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Abstract In the pursuit of sustainable mobility policy makers are giving more attention

to cycling. The potential of cycling is shown in countries like the Netherlands, where

cycling covers 25 % of all person trips. However, the effect of policy interventions on

cycling demand is difficult to measure, not least caused by difficulties to control for

changing context variables like weather conditions. According to several authors weather

has a strong influence on cycling demand, but quantitative studies about the relationship

are scarce. We therefore further explored this relationship, with the aim of contributing to

the development of a generic demand model with which trend and coincidence in bicycle

flows might be unraveled. The study is based on time-series between 1987 and 2003 of

daily bicycle flows, collected on 16 cycle paths near two cities in the Netherlands. The

regression analyses show that, not surprisingly, recreational demand is much more sen-

sitive to weather than utilitarian demand. Most daily fluctuations (80 %) are described by

weather conditions, and no less than 70 % of the remaining variation is locally constrained.

The regression can therefore mainly be improved by incorporating path specific, as yet

unknown, variables. We used the regression results to calculate weather-inclusive bicycle

flow predictions and found indications of a downward trend in recreational demand. This

trend has been off-set in the observed flows by more favorable weather conditions over the

years considered.
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Introduction

Cycling is an important mode of transport in the Netherlands. According to the Dutch

National Travel Survey more than 25 % of all person trips are made by bicycle. This

percentage also applies to work trips and recreational trips separately (V&W/DVS (Min-

istry of Transport) 2009). In 2009 in the Netherlands 0.8 trips per person per day were

made by bicycle, more than in most other European countries, whereas the total number of

trips (3.0) was more comparable to other countries (e.g. 2.7 in Great Britain, see

www2.dft.gov.uk). Cycling delivers considerable benefits to society. It is healthy, sus-

tainable, and inexpensive, it increases social participation and it also may reduce the

number of short car trips in urban areas and so even has the potential to reduce congestion

(Heinen et al. 2010). It is therefore not surprising that cycling is supported by governments,

and that several measures are taken to increase its demand. To determine to which extent

the increase aimed for is realized, cycling demand has to be measured. Complicating

factors, however, are spatial and temporal variations that are not at all related to policy

measures.

Several authors have used aggregated models to describe spatial variation in cycling

demand according to census data. This was done in the US, e.g. Baltes (1996) and Dill and

Carr (2003), in the UK, e.g. Parkin et al. (2008) and Waldman (1977), and in the Neth-

erlands, e.g. Rietveld and Daniel (2004). Parkin et al. (2008) showed that hilliness, tem-

perature and rain have a large influence on demand in the UK. Rietveld and Daniel (2004)

found that cycling demand in Dutch cities depends on demographics such as ethnic

composition, and policy-related variables like safety and modal competitiveness.

Although these studies give insight in spatial variation in cycling demand, they do not

focus on temporal variation. Temporal variations consist of short-term (hourly/daily),

seasonal and long-term variation. The patterns are thought to depend largely on differences

in weather conditions and differ between utilitarian and recreational cyclists. Compared to

car traffic, for bicycle flows this variation is relatively large (Emmerson et al. 1998). This

may even cause differences on the level of yearly average flows (Jaarsma and Wijnstra

1995), especially for recreational areas (Beunen et al. 2004). As a consequence, devel-

opments on specific cycle paths are not directly interpretable from measured flows. Instead,

these flows need to be corrected for weather conditions.

Weather is therefore an important factor when monitoring cycling demand over time

and investigating developments in actual use of infrastructure. This paper aims to further

explore the relationship between weather and bicycle flows, by deploying regression and

residual analyses on data over a relatively long time-period (4–11 years). This study is also

meant as a contribution to the development of a generic demand model that can account for

a large part of the day-to-day bicycle flow variation. Such a model can ultimately be very

useful to provide corrections for studies focusing on demand developments over a longer

period of time, for example for evaluating policy measures to increase cycling demand. It

may also be used as part of a benchmarking tool, when comparing cycling demand in

different regions with different weather conditions. Corrected bicycle flows are also

worthwhile when constructing a transport model calibration set. Another application is to

clarify developments in traffic victims among cyclists, by relating (daily) weather condi-

tions to differences in exposure (Bijleveld and Churchill 2009).

This paper is structured as follows. In Data we describe the data that are used. Method

describes the methodology. In Development of the regression function, the functional form

of the non-linear regression is determined, and in The influence of weather on bicycle flow,

the results of the regression analysis are analyzed. Analysis of the remaining variation
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describes the remaining variation with respect to the regression. In Evaluation of trends

over the years as an application, we applied the regression model to evaluate long term

time-series of bicycle flows. Conclusions and further research is the discussion section,

ending with conclusions.

Data

This section describes the observational data used in this study. It concerns daily bicycle

counts (Bicycle counts) and weather data (Meteorological data). Data selection deals with

the selection criteria for the data used in the regression analyses.

Bicycle counts

Since the late 1980s, the Wageningen University gathered cycle flows, measured by

pneumatic tubes, on cycle paths in the countryside throughout the Netherlands. From this

large data set we selected daily (24 h totals) data from 16 cycle paths, eight of them located

near the city of Gouda (in the west) and another eight near the city of Ede (in the centre of

The Netherlands).

Three types of cycle paths were distinguished: utilitarian, mixed and recreational. The

utilitarian paths are connecting municipalities, playing an important role for mandatory

trips, whereas recreational paths open up the country side for pursuing leisure activities by

citizens. Mixed paths combine these functions. The allocation to the three classes is based

on knowledge of the local situation.

