Skip to main content
Log in

Arabidopsis acyl-CoA-binding protein ACBP6 localizes in the phloem and affects jasmonate composition

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Arabidopsis thaliana ACYL-COA-BINDING PROTEIN6 (AtACBP6) encodes a cytosolic 10-kDa AtACBP. It confers freezing tolerance in transgenic Arabidopsis, possibly by its interaction with lipids as indicated by the binding of acyl-CoA esters and phosphatidylcholine to recombinant AtACBP6. Herein, transgenic Arabidopsis transformed with an AtACBP6 promoter-driven β-glucuronidase (GUS) construct exhibited strong GUS activity in the vascular tissues. Immunoelectron microscopy using anti-AtACBP6 antibodies showed AtACBP6 localization in the phloem especially in the companion cells and sieve elements. Also, the presence of gold grains in the plasmodesmata indicated its potential role in systemic trafficking. The AtACBP6 protein, but not its mRNA, was found in phloem exudate of wild-type Arabidopsis. Fatty acid profiling using gas chromatography-mass spectrometry revealed an increase in the jasmonic acid (JA) precursor, 12-oxo-cis,cis-10,15-phytodienoic acid (cis-OPDA), and a reduction in JA and/or its derivatives in acbp6 phloem exudates in comparison to the wild type. Quantitative real-time PCR showed down-regulation of COMATOSE (CTS) in acbp6 rosettes suggesting that AtACBP6 affects CTS function. AtACBP6 appeared to affect the content of JA and/or its derivatives in the sieve tubes, which is consistent with its role in pathogen-defense and in its wound-inducibility of AtACBP6pro::GUS. Taken together, our results suggest the involvement of AtACBP6 in JA-biosynthesis in Arabidopsis phloem tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

13-LOX:

13-Lipoxygenase

ACBP:

Acyl-CoA-binding protein

ACX:

Acyl-CoA oxidase

AOC:

Allene oxide cyclase

AOS:

Allene oxide synthesis

BSA:

Bovine serum albumin

CC:

Companion cell

cis-OPDA:

12-oxo-cis,cis-10,15-phytodienoic acid

CTS:

COMATOSE

dn-OPDA:

Dinor-oxo-phytodienoic acid

FA:

Fatty acid

GC-MS:

Gas chromatography-mass spectrometry

GUS:

β-Glucuronidase

ITC:

Isothermal titration calorimetry

JA:

Jasmonic acid

OE:

Overexpressor

OPC-8:

12-Oxophytoenoic acid

OPCL:

4-Cl-like CoA-ligase

OPR3:

12-oxo-phytodienoic acid reductase3

PA:

Phosphatidic acid

PC:

Phosphatidylcholine

PP:

Phloem parenchyma

qRT-PCR:

Quantitative real-time PCR

RT-PCR:

Reverse transcription-PCR

SE:

Sieve element

References

  • Acosta IF, Farmer EE (2010) Jasmonates. Arabidopsis Book 8:e0129

    Article  PubMed  PubMed Central  Google Scholar 

  • Baker A, Carrier DJ, Schaedler T, Waterham HR, van Roermund CW, Theodoulou FL (2015) Peroxisomal ABC transporters: functions and mechanism. Biochem Soc Trans 43:959–965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Balachandran S, Xiang Y, Schobert C, Thompson GA, Lucas WJ (1997) Phloem sap proteins from Cucurbita maxima and Ricinus communis have the capacity to traffic cell to cell through plasmodesmata. Proc Natl Acad Sci USA 94:14150–14155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bell E, Mullet JE (1993) Characterization of an Arabidopsis lipoxygenase gene responsive to methyl jasmonate and wounding. Plant Physiol 103:1133–1137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benning UF, Tamot B, Guelette BS, Hoffmann-Benning S (2012) New aspects of phloem-mediated long-distance lipid signaling in plants. Front Plant Sci 3:53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Carvalho AP, Malcata FX (2005) Preparation of fatty acid methyl esters for gas-chromatographic analysis of marine lipids: insight studies. J Agr Food Chem 53:5049–5059

