÞ and EðSDL;HÞ) are defined as follows. For a

given delay D and safety margin H, the schedule delay early is defined as

SDE ¼ maxð0;H � DÞ, and schedule delay late is defined as SDL ¼ maxð0;D� HÞ. To
derive the expected schedule delay early, EðSDE;HÞ, we take a probability weighted

average over early arrivals by integrating over all possible early arrivals. Because delays

are assumed to be positive (hence, travel times can by definition not be shorter than the

free-flow travel time), the integral starts at D ¼ 0. And it ends at D ¼ H, because then a

traveller arrives exactly on time, and the schedule delay early will be 0. Substituting

flognðDÞ ¼ 1

Dj
ffiffiffiffi
2p

p expð� ðlogðDÞ�sÞ2
2j2 Þ gives5:

EðSDE;HÞ ¼
Z H

0

ðH � DÞflognðDÞdD ¼ HFlognðHÞ � lFlogn

H

expðj2Þ

� �
ð2Þ

Similarly, the expected schedule delay late EðSDL;HÞ can be derived by integrating over

all late arrivals. The integral starts at D ¼ 0, and ends at infinity. Substituting flognðDÞ
gives6:

EðSDL;HÞ ¼
Z 1

H

ðD� HÞflognðDÞdD ¼ HFlognðHÞ � lFlogn

H

expðj2Þ

� �
þ ðl� HÞ: ð3Þ

5 First note that FlognðDÞ ¼ 1
2
Erfc

s�ln D½ �ffiffi
2

p
j

h i
, where Erfc is the complementary error function. Then we use

that
RH

0
DflognðDÞdD ¼ 1

2
lErfc s�ln H½ �þj2ffiffi

2
p

j

h i
. Substituting D ¼ H= expðj2Þ in FlognðDÞ gives the desired result.

6 Bates et al. (2001) show that for any travel time distribution it must be true that
EðSDE;HÞ � EðSDL;HÞ ¼ ðl� HÞ, which is confirmed by Eqs. 2 and 3.
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The final component of the expected access cost function is the percentage probability

of missing a flight PMFðH; TAirportÞ. It depends on the planned time spent at the airport,

Tairport. Travellers who prefer to spend more time at the airport have a lower probability of

missing the flight. Therefore, TAirport includes the behavioural response to airport service

time delay, which is assumed to be unrelated to delays on the road:

PMFðH; TAirportÞ ¼ 100

Z 1

HþTairport

flognðDÞdD ¼ 100ð1� FlognðH þ TairportÞÞ: ð4Þ

Finally, combining Eqs. 2, 3 and 4, the expected access cost function can be written as

follows:

EðCðHÞÞ ¼ aðTf þ EðDÞÞ þ bEðSDE;HÞ þ cEðSDL;HÞ þ hPMFðH; TAirportÞ

¼ aðTf þ lÞ þ ðbþ cÞ HFlognðHÞ � lFlogn

H

expðj2Þ

� �� �
þ cðl� HÞ

þ h100ð1� FlognðH þ TairportÞÞ

ð5Þ

where Tf is the free flow travel time, a is the value of access time, b is the value of

schedule delay early, c is the value of schedule delay late, and h is the value of the

percentage probability to miss a flight.

Travellers optimize this expected access cost function and choose their optimal safety

margin H�, resulting in minimal expected access costs EðCðH�ÞÞ. There is no closed-form

solution available for EðCðH�ÞÞ. Therefore, we determine H� and EðCðH�ÞÞ numerically,

using a behaviourally plausible step-size for H of 5 min.7

Parametrization

Preferences

For the preference parameters that enter the airport access cost function (Eq. 5), we use the

median of the panel mixed logit estimates of Koster et al. (2011), which are based on a

stated preference survey among 345 business and 625 non-business travellers (also our

empirical analysis distinguishes between business and non-business travellers). The

assumptions concerning the preferences are summarized in Table 1. Not surprisingly,

business travellers have higher willingness to pay values than non-business travellers, and

have a preferred arrival time closer to the final check-in time, meaning that they spend on

average less time at the airport. Moreover, the specification of Koster et al. (2011) allows

for a proportional difference in preference parameters between business and non-business

travellers, which results from a difference in the marginal utility of income: at average

income levels, the assumed values for a; b; c and h of business travellers are 37% higher

than the values for non-business travellers.