In Fig. 1 we give an overview of the data set of 24 hour total bicycle traffic counts. The

period of the observations varies between 4 years (2 sites) and 11 years (7 sites) and covers

partly different years from 1987 to 1993 (in Gouda) and from 1990 to 2003 (in Ede). All

sites were measured in 1993. At the top of Fig. 1 the measuring points in both areas are

presented geographically. We numbered the sites E1–E8 for the Ede region and G1–G8 for

the Gouda region. If relevant, the site number is followed by u for utilitarian paths, by m

for paths with a mixed character and by r for recreational paths.

In Fig. 2 and 3 we show the flow time-series for the recreational path E6-r (upper panel)

and for the utilitarian path G1-u (lower panel). This is done for the whole measurement

period (Fig. 2), and for the year 1993 (Fig. 3), as an example. Both cycle paths are judged

to be typical for their sets.

The time-series of Fig. 2 show similar patterns over the years for each of the two paths.

Within the years, as Fig. 3 shows more clearly, there are characteristic differences between

the recreational and utilitarian time-series. Both patterns rise over spring and fall over

wintertime, but differences are much larger in the recreational time-series. Also the dif-

ference in the summer period (around day 200) is remarkable: a rise in the recreational

time-series versus a considerable dip in the utilitarian one. Within the weeks the variation

between workdays and weekends is considerable, again in a different direction for both

paths. The utilitarian path shows a repetition of dips which coincide with the weekends, as

would be expected in the case of mandatory trips. The recreational path shows peaks in the

weekends, as would be expected, since recreational trips are dominant in the weekends.

Also, some strong peaks coincide with the Dutch bank holidays.

A problem related to counting with pneumatic tubes (and indeed with several other

instruments as well) concerns the failure to detect the number of bicycles when cyclists

cross the tube at the same time. However, we had no additional information on these
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occurrences and adopted the common assumption that in low flow regimes as is the case in

our study these occurrences are not really selective in time.

Meteorological data

The weather ‘observables’ we used in the study were provided by the Dutch National

Meteorological Institute (KNMI 2009), and can be downloaded free of charge from their

website. We only used data from station ‘‘De Bilt’’, because this station is in the proximity

of both Ede and Gouda (about 35 km) and there are no local stations available. Therefore,

the weather data do not necessarily present the local weather conditions. Moreover, at the

time of conducting the research only 24 h aggregates were provided on the website, which

leads to more uncertainties (e.g. a wet night followed by a sunny day might have the same

total precipitation duration as a dry night followed by a wet day).

We investigated all daily meteorological data provided by the KNMI, except wind

direction. These are: temperature (in �C), precipitation (in millimetres and hours), sunshine

(amount in J/cm2 and duration in hours), wind velocity (in m/s), mean cloud cover (in

octants), visibility (in metres) and humidity (%). For temperature, wind velocity, humidity

and visibility, we could use minimum, maximum and average values. However, the cor-

relations between the minima, maxima and averages were found to be very strong (cor-

relation coefficients larger than 0.9). In addition, the amount and duration of precipitation

are also strongly correlated, with a correlation coefficient of 0.8. The same applies for the

amount and duration of sunshine. For correlation coefficients larger than 0.6, we choose

one observable in the regression analysis. As a result, we minimize the effect of

Fig. 1 Overview dataset bicycle counts Ede (E) and Gouda (G). u, m, r stands for utilitarian, recreational
and mixed bicycle paths
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multicollinearity in the regression analysis. The results are described in Development of

the regression function.

Data selection

Because of their distinctive character, bank holidays were taken out of the sample,

including the school holiday weeks with Christmas and New Year. The remaining school

holiday days (2 weeks during spring, 8 weeks during summer, and 1 week during autumn)

were grouped together in a subsample. These holidays are also distinctive, but at the same

time cover extensive periods in the year. We therefore evaluated the regression for these

holidays separately. We took into account that the dates of these holidays slightly change

year by year.

In order to reject (a large part of) possible false measurements, we excluded all cases

with five bicycle counts per day or less. The most common cause of a false measurement is

a temporally malfunctioning of the tube. In some cases, the measurement may be valid due

to very low demand. However, such a low demand is rare, and normally demand exceeds

10 counts per day in our dataset. By adopting this selection criterion, we excluded less than

1 % of all measurements.

After determining the regression function, described in Method and Development of the

regression function, we compared the measurements with the regression results. We then

detected some weeks in which the observed utilitarian flows on workdays were much lower

(more than 30 %) than in other weeks. We found four of such weeks in four different years.

Fig. 2 Daily flow time-series for cycle paths E6-r (upper panel) and G1-u (lower panel) for the whole
measurement period (11 and 7 years, respectively)
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This bias might be explained by the fact that we failed to identify all school holidays, due

to incomplete logging for the first few years. More likely, however, are false measure-

ments, caused by a punctured tube. Although we could not retrieve the cause of the

deviating demand during these weeks, we decided to exclude these weeks from the sample.

By doing so, we rejected another 1 % of the measurements.

Method

Relatively little is known about the relation between weather and cycling demand. The few

studies on this topic do show a strong influence of weather on cycling demand, e.g. Hanson

and Hanson (1977); Emmerson et al. (1998); Jaarsma (1990); Nankervis (1999). From a

correlation and regression analysis on a household survey over a 39 day period in Sweden,

Hanson and Hanson (1977) showed that both temperature and cloud coverage are related to

the proportion of daily cycling demand. In another Swedish study Bergström and Mag-

nusson (2003) examined the attitudes towards cycling during winter in general, and in

relation to winter maintenance of cycle paths in particular. Emmerson et al. (1998) used

long-term counts and meteorological data to investigate the relative effects on cycle use of

weather and other factors. Their data suggest that cycle flows are more influenced by

maximum temperatures than by rainfall.

