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Abstract The estimation of root water uptake and
water flow in plants is crucial to quantify tran-
spiration and hence the water exchange between
land surface and atmosphere. In particular the soil
water extraction by plant roots which provides the
water supply of plants is a highly dynamic and
non-linear process interacting with soil transport
processes that are mainly determined by the nat-
ural soil variability at different scales. To better
consider this root-soil interaction we extended
and further developed a finite element tree hydro-
dynamics model based on the one-dimensional
(1D) porous media equation. This is achieved
by including in addition to the explicit three-
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dimensional (3D) architectural representation of
the tree crown a corresponding 3D characterisa-
tion of the root system. This 1D xylem water flow
model was then coupled to a soil water flow model
derived also from the 1D porous media equation.
We apply the new model to conduct sensitivity
analysis of root water uptake and transpiration
dynamics and compare the results to simulation
results obtained by using a 3D model of soil wa-
ter flow and root water uptake. Based on data
from lysimeter experiments with young European
beech trees (Fagus silvatica L.) is shown, that
the model is able to correctly describe transpira-
tion and soil water flow. In conclusion, compared
to a fully 3D model the 1D porous media ap-
proach provides a computationally efficient alter-
native, able to reproduce the main mechanisms of
plant hydro-dynamics including root water uptake
from soil.

Keywords Transpiration - Plant hydro-dynamics
model - Root water uptake - European beech -
Porous media equation

Introduction
An approach to model plant water relations has
developed during the last two decades based on

two main concepts: the cohesion-tension theory
(Tyree and Zimmermann 2002) and the electri-
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cal circuit analogy applied for simulating water
transport in plants using resistances, capacitances,
water potentials and flow (Cruiziat et al. 2002).
By applying these two concepts, the description of
tree hydraulic architecture has made a strong im-
provement towards a more realistic and compre-
hensive vision of tree water relationships (Cruiziat
et al. 2002). Only recently, this approach was fur-
ther improved by substituting the electrical circuit
analogy by a porous media description for sap
flow in wood that is based on Darcy’s law and
includes a water capacity term to better account
for the dynamic behaviour of the hydraulic stor-
age in trees in a way that mass conservation is
considered, e.g. by Bohrer et al. (2005), see also
Arbogast et al. (1993), Frith and Kurth (1999),
Kumagai (2001) and Aumann and Ford (2002).
This avoids calculations of negative water con-
tents and unlimited water withdrawal from the
tree as occurring with applications of the electrical
circuit model (Chuang et al. 2006). By using a
three-dimensional (3D) representation of the tree
structure and the physically based representation
of tree hydro-dynamics, questions can now be
adressed of how the variability in crown architec-
ture (i.e. inter-specific, age or ecosystem depen-
dent structure) would lead to different transpira-
tion responses (Bohrer et al. 2005). In particular
by considering the stomatal response to the cor-
responding branch water potential, we can then
simulate the stomatal closure, the corresponding
change in leaf water conductance and the resulting
actual transpiration rate. Moreover, considering a
loss of conductivity with decreasing water poten-
tial allows the representation of vulnerability to
cavitation at critical highly negative water poten-
tial values (Holtt4 et al. 2005; Cochard et al. 1999).

Since water transport from the soil through
the plant into the atmosphere takes place in a
soil-plant-air continuum that is interconnected by
a continuous film of water, modelling of plant
water transport has to consider both the water
exchange at the leaf-air interface and the water
flux at the soil-root interface. Therefore, also root
water uptake including root hydraulic architecture
has to be described to integrate the tree hydro-
dynamic model into ecosystem models (Doussan
et al. 2003), a step still to be taken to replace
current representations of plant water trans-
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port, e.g. big leaf or resistor-capacitor approaches
(Bohrer et al. 2005) that are often coupled to
one-dimensional (1D) effective root water uptake
models (Cowan 1965; Gardner 1960; Nimah and
Hanks 1973; Feddes et al. 1978; Campbell 1985).
New root water uptake models are available that
explicitly describe root architecture and related
soil-plant processes in three dimensions by explic-
itly considering the 3D distribution of the uptake
(Clausnitzer and Hopmans 1994; Somma et al.
1998; Vrugt et al. 2001) and also considering water
flow in the root system (Doussan et al. 2006;
Javaux et al. 2008). They can be based on root
growth models that allow the integration of a great
diversity of environmental conditions and their
impact on root system development (Dunbabin
et al. 2002).

Despite the more realistic assumptions for pre-
dicting soil-root interactions, a disadvantage of
the 3D models is their high level of complexity and
consequently their high computational demand.
Therefore, to describe and simulate transpiration
at the stand level a less complex but still realis-
tic approach is needed. By extending the hydro-
dynamics model for aboveground parts of trees
of Bohrer et al. (2005), we developed a simple
root water uptake and transpiration model that
couples a 1D soil water flow model with a 1D
plant xylem water flow model. Notwithstanding its
1D character the xylem water flow model takes
3D plant architecture into account and can con-
sider different root properties for each root node
and different root types. Moreover, by specifying
different properties of the soil directly surround-
ing each root, to a certain extent also horizontal
variability might be represented.

Model development

In our model both the water flow within the
plant and the water flow in the soil are described
by applying the 1D porous medium or Richards
equation (Richards 1931). This is based on the
assumption that similar to the soil matrix, also the
plant xylem can be conceived as a porous medium.
The xylem is seen as a bundle of small parallel
capillary pores, which are filled with water and
air. A capillary can conduct water only if it is
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completely saturated. With increasing suction
head more and more pores cavitate and the ability
of the xylem to conduct water decreases. To sim-
ulate the xylem water flow and the water uptake
from the soil by the roots we need a representa-
tion of the plant architecture as model input to
define the flow domain and the interfaces between
the plant and its environment consisting of the soil
and the atmosphere.

Description of plant architecture

The plant architecture is described as a combi-
nation of stem, branches, leaves, gross and fine
roots including branching roots of several orders

Fig.1 Schematic
illustration of the tree
model: a Tree
architecture and
considered water flows:
soil water flow, rootwater
uptake, xylem water flow
and transpiration. The
volume V, of the xylem
element e is given by its
length /, and its maximal
xylem area sy max. b Tree
graph representing the
solution domain of the
Richards equation for
xylem water flow.

¢ Descriptions of above-

(Fig. 1a). The area of leaves on an outer branch
is prescribed by a relative leaf area distribution.
Stem, branches and roots are divided into slices
that are approximated by finite cylinders of
different lengths and diameters (Fig. 1a). Each of
these cylinders consists of an inner cylinder rep-
resenting the heartwood, an outer hollow cylinder
for the sapwood or xylem and further outer hol-
low cylinders that include the cambium and the
phloem (Fig. 1c). It is assumed that the diameters
of these cylinders are maximal diameters in the
sense that they do not increase anymore due to
an increase in water content of the plant and that
a loss of plant water can lead to smaller diameters
(Fig. 1d). The flow domain of the xylem is further

and below-ground
cylindrical tree elements.
d Water flow through a
xylem cylinder of length
I, and changing diameter
between maximal
diameter d, max and
minimal diameter de min

a b
transpiration ,\
Ve = Sx,max lo ]
xylem water flow
soil water flowﬂ
- \
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I\ root water uptake
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v
o
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abstracted and represented by a 3D graph consist-
ing of 1D elements each standing for an inner or
hollow cylinder of xylem tissue (Fig. 1b).