    Article  CAS  Google Scholar 

  • Chauvin A, Caldelari D, Wolfender JL, Farmer EE (2013) Four 13-lipoxygenases contribute to rapid jasmonate synthesis in wounded Arabidopsis thaliana leaves: a role for lipoxygenase 6 in responses to long-distance wound signals. New Phytol 197:566–575

    Article  CAS  PubMed  Google Scholar 

  • Chen QF, Xiao S, Chye ML (2008) Overexpression of the Arabidopsis 10-kilodalton acyl-coenzyme A-binding protein ACBP6 enhances freezing tolerance. Plant Physiol 148:304–315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen QF, Xiao S, Qi W, Mishra G, Ma J, Wang M et al (2010) The Arabidopsis acbp1acbp2 double mutant lacking acyl-CoA-binding proteins ACBP1 and ACBP2 is embryo lethal. New Phytol 186:843–855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheong JJ, Choi YD (2003) Methyl jasmonate as a vital substance in plants. Trends Genet 19:409–413

    Article  CAS  PubMed  Google Scholar 

  • Christie WW, Han X (2010) Analysis of fatty acids. In Lipid analysis: isolation, separation, identification and lipidomic analysis. Oily Press, England, pp 145–151

    Book  Google Scholar 

  • Chye ML, Huang BQ, Zee SY (1999) Isolation of a gene encoding Arabidopsis membrane-associated acyl-CoA binding protein and immunolocalization of its gene product. Plant J 18:205–214

    Article  CAS  PubMed  Google Scholar 

  • Chye ML, Li HY, Yung MH (2000) Single amino acid substitutions at the acyl-CoA-binding domain interrupt 14C palmitoyl-CoA binding of ACBP2, an Arabidopsis acyl-CoA-binding protein with ankyrin repeats. Plant Mol Biol 44:711–721

    Article  CAS  PubMed  Google Scholar 

  • Corbesier L, Vincent C, Jang S, Fornara F, Fan Q, Searle I et al (2007) FT protein movement contributes to long-distance signaling in floral induction of Arabidopsis. Science 316:1030–1033

    Article  CAS  PubMed  Google Scholar 

  • Creelman RA, Tierney ML, Mullet JE (1992) Jasmonic acid/methyl jasmonate accumulate in wounded soybean hypocotyls and modulate wound gene expression. Proc Natl Acad Sci USA 89:4938–4941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cronshaw J (1981) Phloem structure and function. Annual Rev Plant Physiol 32:465–484

    Article  CAS  Google Scholar 

  • Dannenhoffer JM, Schulz A, Skaggs MI, Bostwick DE, Thompson GA (1997) Expression of the phloem lectin is developmentally linked to vascular differentiation in cucurbits. Planta 201:405–414

    Article  CAS  Google Scholar 

  • Dave A, Graham IA (2012) Oxylipin signaling: a distinct role for the jasmonic acid precursor cis-(+)-12-oxo-phytodienoic acid (cis-OPDA). Front Plant Sci 3:140

    Article  CAS  Google Scholar 

  • Dave A, Hernandez ML, He Z, Andriotis VME, Vaistij FE, Larson TR, Graham IA (2011) 12-oxo-phytodienoic acid accumulation during seed development represses seed germination in Arabidopsis. Plant Cell 23:583–599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Boer AH, Volkov V (2003) Logistics of water and salt transport through the plant: structure and functioning of the xylem. Plant Cell Environ 26:87–101

    Article  Google Scholar 

  • De Marcos LC, van Roermund CW, Postis VL, Dietrich D, Kerr ID, Wanders RJ et al (2013) Intrinsic acyl-CoA thioesterase activity of a peroxisomal ATP binding cassette transporter is required for transport and metabolism of fatty acids. Proc Natl Acad Sci USA 110:1279–1284