Jaarsma (1990) used a similar approach, by applying site-specific log linear multiple

regression models to data collected over the years 1984–1988 at 14 sites, covering rec-

reational as well as utilitarian cycle paths in the Netherlands. He found that most of the

Fig. 3 Daily flow time-series for cycle paths E6-r (upper panel) and G1-u (lower panel) for the year 1993
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variation in demand was explained by the models, but that still quite a large fraction was

unaccounted for. Jaarsma and Wijnstra (1995) and Hendriks (2002) made some changes to

these models, like different models for workdays and weekends and incorporating a

memory term to give extra impact to ‘sunny’ weather conditions after a cloudy period, but

these changes did not reduce the remaining variation much.

Our study can be regarded as an extension of these previous studies, although our

approach is slightly different. Instead, we took new data that cover a much longer time-

period to find a more generic regression form that fits all data. Also, contrary to many

studies, we did not determine the functional form of the regression in advance. For

example, one could use a multiple linear regression analysis to relate the weather

observables, like temperature and precipitation, to cycle use. The coefficients of this linear

regression can then be estimated by a least-square fit. However, it is not known a priori

whether the relation between cycle use and weather observables is linear. By inspecting the

observations and by using logic arguments, one can estimate a realistic functional form,

which may or may not be linear. We adopted the latter approach in the following way.

First, we applied a linear multiple regression, deciding which weather observables should

be included. Secondly, we evaluated the average residuals of the linear regression to arrive

at the final (non-linear) functional form and calibrated regression coefficients. Finally, we

analysed the remaining variation and studied long term trends.

The generic regression function

We start by expressing the regression in a very general form:

ln qest ¼ f ðWobs
1 ; . . .;Wobs

m Þ ð1Þ

In Eq. 1, qest is the estimated daily flow, which is a function f of the weather observables

Wi
obs, such as average temperature or the duration of precipitation. We use the natural

logarithm (ln) in Eq. 1, because we assume that an absolute improvement in weather will

uniformly lead to the same relative increase in demand.

The function f can be any function. To simplify the problem, we applied the restriction

that the function f is a linear combination of weather parameters Wi, whereas each weather

parameter is regarded as a (non-linear) function of the corresponding weather observable.

ln qest ¼ ln q0 þ c1W1 þ . . .þ cmWm ð2Þ

Wi ¼ fiðWobs
i Þ ð3Þ

To ease the interpretation of the relative contribution of each weather parameter, we chose to

apply a normalization procedure. The normalization was carried out as follows. For each

weather parameter we estimated the average and standard deviation over the total measurement

period (1987–2003). From the parameter value per day we then subtracted the average and

divided the result by the standard deviation. Each normalized parameter thus has an average

equal to 0 and a standard deviation equal to 1. Equation 2 can then be rewritten as follows:

ln qest ¼ ln q0 þ bða1W1 þ . . .þ amWmÞ ¼ ln q0 þ bW ð4Þ

where ci = bai, and
Pm

i ¼ 1

a2
i ¼ 1:

The variable q0 in Eqs. 2 and 4 is the standardized flow, which is the flow corrected for

weather influences. In Eq. 4, we call the coefficients ai the weather coefficients, W the

weather construct, and the coefficient b the slope. The weather construct W can be regarded
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as an estimation on how (potential) cyclists experience the weather conditions. A high

value corresponds to weather conditions that favor cycling. Just like the weather param-

eters, W also has an average of 0, and a standard deviation of about 1. The slope

b describes how the rate of relative increase of bicycle flow depends on W. Different

travelers may experience the weather in the same way, but their inclination to make a trip

may have a rather different dependence on W. The slope is expected to be high for

recreational paths, because the choice to make a trip for leisure is expected to depend

strongly on weather conditions. The influence of weather is expected to be less severe for

utilitarian paths. In the extreme case, parameter b might be close to 0, if the path is mainly

used by captives (e.g. school children).

We did not explicitly include the variables area (Ede or Gouda) and path type (recre-

ational or utilitarian) in the multiple regression analysis. The relation between weather and

cycling demand may not only depend on area or path type, but can also depend on other

(hidden) path specific characteristics such as dominant trip length. We therefore chose to

carry out separate regressions for each individual cycle path, and day of the week. Note

that some of these hidden characteristics may be correlated with weather. As a conse-

quence the effect of weather might be somewhat overstated.

Linear and non-linear regression

According to Eqs. 2 and 4, we only need to solve linear equations, which can be done with

a multiple linear regression analysis. However, the weather parameters of the weather

construct W can still have complicated forms, because they can be non-linear functions of

the weather observables. In the simplest form, the weather parameters are equal to the

weather observables.

Wi ¼ Wobs
i ð5Þ

This functional form is therefore linear. We developed the linear regression as follows.

We used all weather observables from the Dutch National Meteorological Institute for a least

squares fit, and constructed a first linear regression model. We then excluded observables

that did not show a statistically significant contribution, i.e. observables for which the

coefficients ci in Eq. 2 are not significantly different from 0. We also excluded observables

that showed a strong correlation (correlation coefficient [0.6) with one or more other

observables that had a larger contribution in the regression. In this way, we tried to minimize

the effect of multicollinearity in the fit, although we can never completely eliminate it.