Travel time distributions

As shown in ‘‘Behavioural scheduling responses to travel time variability’’ section, the

expected access costs to the airport depend on the standard deviation of the travel time

7 The expected access cost function can be easily programmed in software packages such as Matlab.
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distributions. However, standard transport models are typically not able to generate travel

time distributions, as they usually only provide estimates of the mean delay, implying that

the standard deviation can only be derived using additional assumptions. We base the

prediction of the standard deviations on prior research by Peer et al. (2012) and

Kouwenhoven and Warffemius (2015), who both find a strong positive correlation between

the mean delay and the standard deviation of the delays using travel time data from Dutch

motorways. Specifically, we will apply the functional forms derived and empirically val-

idated by Kouwenhoven and Warffemius (2015). They use travel time data from 250 Dutch

highway routes8 to determine the relationship between travel time variability (represented

by the standard deviation r̂)9 and mean delay l. Their preferred functional form also

controls for distance L, rendering the relationship route-specific:

r̂ ¼ a1 þ a2lþ a3 log10ðlþ 1Þ þ a4L; ð6Þ

Kouwenhoven and Warffemius (2015) estimate three separate models for observations

during the morning peak, the mid-day period and the evening peak. They find that the

estimated coefficients differ significantly across the three time periods.10 Table 2 reports

these coefficients, and Fig. 1 plots the predicted standard deviation as a function of mean

delay l for the three time periods and a distance L of 100 km.11

Application: accessing Amsterdam Schiphol Airport by car

Implementation using a large scale transport model

For our practical case analysis, we use the Dutch National Transport Model System [NMS,

see for instance: Gunn (1994)] to predict mean delays for trips with the destination

Table 1 Assumed values for the
preference parameters

Values for a; b and c are in €/h,
whereas the value for h is in €/%.
The value for TAirport is in hours

Business Non-business

a 39.71 28.93

b 32.19 23.45

c 47.07 34.29

h 8.51 6.20

TAirport 1.19 1.46

8 Note that we will apply the highway-data-based estimates of Kouwenhoven and Warffemius (2015) to
door-to-door trips, which naturally also include travel along urban and provincial roads. The main reason is
that so far little empirical evidence exists concerning the relationship between mean delay and the standard
deviation for roads other than motorways. Kouwenhoven and Warffemius (2015) provide some evidence,
however, based on travel time data from only 40 routes along urban and provincial roads. Possibly due to the
low number of observations, they find various coefficients to be insignificant, and additionally a worse
model fit than for the highway data.
9 The standard deviation is computed for each 15-min interval between 00:00 and 23:00 across all working
days in 2012.
10 Note that for small values of the mean delay, the predicted standard deviation may become negative. It is
set to 0 for these cases.
11 We will apply the coefficients for the mid-day period to all periods outside the morning and evening peak
(‘‘off-peak’’).
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Amsterdam Schiphol Airport (AMS). The NMS is a large, comprehensive transport model

system that is based on discrete choice models for trip frequency, destination choice, mode

choice, and time-of-day choice. It is the ‘standard’ tool, developed and used since 1985 in

the Netherlands, for assessing the effects of transport policies. The model distinguishes

1379 origin and destination zones, so it allows for a highly detailed spatial analysis of the

accessibility of Amsterdam Schiphol Airport from all regions in the Netherlands. Addi-

tionally, the model differentiates between three time periods: the morning peak (MP)

which lasts from 7:00 to 9:00, the evening peak (EP) which starts at 16:00 and ends at

18:00, and the remaining hours of the day (OP), for an ‘‘average working day’’. Therefore,

the model provides estimates for the mean travel time delay for each of the origin zones

and for each of these three periods separately.