Water flow within the plant

The basic state variable to describe water flow
in plants is the hydraulic or water potential of
the xylem which quantifies the energy status of
the liquid phase. The hydraulic potential can be
defined as the sum of the xylem potential or
xylem hydrostatic potential and the gravitational
potential assuming that changes of the osmotic
potential are not important for long distance wa-
ter flow in the xylem (Frith and Kurth 1999).
Hence it is assumed that the only component of
the xylem potential comes from the energy to
move water isothermally and reversibly into or
out of the porous matrix represented by the xylem
tissue. Because this potential is determined by
the porous matrix of the xylem in the following
it is called xylem matric potential in analogy to
the soil matric potential (Passioura 1980). If the
xylem as the water conducting tissue of the plant
is conceived as a porous medium (Siau 1984),
water flow can be described by Darcy’s law, the
relation between the water potential gradient of
the xylem and the mass flow of water (Frith and
Kurth 1999; Chuang et al. 2006). Following further
Frith and Kurth (1999) we assume homogeneity
of the xylem hydraulic characteristics, the capac-
itance or water retention and the axial hydraulic
conductivity for each subunit of the plant xylem as
represented by the xylem cylinders in Fig. 1a. By
further assuming that the xylem volumetric water
contents are defined in relation to fixed volumes
of the xylem cylinders, we can apply the principle
of mass conservation as expressed mathematically
by the 1D continuity equation (Frith and Kurth
1999). For the sake of simplicity, in a first step, we
neglect water exchange between xylem, phloem,
cambium and heartwood and confine the water
flow model mainly to the longitudinal direction
of the stem and branch axes. By adding a sink-
source term to represent transpiration and in our
case also root water uptake, we get the following
1D Richards equation as outlined in detail by Friih
and Kurth (1999) and Chuang et al. (2006). This
equation can then be solved on the domain given
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by the graph, which represents the plant xylem
porous medium by straight lines not only for stem
and branches, but also below-ground for roots
(Fig. 1b) extending in this way the approach of
Bohrer et al. (2005):

30 () 0 Y.

T = & [kx(wx) (E +COS(¥x>i| — Sx (1)

where for all of the tree elements represented
by straight lines 6, denotes the volumetric water
content (m? m~3) of the xylem as function of the
xylem matric potential ¢, (mm). The xylem matric
potential is given on a weight basis, i.e. it is ex-
pressed as hydraulic head (mm). ¢ (s) denotes the
time, z (mm) the axial length of the element and
k() represents the xylem hydraulic conductiv-
ity (mm s~!) defined as function of the xylem
matric potential using the maximal xylem cross
sectional area as reference surface of the water
flux. The vertical position is given by the height
above (positive upward) or the depth below the
soil surface (negative downward). For a branch or
root element a, is the zenith angle (-) and S, (s™')
the sink or source term, which refers to roots for
root water uptake and outer branches for transpi-
ration. In a further model development also the
radial exchange of water between the xylem and
the phloem, the cambium and the heartwood of
the tree might be added to this term.

Hydraulic characteristics of the xylem

Due to the form of the mass conservation princi-
ple involved in the formulation of the Richards’
equation, xylem water contents are defined in
reference to fixed xylem volumes, i.e. in our case
to the maximal xylem volumes. Therefore, if one
wants to apply Richards equation and also con-
sider xylem desaturation which keeps the xylem
vessels still saturated but leads to significantly
smaller xylem volumes, then this desaturation has
yet to be described in relation to the maximal
xylem volumes. In this case the usual form of soil
water retention curves, that are nearly constant
between zero matric potential and air entry value,
cannot be applied to describe the xylem water—
xylem matric potential relationship on a maxi-
mal sapwood volume basis. Hence to account for
changes in xylem volume, in view of measure-
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ments for European beech (Fagus silvatica L.)
branches by Oertli (1993), see Fig. 3a, we as-
sume a linearly decreasing xylem water retention
curve between zero matric potential at maximal
saturation and air entry value. Thus we extend
the xylem water retention curve of Chuang et al.
(2006) describing for each tree element e of stem,
branch or root the dependency of the volumetric
xylem water content on the xylem matric potential
at a certain height or depth z (mm) by

-2
Ox.a (%) , iy, <a
Qx(W)c) = (2)

(€ — Bra) (“ - %) ¥ 04 else

a

where the maximal volumetric water content of
the xylem is assumed to be equal to the xylem
sapwood porosity €, (m® m~?) given for each tree
element by the fraction of the maximal volume
of xylem water at saturation to the maximal total
volume of the xylem sapwood in the tree element
or due to the assumed cylindrical geometry of the
xylem elements by the fraction of the maximal
water-filled xylem sapwood area sy, max.. (m?) and
the maximal xylem sapwood area Sy max.. (m?) of
the xylem element e. In a similar way we define the
xylem water content at air entry 6, , (m> m~3) by
use of the corresponding water-filled cross sec-
tional xylem sapwood area s,,, , (m?) at the xylem
matric potential when cavitation begins to occur:
Sxw.a(Z)
P = S e@ ©)
Assuming that tension changes the volume of
water conducting sapwood only (Perdmiki et al.
2001) and neglecting corresponding changes in
phloem water content, which are considered to
be comparatively small, then, in combination with
the xylem water retention curve, the xylem water
content 6, , at air entry can be derived using the
relation between xylem matric potential and rela-
tive volume change of the xylem element (Steppe
and Lemeur 2007) expressed by

1 dVe do. 1

Vedy, dy, E “

where E (mm) denotes the elastic modulus of the
xylem and V, the volume of the xylem element. By

evaluating this relation, which is valid in the range
of xylem water contents between ¢, and 6, , when
the vessels are saturated, we get

a
exazx — 5
a=at g )

and hence a value for the xylem water content at
air entry can be determined for a given value of
the elastic modulus. Moreover, inserting Eq. 5 into
Eq. 2 we get

12
zeex—l—fx

fora <y, <0 (6)
and from this the actual xylem cross-sectional area
Sy.e (M?):

Sx,e = wa.,e + (Sx,max,e - wa,max,e)

= Sx,max,e (1 + %) fora < ¢, <0. (7)

We then can calculate the actual xylem diameter
exploiting the assumed cylindrical volume geome-
try of the xylem element e (Fig. 1d).

The elastic modulus E (mm), the porosity e,
(m* m~3), the air entry value a (mm) and the
exponent A (-) that determine the xylem water
retention curve, are model input parameters and
assumed to be fixed values for the whole tree.

From the xylem water retention curve we can
derive the xylem hydraulic conductivity k, based
on the law of Hagen and Poiseuille for the mass
flow rate of water in a cylindrical pipe. According
to Burdine (1953) by considering capillary bundles
of such pipes, the relative conductivity K(6,) (-)
of the volumetric water flux in the capillary bundle
as defined by Eq. 11 can be calculated by the fol-
lowing integral equation (Hoffmann-Riem et al.
1999):

O /€x
/ Ve (0) 2 do
L . (8)
Y (0) % db

0

K(©6,) = (6x/e0)?

Here also other functional forms such as
Mualem’s equation (Mualem 1976) might be ap-
plicable. To account for the tortuosity of soil pores
usually p = 2 is assumed, but for the sake of sim-
plicity and lack of appropriate data to estimate an
adequate value of p we assume p = 0, although
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tortuosity of water films in xylem vessels might oc-
cur during embolism. The evaluation of Burdine’s
integral equation for 6, < 6, , and the application
of the Hagen-Poiseuille law to consider the effect
of an increase A R of the effective mean hydraulic
radius of the capillary bundle for 6, > 6, , leads to
the following function of the xylem water content
to represent the xylem hydraulic conductivity:

741
Koo =1 (B2) ]y (e
G.X X

SN——
1o
o
| I |

)

For the saturated case, i.e. for 6, > 6, , we con-
sider the increase of the mean effective hydraulic
radius A R of the capillary bundle with increasing
radii of the water-filled tubes resulting in xylem
volume increase, and get for the xylem radii r =
r(0y), Fmax = r(€yx), ra = r(6y,) (mm) at the respec-

tive xylem water contents 6,, €, and 6., and the
mean value 6, = (e — 0x.4)/2:

Oy 82—
:_/ r(0) r”d@

[
*0—-6,
- f do
€x — Qx,a Ora Ex — 04

2

_ (ex - 9x,a> (10)
€x — ex,a

To account for the change of cross-sections
between tree elements, for each tree element at
depth or height z the hydraulic conductivity is
calculated in relation to the water-filled cross sec-
tional area of the xylem sapwood (Bohrer et al.
2005), normalised by the maximal water-filled
cross sectional xylem sapwood area of the stem
element at stem-base, i.e. at height zero s,y max(0)