This is the simplest functional form, but may not provide an optimal fit. To check this,

we studied the residuals. The residuals are defined as the differences between observations

and regression estimates: Dln q = ln qobs-ln qest. For each weather observable that was

included in the regression, we defined (small) ranges in which we aggregated the obser-

vations. Then, for each aggregate we determined the average value of the residuals, i.e. the

mean of Dln q. In some situations, the average residuals may show a clear trend (being

different from 0), indicating a systematic difference between observations and regression

estimates. By using non-linear terms in the weather parameters (Eq. 3) such systematic

differences can be reduced.

For the non-linear regression, we only considered weather observables that were already

included in the linear regression. We tested several non-linear functions for each of these

weather observables, applying a least squares fit, in order to arrive to average residuals of

about 0.
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The goodness of fit was evaluated by R2, which is a standard measure in multiple

regression analysis, and which indicates how much of the total variation is explained by the

regression model. A large R2 indicates that the model fits the observations quite well.

However, one should be careful with interpreting R2 values, because they are sensitive to

the way the measurements of the ‘independent’ variables are dispersed. A few outliers in

the independent variables may influence the fit quite strongly, and also may lead to an

artificial increase in R2. We therefore also adopted the root-mean-square (RMS) of the

residuals as a measure for the quality of the model. A low RMS indicates that the model fits

the observations quite well.

In the next section we elaborate on the functional form of the regression model.

Development of the regression function

We applied a linear regression per cycle path and day of the week to determine the main

weather determinants of bicycle flows (Selection of relevant weather observables). From

an evaluation of the systematic variation in the residuals (Systematic variation in the

residuals) we improved the regression function by using the non-linear weather parameters

(Non-linear relationships) instead of the original ones.

We excluded the school holidays from the analysis, because, as we will see in School

holidays, the school holidays have their own standardized flows, q0, which is in general

much lower compared to the standardized flows outside the school holidays for the utili-

tarian paths, but much higher for the recreational paths. These variations and seasonal

variations in general will be separately evaluated in Analysis of the remaining variation.

Selection of relevant weather observables

From similar, important weather observables we chose the ones with the strongest corre-

lation with cycle flows. For temperature and wind velocity, these were the daily averages.

For precipitation, this was the duration of precipitation (in hours). We can also justify these

choices with regards to cycling, because cyclists make their trips over the whole day,

including the morning during which the temperature is actually close to the minimum.

Similarly, cyclists are put off by a long period of moderate rainfall, whereas one short,

heavy thunderstorm will only have a temporary effect.

The same applies for the duration of sunshine, which also shows a strong correlation

with cycle flows. The other observables did not show explanatory power and their cor-

responding coefficients were almost never significantly different from 0 (i.e. humidity and

visibility), or they showed a strong (negative) correlation with the amount of sunshine (i.e.

humidity and cloudiness). These observables were therefore not included in the further

regression analysis.

Hence, we have the weather parameters for temperature, WT, for duration of sunshine,

WS, for duration of precipitation WP, and for wind velocity, WV. According to Eq. 5, for the

linear model, WT = T, WS = S, WP = P, and WV = V. The results of the least squares fit

are quite straightforward. Rises in temperature and duration of sunshine have a positive

effect on cycling, while precipitation and an increase in wind velocity have negative

effects. If we average the R2 for all cycle paths, we find an average R2 of 0.79. We find the

same R2 when we include the other weather observables. From this, we conclude that the

reduction to four weather observables in our model is justified.
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Systematic variation in the residuals

As stated in Linear and non-linear regression, the linear model may not be the optimal

model. We conclude this from an inspection of the (mean) residuals, of which the pro-

cedure is described in that section. The results for the linear model are shown by the open

squared symbols in Fig. 4. From upper left to lower right, we show the mean residuals for

temperature, duration of sunshine, duration of precipitation and wind velocity respectively.

We found no large differences between utilitarian, mixed and recreational cycle paths, and

therefore show the aggregate of all paths together.

From the Figure we conclude that the residuals show systematic deviations from 0. The

linear regression under and over estimates the flows (positive and negative residuals

respectively) for T \ 3 and T [ 18 �C respectively. These average temperatures corre-

spond with respectively minimum temperatures below 0 and a maximum temperature

exceeding 25 �C on a day. This is in line with the hypothesis that below and beyond a

certain temperature, cycle flows are not that sensitive to respectively a drop or rise in

temperature anymore. For the high temperatures, it may even hold that ‘‘too’’ hot tem-

peratures make it less attractive to cycle. Also, residuals decrease and increase with

increasing duration of sunshine and precipitation respectively. This non-linearity can be

explained by the idea that a difference between zero and one hour of sunshine or pre-

cipitation is experienced as a larger difference than a difference between for example 10

and 11 h. Because sunshine has a positive effect on demand, the linear regression over

Fig. 4 Mean residuals as function of weather observables (temperature, sunshine, precipitation and wind
velocity). Linear (open squares) and non-linear model (filled circles)
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estimates demand (negative residuals) for large S. Similarly, because precipitation has a

negative effect on demand, the linear regression underestimates the flows (positive

residuals) for large P.

For wind velocity, we also found systematic effects. When the wind velocity is low, the

model over estimates the demand (negative residuals). This also appears to be the case

when the wind velocity is high. This suggests that beyond a certain velocity, wind has a

negative effect on cycling, and that this effect will become disproportional larger for strong

winds. This can be explained by the fact that a small breeze can be felt as not really

unpleasant, while strong winds make it hard to cycle.