The NMS uses a highly disaggregate population data base and simulates demand for six

different modes of transport, while distinguishing ten different travel purposes. The

resulting origin–destination flows are assigned to the road network using Qblok, an

equilibrium type car traffic assignment model that takes account of input flow restrictions

due to congestion effects upstream (Bakker et al. 1994). Furthermore, it uses speed-flow

curve information calibrated on data of the Dutch motorway network. As usual, link travel

times are equal to their free flow travel time plus an estimated amount of delay, where

mean delay depends on the volume/capacity ratio. The NMS road network represents the

entire road network of the Netherlands, including urban roads, provincial roads and

motorways. All zones are connected to urban and/or provincial roads only. On average,

some 65% of the distances are travelled on motorways.

Table 2 Coefficients for the empirical relationship between the standard deviation and mean delay based on
Kouwenhoven and Warffemius (2015)

Time period Units

Morning peak (MP) Off-peak (OP) Evening peak (EP)

a1 -0.540 -0.066 -0.901 min

a2 0.476 1.034 0.268 –

a3 4.538 – 5.555 min

a4 -0.009 – 0.011 min/km

For the mid-day period, a3 and a4 were found insignificant

Fig. 1 Estimated standard
deviation for D = 100. Note
functions are plotted on the
domain of l
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We apply our model to two different situations. First, the base year car traffic OD matrix

of 2010 is assigned to the road network that was available in year 2010. Second, the same

car traffic OD matrix of 2010 is assigned to an improved road network for the year 2020.

The 2020 network contains all the infrastructure improvements that have been planned and

anticipated for that year. This enables us to establish the effects of road network

improvements on mean travel times, and hence the expected access costs.

We assume that the overall number of air travellers arriving by car to the airport does

not change between 2010 and 2020, hence demand is assumed to be constant. Develop-

ments between 2010 and 2020, and improvements in access costs are therefore assumed

not to lead to additional car trips to Amsterdam Schiphol Airport. Although this is not a

realistic assumption, it makes the interpretation of the results easier, because all changes in

travel time distributions are due to network effects only. The numbers of passengers

arriving by car at Schiphol in 2010 as included in the model have been derived from large-

scale air passenger counts and surveys conducted at the airport, the so-called ‘continuous

Schiphol-survey’. This survey has been carried out since many years. About 60.000

departing air passengers per year are interviewed resulting in accurate data about their

travel and personal characteristics. A stratified sample and expansion procedure is applied

to ensure that all air destinations and nationalities of passengers are included in the survey.

Our analysis concerns an ‘‘average working day’’. According to the survey results in

total about 8.3 million air passengers travelled to Amsterdam Schiphol Airport on all

working days of 2010, implying on average 26,000 travellers per working day.12 Table 2

shows a breakdown of these travellers by type of travel purpose and by time of the day.

The groups of business and non-business travellers do not differ much in size. They

account for 52 and 48% of travellers, respectively. Interestingly, most passengers appear to

travel to the airport outside the peak periods. As expected, non-business travellers are more

likely to travel to the airport outside peak hours than business travellers.

Numerical results

Introduction

This subsection discusses the numerical results. We compare the results for the Dutch road

network of 2010 with those for the road network of 2020. For 2020, substantial infras-

tructure investments will have been made to alleviate congestion at the key bottlenecks in

the network. These investments have an impact on the travel time distribution of every

OD-pair, and therefore result in travel time and travel time reliability gains for departing

air travellers who travel by car. We first provide a numerical example for one OD-pair in

order to show how the model works (‘‘Introduction’’ section). The analysis is then repeated

for all 1377 origins in the analysis, and the aggregate results will be presented in ‘‘Results

for the entire road network’’ section.