    Article  Google Scholar 

  • Deeken R, Ache P, Kajahn I, Klinkenberg J, Bringmann G, Hedrich R (2008) Identification of Arabidopsis thaliana phloem RNAs provides a search criterion for phloem-based transcripts hidden in complex datasets of microarray experiments. Plant J 55:746–759

    Article  CAS  PubMed  Google Scholar 

  • Du ZY, Chye ML (2013) Interactions between Arabidopsis acyl-CoA-binding proteins and their protein partners. Planta 238:239–245

    Article  CAS  PubMed  Google Scholar 

  • Du ZY, Xiao S, Chen QF, Chye ML (2010) Depletion of the membrane-associated acyl-Coenzyme A-binding protein ACBP1 enhances the ability of cold acclimation in Arabidopsis. Plant Physiol 152:1585–1597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Du ZY, Chen MX, Chen QF, Xiao S, Chye ML (2013a) Arabidopsis acyl-CoA-binding protein ACBP1 participates in the regulation of seed germination and seedling development. Plant J 74:294–309

  • Du ZY, Chen MX, Chen QF, Xiao S, Chye ML (2013b) Overexpression of Arabidopsis acyl-CoA-binding protein ACBP2 enhances drought tolerance. Plant Cell Environ 36:300–314

  • Du ZY, Chen MX, Chen QF, Gu JD, Chye ML (2015) Expression of Arabidopsis acyl-CoA-binding proteins AtACBP1 and AtACBP4 confers Pb(II) accumulation in Brassica juncea roots. Plant Cell Environ 38:101–117

    Article  CAS  PubMed  Google Scholar 

  • Epel BL (1994) Plasmodesmata: composition, structure and trafficking. Plant Mol Biol 26:1343–1356

    Article  CAS  PubMed  Google Scholar 

  • Farmer EE, Mousavi S, Lenglet A (2013) Leaf numbering for experiments on long distance signalling in Arabidopsis. Protoc Exch. doi:10.1038/protex.2013.071

    Google Scholar 

  • Farmer EE, Gasperini D, Acosta IF (2014) The squeeze cell hypothesis for the activation of jasmonate synthesis in response to wounding. New Phytol 204:282–288

    Article  CAS  PubMed  Google Scholar 

  • Fisher DB, Wu Y, Ku MS (1992) Turnover of soluble proteins in the wheat sieve tube. Plant Physiol 100:1433–1441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Footitt S, Slocombe SP, Larner V, Kurup S, Wu Y, Larson T et al (2002) Control of germination and lipid mobilization by COMATOSE, the Arabidopsis homologue of human ALDP. EMBO J 21:2912–2922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Froelich DR, Mullendore DL, Jensen KH, Ross-Elliott TJ, Anstead JA, Thompson GA et al (2011) Phloem ultrastructure and pressure flow: sieve-element-occlusion-related agglomerations do not affect translocation. Plant Cell 23:4428–4445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao W, Xiao S, Li HY, Tsao SW, Chye ML (2009) Arabidopsis thaliana acyl-CoA-binding protein ACBP2 interacts with heavy-metal-binding farnesylated protein AtFP6. New Phytol 181:89–102

    Article  CAS  PubMed  Google Scholar 

  • Gao W, Li HY, Xiao S, Chye ML (2010) Acyl-CoA-binding protein 2 binds lysophospholipase 2 and lysoPC to promote tolerance to cadmium-induced oxidative stress in transgenic Arabidopsis. Plant J 62:989–1003

    CAS  PubMed  Google Scholar 

  • Guelette BS, Benning UF, Hoffmann-Benning S (2012) Identification of lipids and lipid-binding proteins in phloem exudates from Arabidopsis thaliana. J Exp Bot 63:3603–3616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hause B, Hause G, Kutter C, Miersch O, Wasternack C (2003) Enzymes of jasmonate biosynthesis occur in tomato sieve elements. Plant Cell Physiol 44:643–648

