Skip to main content
Log in

Cooperation between arbuscular mycorrhizal fungi and earthworms promotes the physiological adaptation of maize under a high salt stress

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Aims

The potential independent and combined effects of arbuscular mycorrhizal fungi and earthworms on maize salt tolerance were studied in a high salinity soil.

Methods

This experiment was a 2 × 2 factorial design representing all the combinations of arbuscular mycorrhizal (AM) fungi with earthworms in a high coastal saline soil. Maize biomass, physiological adaptation, ion transportation, soil aggregates, and soil bacterial community from illumina MiSeq sequence were measured at harvest.

Results

The results indicated that the earthworms and AM fungi increased the maize salt tolerance by decreasing the salt concentrations, increasing the soil macroaggregate proportions, soil bacterial diversity, maize mineral uptake, and photosynthesis. Earthworms primarily increased the soil macroaggregate proportions, root Na content, and shoot nutrient uptakes and proline content. The AM fungi enhanced K selected transportation from the root to the shoot and reduced the shoot malondialdehyde content to promote maize photosynthesis and transpiration. Illumina MiSeq sequencing analysis showed that earthworms and AM fungi decreased the relative abundance of Bacteroidetes and Fibrobacteres, which was negatively correlated with the soil organic matter. The structural equation model suggests that the soil salt concentration and soil macroaggregate proportions largely contributed to the maize biomass, followed by the shoot K content.

Conclusions

Earthworms and AM fungi enhanced maize salt tolerance by ameliorating the soil chemical, physical and biological characteristics and, subsequently, promoting maize growth in high salinity soil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aghababaei F, Raiesi F (2015) Mycorrhizal fungi and earthworms reduce antioxidant enzyme activities in maize and sunflower plants grown in Cd-polluted soils. Soil Biol Biochem 86:87–97

    Article  CAS  Google Scholar 

  • Anjum NA, Aref IM, Duarte AC, Pereira E, Ahmad I, Iqbal M (2014) Glutathione and proline can coordinately make plants withstand the joint attack of metal (loid) and salinity stresses. Front Plant Sci 5:662

    Article  PubMed  PubMed Central  Google Scholar 

  • Arbuckle JL (2006) Amos (Version 7.0) [Computer Program]. SPSS, Chicago

  • Bao SD (2000) Soil and agricultural chemistry analysis. China Agriculture Press, Beijing

    Google Scholar 

  • Bates L, Waldren R, Teare I (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39:205–207

    Article  CAS  Google Scholar 

  • Bauer M, Kube M, Teeling H, Richter M, Lombardot T, Allers E, Würdemann CA, Quast C, Kuhl H, Knaust F (2006) Whole genome analysis of the marine Bacteroidetes ‘Gramella forsetii’ reveals adaptations to degradation of polymeric organic matter. Environ Microbiol 8:2201–2213

    Article  CAS  PubMed  Google Scholar 

  • Bianco C, Defez R (2010) Improvement of phosphate solubilization and medicago plant yield by an indole-3-acetic acidoverproducingstrain of Sinorhizobium meliloti. Appl Environ Microbiol 76:4626–4632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blouin M, Hodson ME, Delgado EA, Baker G, Brussaard L, Butt KR, Dai J, Dendooven L, Pérès G, Tondoh J (2013) A review of earthworm impact on soil function and ecosystem services. Eur J Soil Sci 64:161–182

    Article  Google Scholar 

  • Cao J, Wang C, Dou Z, Ji D (2016a) Independent and combined effects of oxytetracycline and antibiotic-resistant Escherichia coli O157: H7 on soil microbial activity and partial nitrification processes. Soil Biol Biochem 98:138–147

    Article  CAS  Google Scholar 

  • Cao J, Wang C, Ji D (2016b) Improvement of the soil nitrogen content and maize growth by earthworms and arbuscular mycorrhizal fungi in soils polluted by oxytetracycline. Sci Total Environ 571:926–934

    Article  CAS  PubMed  Google Scholar 

  • Coronado MJ, Vargas C, Hofemeister J, Ventosa A, Nieto JJ (2000) Production and biochemical characterization of an α-amylase from the moderate halophile Halomonas meridiana. FEMS Microbiol Lett 183:67–71

    CAS  PubMed  Google Scholar 

  • Dodd IC, Pérez-Alfocea F (2012) Microbial amelioration of crop salinity stress. J Exp Bot 63:3415–3428

    Article  CAS  PubMed  Google Scholar 

  • Drake HL, Horn MA (2007) As the worm turns: the earthworm gut as a transient habitat for soil microbial biomes. Annu Rev Microbiol 61:169–189

