Skip to main content
Log in

Pisum sativum p68 DEAD-box protein is ATP-dependent RNA helicase and unique bipolar DNA helicase

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

DEAD-box helicases play essential role in DNA and RNA metabolism such as replication, repair, recombination, transcription, translation, ribosome biogenesis and splicing which regulate plant growth and development. The presence of helicases in the stress-induced ORFs identified by cDNA microarray indicates that helicases might be playing an important role in stabilizing growth in plants under stress. p68 DEAD-box helicase has been identified and characterized from animal systems but the properties and functions of plant p68 are poorly understood. In this study, the identification, purification and characterization of recombinant p68 from Pisum sativum (Psp68) is presented. Psp68 possesses all the characteristic motifs like DEAD-box ATP-binding and helicase C terminal motifs and is structurally similar to human p68 homologue. Psp68 exhibits ATPase activity in the presence of both DNA and RNA and it binds to DNA as well as RNA. It contains the characteristic RNA helicase activity. Interestingly Psp68 also shows the unique DNA helicase activity, which is bipolar in nature (unwinds DNA in both the 5′–3′ and 3′–5′ directions). The Km values of Psp68 for ATPase are 0.5126 and 0.9142 mM in the presence of DNA and RNA, respectively. The Km values of Psp68 are 1.6129 and 1.14 nM for DNA helicase and RNA helicase, respectively. The unique properties of Psp68 suggest that it could be a multifunctional protein involved in different aspect of DNA and RNA metabolism. This discovery should make an important contribution to better understanding of nucleic acids metabolism plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ahmad M, Tuteja R (2013) Plasmodium falciparum RuvB2 translocates in 5′–3′ direction, relocalizes during schizont stage and its enzymatic activities are up regulated by RuvB3 of the same complex. Biochim Biophys Acta 1834:2795–2811

    Article  CAS  PubMed  Google Scholar 

  • Ahmad M, Ansari A, Tarique M, Satsangi AT, Tuteja R (2012) Plasmodium falciparum UvrD helicase translocates in 3′ to 5′ direction, colocalizes with MLH and modulates its activity through physical interaction. PLoS One 7:e49385

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Anand SP, Khan SA (2004) Structure-specific DNA binding and bipolar helicase activities of PcrA. Nucleic Acids Res 32:3190–3197

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Arnold K, Bordoli L, Kopp J, Schwede T (2006) The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics 22:195–201

    Article  CAS  PubMed  Google Scholar 

  • Banu MSA, Huda KMK, Shaoo RK, Garg B, Tula S, Islam SMS, Tuteja R, Tuteja N (2014a) Pea p68 imparts salinity stress tolerance in rice by scavenging of ROS-mediated H2O2 and interacts with argonaute. Plant Mol Biol Rep. doi:10.1007/s11105-014-0748-7

  • Banu MSA, Huda KMK, Tuteja N (2014b) Isolation and functional characterization of the promoter of a DEAD-box helicase Psp68 using Agrobacterium-mediated transient assay. Plant Signal Behav 9:e28992

    Article  PubMed  Google Scholar 

  • Bates GJ, Nicol SM, Wilson BJ, Jacobs AM, Bourdon JC, Wardrop J, Gregory DJ, Lane DP, Perkins ND, Fuller-Pace FV (2005) The DEAD box protein p68: a novel transcriptional coactivator of the p53 tumour suppressor. EMBO J 24:543–553

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Buszczak M, Spradling AC (2006) The Drosophila P68 RNA helicase regulates transcriptional deactivation by promoting RNA release from chromatin. Genes Dev 20:977–989

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cheng Z, Coller J, Parker R, Song H (2005) Crystal structure and functional analysis of DEAD-box protein Dhh1p. RNA 11:1258–1270

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Constantinesco F, Forterre P, Koonin EV, Aravind L, Elie CA (2004) Bipolar DNA helicase gene, herA, clusters with rad50, mre11 and nurA genes in thermophilic archaea. Nucleic Acids Res 32:1439–1447

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cordin O, Banroques J, Tanner NK, Linder P (2006) The DEAD-box protein family of RNA helicases. Gene 367:17–37

    Article  CAS  PubMed  Google Scholar 

  • Endoh H, Maruyama K, Masuhiro Y, Kobayashi Y, Goto M, Tai H, Yanagisawa J, Metzger D, Hashimoto S, Kato S (1999) Purification and identification of p68 RNA helicase acting as a transcriptional coactivator specific for the activation function 1 of human estrogen receptor alpha. Mol Cell Biol 19:5363–5372

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fuller-Pace FV (2006) DExD/H box RNA helicases multifunctional proteins with important roles in transcriptional regulation. Nucleic Acids Res 34:4206–4215

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fuller-Pace FV (2013) The DEAD box proteins DDX5 (p68) and DDX17 (p72): multi-tasking transcriptional regulators. Biochim Biophys Acta 1829:756–763

    Article  CAS  PubMed  Google Scholar 

  • Gendra E, Moreno A, Alba MM, Pages M (2004) Interaction of the plant glycine-rich RNA-binding protein MA16 with a novel nucleolar DEAD box RNA helicase protein from Zea mays. Plant J 38:875–886