    Article  CAS  PubMed  Google Scholar 

  • Hayashi H, Fukuda A, Suzui N, Fujimaki S (2000) Proteins in the sieve element-companion cell complexes: their detection, localization and possible functions. Funct Plant Biol 27:489–496

    Article  CAS  Google Scholar 

  • Hayashi M, Nito K, Takei-Hoshi R, Yagi M, Kondo M, Suenaga A et al (2002) Ped3p is a peroxisomal ATP-binding cassette transporter that might supply substrates for fatty acid β-oxidation. Plant Cell Physiol 43:1–11

    Article  CAS  PubMed  Google Scholar 

  • Haywood V, Yu TS, Huang NC, Lucas WJ (2005) Phloem longdistance trafficking of gibberellic acid-insensitive RNA regulates leaf development. Plant J 42:49–68

    Article  CAS  PubMed  Google Scholar 

  • Hoad GV (1995) Transport of hormones in the phloem of higher plants. Plant Growth Regul 16:173–182

    Article  CAS  Google Scholar 

  • Howe GA, Schilmiller AL (2002) Oxylipin metabolism in response to stress. Curr Opin Plant Biol 5:230–236

    Article  CAS  PubMed  Google Scholar 

  • Hsiao AS, Haslam RP, Michaelson LV, Liao P, Chen QF, Sooriyaarachchi S et al (2014) Arabidopsis cytosolic acyl-CoA-binding proteins ACBP4, ACBP5 and ACBP6 have overlapping but distinct roles in seed development. Biosci Rep 34:865–877

    Article  CAS  Google Scholar 

  • Hsiao AS, Yeung EC, Ye ZW, Chye ML (2015) The Arabidopsis cytosolic acyl-CoA-binding proteins play combinatory roles in pollen development. Plant Cell Physiol 56:322–333

    Article  CAS  PubMed  Google Scholar 

  • Hu J, Baker A, Bartel B, Linka N, Mullen RT, Reumann S et al (2012) Plant peroxisomes: biogenesis and function. Plant Cell 24:2279–2303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ishiwatari Y, Fujiwara T, McFarland KC, Nemoto K, Hayashi H, Chino M et al (1998) Rice phloem thioredoxin h has the capacity to mediate its own cell-to-cell transport through plasmodesmata. Planta 205:12–22

    Article  CAS  PubMed  Google Scholar 

  • Kader JC (1996) Lipid-transfer proteins in plants. Annu Rev Plant Physiol Plant Mol Biol 47:627–654

    Article  CAS  PubMed  Google Scholar 

  • Kader JC (1997) Lipid-transfer proteins: a puzzling family of plant proteins. Trend Plant Sci 2:66–70

    Article  Google Scholar 

  • Kehr J, Haebel S, Blechschmidt-Schneider S, Willmitzer L, Steup M, Fisahn J (1999) Analysis of phloem protein patterns from different organs of Cucurbita maxima Duch. by matrix-assisted laser desorption/ionization time of flight mass spectroscopy combined with sodium dodecyl sulfate–polyacrylamide gel electrophoresis. Planta 207:612–619

    Article  CAS  PubMed  Google Scholar 

  • Kienow L, Schneider K, Bartsch M, Stuible HP, Weng H, Miersch O et al (2008) Jasmonates meet fatty acids: functional analysis of a new acyl-coenzyme A synthetase family from Arabidopsis thaliana. J Exp Bot 59:403–419

    Article  CAS  PubMed  Google Scholar 

  • Kim KW, Franceschi VR, Davin LB, Lewis NG (2006) Beta-glucuronidase as reporter gene: advantages and limitations. Methods Mol Biol 323:263–273

    CAS  PubMed  Google Scholar 

  • Laudert D, Weiler EW (1998) Allene oxide synthase: a major control point in Arabidopsis thaliana octadecanoid signalling. Plant J 15:675–684