    Article  CAS  PubMed  Google Scholar 

  • Eisenhauer N, Bowker MA, Grace JB, Powell JR (2015) From patterns to causal understanding: structural equation modeling (SEM) in soil ecology. Pedobiologia 58:65–72

    Article  Google Scholar 

  • FAO 2008. FAO Land and Plant Nutrition Management Service. http://www.fao.org/ag/agl/agll/spush

  • Farooq M, Hussain M, Wakeel A, Siddique KH (2015) Salt stress in maize: effects, resistance mechanisms, and management. A review. Agron Sustain Dev 35:461–481

    Article  CAS  Google Scholar 

  • Garg N, Manchanda G (2009) Role of arbuscular mycorrhizae in the alleviation of ionic, osmotic and oxidative stresses induced by salinity in Cajanus cajan (L.) Millsp.(pigeonpea). J Agron Crop Sci 195:110–123

    Article  CAS  Google Scholar 

  • Hameed A, Dilfuza E, Abd-Allah EF, Hashem A, Kumar A, Ahmad P (2014) Salinity stress and arbuscular mycorrhizal symbiosis in plants. In: Use of microbes for the alleviation of soil stresses, vol 1. Springer, New York, pp 139–159

    Chapter  Google Scholar 

  • Hartmann M, Frey B, Mayer J, Mäder P, Widmer F (2015) Distinct soil microbial diversity under long-term organic and conventional farming. ISME J 9:1177–1194

    Article  PubMed  Google Scholar 

  • Hedley MJ, Stewart J, Chauhan B (1982) Changes in inorganic and organic soil phosphorus fractions induced by cultivation practices and by laboratory incubations. Soil Sci Soc Am J 46:970–976

    Article  CAS  Google Scholar 

  • Herlemann DP, Labrenz M, Jürgens K, Bertilsson S, Waniek JJ, Andersson AF (2011) Transitions in bacterial communities along the 2000 km salinity gradient of the Baltic Sea. ISME J 5:1571–1579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kemper W, Rosenau R (1986) Aggregate stability and size distribution. In: Klute A (ed) Methods of soil analysis, part 1. Am So. Agron, Madison, pp 425–441

    Google Scholar 

  • Kuczak CN, Fernandes EC, Lehmann J, Rondon MA, Luizao FJ (2006) Inorganic and organic phosphorus pools in earthworm casts (Glossoscolecidae) and a Brazilian rainforest Oxisol. Soil Biol Biochem 38:553–560

    Article  CAS  Google Scholar 

  • Labidi S, Calonne M, Jeddi FB, Debiane D, Rezgui S, Laruelle F, Tisserant B, Grandmougin-Ferjani A, Sahraoui ALH (2011) Calcareous impact on arbuscular mycorrhizal fungus development and on lipid peroxidation in monoxenic roots. Phytochemistry 72:2335–2341

    Article  CAS  PubMed  Google Scholar 

  • Lakhdar A, Rabhi M, Ghnaya T, Montemurro F, Jedidi N, Abdelly C (2009) Effectiveness of compost use in salt-affected soil. J Hazard Mater 171:29–37

    Article  CAS  PubMed  Google Scholar 

  • Li XG, Shi XM, Wang DJ, Zhou W (2012) Effect of alkalized magnesic salinity on soil respiration changes with substrate availability and incubation time. Biol Fertil Soils 48:597–602

    Article  CAS  Google Scholar 

  • Li H, Wang C, Li X, Xiang D (2013) Inoculating maize fields with earthworms (Aporrectodea trapezoides) and an arbuscular mycorrhizal fungus (Rhizophagus intraradices) improves mycorrhizal community structure and increases plant nutrient uptake. Biol Fertil Soils 49:1167–1178

    Article  CAS  Google Scholar 

  • Li X, Zhang J, Gai J, Cai X, Christie P, Li X (2015) Contribution of arbuscular mycorrhizal fungi of sedges to soil aggregation along an altitudinal alpine grassland gradient on the Tibetan Plateau. Environ Microbiol 17:2841–2857

    Article  CAS  PubMed  Google Scholar 

  • Lücker S, Wagner M, Maixner F, Pelletier E, Koch H, Vacherie B, Rattei T, Damsté JSS, Spieck E, Le Paslier D (2010) A Nitrospira metagenome illuminates the physiology and evolution of globally important nitrite-oxidizing bacteria. Proc Natl Acad Sci 107:13479–13484