Example for one OD-pair

To illustrate how the model works, we select one specific OD-pair, where the origin is in

the city centre of The Hague, and the destination is Schiphol Airport. The NMS provides

estimates of the mean delay for 2010 (12.7 min) and 2020 (8.3 min) for this OD-pair. Using

the prediction model of ‘‘Parametrization’’ section, we obtain travel time distributions for

12 Under the assumption of 320 working days per year.
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2010 and for 2020 for the morning peak, the evening peak and the rest of the day (off-

peak). Figure 2 gives the travel time distributions for the morning peak.

This figure clearly shows the change in the travel delay distribution due to the improved

road network. A comparison between the 2010 and the 2020 distribution shows that the

probability of long delays decreases, whereas the probability of shorter delays increases for

the 2020 network. This is the direct consequence of the assumption that travel time

variability is positively related to the mean delay.

Because the travel time distribution changes between 2010 and 2020, the behavioural

response of the travellers changes as well. Since the mean delays and the delay variabilities

are lower in 2020, the model predicts that the traveller will depart later from home in 2020,

resulting in a reduced optimal safety margin H. This can be seen if we plot the expected

access cost function (Eq. 5), as a function of the safety margin H (with a step-size of 5

min). We use the willingness to pay values for business travellers as given in Table 1

(Fig. 3).

Fig. 2 Travel time distributions
for the 2010 and 2020 road
networks for one OD-pair (The
Hague–Amsterdam Schiphol
Airport, morning peak)

Fig. 3 Expected access costs
2010 and 2020 for a business
traveller (The Hague–Amsterdam
Schiphol Airport, morning peak)
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For 2010, the lowest expected access cost is achieved at a safety margin of 15 min,

whereas for 2020 the optimal safety margin is equal to 10 min. Also, the corresponding

optimal expected access costs decrease because of the improvement in the mean delay and

the travel time reliability. For a given safety margin, the expected access costs for 2020 are

always lower than the expected access costs for 2010.

Results for the entire road network

Next, we present the aggregate results (Table 3). The analysis of the previous section is

repeated for all 1379 OD-pairs to obtain monetary estimates for the improvements in mean

delays and travel time reliability due to road network investments in the Netherlands

between 2010 and 2020. Tables 4 and 5 show the results for business and non-business

travel respectively.

The results demonstrate that the largest cost improvements are realized during the

morning peak. This is because congestion is most severe during this time of the day, and

therefore the corresponding marginal reduction in costs is substantial. Surprisingly, the

average travel time cost savings are largest for non-business travellers. It can be shown that

this is due to the fact that non-business travellers travel relatively more often on links with

larger improvements in mean delays.

The average absolute improvement in access costs per trip is not large (€ 1.86 for

business and € 1.7 for non-business travellers), especially when compared to the spendings

on airline tickets. This means that the accessibility of Schiphol is not expected to improve

substantially due to the planned road network investments for 2020. The reason for these

Table 3 Daily number of travellers going to Schiphol Airport based on NMS 2010

Morning peak (MP) Off-peak (OP) Evening peak (EP) Total

Business 2172 9095 2154 13,422

Non-business 1825 9348 1242 12,414

Total 3997 18,443 3396 25,836

Table 4 Cost improvement in € per trip for business travellers (B) during morning peak (MP), off-peak
(OP) and evening peak (EP)

BMP BOP BEP Average Percent

Total cost savings per trip 6.72 0.69 1.92 1.86 100

Travel time cost savings per trip 3.79 0.36 1.26 1.06 56.72

Travel time variability cost saving per trip 2.93 0.33 0.67 0.81 43.28

Table 5 Cost improvement in € per trip for non-business (NB) travellers during morning peak (MP), off-
peak (OP) and evening peak (EP)

NBMP NBOP NBEP Average Percent

Total cost savings per trip 6.91 0.7 1.61 1.7 100

Travel time cost savings per trip 4.18 0.39 1.11 1.02 59.83

Travel time variability cost saving per trip 2.73 0.31 0.5 0.68 40.17
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results is straightforward: as Table 3 shows, most travellers travel outside the morning

peak to Amsterdam Schiphol Airport. The potential and willingness of policy makers to

improve mean travel times and reliability during periods with little recurrent congestion is

limited. Our results are thus different from the (more common) models that derive the

benefits of network reliability for commuters: there most of the travellers will travel during

peak hours, resulting in higher benefits from improvements in reliability.