(m?):

kyx(0x(2)) =

Sxw,max,e(2)
sxw,max (0)

Kinax K(6,) 11)

where kpa (mm s™!) denotes the maximal hy-
draulic conductivity of the xylem. k. is an addi-

Table 1 Input Soil or plant

Reference parameters

Perturbed parameters

parameters
Loam

Clay loam

Os.res and Oy sa¢ residual

and saturated vol. soil

water content, @ and n Clay
van Genuchten shape

parameters with

m=1-1/n, ke

saturated soil hydraulic

conductivity, k, radial

root conductivity (Steudle Root
2000), kmax maximal axial

xylem conductivities of

European beech saplings Shoot
(Rewald 2008) and

stomatal hydraulic Leaf

conductivity parameters
b, ¢ (Lemoine et al. 2002;

Bs.res = 0.078

Bs.sat = 0.43

o« =0.036 cm™!
n=1.56

ksat = 249.6 mm d !
Bs.res = 0.095

es,sal =041

o« =0.019cm™!

n =131

ksat = 62.4 mm d~!
Bs.res = 0.068

B sat = 0.38

o = 0.008 cm™!
n=1.09

ksat = 48.0mm d !
kmax = 432.0 mm d~!

k,=3.0-1070d"!
kmax = 1.3-10° mm d~!

b =1.0-10> mm
c=3.5
dstem = 10.0 mm

ksat = 2.496 - 10> mm d~!

ksat = 624.0 mm d—!

ksat = 480.0 mm d—!

kmax = 4.32-10°> mm d !
kmax = 43.2mm d~!
k,=3.0-1075d"!

kmax = 13.0- 10> mm d~!
kmax = 130.0 mm d~!

b =3.0-10° mm

Bohrer et al. 2005) Stem
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tional input parameter, which for the sake of sim-
plicity is assumed to have fixed values for either
shoot and root. For young European beech trees
we apply in the following different values for kp,x
(see Table 1).

Water flow in the soil

To simulate vertical soil water flow we apply
again the 1D Richards equation, an approach
frequently used to model soil-plant-atmosphere
systems (Priesack and Gayler 2009; Simunek et al.
2008; Kroes and van Dam 2003):

00,(Ys) _ D s\

where 6 is the volumetric soil water content
(m* m~3) as a function of the soil matric potential
¥ (mm), ¢ (s) denotes time and z (mm) soil depth
(here positive downward). k() (mm s~') is the
soil hydraulic conductivity which is given as a
function of the soil matric potential. Both soil hy-
draulic property functions 6, and k, are described
by parameterisations according to van Genuchten
(1980). The last term S,, (s~!) represents the sink
term of root water uptake (per unit soil depth).
Typical boundary conditions of the flow equation
are a mixed boundary condition at the soil surface
to represent atmospheric conditions leading either
to infiltration, evaporation or water ponding and
a free drainage condition at the bottom boundary
(Simunek et al. 2008; Kroes and van Dam 2003).

Soil water uptake and transpiration

Water flow between the soil-root interface and the
root xylem is defined by the 1D soil-root volumet-
ric flux j.. (mm? s~!) which describes the volume
of water exchanged between a root element and a
soil layer per unit of time

jr,e = kr Sr.e(z) [WS(Z) - %(Z)] (13)

where k, (s7!) is the radial conductivity of the
root through the root cell structure between root
xylem and soil and s,.(z) (mm?) the outer surface
of the root element e within the soil layer at
depth z (mm). ¥,(z) and v, (z) denote the matric

potentials in soil at the root surface and in the
xylem (mm) at soil depth z. Instead of applying
only the radial conductivity k,, we alternatively
consider the rhizosphere radial conductivity ki
(s71), defined by

krs(z) =V kr ks(&s(z))/lrs (14)

the geometric mean of the radial conductivity
k, of the root and the soil hydraulic conductiv-
ity k, at the soil matric potential near the roots
divided by the radial thickness /,; (mm) of the
rhizosphere soil around the roots assumed to be
2.0 mm (Hinsinger et al. 2005). To account for
the impact of the strong root-soil interaction in
the rhizosphere on the water status of the soil
directly surrounding the roots, we take instead of
the soil water matric potential ¥, a weighted mean
i, between xylem and soil matric potentials

Y1 Ux(2) + y2 ¥s(2)
Y+

U(z) = (15)

where y, (-) and y, (-) are weighting constants.

The calculated flux j,, into or out of the cylin-
drical root element e is then used to calculate the
below ground water uptake sink or source terms
Sy and S, of the Richards equations of xylem
and soil water flow. The below ground xylem sink
or source term S, (mm® mm~3 s7!) is obtained
by relating the fluxes to the corresponding xylem
cylinder volumes V, = Sy max..(2) [ of the root
elements of maximal xylem sapwood area $y max.e
(mm?) and element length /, (mm):

S.(2) = Z Jre(2)

e Sx,max,e(z)le (16)
The water fluxes between soil and root cylinders
located in a certain numerical soil layer i are re-
lated to the corresponding soil volume AV; given
by the thickness of the soil layer Az; and the unit
area of a square meter and are summed up to
give the sink or source term S,,; (mm? mm~— s7)
of the soil layer i. If the axis of a root cylinder
element e intersects with more than one of the
numerical soil layers, the water flux is divided be-
tween these layers proportionally to the fractions
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fe.i (=) of the cylinder axis intersections with the
particular layers:
Sui= 2 a7)

Similar to water uptake, also transpiration, the
loss of water to the atmosphere, is described by
a sink term. At the outer branches, where the
leaves are located, the corresponding water flux
is prescribed by the atmospheric evaporative de-
mand and by the stomatal hydraulic conductivity,
which similar to the xylem hydraulic conductiv-
ity is assumed to depend on the xylem matric
potential of the branch element (Bohrer et al.
2005). For simplicity the atmospheric water de-
mand is prescribed by a constant flux condition or
calculated from the potential evapotranspiration
rate (mm s~!) estimated by the FAO Penman-
Monteith method (Allen 2000) and is distributed
according to the leaf area. Therefore, in contrast
to the water exchange with the soil, the exchange
with the atmosphere is prescribed and no direct
feedback of transpiration to the micro-climate at
the leaf level is considered.

The prescribed flux condition or the potential
transpiration Tpo (mms™') of the total tree is then
distributed to single branch elements according
to the relative leaf area distribution LAD.,(z)
(m? m~?) at each element e, given by the leaf
area of all leaves that are connected to the branch
element divided by the total leaf area of the tree.
Hence the potential transpiration Tpoqsr. (mm
s~1) at the branch element e can be given by:

Tpot,lf,e = Tpot LAD@(Z) (18)

The stomatal hydraulic conductivity Ky siom
(mm s~!) is modelled in dependence of the xylem
matric potential in the leaf v/, ;s (mm) by

. 1) a9

following Bohrer et al. (2005) with a stom-
atal maximal hydraulic conductivity Amaxstom =
1.0 mm s~! and stomatal hydraulic conductivity
parameters b (mm) and ¢ (-) and by additionally
assuming ¥, ;r = V.(zp) at the end point z,, of
the branch element where the leaf is anchored.
The actual prescribed transpiration rate Tycife

k. stom (Yx.1f) = Kmax.stom exp(—[

@ Springer

(mm s~') is then calculated from the correspond-
ing potential transpiration rate Tporf. (mm s ')
at the branch element by

Kk stom (Vry,
M; 6Imax,lf} (20)

Tact,lf,e =min { Tpot,lf,e k

max,stom
for which the maximal evaporation rate from the
leaf gmax s (mm s~') at the actual leaf xylem po-
tential v, ;7 is given by

Veir — Vo
qmax,lf = kx(wx,lf) % (21)
Zep
where 9, = —3.0 - 10° mm denotes a potential

that corresponds to a minimal potential in the leaf,
which can be reached under dry air conditions.
Az,p is the length of the element belonging to the
end point where the leaf is anchored.