    Article  CAS  PubMed  Google Scholar 

  • Laudert D, Hennig P, Stelmach BA, Muller A, Andert L, Weiler EW (1997) Analysis of 12-oxo-phytodienoic acid enantiomers in biological samples by capillary gas chromatography-mass spectrometry using cyclodextrin stationary phases. Anal Biochem 246:211–217

    Article  CAS  PubMed  Google Scholar 

  • León J, Rojo E, Sánchez-Serrano JJ (2001) Wound signalling in plants. J Exp Bot 52:1–9

    Article  PubMed  Google Scholar 

  • Leung KC, Li HY, Mishra G, Chye ML (2004) ACBP4 and ACBP5, novel Arabidopsis acyl-CoA-binding proteins with kelch motifs that bind oleoyl-CoA. Plant Mol Biol 55:297–309

    Article  CAS  PubMed  Google Scholar 

  • Leung KC, Li HY, Xiao S, Tse MH, Chye ML (2006) Arabidopsis ACBP3 is an extracellularly targeted acyl-CoA-binding protein. Planta 223:871–881

    Article  CAS  PubMed  Google Scholar 

  • Li HY, Chye ML (2003) Membrane localization of Arabidopsis acyl-CoA binding protein ACBP2. Plant Mol Biol 51:483–492

    Article  CAS  PubMed  Google Scholar 

  • Li HY, Chye ML (2004) Arabidopsis Acyl-CoA-binding protein ACBP2 interacts with an ethylene-responsive element-binding protein, AtEBP, via its ankyrin repeats. Plant Mol Biol 54:233–243

    Article  CAS  PubMed  Google Scholar 

  • Li S, Ma J, Liu P (2013) OPR3 is expressed in phloem cells and is vital for lateral root development in Arabidopsis. Can J Plant Science 93:165–170

    Article  CAS  Google Scholar 

  • Lin MK, Belanger H, Lee YJ, Varkonyi-Gasic E, Taoka K, Miura E et al (2007) FLOWERING LOCUS T protein may act as the long-distance florigenic signal in the cucurbits. Plant Cell 19:1488–1506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Madey E, Nowack LM, Thompson JE (2002) Isolation and characterization of lipid in phloem sap of canola. Planta 214:625–634

    Article  CAS  PubMed  Google Scholar 

  • Meng W, Hsiao AS, Gao C, Jiang L, Chye ML (2014) Subcellular localization of rice acyl-CoA-binding proteins (ACBPs) indicates that OsACBP6::GFP is targeted to the peroxisomes. New Phytol 203:469–482

    Article  CAS  PubMed  Google Scholar 

  • Mitton FM, Pinedo ML, de la Canal L (2009) Phloem sap of tomato plants contains a DIR1 putative ortholog. J Plant Physiol 166:543–547

    Article  CAS  PubMed  Google Scholar 

  • Nakamura Y, Andrés F, Kanehara K, Liu YC, Dörmann P, Coupland G (2014) Arabidopsis florigen FT binds to diurnally oscillating phospholipids that accelerate flowering. Nat Commun 5:3553

    PubMed  PubMed Central  Google Scholar 

  • Narusaka Y, Narusaka M, Park P, Kubo Y, Hirayama T, Seki M et al (2004) RCH1, a locus in Arabidopsis that confers resistance to the hemibiotrophic fungal pathogen Colletotrichum higginsianum. Mol Plant Microbe Interact 17:749–762

    Article  CAS  PubMed  Google Scholar 

  • Oparka KJ, Turgeon R (1999) Sieve elements and companion cells-traffic control centers of the phloem. Plant Cell 11:739–750

    CAS  PubMed  PubMed Central  Google Scholar 

  • Raven JA (1991) Long-term functioning of enucleate sieve elements: possible mechanisms of damage avoidance and damage repair. Plant Cell Environ 14:139–146

    Article  Google Scholar 

  • Roberts AG, Oparka KJ (2003) Plasmodesmata and the control of symplastic transport. Plant Cell Environ 26:103–124