However, the relative contribution of travel time variability improvements in total cost

improvements is still substantial. Between 40% (non-business travellers) and 43% (busi-

ness travellers) of the total cost savings are due to the reduction of access travel time

variability. This implies that passengers’ benefits of improvements in the road network are

underestimated to a substantial degree if reliability effects are ignored.

The improvements in network reliability also result in a slightly lower number of

travellers who miss their flight. Tables 6 and 7 show the probabilities of missing a flight for

business and non-business travellers for the years 2010 and 2020. The probability of

missing a flight is highest during the morning peak with average values of 0.57% for

business and 0.08% for non-business in 2010. This is because travel time variability is

highest during the morning peak. Note that all probabilities are in the range 0–1.8%, which

is considered reasonable when compared to real world data. It is also within the range used

in the stated choice experiment of Koster et al. (2011). For all time periods the probability

of missing a flight drops substantially when the network of 2020 is implemented, as a

consequence of its inherent reliability improvements for both business and non-business

travellers.

We also benchmarked the results of our model against a simpler approach, which

corresponds to ’Method 1’ of De Jong and Bliemer (2015), and is sometimes also referred

to as mean-variance or reliability-ratio approach (named after the reliability ratio (RR),

which is defined as the ratio of the value of reliability and the value of travel time a).
The expected access costs in this simplified approach are given by:

EðCÞ ¼ aðTf þ lÞ þ RRar; ð7Þ

Unlike the cost function used in the above analysis (Eq. 5), it does not consider schedule

delays (explicitly), and it also lacks a discrete penalty for missing the flight. Moreover, the

reliability ratio approach requires the standardized travel time distributions to be the same

before and after the network change.

By setting equal the expected access costs of the simpler method (Eq. 7) and the

expected access costs from the method developed in this paper (Eq. 5),13 and then solving

for RR, we can derive the implied reliability ratio (IRR), which is the RR that produces

exactly the same result as our scheduling method. It is given by:

Table 6 Percentage of flights missed (2010) by business (B) and non-business (NB) travellers during the
three time periods (MP, OP, EP)

BMP BOP BEP NBMP NBOP NBEP

Minimum 0 0 0 0 0 0

Median 0.5469 0.0117 0.0509 0.347 0.0105 0.0245

Average 0.5687 0.0546 0.073 0.4009 0.0517 0.0358

Maximum 1.7659 1.5336 0.4422 1.5315 1.1797 0.2531

13 Note that the costs associated with travel time are equal across both methods.
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IRR ¼
EðCðH�ÞÞ � a Tf þ l

� �
rVOT

ð8Þ

We have computed the IRR for each of the 1378 OD pairs, each day period, each travel

purpose, and for the 2010 and the 2020 network. For both, business and non-business

Table 7 Percentage of flights missed (2020) by business (B) and non-business (NB) travellers during the
three time periods (MP, OP, EP)

BMP BOP BEP NBMP NBOP NBEP

Minimum 0 0 0 0 0 0

Median 0.0336 0.001 0.0202 0.0145 0.0008 0.011

Average 0.0812 0.0084 0.0347 0.0459 0.0113 0.0192

Maximum 0.8241 1.4056 0.2359 0.564 1.0778 0.1186

Fig. 4 Implied reliability ratios for non-business (NB) travellers during morning peak (MP), off-peak (OP)
and evening peak (EP), year 2020
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travellers, we find that the IRRs vary substantially across OD-pairs, time periods and years.