Finally, the above ground xylem sink term S, .
(mm?® mm~3 s~!) which represents transpiration
of the outer branch element e is calculated by
relating the volumetric water flux out of the xylem
given by Tactife Sxmaxe (mm? s7') to the xylem
volume V, (mm?) of the branch element:

Sx,e = act,lf,esx,max,e/ Ve = Tact,lf,e/ le (22)
Numerical implementation

The soil and tree water flow equations are cou-
pled via the below ground water uptake sink
terms and each solved by iterations using a stan-
dard Newton—Picard fixed point iteration scheme
(Celia et al. 1990; Priesack 2006) until tree and
soil water contents and potentials converge below
a threshold value (Huang et al. 1996). Although
both flow equations may be coupled by a fur-
ther fix-point iteration via the water uptake term
to account for the non-linearity of the systems,
similar to Tseng et al. (1995) we use a single-
pass solution scheme without iteration between
the two subsystems, since for the considered sim-
ulation scenarios the additional iteration does not
lead to significantly different results. The solu-
tion procedures of both flow equations 1 and 12
are based on a finite element discretisation fol-
lowing the approach of the HYDRUS-1D model
(Priesack 2006; Simunek et al. 2008). Since the
solution method of the Richards equation on a
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graph as represented in Fig. 1b has not been doc-
umented in more detail, we describe the applied
finite element method in Appendix A.

Statistical criteria

Three statistical criteria are used to assess the ad-
equateness of simulations. The root mean square
error RMSE as defined by Mayer and Butler
(1993) is used to assess over the whole period of
the lysimeter experiment the deviation between
predicted, P;, and observed values, O;, propor-
tioned against the mean observed value O:

n . P2
RMSE = L | = Q= PO
o n

(23)
where n is the number of observations during
the experiment. The lower the value of RMSE,
the better is the agreement between simulation
and observation. The Modelling efficiency M E

Xn: Ve (07,
e=1

(Willmott 1982) is used to assess the model ade-
quacy in describing the observed variability.
Z:‘l:l (0i - P f)
P =\2 P —2
Zj:l (Oj_ 0) +Z,‘:1 (P/'_ P)
(24)

2
ME=1-—

where P;and O; are the predicted and observed
values and O and P are the corresponding mean
values. A value of ME < 0 indicates that P; =
O would be a better estimation for observed
variability than the simulation results. If simu-
lated values are completely in accordance with
observed values, M E equals 1.

Finally, a necessary criterion to evaluate the
accuracy of a numerical scheme is given by the
global mass balance error M B = Zf:il M B(t™) at
the end of the simulation, where at each time step
m we have for the water balance of the soil-plant
system:

k
— 0%+ > AV @1 —60)

MB(@™) =100 - 1.0 —

m n m k
SN Ve SLAT+ (0 - 0L+ AV S, Al

j=1 e=1 j=1

(25)

i=1

and where ;" denotes the volumetric water con-
tent at time step m of the tree at element / = e or
of the soil at node / =i, AV; is the volume of the
soil layer i and Q] and Q; denote the volumetric
water fluxes (mm? s~!) across the boundaries of
the soil profile.

Simulation scenarios and parameterisation

The new model of water flow in soil-plant systems
is applied to three different scenarios mainly to
illustrate that important features of water flow
in plants and soils can be simulated. In a first
scenario, the drying soil scenario, we simulate soil
water uptake and transpiration under conditions
of a prescribed constant transpiration rate without
refill of soil water. By this scenario the effects
of stomatal conductivity, xylem conductivity, ra-
dial root conductivity and soil conductivity on

water uptake and transpiration are considered.
In particular the onset of cavitation is examined.
In a second scenario, the hydraulic lift scenario,
we demonstrate the basic ability of the model to
simulate transport of water through the roots from
wetter to dryer soil regions. In a third scenario,
the lysimeter scenario, we test if the model can
simulate daily and seasonal water balances based
on measured input parameters. In this case for the
xylem water flow model only parameters of the
tree architecture are changed: the stem diameter
and the distributions of leaf and root area index
based on measurements from the lysimeter exper-
iment.

In the drying soil scenario, we simulate soil wa-
ter uptake and transpiration also for comparison
with a 3D root water uptake modelling approach.
In the scenario, the water is taken up by the
roots from a homogeneous soil column of 0.4 m
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Table 2 Soil input parameters of the third scenario

Soil horizon texture Depth (cm) Oy sat (-) a (cm™1) n(-) ksat (mm d—1)
Sandy loam 0-5 0.52 0.11 1.13 1,381
Sandy loam 5-30 0.504 0.12 1.14 1,285
Silt loam 30-45 0.475 0.1 1.05 1,276
Clay loam 45-90 0.395 0.05 1.13 632
Sand 90-200 0.417 0.04 1.25 5,000

0s.sat saturated volumetric soil water content, « and n van Genuchten shape parameters with m = 1 — 1/n assuming for the
residual volumetric water content 65 res = 0, ksa saturated soil hydraulic conductivity

depth and of 0.1 m by 0.1 m soil surface, which
is assumed to be initially in hydrostatic equilib-
rium with an aquifer located 3.0 m below the soil
surface (Javaux et al. 2008). The soil boundary
conditions are a no flux condition at the bottom
of the soil profile and no rainfall or evaporation
at the soil surface. For reasons of comparison with
the numerical experiment of Javaux et al. (2008)
we use the same parameters to study the effect of
different soil types and to analyse the sensitivity
of different soil and xylem hydraulic conductivity
values (Table 1). For the reference case input pa-
rameter values are taken from the second column
of Table 1, and for the sensitivity analysis only
the conductivity parameters, kg, for the soil, kpyax
for the xylem and k, for root water uptake, were
changed as indicated in the third column. This
perturbation of parameter values corresponds to a
realistic variation in observed conductivity values
for soil or xylem (Javaux et al. 2008; Doussan
et al. 1998). In both cases for the above-ground
tree a constant potential transpiration rate of
1.0 mm d~! was assumed and prescribed along
the tree at the ends of stem or branch elements
according to the assumed leaf area distribution.
Related to the 0.01 m? soil column surface this
corresponds to a volumetric water flux rate of
1.0 - 10* mm? d~! from the soil to the atmosphere.

In the hydraulic lift scenario, instead of the no
flux of the first scenario we consider a Dirich-
let boundary condition which prescribes saturated
conditions at the lower boundary of the soil col-
umn now assumed to be 1.5 m deep. Furthermore,
we now prescribe a daily sinusoidal cycle of the
potential transpiration according to (Childs and
Hanks 1975; Priesack 2006), but keep the daily
rate at 1.0 mm d~!. All other conditions and para-
meters are kept the same as in the loam reference
case of the first scenario.
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In the lysimeter scenario, the soil-plant sys-
tems are represented by 2-3 years old European
beech trees growing in cylindrical lysimeters of
2.0 m depth and 1.0 m? surface area. Here the
soil boundary conditions are a seepage flow con-
dition at the bottom of the soil profile and an
atmospheric flow condition at the top soil pre-
scribing either infiltration, evaporation or water
ponding. The third scenario is based on a lysime-
ter study about effects of elevated ozone and
below-ground pathogen infection on juvenile Eu-
ropean beech (Winkler et al. 2009). From this
study we take hourly and daily water balance data
of one of the control lysimeters, i.e. lysimeter S3,
that has seen neither an ozone nor a pathogen
treatment. The input data that characterize the
hydraulic properties of the lysimeter soil profile
are derived from measurements given in Gayler
et al. (2009) and summarized by Table 2. The stem
diameter dster, is 15.8 mm, the xylem conductivity
parameter values are the reference values given in
Table 1.