    Article  PubMed  PubMed Central  Google Scholar 

  • Manuel Ruiz-Lozano J, Porcel R, Azcon C, Aroca R (2012) Regulation by arbuscular mycorrhizae of the integrated physiological response to salinity in plants: new challenges in physiological and molecular studies. J Exp Bot 63:4033–4044

    Article  Google Scholar 

  • McGonigle T, Miller M, Evans D, Fairchild G, Swan J (1990) A new method which gives an objective measure of colonization of roots by vesicular-arbuscular mycorrhizal fungi. New Phytol 115:495–501

    Article  Google Scholar 

  • Muhammad F, Mubshar H, Abdul W, Siddique KHM (2015) Salt stress in maize: effects, resistance mechanisms, and management. A review. Agron Sustain Dev 35:461–481

    Article  Google Scholar 

  • Newman EI (1966) A method of estimating total length of root in a sample. J Appl Ecol 3:139–145

    Article  Google Scholar 

  • Nguyen HT, Stanton DE, Schmitz N, Farquhar GD, Ball MC (2015) Growth responses of the mangrove Avicennia marina to salinity: development and function of shoot hydraulic systems require saline conditions. Ann Bot 115:397–407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nielsen PH, Saunders AM, Hansen AA, Larsen P, Nielsen JL (2012) Microbial communities involved in enhanced biological phosphorus removal from wastewater—a model system in environmental biotechnology. Curr Opin Biotechnol 23:452–459

    Article  CAS  PubMed  Google Scholar 

  • Olsen SR (1954) Estimation of available phosphorus in soils by extraction with sodium bicarbonate. United States Department Of Agriculture, Washington

    Google Scholar 

  • Omoto E, Taniguchi M, Miyake H (2012) Adaptation responses in C4 photosynthesis of maize under salinity. J Plant Physiol 169(5):469–477

  • Oo A, Iwai C, Saenjan P (2015) Soil properties and maize growth in saline and nonsaline soils using cassava-industrial waste compost and vermicompost with or without earthworms. Land Degrad Dev 26:300–310

    Article  Google Scholar 

  • Pardo JM, Cubero B, Leidi EO, Quintero FJ (2006) Alkali cation exchangers: roles in cellular homeostasis and stress tolerance. J Exp Bot 57:1181–1199

    Article  CAS  PubMed  Google Scholar 

  • Porcel R, Aroca R, Ruiz-Lozano JM (2012) Salinity stress alleviation using arbuscular mycorrhizal fungi. A review. Agron Sustain Dev 32:181–200

    Article  CAS  Google Scholar 

  • Porcel R, Redondo-Gómez S, Mateos-Naranjo E, Aroca R, Garcia R, Ruiz-Lozano JM (2015) Arbuscular mycorrhizal symbiosis ameliorates the optimum quantum yield of photosystem II and reduces non-photochemical quenching in rice plants subjected to salt stress. J Plant Physiol 185:75–83

    Article  CAS  PubMed  Google Scholar 

  • Porcel R, Aroca R, Azcon R, Ruiz-Lozano JM (2016) Regulation of cation transporter genes by the arbuscular mycorrhizal symbiosis in rice plants subjected to salinity suggests improved salt tolerance due to reduced Na+ root-to-shoot distribution. Mycorrhiza 26:673–684

    Article  CAS  PubMed  Google Scholar 

  • Rabie G, Almadini A (2005) Role of bioinoculants in development of salt-tolerance of Vicia faba plants under salinity stress. Afr J Biotechnol 4:210

    CAS  Google Scholar 

  • Ransom-Jones E, Jones DL, McCarthy AJ, McDonald JE (2012) The Fibrobacteres: an important phylum of cellulose-degrading bacteria. Microb Ecol 63:267–281

    Article  CAS  PubMed  Google Scholar 

  • Rillig MC, Mummey DL (2006) Mycorrhizas and soil structure. New Phytol 171:41–53

    Article  CAS  PubMed  Google Scholar 

  • Shahzad M, Witzel K, Zörb C, Mühling K (2012) Growth-related changes in subcellular ion patterns in maize leaves (Zea mays L.) under salt stress. J Agron Crop Sci 198(1):46–56

  • Sharma MP, Gaur A, Bhatia NP, Adholeya A (1996) Growth responses and dependence of Acacia nilotica var. cupriciformis on the indigenous arbuscular mycorrhizal consortium of a marginal wasteland soil. Mycorrhiza 6:441–446

    Article  Google Scholar 

  • Sheng M, Tang M, Chen H, Yang B, Zhang F, Huang Y (2008) Influence of arbuscular mycorrhizae on photosynthesis and water status of maize plants under salt stress. Mycorrhiza 18:287–296