Non-linear relationships

To take these systematic effects into account, we adapted the linear model by testing

different non-linear relationships and parameter values. We arrived at the following for-

mulas and parameter values:

WT ¼ T for 3� T � 18 �C ð6aÞ

WT ¼ T � 0:2 ðT � 3Þ for T \3 �C ð6bÞ

WT ¼ 18 for T [ 18 �C ð6cÞ

WS ¼ S0:7 ð7Þ

WP ¼ P0:5 ð8Þ

WV ¼ V1:5 ð9Þ
The above formulas cannot be regarded as independent from each other, since some

observables are correlated. There are two important correlations. The first one is the

positive correlation between temperature and the duration of sunshine. Both observables

are also related to the period of the year. The second one is for obvious reasons the

negative correlation between the duration of sunshine and precipitation. Both correlations

have exactly the same strength (0.39 and -0.39 respectively). We therefore decided to

include all observables as if they were independent of each other. However, due to these

correlations, the non-linear corrections are also correlated. For example, high temperatures

are found on sunny days in the summer. Equations 6c and 7 should therefore not been seen

as independent from each other.

After normalizing the weather parameters, as described in the previous section, we

finally applied a least squares fit to obtain the model coefficients of the model described by

Eq. 10.

ln qest ¼ ln q0 þ bW ¼ ln q0 þ b ðaT WT þ aSWS þ aPWP þ aV WVÞ ð10Þ
The mean residuals for this non-linear regression are shown by the filled circles in

Fig. 4. These symbols show that the large deviations, shown by the open squares, have

disappeared. We therefore conclude that a non-linear model provides better results.

However, the average R2 of the non-linear model is 0.80, which means that it increased

only with slightly more than 0.01 compared to the linear model. Clear systematic effects

are accounted for by the non-linear model, but these effects only apply to certain tem-

perature ranges, and certain durations of sunshine and precipitation, and certain wind

velocities. In addition, as we will show in the next sections, still quite a large amount of

variation cannot be explained by the model. This variation is much larger than that
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accounted for by the non-linear model. Yet, notwithstanding the remaining variation, we

may argue that the non-linear model is a clear improvement and that in this respect, it is

important to carefully interpret R2 values.

The influence of weather on bicycle flow

In this section, we discuss the results from the regression which is described by Eq. 10 in

Development of the regression function. We used the weather parameters of the non-linear

model described by Eqs. 6a–9 in Development of the regression function. We applied a

least squares fit of the non linear weather model (excluding the school holidays). For each

cycle path and day of the week, we thus obtained the standardized flow q0, the slope b, the

weather coefficients ai, the R2 value, and the RMS in the residuals.

The average values of the weather coefficients for all cycle paths and all days are

aT = 0.78, aS = 0.39, aP = -0.32 and aV = -0.38. Temperature thus has the largest

effect which is also in agreement with results found by Emmerson et al. (1998). It is

surprising that the effect of precipitation is quite small. It is however important to stress

that the weather parameters are still correlated, in particular there is a correlation between

season, temperature and sunshine on the one hand, and between sunshine and precipitation

on the other hand. Multicollinearity may lead to an under estimation of the effect of

precipitation. It is also possible that the effect of precipitation is under estimated, by the

fact that we used 24 h instead of day-time figures. However, in Analysis of the remaining

variation, we will argue that this under estimation cannot be very large.

The R2 value (average for all paths and days of the week) for the aforementioned

average values of the weather coefficients is 0.80. The R2 value hardly changes (\0.01)

when we consider the individual coefficients (per path and per day of the week). However,

as mentioned before, a small change in R2 value can still be statistically significant, even

when it appears small compared to the total (remaining) variation. In fact, we find a small,

but statistically significant, difference between the fits for utilitarian paths during work-

days, that have an average aT = 0.80, aS = 0.32, aP = -0.32 and aV = -0.40, and the fits

for all other paths and/or days, that have an average aT = 0.75, aS = 0.46, aP = -0.31

and aV = -0.36. However, this is the only statistically significant difference we find.

Within these two groups of paths and days, the variation in the individual coefficients is

quite small, i.e. the standard deviation is about 0.04 and 0.07 per weather parameter for the

first and second group respectively. The result indicates that the amount of sunshine is the

most important weather parameter that distinguishes utilitarian from recreational paths.

Hence, sunshine seems relatively more important for travelers that make recreational trips

than for travelers that make utilitarian trips.

In contrast to the weather coefficients, the coefficients q0 and b are much more variable.

The standardized demand q0 depends on the strength of local OD flows, and is therefore

less relevant for this study. The slope b can be seen as the most relevant coefficient of this

regression, because it describes how sensitive demand is to weather variations. In Fig. 5 we

illustrate the results for a recreational path (E6-r, upper panel) and a utilitarian path (G1-u,

lower panel) for Thursdays (left) and Sundays (right). The Figure shows large differences

in the slope b. The slope is very shallow for the utilitarian path on a Thursday (bottom left).

The slope becomes steeper for recreational paths and for Sundays. The results in Fig. 5 are

illustrative for all paths outside the holiday periods.

In Table 1, we show the results for all paths on workdays, Saturdays and Sundays. For

each path, the table provides the slope b and R2 value for each of the days. For the

12 Transportation (2013) 40:1–22
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utilitarian paths, the average slope b is 0.18 (in the range between 0.14 and 0.22) for

workdays. The slope is on average 0.36 (in the range between 0.31 and 0.46) for Saturdays

and 0.53 (in the range between 0.46 and 0.66) for Sundays. For recreational paths, the

variation in b is larger, which can be explained by the fact that paths with the same

classification can still serve somewhat different heterogeneous cycle flows. For recrea-

tional paths, b is on average 0.74 for workdays, 0.77 for Saturdays, and 0.79 for Sundays.