In all three scenarios we use a simplified plant
architecture of a young European beech tree
(Fig. 2) obtained using digital photographs and
photogrammetric evaluations. In the second sce-
nario we extend a central root to the bottom of
the soil column to facilitate water uptake from
deeper soil layers and in the third scenario the
stem diameter is increased keeping the diameter
fractions between stem and branch elements the
same, whereas the root system is now adapted to
represent the measured root biomass distribution.

We estimate the maximum water-filled cross
sectional xylem sapwood area s, max Of each tree
element e from the diameter d, (mm) of the tree
element according to Aranda et al. (2005). For
young European beech trees we fit the new pa-
rameterisation of the xylem water retention curve
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Fig. 2 Simplified plant
architecture of a young
European beech tree (two
different perspectives).
Tree xylem hydraulic
potential distribution
(between —3,600 mm and
—36,000 mm suction
head) under still
non-limiting soil
conditions at day 30 of
the reference drying soil ]z
scenario simulation

[ww] [enusiod o wlkx

given by Eq. 2 to the measured retention data
of Oertli (1993) for shoots of European beech.
This fit results in an elastic modulus value of
E =15 -10° mm and an air entry value of a =

Relative Xylem Water Content 0,/ [-]

-1e+5 -2e+5 -3e+5 -4e+5 -5e+5

Xylem Matric Potential y [mm]

Fig. 3 a Relative xylem water retention curve: measured
values taken from shoots of European beech by Oertli
(1993), new parameterisation (solid line) according to Eq. 2
and van Genuchten parameterisation (dashed line). b Rel-
ative xylem hydraulic conductivity curve: measured values
taken from shoots of European beech by Magnani and
Borghetti (1995): (closed triangles), Cochard et al. (1999):

— 0.8
35607
— 0.4
I
o
«Q
=
E)
— 0
3930
— 04

—3.0-10° mm with exponent A = 0.854 for each
tree element (Fig. 3). Alternatively to the xylem
water retention curve given by Eq. 2 we also
apply and fit a van Genuchten parameterisation

Relative Xylem Conductivity k,/k __ [-]

-2e+5 -4e+5 -5e+5

-3e+5

-1e+5

Xylem Matric Potential y [mm]

(open triangles), Lemoine et al. (2002): for a sun branch
(empty circles) and a shade branch (filled circles), con-
ductivity curves derived from the new parameterisation
(solid line) according to Eq. 9 and derived from the van
Genuchten parameterisation (dashed line) according to
Mualem (van Genuchten 1980)
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Table 3 Summary of numerical results for the xylem water flow model in case of the soil drying scenario with reference
parameters

Stol (mm) No. elem. (-) CPU (s) MB (%) No. iter. (-) No. steps (-)
10.0 243 3,046 0.05 60,945 21,219
1.0 243 3,237 5.0-1073 94,732 22,004
0.1 243 3,615 5.0-107% 145,330 22,222
0.01 243 3,961 5.0-1073 199,583 22,414
0.001 243 4,458 5.0-107° 266,459 22,443
0.001 482 13,167 43.107° 303,137 24,132
0.001 903 26,918 3.6-107° 301,279 23,173
8to1 iteration tolerance, i.c. the iteration continues until |¢/){+1’V+1 — w){'vl < Jy01 for the xylem potential v, at time step jand

iteration number v at all element nodes, No. elem. is the number of tree elements, MB is the mass balance error of xylem
water flow, No. iter. is the total number of iterations during the simulation, No. steps is the total number of time steps during
the simulation

(van Genuchten 1980) obtaining the parameters the whole tree respectively of the soil profile
a=28-10°mm~', n=2.77,0 = ¢, and Oyes = with the corresponding internal mass change in
0 (Fig. 3). the tree or soil. For the simulation of the soil

drying scenario using the reference parameters
the global mass balance error of the soil-plant

Results system is MB = 1.3 - 1073 %, for the hydraulic lift
scenario MB = 3.1-1073% and for the lysimeter
Numerical accuracy and convergence scenario MB =3.2-107*%. Table 3 summarizes
results obtained for the xylem water flow simula-
All numerical simulations were conducted on an tion in the drying soil scenario using the reference
ordinary personal computer with a single core 1.5 parameters. By relaxation of the iteration toler-
GHz AMD processor. CPU time is given in sec- ance 8y it is seen, that already at the criterion of
onds (Table 3). During each simulation the water fstol =0.01a .rather low glob.al mass balance error
mass balances are recorded to compare for every is reached without strongly increasing CPU time,
individual time step the input-output balances of iteration and time step numbers. In contrast, the
a b
— 1 .O Ic .
© o 1.0¢
ol 2 - W’\‘f
c E %081 ] ha
S 06 2 < . h
© < & a ~
a o £
@ 0.4 205 0.6 Oy~ \_\
c © O o e — .
o © a
= 0.2 14 ‘0, A N
o ooe oo 0.4 1 %a
0.0 . : ©.0.0:0:0:0 0 0 80
0 20 40 60 80 100 120 140 160 180 0 20 40 60 80 100 120 140 160 180
days days
Fig. 4 Drying soil scenario (loam): Time course of a tran- with open circles) reduction to zero conductivity, and b =
spiration rates and b relative xylem water contents 6y /ey 3.0 - 10> mm with (dashed dotted line) and without (dashed
of the total tree using stomatal conductivity parameter line with filled circles) reduction to zero conductivity

b =1.0- 103 mm with (solid line) and without (dotted line
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CPU time is considerably increased by increasing
the number of tree elements up to 482 or 903
by prescribing a maximal axial element length of
only 20 or 10 mm instead of 100 mm as in the
reference case. This increase indicates the first
order accuracy in space of the applied numerical
solver.

Drying soil scenario

Figures 4 and 5 show the simulated course of
transpiration and root water uptake with related

plant water storage for different parameterisa-
tions of the stomatal hydraulic conductivity curve.
Because initially, at simulation start, tree water
content is not in equilibrium with soil water and
atmospheric conditions, the tree first looses water
to the atmosphere before the hydraulic gradients
of xylem water potentials get strong enough and
force the roots to take up the available water from
the soil. Since a constant maximum water flux
is prescribed at the tree leaves and no water is
added to the soil, the water flow in the soil-plant
system quickly reaches an almost steady state as

Root Water Uptake [mm d'1]

Root Water Uptake [mm d‘1]

Days

Fig.5 Drying soil scenario: Conductivity sensitivity simulation
(loam): Time course of the root water uptake: reference
(solid line), 10-fold xylem conductivity kmax (dashed line),
0.1-fold xylem conductivity kmax (dotted line), 10-fold
radial root conductivity k, (dot-dot-dashed line), 10-fold
saturated soil conductivity ks (dot-dashed line), a using

Days

the radial root conductivity k,, b using the radial rhizo-
sphere conductivity ks with weight coefficients y; =1 =
2. Soil effect simulation: Loam (solid line) compared to
clay loam (dashed line) and clay (dotted line), ¢ using the
radial root conductivity k,, d using the radial rhizosphere
conductivity k,; with weight coefficients y; = 1 = y»
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long as the soil provides enough water to fulfil the
prescribed flux. After some time, when the soil
gets dry, the root water uptake rate decreases due
to decreased soil hydraulic conductivities and low
soil water availability. This low water availability
induces low xylem water potentials and conse-
quently low stomatal hydraulic conductivities such
that the transpiration rate is reduced. The tran-
spiration rate is strongly determined by the as-
sumed parameterisation of the stomatal hydraulic
conductivity curve which reflects the importance
of stomatal control on xylem water flow. For the
lower value of the stomatal hydraulic conductivity
parameter b the stomatal hydraulic conductivity
decreases already at higher xylem potentials and
hence protects the tree from water losses earlier
during the drying experiment (Fig. 4). If we then
assume that the closure of the stomata would lead
to zero stomatal hydraulic conductivity the plant
could almost keep its water content (Fig. 4b, solid
line) without reaching the air entry value. But if
we assume a maximal possible reduction of stom-
atal hydraulic conductivity to only 10% of its max-
imal value, then the plant internal water is almost
completely transpired (Fig. 4b, dotted and dashed
lines) and cavitation occurs. Generally, a higher
b value leads to a higher stomatal hydraulic con-
ductivity also at lower xylem potentials. Therefore
higher water losses of tree water storage take
place, which results in critically low tree water
contents. In our example in three cases xylem
water content falls below the air entry value 6, , =
0.8, so that cavitation is induced (Fig. 4b). In the
cases where the stomatal hydraulic conductivity
remains above a non-zero limit, the transpiration
gets finally limited when the plant internal water
is almost exhausted (Fig. 4a).