    Article  Google Scholar 

  • Robert-Seilaniantz A, Grant M, Jones JD (2011) Hormone crosstalk in plant disease and defense: more than just jasmonate-salicylate antagonism. Annu Rev Phytopathol 49:317–343

    Article  CAS  PubMed  Google Scholar 

  • Rosendal J, Ertbjerg P, Knudsen J (1993) Characterization of ligand binding to acyl-CoA-binding protein. Biochem J 290:321–326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rowe HC, Walley JW, Corwin J, Chan EK, Dehesh K, Kliebenstein DJ (2010) Deficiencies in jasmonate-mediated plant defense reveal quantitative variation in Botrytis cinerea pathogenesis. PLoS Pathog 6:e1000861

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ruiz-Medrano R, Xoconostle-Cázares B, Lucas WJ (1999) Phloem long-distance transport of CmNACP mRNA: implications for supracellular regulation in plants. Development 126:4405–4419

    CAS  PubMed  Google Scholar 

  • Schaller A, Stintzi A (2009) Enzymes in jasmonate biosynthesis–structure, function, regulation. Phytochemistry 70:1532–1538

    Article  CAS  PubMed  Google Scholar 

  • Schaller F, Weiler EW (1997) Molecular cloning and characterization of 12-oxophytodienoate reductase, an enzyme of the octadecanoid signaling pathway from Arabidopsis thaliana: structural and functional relationship to yeast old yellow enzyme. J Biol Chem 272:28066–28072

    Article  CAS  PubMed  Google Scholar 

  • Schilmiller AL, Howe GA (2005) Systemic signaling in the wound response. Curr Opin Plant Biol 8:369–377

    Article  CAS  PubMed  Google Scholar 

  • Schulz PDA (1998) Phloem. structure related to function. In: Progress in botany. Springer, Berlin, pp 429–475

    Chapter  Google Scholar 

  • Shah J, Chaturvedi R, Chowdhury Z, Venables B, Petros RA (2014) Signaling by small metabolites in systemic acquired resistance. Plant J 79:645–658

    Article  CAS  PubMed  Google Scholar 

  • Suzui N, Nakamura S, Fujiwara T, Hayashi H, Yoneyama T (2006) A putative acyl-CoA-binding protein is a major phloem sap protein in rice (Oryza sativa L.) J Exp Bot 57:2557–2271

    Article  CAS  Google Scholar 

  • Theodoulou FL, Job K, Slocombe SP, Footitt S, Holdsworth M, Baker A et al (2005) Jasmonic acid levels are reduced in COMATOSE ATP-binding cassette transporter mutants. Implications for transport of jasmonate precursors into peroxisomes. Plant Physiol 137:835–840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Truman W, Bennett MH, Kubigsteltig I, Turnbull C, Grant M (2007) Arabidopsis systemic immunity uses conserved defense signaling pathways and is mediated by jasmonates. Proc Natl Acad Sci USA 104:1075–1080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsuboi S, Osafune T, Tsugeki R, Nishimura M, Yamada M (1992) Nonspecific lipid transfer protein in castor bean cotyledon cells: subcellular localization and a possible role in lipid metabolism. J Biochem 111:500–508

    CAS  PubMed  Google Scholar 

  • Turner JG, Ellis C, Devoto A (2002) The jasmonate signal pathway. Plant Cell 14:S153–S164

    CAS  PubMed  PubMed Central  Google Scholar 

  • van Wees SC, de Swart EA, van Pelt JA, van Loon LC, Pieterse CM (2000) Enhancement of induced disease resistance by simultaneous activation of salicylate- and jasmonate-dependent defense pathways in Arabidopsis thaliana. Proc Natl Acad Sci USA 97:8711–8716

    Article  PubMed  PubMed Central  Google Scholar 

  • van Bel AJ, Helariutta Y, Thompson GA, Ton J, Dinant S, Ding B et al (2013) Phloem: the integrative avenue for resource distribution, signaling, and defense. Front Plant Sci 4:471