However, the slopes are somewhat steeper for the recreational paths in Ede (with an

average slope above 0.8) than for those in Gouda. We found no statistically significant

differences between workdays.

The mixed paths show mixed results. This can be attributed to the fact that these paths

combine functions of recreational and utilitarian paths, but not always in the same pro-

portion. We therefore decided to exclude them from further analysis.

We interpret the results as follows. The utilitarian paths mainly serve school and work

trips during workdays. Contrary to recreational trips, these trips are less influenced by

weather, because they are obligatory, and therefore cannot easily be canceled. Also, school

pupils cannot easily substitute another mode for the bicycle. During weekends, utilitarian

paths show quite a steep slope, because demand is then dominated by the less obligatory

trips. The steepest slopes, however, were found for recreational paths in Ede, for which

cyclists appear to be the most sensitive to weather. An explanation may be that the

recreational paths in Ede are used by long-stay tourists. These people, contrary to for

example people who use the bicycle for a sports or shopping motive, make the least

obligatory trips of all. Their trips have no other purpose, but to enjoy the environment and

the good weather.

Fig. 5 Relation between weather and cycle flows (q, in bicycles/day) for the recreational path E6-r (upper
panel) and the utilitarian path G1-u (bottom panel) on Thursdays (left) and Sundays (right)
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The R2 values are creditably high for modeling of this kind. They are slightly larger for

the weekends than for the workdays, i.e. 0.82 versus 0.79 on average. The relative variation

in the residuals compared to the total variation is thus similar for the different fits. The total

variation in demand, and thus also the variation in the residuals, increases from utilitarian

trips to recreational trips. The RMS of the residuals is on average 0.11 for utilitarian paths

during workdays. The RMS is on average 0.20 for Saturdays and 0.26 for Sundays. For

recreational paths, the RMS of the residuals is on average 0.44 for workdays, 0.45 for

Saturdays, and 0.44 for Sundays.

Analysis of the remaining variation

In this section, we analyze the remaining variation described by the residuals. First, we

study seasonal variation (Seasonal variation). Then, we evaluate the variation of cycle

flows during school holidays (School holidays). Finally, we investigate the remaining

variation that is unaccounted for (Unaccounted variation).

Seasonal variation

We used the regression function, described in the previous sections, to estimate the model

flows qest. With these flows, the weekly residuals can be determined. Per week, we

determined the average weekly residual for workdays and weekends over the years. In

Figs. 6 and 7 we show the results for utilitarian and recreational cycle paths respectively.

The Figures show that seasonal variations are rather similar for paths in Gouda and Ede,

especially for utilitarian paths. For workdays outside the school holidays, seasonal

Table 1 slope b and R2 value per cycle path for workdays, Saturdays and Sundays

Path Workdays Saturdays Sundays

b R2 b R2 b R2

E1-u 0.18 0.75 0.31 0.82 0.46 0.87

G1-u 0.14 0.75 0.34 0.85 0.54 0.88

G2-u 0.15 0.81 0.33 0.82 0.46 0.87

G3-u 0.21 0.76 0.46 0.77 0.66 0.85

G4-u 0.22 0.85 0.37 0.83 0.55 0.87

E2-m 0.71 0.83 0.68 0.82 0.73 0.82

E3-m 0.51 0.81 0.68 0.80 0.71 0.83

G5-m 0.18 0.78 0.42 0.84 0.65 0.87

G6-m 0.35 0.84 0.69 0.87 0.95 0.90

E4-r 0.60 0.79 0.64 0.79 0.67 0.80

E5-r 1.03 0.82 0.95 0.82 0.96 0.84

E6-r 0.88 0.81 0.87 0.81 0.85 0.81

E7-r 0.85 0.77 0.85 0.78 0.81 0.81

E8-r 0.99 0.81 1.02 0.82 0.92 0.80

G7-r 0.39 0.76 0.47 0.75 0.58 0.83

G8-r 0.45 0.76 0.60 0.80 0.73 0.87
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variations are small on utilitarian paths, while for recreational paths some seasonal trend is

visible. Volumes appear to be somewhat higher than expected during the spring, and lower

than expected at the end of the year. A similar trend we find for all paths during the

weekend. This seasonal effect can be attributed to recreational traffic, which is dominant

on recreational paths and on utilitarian paths during the weekend. This result might be

related to a higher appreciation of the first good weather days after wintertime.

We correct for seasonal effects by adding the weekly residuals to the natural logarithm

of the estimated daily flows. If we only consider the non-holiday periods, we expect that

the RMS of the residuals will hardly change for utilitarian paths, because seasonal vari-

ations are quite small for these paths. This is indeed the case. The RMS of the residuals is

0.11 and 0.22 for workdays and weekends respectively, compared with 0.11 and 0.23 for

the situation without seasonal corrections. For recreational paths, the RMS of the residuals

decreases when we correct for the weekly residual, but the decreases are also small, i.e.

from 0.44 to 0.43 for the workdays, and from 0.45 to 0.43 for weekends. Although there is

clearly seasonal variation, its effect on the remaining variation is apparently quite small.

School holidays

For the school holidays, excluded so far, the daily flows were initially estimated with the

same regression function that was fitted for the non-holiday periods in the previous section.

In Figs. 6 and 7, the holiday residuals are denoted with filled symbols. The Figures show

strong deviations for workdays (upper panels) during school holidays, when demand is

Fig. 6 Weekly residuals (Mean Dln q) in Ede and Gouda for utilitarian paths during workdays (upper
panel) and weekends (lower panel)
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lower than normal for utilitarian paths and higher than normal for recreational paths. This

is the result of a shift from utilitarian (school and commuting) trips to recreational trips in

the school holidays. For weekends (lower panels), the differences between the holiday and

non-holiday periods are much smaller. This result is also not unexpected, because in the

Netherlands recreational traffic is always dominant during weekends.