Due to the evaporative water flux from the
leaves to the atmosphere, the simulated xylem
matric potentials show a strong vertical gradient
along the tree height (Fig. 2) having lower po-
tentials at the tree crown, where the leaf area is
highest and higher potentials towards the roots
and within the roots which take up the water from
the soil.

The perturbation of conductivity values gives
only very small differences between the simula-
tions of the reference case and the cases with
one-tenth- or ten-fold maximal xylem conductiv-
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ity (Fig. 5). This small deviation is similar to re-
sults obtained by Javaux et al. (2008) when using
the same reference conductivity values for root
water uptake simulations (Table 1). Additionally,
no difference can be detected if we neglect the
second term of the relative conductivity curve in
the case 6, > 6, ,, i.e. if we neglect the impact of
an increased mean radius of the water-filled xylem
vessel elements. Moreover, for the small trees
the exact form of the conductivity curve, which
is difficult to evaluate considering the high vari-
ability of the measured conductivity data (Fig. 3),
may play a less important role, if only the de-
crease of the curve with decreasing xylem matric
potential is appropriately described. Because of
the low sensitivity of maximal xylem conductivity
variation on the simulated actual transpiration in
case of the considered small trees, the relative
xylem conductivity curve given by Eq. 9 could be
further simplified in the saturated range above the
air entry value by omitting the second term of
the right hand side without significantly changing
our simulation results of xylem water flow dy-
namics (results not shown). This low sensitivity
also means, that the impact of the elastic change
on the diameter and hence the conductivity of
water-filled tubes of the capillary bundle repre-
senting the xylem can be neglected in our model
description of xylem water flow in small Euro-
pean beech trees. In this case the low sensitiv-
ity of the axial xylem conductivities seems to be
caused by their relatively high values compared
to the low stomatal and radial root conductivity
values.

When compared to the reference case in the
cases of increased soil or radial root conductivity
the begin of limited water supply for root water
uptake is 2-5 days delayed (Fig. 5a). Applying the
radial rhizosphere conductivity the delay of the
onset of limitation of transpiration is 9-10 days
(Fig. 5b). In the sequel, the higher conductivities
lead to earlier soil water exhaustion and reduced
transpiration rates below 0.2 mm d~'.

To represent effects of horizontal soil vari-
ability we introduce a possibility to account for
different soil properties in the direct surroundings
of different roots or root elements. This repre-
sentation is achieved by considering the radial
rhizosphere conductivity defined by Eq. 14. The
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root water uptake rates for the three soil types ap-
plying either the constant radial root conductivity
k, or the rhizosphere conductivity k,; are shown
in Fig. 5c and d. Generally, we observe, that if
we apply the radial rhizosphere conductivity k
instead of the radial root conductivity &, in Eq. 13,
the simulated root water extraction decreases ear-
lier and remains slightly higher when the soil gets
drier (Fig. 5b and d). For k, the root water uptake
limitation appears first for the clay, then for the
loam and eventually for the clay loam (Fig. 5c).
For k,, the picture changes in case of the loam soil,
since the time-span until transpiration gets limited
is now shortest for this soil type (Fig. 5d). In both
cases the clay loam soil supplies the transpiration
water demand by far the best, up to 15 d longer
than the clay and loam soils.

The simulated depth distribution of root water
uptake is shown by Fig. 6. Under non limiting
soil water conditions the root demand is met by
available soil water and the depth distribution of
the uptake rate almost coincides with the root
area index distribution. Only in the case of the
increased radial root conductivity available soil
water gets already scarce in the region of high
root area index, i.e. m? root surface area m~2

soil surface area (Fig. 6a). In this region water
uptake by roots begins to be limited after 15 d,
and is already very low after 30 d (Fig. 6b and c).
Then water is increasingly taken up from regions
of lower root area index, where soil water is not
completely exhausted and still can satisfy almost
half of the prescribed demand (Fig. 6d).

In the cases with increased soil and radial root
conductivity, similar to the 3D root water uptake
simulations of Javaux et al. (2008), the limita-
tion of root water uptake is significantly delayed
by 2-5 days (Fig. 5a). Furthermore, the finding
that the clay loam best sustains the evaporative
demand of the plant, about 10-15 d longer than
the other soil types could be confirmed by our
simulations (Fig. 5c and d). But, in contrast to
the 3D water uptake simulations under the sec-
ond collar boundary condition (CBC 2) by Javaux
et al. (2008), in our 1D simulations water stress
occurred earlier for clay than for loam soil, if the
radial root conductivity was used (Fig. 5c). Only if
the radial rhizosphere conductivity is applied, the
same order of soil types concerning the appear-
ance of water stress is found, i.e. transpiration is
reduced first for loam, then for clay, and eventu-
ally for clay loam soil (Fig. 5d).

Soil Depth [m]

x107° x 107

Root Water Uptake [d'1]

Fig. 6 Drying soil scenario (loam): Depth distribution of
root water uptake and soil water content using different
root or soil parameterizations: reference (solid line), 10-
fold xylem conductivity (dotted line), 10-fold radial root
conductivity (dashed line), and 10-fold soil hydraulic con-
ductivity (dashed-dotted line). The grey line represents the

Root Water Uptake [d'1]

0.08 0.12 0.16
x 107

Root Water Uptake [d'1] Volumetric Water Content [-]

depth distribution of the root area index RAI (m? root sur-
face area m~2 soil surface). Figures a—c represent different
times ¢ after the start of the drying experiment: a¢ =15 d,
bt=15d, ¢t =30d, and d corresponding volumetric soil
water contents
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Hydraulic lift scenario

Plant roots do not only take up water but can also
release water to dry soil (van Bavel and Baker
1985; Richards and Caldwell 1987). In this way the
plant root system may transport water from moist
into drier, often upper soil horizons and hydraulic
lift occurs. Assuming non polar flow across root
membranes we are interested to see if our pro-
posed soil-plant water flow model is in principle
capable to simulate such a hydraulic lift. Under
the conditions of the second scenario with peri-
odic daily transpiration cycle the simulated water
uptake rates show a diurnal variation (Fig. 7).
During the day when potential transpiration rates
are above zero, water is taken up mainly from the
upper soil at 0.0-0.4 m depth (Fig. 7a), where most
of the root biomass is located. During the night,
when no transpiration occurs, deep roots take up
water from the bottom of the soil column, where
the soil is nearly water saturated, replenish xylem
water and additionally release water to the drier
soil near the top of the soil column also at 0.0-
0.4 m depth (Fig. 7a). Simulations considering a
time span of more than 240 days show that water
flow in the soil-plant system gradually reaches a
quasi steady state situation, where water is taken
up from the lower part of the soil column and

redistributed to the upper soil during the night
(Fig. 7b), whereas during the day mainly water
from the upper soil layer is taken up by the roots
to accommodate transpiration demand (Fig. 7c).
Moreover, compared to a simulation where we
assume no water flux from the roots to the soil,
the daily transpiration with hydraulic lift is about
5% higher during the first 100 days.