    PubMed  PubMed Central  Google Scholar 

  • Walz C, Giavalisco P, Schad M, Juenger M, Klose J, Kehr J (2004) Proteomics of curcurbit phloem exudate reveals a network of defence proteins. Phytochemistry 65:1795–1804

    Article  CAS  PubMed  Google Scholar 

  • Weber H, Vick BA, Farmer EE (1997) Dinor-oxo-phytodienoic acid: a new hexadecanoid signal in the jasmonate family. Proc Natl Acad Sci USA 94:10473–10478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xia Y, Yu K, Gao QM, Wilson EV, Navarre D, Kachroo P et al (2012) Acyl CoA binding proteins are required for cuticle formation and plant responses to microbes. Front Plant Sci 3:224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiao S, Chye ML (2009) An Arabidopsis family of six acyl-CoA-binding proteins has three cytosolic members. Plant Physiol Biochem 47:479–484

    Article  CAS  PubMed  Google Scholar 

  • Xiao S, Chye ML (2010) The Arabidopsis thaliana ACBP3 regulates leaf senescence by modulating phospholipid metabolism and ATG8 stability. Autophagy 6:802–804

    Article  PubMed  Google Scholar 

  • Xiao S, Chye ML (2011a) New roles for acyl-CoA-binding proteins (ACBPs) in plant development, stress responses and lipid metabolism. Prog Lipid Res 50:141–151

  • Xiao S, Chye ML (2011b) Overexpression of Arabidopsis ACBP3 enhances NPR1-dependent plant resistance to Pseudomonas syringe pv tomato DC3000. Plant Physiol 156:2069–2081

  • Xiao S, Gao W, Chen QF, Ramalingam S, Chye ML (2008a) Overexpression of membrane-associated acyl-CoA-binding protein ACBP1 enhances lead tolerance in Arabidopsis. Plant J 54:141–151

  • Xiao S, Li HY, Zhang JP, Chan SW, Chye ML (2008b) Arabidopsis acyl-CoA-binding proteins ACBP4 and ACBP5 are subcellularly localized to the cytosol and ACBP4 depletion affects membrane lipid composition. Plant Mol Biol 68:571–583

  • Xiao S, Chen QF, Chye ML (2009a) Expression of ACBP4 and ACBP5 proteins is modulated by light in Arabidopsis. Plant Signal Behav 4:1063–1065

  • Xiao S, Chen QF, Chye ML (2009b) Light-regulated Arabidopsis ACBP4 and ACBP5 encode cytosolic acyl-CoA-binding proteins that bind phosphatidylcholine and oleoyl-CoA ester. Plant Physiol Biochem 47:926–933

  • Xiao S, Gao W, Chen QF, Chan SW, Zhengm SX, Ma J et al (2010) Overexpression of Arabidopsis acyl-CoA binding protein ACBP3 promotes starvation-induced and age-dependent leaf senescence. Plant Cell 22:1463–1482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xoconostle-Cazares B, Xiang Y, Ruiz-Medrano R, Wang HL, Monzer J, Yoo BC et al (1999) Plant paralog to viral movement protein that potentiates transport of mRNA into the phloem. Science 283:94–98

    Article  CAS  PubMed  Google Scholar 

  • Xu Y, Chang P, Liu D, Narasimhan ML, Raghothama KG, Hasegawa PM et al (1994) Plant defense genes are synergistically induced by ethylene and methyl jasmonate. Plant Cell 6:1077–1085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu ZF, Qi WQ, Ouyang XZ, Yeung E, Chye ML (2001) A proteinase inhibitor II of Solanum americanum is expressed in phloem. Plant Mol Biol 47:727–738

    Article  CAS  PubMed  Google Scholar 

  • Ye ZW, Chye ML (2016) Plant cytosolic acyl-CoA-Binding proteins. Lipids 51:1–13