As an illustration, histograms of the IRRs for non-business travellers for the year 2020 and

the three time periods are shown in Fig. 4.14 Our results suggest that valuable information

is lost if the reliability ratio approach is applied.15 The implications of these results are

especially strong if one is interested in analysing the costs of travel time variability on

specific road stretches: there, the results of both methods differ substantially, whereas the

variations tend to average out if larger parts of the network are analysed.16

Conclusions

We developed a practical method to estimate the benefits of improvements in road net-

work reliability. It allows for the estimation of reliability benefits without requiring the use

of a full blown dynamic network simulation model, while still capturing the essential

behavioural response of drivers to travel time variability. The model is based on a standard

scheduling model for departure time choice, and uses as inputs the travel time estimates of

a standard static transport model and an empirical (OD-pair-specific) function that

describes the relation between mean delays and travel time variability. Moreover, we

assume that delays are log-normally distributed.

We applied the model to air passengers travelling to the Amsterdam Schiphol airport in

order to catch a flight, hence a situation where access travel time reliability is crucial. We

compared the road network in the Netherlands in 2010 to the planned network in 2020,

under the assumption that travel demand is inelastic. For the time period between 2010 and

2020 various improvements of the network shall take place, leading to shorter average

travel times as well an improved reliability.

We found that the average improvements in access travel costs are fairly small in

absolute terms, mainly because most passengers travel to the airport outside the peak

hours. However, the relative contribution of reliability benefits was substantial: our results

showed that the total benefits from infrastructure improvements are about 70% higher

when benefits due to better reliability are taken into account in addition to the savings in

mean travel time alone. This number is quite high compared to the estimates reported in

earlier studies, which tend to be in the range of 10–25% (e.g. Fosgerau et al. 2008;

Eliasson 2006; Peer et al. 2012). A main reason is that our application concerns travel to

the airport, a situation in which on-time arrival is crucial, which is reflected in the

scheduling preferences we apply. However, because we assumed that overall demand is

inelastic, our estimate of the total benefits might still be an underestimate of the real effect

because we ignored the additional consumer surplus stemming from new air travellers

entering the road network because of lower generalised costs.

We compared our results with the results of a simpler (so-called mean-variance or

reliability-ratio) approach, which assumes a linear relationship between the costs of travel

time variability and the standard deviation of the delays. We found that the reliability ratio

(i.e. the ratio of the value of reliability and the value of travel time) that implies a cost

14 More detailed results of this comparison are available from the authors upon request.
15 Kouwenhoven et al. (2014) suggest for the Netherlands an RR of 1.1 for business travellers and of 0.6 for
non-business travellers.
16 In fact, Börjesson et al. (2012) showed that the assumptions under which the scheduling and reduced-
form models are theoretically equivalent, may not hold empirically. This was another motivation for us to
use the scheduling model at first instance.
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equivalence between our approach and the more simplified one, differs substantially across

OD-pairs (but also across the two network settings, the time of the day and the travel

purpose). From that we concluded that especially when looking at smaller parts of the

network, where such heterogeneity is likely to exist, our approach is able to capture a more

realistic picture.

One limitation of our analysis is the assumption that flights always depart on time. If

flights are delayed, the probability of missing a flight may be overestimated in our analysis.

Furthermore, our assumption that delays on the road and in the air are independent from

each other may not always hold in reality. For instance, adverse weather conditions may

cause delays for both car and air travel. We leave this interplay of access delays and flight

delays as a topic for further study.

Future research may also focus on obtaining more detailed estimates of the benefits of

improvements in network reliability. We expect that our model could be made more

accurate by employing a more sophisticated method to estimate the standard deviation of

delays, for example by incorporating road characteristics. Second, one could allow for

more flexibility in the shape of the travel time distributions as the log-normal distribution

might not approximate the true distribution of travel times well enough. These improve-

ments could be easily accommodated within the framework of our model, and could lead to

more precise estimates of the travel time distribution and the corresponding travel costs.
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