Lysimeter scenario

A more realistic scenario is given by the lysimeter
scenario. Based on the measured daily precipi-
tation, the estimation of daily potential evapo-
transpiration by the Penman—Monteith dual crop
coefficient method (Allen 2000; Loos et al. 2007;
Gayler et al. 2009) and the partitioning of po-
tential evaporation and potential transpiration
according to Allen (2000), the daily actual evap-
otranspiration, the daily changes in water storage
and the daily percolation rates were simulated and
compared to the corresponding measurements
(Fig. 8). Results show that the model is able to
reproduce the actual evapotranspiration and the
changes in water storage quite well, with a model
efficiency ME of 0.901 and a root mean square
error RMSE of 0.298 for the evapotranspiration,
and with the values ME =0.977 and RMSE =

0.0 S—
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x 107 x 107 x 107 RAI[-]

Root Water Uptake [d'] Root Water Uptake [d™']
Fig.7 Hydraulic lift scenario: Root water uptake in the soil
profile: a after 120 d within the whole day at night times:
0.2 d (solid line), 0.4 d (long dashed line), 1.0 d (dotted line)
and at day times: 0.6 d (dashed dotted line) and 0.8 d (short
dashed line); b during night time and ¢ during day time in
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Root Water Uptake [d'1]

each case after 1 d (solid line), 60 d (long dashed line), 120 d
(short dashed line), 180 d (dashed dotted line) and 240 d
(dotted line). d Depth distribution of the root area index
RALI (m? root surface area m~2 soil surface)
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Fig. 8 Lysimeter scenario: a Daily precipitation, P
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0.586 for the water storage change. The simulated
dates and sizes of the percolation peaks differ
more strongly from the measured data giving the
values ME = 0.845 and RMSE = 1.812, in par-
ticular, the simulated percolation peaks seem to
occur always somewhat later than the observed
peaks.

Figure 9 shows the simulated diurnal course
of transpiration, stem diameter, water flux at the
root collar and the rate of change of xylem wa-
ter content during three consecutive days of the
lysimeter experiment. Transpiration and water
flux at the root collar strictly follow the prescribed
sinusoidal potential evapotranspiration. After the
onset of transpiration, the rate of change of tree
water content decreases due to the onset of tran-
spiration but soon increases because root water
uptake begins to refill plant water capacity, before
it decreases again indicating the end of water
replenishment of the xylem water by soil water
taken up during the night. Correspondingly, the
xylem diameter changes with a maximal diameter
difference of 0.194 mm between day and night.

Discussion

A new model approach is introduced to describe
water flow in the soil-plant system. The model ex-
tends previous approaches that were developed to
describe hydro-dynamics in above-ground plants
(Frith and Kurth 1999; Aumann and Ford 2002;
Bohrer et al. 2005) by additionally including the
hydraulic root system architecture in combination
with a soil water flow model. In this way a com-
plete water flow model for the whole soil-plant
system is obtained, which then vice versa extends
existing root water uptake modelling approaches
(Doussan et al. 1998; Javaux et al. 2008) by in-
cluding the above-ground water dynamics of the
plant. Similar to the soil water flow model, which
is based on the continuum approach as described
by the Richards’ equation, also the plant water
flow is described by this porous media equation
following Bohrer et al. (2005). This description
is in contrast to more discrete approaches that
consider the plant as built up of storage com-
partments and describe the water flow by water
exchange processes between these compartments
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(Peramaki et al. 2001; Steppe and Lemeur 2007).
But, besides the advantages of a continuous math-
ematical formulation representing mass conserva-
tion (Frith and Kurth 1999), due to the similarity
between the porous media approaches to describe
water flow in the soil and the xylem, it seems also
to be conceptually easier to derive a consistent
model of hydro-dynamics of soil-plant systems
based on the continuum approach.

In a first analysis, the new model was applied
to investigate model behaviour and model sen-
sitivity by scenarios with young European beech
trees that have already been analysed in two pre-
vious studies (Javaux et al. 2008; Gayler et al.
2009). Model tests and numerical results show,
that the model is successfully implemented and
can efficiently simulate water flow in the soil-plant
system based on the a simple representation of
plant architecture. Mass balance errors are low
and in an acceptable range. But since the global
mass balance is a necessary but not a sufficient
criterion for having a correct solution (Celia et al.
1990), the model needs further analysis, which
may be based on comparison with exact solutions
(Lehmann and Ackerer 1998) or as in our case by
evaluating simulations of practical examples using
experimental data.

In the case of the 3D simulation by Javaux
et al. (2008) the effect of the steeper slope of the
loam hydraulic properties generates a heteroge-
neous distribution of soil water potentials in the
horizontal direction with drier soil near the roots.
This distribution leads to a larger conductivity
drop and produces an earlier water stress (Javaux
et al. 2008). In the case of our 1D simulation
this effect is mimicked by amplifying the direct
impact of the lower xylem potential on the soil
matric potentials directly near the roots resulting
in a lower radial hydraulic conductivity between
root axis and soil, which is modelled by Eq. 14
based on the definition of the radial rhizosphere
conductivity k. If the distribution of radial con-
ductivities of the roots is adapted in this way,
the main conclusions about effects of soil type
and conductivity values remain, although the root
architecture was different in the drying scenario
simulations we compared. But amplitudes or local
values of considered variables are different due to
the 1D simulation of soil water flow. Therefore, a
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full data comparison cannot be performed, even if
locally the water uptake by the root system may
be of similar magnitude.

Besides the model sensitivity of the radial
root or rhizosphere conductivity, the most sig-
nificant model sensitivity on simulated soil water
uptake and transpiration is due to the stomatal
hydraulic conductivity. This model behaviour is
mainly caused by eventually rather low conduc-
tivity values, reflecting the significant role of both
conductivities in controlling tree water flow which
has been shown in several experimental studies
(Steudle 2000; Lemoine et al. 2002; Sperry et al.
2003). Moreover, the water has to flow through
nonxylary pathways in the root across the root
cortex and endodermis and in the leaf through
the mesophyll. These flow paths have low hy-
draulic conductivities and can account to a high
proportion of the overall root respectively shoot
hydraulic resistance (Sperry et al. 2003). In partic-
ular, the radial root conductivity may be strongly
changed by aquaporin activity (Ehlert et al. 2009),
which itself may be controlled by metabolism or
be triggered by environmental factors (Steudle
2000). Also changes of leaf hydraulic conductivity
may be mediated by plasma membrane aquapor-
ins (Cochard et al. 2007).

Hydraulic lift has been shown to occur in more
than 60 species (Espeleta et al. 2004), “but there
is no fundamental reason why it should not be
more common as long as active root systems are
spanning a gradient in soil water potential and
that the resistance to water loss from roots is low”
(Caldwell et al. 1998). However, for European
beech trees it seems to be an open question
whether the radial hydraulic root conductivity
from inside the roots towards the soil is large
enough to permit considerable water flow to dry
soil (Rewald 2008). Therefore our simulations of
hydraulic lift only show that in principle the model
is able to describe this kind of water redistribu-
tion from wet to dry soil under almost optimal
conditions for hydraulic lift, i.e. assuming water
saturation at the bottom of the soil profile with
a resulting simulated leaf xylem matric potential
ranging from —40,000 to —70,000 mm. Neverthe-
less, the hydraulic lift could be significant in miti-
gating plant water stress and need to be accounted
for in models describing root water uptake and

the onset of plant water stress in a water limited
ecosystem (Siqueira et al. 2008).

The lysimeter scenario simulations confirm the
applicability of the new model to describe daily
water balance dynamics in soil-plant systems. Also
the diurnal course of transpiration seems to be
realistically described. In particular, the simu-
lated diurnal changes of xylem diameter up to
0.194 mm (Fig. 9) are within the range of xylem
or stem diameter changes that were observed
for young European beech and Norway spruce
(Pinus abies L.) trees (Steppe and Lemeur 2007,
Perdmiki et al. 2001). This agreement results from
the fact that based on the parameterisation of
the xylem water retention curve obtained from
the experimental curve of Oertli (1993), we get a
value for the elastic modulus E which is similar
to values found by Steppe and Lemeur (2007) and
Perdamiki et al. (2001). However, this value might
have been underestimated, since we assume that
changes of xylem water potential correspond only
to changes in the xylem water content neglecting
related changes in water contents of phloem, cam-
bium and heartwood.