    Article  CAS  PubMed  Google Scholar 

  • Siciliano SD, Palmer AS, Winsley T, Lamb E, Bissett A, Brown MV, Van Dorst J, Ji M, Ferrari BC, Grogan P, Chu H, Snape I (2014) Soil fertility is associated with fungal and bacterial richness, whereas pH is associated with community composition in polar soil microbial communities. Soil Biol Biochem 78:10–20

    Article  CAS  Google Scholar 

  • Singh K (2016) Microbial and enzyme activities of saline and sodic soils. Land Degrad Dev 27:706–718

    Article  Google Scholar 

  • Six J, Bossuyt H, Degryze S, Denef K (2004) A history of research on the link between (micro) aggregates, soil biota, and soil organic matter dynamics. Soil Till Res 79:7–31

    Article  Google Scholar 

  • Sorokin DY, Lücker S, Vejmelkova D, Kostrikina NA, Kleerebezem R, Rijpstra WIC, Damsté JSS, Le Paslier D, Muyzer G, Wagner M (2012) Nitrification expanded: discovery, physiology and genomics of a nitrite-oxidizing bacterium from the phylum Chloroflexi. ISME J 6:2245–2256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tawara M, Sakatoku A, Tiodjio RE, Tanaka D, Nakamura S (2015) Cloning and characterization of a novel agarase from a newly isolated bacterium Simiduia sp. strain TM-2 able to degrade various seaweeds. Appl Biochem Biotechnol 177:610–623

    Article  CAS  PubMed  Google Scholar 

  • Tejada M, Garcia C, Gonzalez J, Hernandez M (2006) Use of organic amendment as a strategy for saline soil remediation: influence on the physical, chemical and biological properties of soil. Soil Biol Biochem 38:1413–1421

    Article  CAS  Google Scholar 

  • Walkley A (1947) A critical examination of a rapid method for determining organic carbon in soils—effect of variations in digestion conditions and of inorganic soil constituents. Soil Sci 63:251–264

    Article  CAS  Google Scholar 

  • Wang M, Zheng Q, Shen Q, Guo S (2013) The critical role of potassium in plant stress response. Int J Mol Sci 14:7370–7390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Chen J, Gu W, Xu Y, Gu J, Tao J (2016) Earthworm activities increase the leaching of salt and water from salt-affected agricultural soil during the wet-dry process under simulated rainfall conditions. Biol Fertil Soils 52:323–330

    Article  CAS  Google Scholar 

  • Wilson GW, Rice CW, Rillig MC, Springer A, Hartnett DC (2009) Soil aggregation and carbon sequestration are tightly correlated with the abundance of arbuscular mycorrhizal fungi: results from long-term field experiments. Ecol Lett 12:452–461

    Article  PubMed  Google Scholar 

  • Zaller JG, Heigl F, Grabmaier A, Lichtenegger C, Piller K, Allabashi R, Frank T, Drapela T (2011) Earthworm-mycorrhiza interactions can affect the diversity, structure and functioning of establishing model grassland communities. PLoS One 6:e29293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang ZL, Qu W (2004) Experimental guidance of plant physiology. High Education, Beijing

    Google Scholar 

  • Zhang L, Xu M, Liu Y, Zhang F, Hodge A, Feng G (2016a) Carbon and phosphorus exchange may enable cooperation between an arbuscular mycorrhizal fungus and a phosphate-solubilizing bacterium. New Phytol 210:1022–1032

    Article  CAS  PubMed  Google Scholar 

  • Zhang W, Cao J, Zhang S, Wang C (2016b) Effect of earthworms and arbuscular mycorrhizal fungi on the microbial community and maize growth under salt stress. Appl Soil Ecol 107:214–223

    Article  Google Scholar 

Download references

Funding

This work was funded by the National Natural Science Foundation of China (Project 31570514), the Key Projects in the National Science & Technology Pillar Program during the Twelfth Five-year Plan Period (2013BAD05B03), the Innovative Group Grant of the National Science Foundation of China (31421092), and the National key research and development program (2016YFE0101100).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chong Wang.

Additional information

Responsible Editor: Simon Jeffery.

Electronic supplementary material

ESM 1

(DOCX 79 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, W., Wang, C., Lu, T. et al. Cooperation between arbuscular mycorrhizal fungi and earthworms promotes the physiological adaptation of maize under a high salt stress. Plant Soil 423, 125–140 (2018). https://doi.org/10.1007/s11104-017-3481-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-017-3481-9

Keywords

Navigation