The weekly residuals are much larger during the holidays, and they would certainly

have an effect on the RMS of the residuals. However, when we correct for the weekly

residuals, we find that for recreational paths and for utilitarian paths during the weekends,

the RMS of the residuals are the same or even slightly smaller for holiday periods than for

non-holiday periods. From this, we conclude that the coefficients of the model are also well

suited for recreational traffic during holidays. The only difference is that the total demand

changes during holidays.

We cannot draw the same conclusion for utilitarian traffic, i.e. for utilitarian paths

during workdays. Even after a correction for weekly residuals, the RMS of the residuals is

much larger for the holiday period (RMS = 0.28) than for the non-holiday period

(RMS = 0.11). We therefore fitted the regression function again for the daily flows on

workdays on utilitarian paths, corrected for the weekly residuals (subtracting these

residuals from the observations), during the holiday period. We decided not to include the

weather coefficients (aT, aS, aP, aV) in the fit, but to use the same coefficients as for the

non-holiday period. This was done because of the limited number of days, and because the

model results are much more sensitive to the slope b than to the weather coefficients. This

procedure is justified by the results. The RMS of the residuals for the new fit is 0.11, which

is the same as for the non-holiday period.

Fig. 7 Weekly residuals (Mean Dln q) in Ede and Gouda for recreational paths during workdays (upper
panel) and weekends (lower panel)
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With the adapted model, the average slope is 0.32 compared to 0.18 for the non-holiday

period. The slopes are thus steeper, which implies that the influence of weather is some-

what stronger during the holiday period. This result is expected. Due to the drop of

utilitarian trips, these paths serve relatively more recreational trips during the holiday

period, albeit still a relatively small number. This can also explain the large variation in

slopes from path to path. We find a slope of 0.25 for the path with presumably the smallest

drop in utilitarian trips, and a slope of 0.52 for the path with a large drop in utilitarian trips.

Interestingly for utilitarian paths, the average R2 value is 0.9 for the holidays compared

to 0.8 for the non-holidays. The fact that the RMS values are similar shows that one should

be careful with interpreting R2 values. The holidays mark distinct periods in the year for

which the average weather patterns are quite different. As a result, the holidays are rep-

resented by data points that are clustered in different groups. Such a distribution of data

points typically leads to higher R2 values.

Unaccounted variation

In the previous sections, we showed that most variation in flows on rural cycle paths in the

Netherlands can be attributed to weather. However, the remaining variation is still large. At

first sight, it is not clear what causes this variation. We concluded that the inclusion of

other weather parameters will not lead to better demand estimates, and that the residuals of

the non-linear model do not show weather-related systematic variation. Furthermore,

seasonal variation only has a marginal effect on the regression results.

Some of the variation may be caused by the aggregate nature of the weather observ-

ables. As mentioned before, we used 24 h aggregates, that are not necessarily represen-

tative for local conditions. Inaccuracies in weather measurements could be reflected in a

positive correlation between the residuals of nearby cycle paths, since demand estimates of

nearby cycle paths are influenced by the same weather conditions.

For workdays, we find evidence of such a correlation between paths in the same town,

but only when they are of the same type. The correlation coefficient is more or less the

same for utilitarian and recreational paths, i.e. 0.5 during workdays, and 0.6 during

weekends. However, we also find similar correlations for paths of the same type which are

not located in the same town. Although the correlations are statistically significant, they are

not very strong. Outside the school holidays, still about 70 % of the RMS in the residuals is

uncorrelated. We suggest that this variation is caused by local fluctuations that are not

weather related. This variation is considered to be random, and cannot be predicted by

generic variables. The remaining 30 % of the variation is systematic.

The nature of the systematic variation is illustrated in Fig. 8. The Figure shows the

weekly variation of the residuals (not corrected for seasonal variation) for workdays for the

year 1993, excluding school holidays. The solid symbols represent the averages over the

utilitarian paths in Gouda (upper panel) and the recreational paths in Ede (lower panel). For

comparison, the corresponding seasonal variation of the residuals for all years (Figs. 6 and

7, excluding holidays) is shown by the solid lines. The error-bars in the figure indicate the

variation in the daily residuals within a workweek, due to day-to-day variation. The figure

illustrates that the error-bars are smaller than the week-to-week variation, which reveals

some quite distinct features. In the last two months of 1993, for example, the residuals

were structurally higher than normal for the recreational paths. A large fraction of the

remaining systematic variation thus has time-scales of weeks, but it is not seasonal,

because its structure changes from year-to-year. We find that the RMS of this systematic

week-to-week variation accounts for about 70 % of the total systematic variation. Most of
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the systematic variation therefore does not only have time-scales longer than one day, but

even time-scales longer than one week. This is also confirmed by the auto-correlation of

the time-series of weekly residuals corrected for seasonal variation. The correlation

between residuals of successive weeks has a statistically significant correlation coefficient

of 0.3, and we even find evidence for a weak correlation when the residuals are separated

by as much as 7 weeks.

The cause of the systematic variation is far from clear. It is different for utilitarian and

recreational paths. In addition, correlations are found between paths in different towns

(when they are of the same type) and between residuals of successive weeks. These results

suggest that it is not very likely that (most of) this variation can be explained by the

aggregated nature of daily weather measurements.