Since the new plant water flow model focuses
on the water flow in the sapwood tissue in the
longitudinal direction of the stem and branch axes,
the model still needs to be extended to describe
water flow in the phloem and to account for the
radial exchanges of water between xylem, heart-
wood, phloem and cambium. In particular the
active uploading and unloading of sugars accord-
ing to Miinch’s hypothesis (Miinch 1928) needs
to be considered, because near the sources of
sugars considerable water flow from the xylem
to the phloem can occur and vice versa close
to sugar sinks significant amounts of water can
flow from the phloem to the xylem. Locally this
water exchange can strongly influence the xylem
water flow dynamics which also can lead to xylem
diameter changes (Sevanto et al. 2002).

At the present state of development the model
is supposed to be already useful to simulate the
impact of differences in plant architecture and
soil properties on transpiration and water uptake
under various climatic conditions, in particular
considering differences of leaf area and root area
distribution or of root and shoot branching. The
model may be also helpful to describe the impact
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of different distributions of conductivity values
along the tree architecture in particular of larger
trees to study their role in protecting the xylem
against cavitation, while maintaining transpira-
tional water flow. This description may lead to
a better understanding of observed differences
in xylem structures and functions between deep
and shallow roots, roots, stem and branches
(Nadezhdina 2010; North 2004) and of the rele-
vance of nonxylary pathways for water uptake and
transpiration (Sperry et al. 2003). The model may
also be applied to better describe differences of
stand water budgets between mixed forest stands
of different species composition.

Conclusion

The newly proposed model of water flow in soil-
plant systems presented in this study combines
approaches to simulate water flow in the above-
ground plant based on the porous media equation
with root water uptake and soil water flow mod-
els also based on the porous media equation. In
this way the model concept exploits the similarity
between water flow in the soil and the xylem
of plants. It could be shown that the model can
simulate water balance dynamics in soil-plant sys-
tems with young European beech trees including
some main known features of water flow in plants
and soil such as the diurnal cycle of plant wa-
ter content and xylem diameter change, stomatal
control of transpiration, cavitation due to water
stress, sensitivity of root water uptake to radial
root conductivity, hydraulic lift, interaction of hy-
draulic soil properties, root distribution and plant
water availability. Due to the simplified repre-
sentations of plant architecture and distribution
of soil properties that lead to 1D representations
of water flow domains, the model is numerically
very efficient and may therefore be also applicable
to simulate water flow in canopies accounting for
spatial and temporal variability of canopy struc-
tures based on rather simple representations of
individual plant architecture.
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Appendix A

The finite element method is applied according to
the Galerkin method to discretise the 1D Richards
equation (van Genuchten 1982; Priesack 2006).
For this purpose the 3D graph, which represents
the tree is divided into finitely many 1D inter-
vals [z;, zi+1] (1 < i < n), the finite elements 7 (cf.
Fig. 1b). For each knot z;, (1 <i<n+1) the
piecewise linear basis function ¢; is introduced,
which is equal to 1 at knot z; and zero for all other
knots. By this, every continuous, piecewise linear
function f(z) on the graph can be represented as
a superposition of basis functions ¢;, where the
coefficients of ¢; are given by the values f(z;) of
the function f at knot z;. The piecewise linear ap-
proximation {F(t, z) of the unknown ¥ = ¢ (¢, z) of
the Richards equation therefore can be expressed
by the following function:

n+1

V(t.2) =D Ui ¢i(2) (26)

i=1

where ¥;(t) 1= {f(r, z;) 1is defined for all 1 <i <
n+1.

The energy method from the calculus of varia-
tions leads to the following condition of orthogo-
nality for each of the n + 1 basis functions ¢;, i.e. to
the requirement that the following integrals van-
ish on the entire solution domain 2 represented
by the graph:

0 9 ~. (07
/Q {E — a2 |:K (lp ) (5 — cos(a)>:| + Sx} ¢ dz

=0, forall 1<i<n+1. 27)
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Integration by parts and the insertion of U=
Z"“ Y; ¢; leads to

n+1

d,d
/—¢ldz+2¢]/ d¢ d¢]

+/ Kcos(ot)ﬁ dz
Q dz

=—qp i
90

- / Sudy dz (28)
Q

forall 1 <i < n+ 1, where 9Q2 denotes the bound-
ary of the domain Q and g, denotes the water
flux across the boundary. Since we only consider
binary, ternary up to m-ary branching, the basis
functions ¢; are in each case at most on m + 1
finite elements different from zero and it is ad-
vantageous to accomplish the integration element
wise per element Q2, = (2., Ze+1], | <e < n:

n+1

d¢id¢'
L[ ezt DY [, G G
= —qpo; —{—Z/ Kcos(a)ﬁdz
FI9) T dz

- /Q Sus dz. (29)

where the summation ), needs to be carried
out only for those elements 2., that include the
knot z;. To further evaluate the integrals (Eq. 29)
for the term with time derivative the following

d¢ld¢ dd)z
Aij:XC:,/QeKd_ZdZ]d _Z/ ZKk

approximation, also denoted as ‘mass lumping’,
is taken as definition for all 1 <i<n+1 (van
Genuchten 1982):

C;—et Q¢ldz~f9%¢idz (30)
Additionally it is assumed, that the hydraulic con-
ductivity K and also the sink term S, are con-
tinuous, piecewise linear functions on €2, i.e. can
be represented similar to the function ¥ by basis
functions ¢; (1 <i <n+ 1), with K;(t) = K(t, z;),
and S;(t) = S(t, z;) representing the values at the
knot i:

n+1

K, 2) = ) Kt ¢i(2) (31)
i=1
n+1

Se(t,2) = Y Silt) ¢i(2) (32)

i=1

Using these representations the integrals can be
explicitly calculated and, in case of an equidistant
decomposition of 2 into the finite elements €2,
each of equal length Az, the following generally
non-linear equation system (in matrix notation)
results:

BZ—# +AYy =d (33)

for the vectors #, ¥ and d and for the matrices A
and B, where we get in case of a m;-ary branching
(1 =m; <m) at node z; for the m; + 1 intervals
(2ps zils [0 Zey ) - - (205 Zeyp, ] that contain z;:

/Q < pt(bp, d¢l d¢j ld’l 49 d¢]> dz + Z/Q ( t¢t% dd)] Keybei—— a0 d¢/> d
L k=1 ik

dz dz
—(Kp, + Kj)/(2Az), for j= pi
(Kp, + (m; + DK; + 30" Ko, )/(2Az)  for j=i
—(Ki + K.,,)/2Az2) for j=ciy
= . (34)
—(Ki + K,,)/(2Az) for j = cim,
0 else
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mi 1
1 01 —(mi+ DAz fori=j
B,-,-:ZSU/ pidz=1Az+Y taz={ait DAz ori=) (35)
. Q 2 k=1 2 0 fori #j
dv; do; a6 .
_— = — = — @i i ‘ 1 '
" o </Q o ¢ dz) /(/Qqﬁ dz> mass lumping (36)
d; == —g; —s; assuming a zero flux boundary condition g, ¢; =0 (37)
Bl
g = —Z/ Kcos(a)—d Zf ZK,d)]cos(a,)—(pd
_ ¢z ¢>z
= —cos(a;) (Kpl(bp, + K¢l) dz + Z (K ¢i + Kc,kd’clk)
1 “
=5 cos(a;) |:K m; — DK; — Z KCi’kj| (38)
k=1
si = Z/ Sxi dz =/ ZSj¢j¢idZ =/ (Spbp; + Sithi) i dz+2/ (Sipi + Sci be, ) Pidz
e e e ] B k=1 (‘l.k
Az -
= | Sp+20m+ DS + > S (39)

This nonlinear system of Eq. 33 is then solved
in a standard way using a Newton—Picard itera-
tion method (Celia et al. 1990) and elementary
Gaussian elimination (Engeln-Miillges and Uhlig
1996).
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