    Article  CAS  PubMed  Google Scholar 

  • Yoo BC, Lee JY, Lucas WJ (2002) Analysis of the complexity of protein kinases within the phloem sieve tube system. Characterization of Cucurbita maxima calmodulin-like domain protein kinase 1. J Biol Chem 277:15325–15332

    Article  CAS  PubMed  Google Scholar 

  • Yoo BC, Kragler F, Varkonyi-Gasic E, Haywood V, Archer-Evans S, Lee YM et al (2004) A systemic small RNA signaling system in plants. Plant Cell 16:1979–2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yurchenko O, Nykiforuk CL, Moloney MM, Stahl U, Banas A, Stymne S et al (2009) A 10-kDa acyl-CoA-binding protein (ACBP) from Brassica napus enhances acyl exchange between acyl-CoA and phosphatidylcholine. Plant Biotech J 7:602–610

    Article  CAS  Google Scholar 

  • Yurchenko O, Singer SD, Nykiforuk CL, Gidda S, Mullen RT, Moloney MM et al (2014) Production of a Brassica napus low-molecular mass acyl-Coenzyme A-binding protein in Arabidopsis alters the acyl-coenzyme A pool and acyl composition of oil in seeds. Plant Physiol 165:550–560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao Y, Thilmony R, Bender CL, Schaller A, He SY, Howe GA (2003) Virulence systems of Pseudomonas syringae pv. tomato promote bacterial speck disease in tomato by targeting the jasmonate signaling pathway. Plant J 36:485–499

    Article  CAS  PubMed  Google Scholar 

  • Zheng SX, Xiao S, Chye ML (2012) The gene encoding Arabidopsis acyl-CoA-binding protein 3 is pathogen inducible and subject to circadian regulation. J Exp Bot 63:2985–3000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ziegler J, Stenzel I, Hause B, Maucher H, Hamberg M, Grimm R et al (2000) Molecular cloning of allene oxide cyclase. The enzyme establishing the stereochemistry of octadecanoids and jasmonates. J Biol Chem 275:19132–19138

    Article  CAS  PubMed  Google Scholar 

  • Zimmermann MH, Ziegler H (1975) Transport in plants: phloem transport. In: Zimmermann MH, Milburn JA (eds) Encyclopedia of plant physiology. Springer, New York, pp 480–503

    Google Scholar 

  • Zolman BK, Silva ID, Bartel B (2001) The Arabidopsis pxa1 mutant is defective in an ATP-binding cassette transporter-like protein required for peroxisomal fatty acid β-oxidation. Plant Physiol 127:1266–1278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Wing-Sung Lee (Electron Microscope Unit, the University of Hong Kong) for help with EM, and Dan-Ni Nie (the University of Hong Kong) for phloem exudate collection. This work was supported by the Wilson and Amelia Wong Endowment Fund and the Research Grants Council of Hong Kong (HKU765813M). ZWY was supported by a University Postgraduate Fellowship, THH, QFC and YLS by HKU Postgraduate Studentships, and SCL by a postdoctoral fellowship. SHB was supported by NSF-IOS Grant #1144391.

Author contributions

This study was designed, directed and coordinated by MLC and EY. MLC provided the conceptual and technical guidance through the project. ZWY planned and carried out the western blot and qRT-PCR analysis, wounding experiments and immunoelectron microscopy; SCL and QFC performed the GUS-sectioning and microscopy; ZWY, THH and YLS carried out GC-MS analysis; MW and SHB contributed to the lipid analysis. The manuscript was written by ZWY and MLC and commented by all authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mee-Len Chye.

Additional information

Accession numbers: Sequence data from this article can be obtained from the in the Arabidopsis Genome Initiative database following the accession numbers listed in Supplementary Table S2.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2233 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, ZW., Lung, SC., Hu, TH. et al. Arabidopsis acyl-CoA-binding protein ACBP6 localizes in the phloem and affects jasmonate composition. Plant Mol Biol 92, 717–730 (2016). https://doi.org/10.1007/s11103-016-0541-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-016-0541-0

Keywords

Navigation