We conclude that most of the variation in the residuals is caused by local fluctuations in

demand, which we consider as noise. The remaining systematic variation is not locally

constrained. These non-local demand fluctuations, which have time-scales of weeks, may

be included in a generic model, but more research is needed to find the causes for these

fluctuations.

Evaluation of trends over the years as an application

One of the objectives of policy makers for monitoring cycle flows is to recognize

developments in demand. It is however difficult to disentangle long term trends from

Fig. 8 Weekly variation of residuals for utilitarian paths in Gouda (upper panel) and recreational paths in
Ede (lower panel). The year 1993 is compared with the overall seasonal variation (solid line, see Figs. 6 and
7). Holidays are excluded
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shorter-term, weather related, fluctuations. With our regression model we have estimated

expected flows. We can compare their annual averages with those of the observed flows

in order to recover long term trends. In Fig. 9 we illustrate how this can be done. The

Figure shows the annual average for the observations (symbols) and regression estimates

(solid lines). This was done for the aggregates of utilitarian paths in Gouda (upper panel)

and recreational paths in Ede (bottom panel), that comprise the largest part of our

sample. Because of their distinct characteristics, we excluded the school holidays in this

analysis.

Figure 9 shows that the model follows the shorter-term fluctuations in the observations

quite well. Possible trends are revealed from the deviations between observed and esti-

mated annual flows. For the utilitarian paths in Gouda, no trend appears to be present. For

the recreational paths in Ede, a downward trend seems to be existing. The observations do

not directly show a downward trend, but according to the estimates, this downward trend

may be concealed by better weather conditions during the last few years (from 2000

onwards).

We illustrated that it is possible to detect long term trends in cycling patterns. However,

studies of long term trends are far more meaningful when a large number of cycle paths in

different areas can be analyzed, which is not the case in our study.

Fig. 9 Time series of annual averages: observations versus regression results for utilitarian paths in Gouda
(upper panel) and recreational paths in Ede (lower panel)

Transportation (2013) 40:1–22 19

123



Conclusions and further research

The impact of weather on traffic flows has been investigated with rather different scopes,

such as impact on traffic activity and on accident exposure (Al Hassan and Barker 1999),

management of urban road networks (Keay and Simmonds 2005; Lam et al. 2008), the

potential modal shift from car to bicycle, especially for short car trips (Bergström and

Magnusson 2003), a contribution to reducing congestion (Heinen et al. 2010) and visitor

flows to outdoor recreation sites (Brandenburg and Ploner 2002). Most studies focus on car

traffic. Studies specifically on bicycle flows are scarce.

From the different studies on the impact of weather on bicycle flows we find air

temperature (either the daily average or the maximum), precipitation (either amount or

duration), hours of sunshine (or equivalents such as cloud cover) and wind speeds as most

relevant explaining variables for day-to-day variations, additional to cyclical progress

through the year, by day of the week and by school holiday. The regression analyses in

these studies are applied to one site at a time, either for one year or for a series of years.

The regression coefficients show to be site-specific, and not transferable from one site to

another (Emmerson et al. 1998; Jaarsma 1990; Jaarsma and Wijnstra 1995; Hendriks

2002). Therefore, in this study a slightly alternative approach was chosen, in which a series

of sites with (partly) different years of observation was analyzed as one common set of

input-data. With this approach we were able to draw the following conclusions:

(1) The weather parameters in order of importance are: average 24 h temperature, the

duration of sunshine, the duration of precipitation, and the average wind velocity.

(2) Different user groups (utilitarian and recreational) appear to experience the weather

in more or less the same way. However, the influence of weather on demand is very

different for both user groups.

(3) About 80 % of the variations in our flow time-series can be explained by the

regression model. Most of the remaining variation is caused by local fluctuations in

demand, and cannot be described by adding more generic variables.

The approach allows for the development of a generic ‘weather model’, with which

flows can be standardized and long-term trends in demand can be disentangled from

shorter-term, weather related, variations. Such an application is very relevant to practi-

tioners and policy makers, for instance in the context of evaluating cycle policy inter-

ventions on a local and regional scale. For example, we found no apparent trend for cycle

paths in Gouda, while for paths in Ede a possible negative trend in demand is concealed by

a positive trend in weather conditions. According to our limited sample, there is no evi-

dence for a positive long-term trend in volumes of bicycle traffic, despite considerable

policy interventions to promote cycling.

Another relevant application for a weather model concerns the assessment of trends in

visitor flows to recreational areas. Insight into the number of visitors and a distinction

between systematic and random variation of visitor flows is required for ecologically and

economically sustainable management of national parks and specific destinations for

outdoor recreation (Loomis 2000). In this context, the interrelationship between cars and

bicycles needs specific attention. In a further study we therefore also want to investigate

the hypothesis that the model enables us to describe fluctuations in day-to-day traffic and

visitor flows by car and bicycle to such sites. A model might be able to also exclude

weather effects from car flows, since there is evidence that car and bicycle mode might be

interrelated Bergström and Magnusson (2003).
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However, further steps need to be taken before aforementioned applications can be

implemented. First, a substantial amount of variation is left ‘unexplained’. More research is

needed to find the causes for these fluctuations. Other non-weather variables should

therefore be studied in relation with cycling demand, and may eventually be included in a

more generic model. Second, this analysis is based on a limited number of cycle paths in

only rural surroundings, and it is yet unknown how the weather model will perform in other

spatial contexts. At the moment, it is not clear if these results can be transferred to other

paths, for example to paths in city centres with a lot of cover by buildings. However, this

regression analysis can be seen as an important step to the development of such a com-

prehensive model.
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