    Article  CAS  PubMed  Google Scholar 

  • Gong Z, Dong CH, Lee H, Zhu J, Xiong L, Gong D, Stevenson B, Zhu JK (2005) A DEAD box RNA helicase is essential for mRNA export and important for development and stress responses in Arabidopsis. Plant Cell 17:256–267

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Guan Q, Wu J, Zhang Y, Jiang C, Liu R, Chai C, Zhu J (2013) A DEAD box RNA helicase is critical for pre-mRNA splicing, cold-responsive gene regulation, and cold tolerance in Arabidopsis. Plant Cell 25:342–356

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hogbom M, Collins R, van den Berg S, Jenvert RM, Karlberg T, Kotenyova T, Flores A, Karlsson Hedestam GB, Schiavone LH (2007) Crystal structure of conserved domains 1 and 2 of the human DEAD-box helicase DDX3X in complex with the mononucleotide AMP. J Mol Biol 372:150–159

    Article  PubMed  Google Scholar 

  • Huang Y, Liu ZR (2002) The ATPase, RNA unwinding, and RNA binding activities of recombinant p68 RNA helicase. J Biol Chem 277:12810–12815

    Article  CAS  PubMed  Google Scholar 

  • Iggo RD, Lane DP (1989) Nuclear protein p68 is an RNA-dependent ATPase. EMBO J 8:1827

    CAS  PubMed Central  PubMed  Google Scholar 

  • Itadani H, Sugita M, Sugiura M (1994) Structure and expression of a cDNA encoding an RNA helicase-like protein in tobacco. Plant Mol Biol 24:249–252

    Article  CAS  PubMed  Google Scholar 

  • Jones PG, Mitta M, Kim Y, Jiang W, Inouye M (1996) Cold shock induces a major ribosomal-associated protein that unwinds double stranded RNA in Escherichia coli. Proc Natl Acad Sci USA 93:76–80

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kammel C, Thomaier M, Sorensen BB, Schubert T, Langst G, Grasser M, Grasser KD (2013) Arabidopsis DEAD-box RNA helicase UAP56 interacts with both RNA and DNA as well as with mRNA export factors. PLoS One 8:e60644

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Linder P, Jankowsky E (2011) From unwinding to clamping—the DEAD box RNA helicase family. Nat Rev Mol Cell Biol 12:505–516

    Article  CAS  PubMed  Google Scholar 

  • Mehta J, Tuteja R (2011) A novel dual Dbp5/DDX19 homologue from Plasmodium falciparum requires Q motif for activity. Mol Biochem Parasitol 176:58–63

    Article  CAS  PubMed  Google Scholar 

  • Okanami M, Meshi T, Iwabuchi M (1998) Characterization of a DEAD box ATPase/RNA helicase protein of Arabidopsis thaliana. Nucleic Acids Res 26:2638–2643

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Owttrim GW (2006) RNA helicases and abiotic stress. Nucleic Acids Res 34:3220–3230

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF Chimera—a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612

    Article  CAS  PubMed  Google Scholar 

  • Pradhan A, Tuteja R (2007) Bipolar, dual Plasmodium falciparum helicase 45 expressed in the intraerythrocytic developmental cycle is required for parasite growth. J Mol Biol 373:268–281

    Article  CAS  PubMed  Google Scholar 

  • Pradhan A, Chauhan VS, Tuteja R (2005a) A novel ‘DEAD-box’ DNA helicase from Plasmodium falciparum is homologous to p68. Mol Biochem Parasitol 140:55–60

    Article  CAS  PubMed  Google Scholar 

  • Pradhan A, Chauhan VS, Tuteja R (2005b) Plasmodium falciparum DNA helicase 60 is a schizont stage specific, bipolar and dual helicase stimulated by PKC phosphorylation. Mol Biochem Parasitol 144:133–141

    Article  CAS  PubMed  Google Scholar 

  • Rossow KL, Janknecht R (2003) Synergism between p68 RNA helicase and the transcriptional coactivators CBP and p300. Oncogene 22:151–156

    Article  CAS  PubMed  Google Scholar 

  • Shankar J, Pradhan A, Tuteja R (2008) Isolation and characterization of Plasmodium falciparum UAP56 homolog evidence for the coupling of RNA binding and splicing activity by site-directed mutations. Arch Biochem Biophys 478:143–153

    Article  CAS  PubMed  Google Scholar 

  • Stevenson RJ, Hamilton SJ, MacCallum DE, Hall PA, Fuller-Pace FV (1998) Expression of the ‘dead box’ RNA helicase p68 is developmentally and growth regulated and correlates with organ differentiation/maturation in the fetus. J Pathol 184:351–359

    Article  CAS  PubMed  Google Scholar 

  • Tarique M, Ahmad M, Ansari A, Tuteja R (2013) Plasmodium falciparum DOZI, an RNA helicase interacts with eIF4E. Gene 522:46–59

    Article  CAS  PubMed  Google Scholar 

  • Tuteja N (2003) Plant DNA helicases: the long unwinding road. J Exp Bot 54:2201–2214

    Article  CAS  PubMed  Google Scholar 

  • Tuteja R, Pradhan A (2006) Unraveling the ‘DEAD-box’ helicases of Plasmodium falciparum. Gene 376:1–12

    Article  CAS  PubMed  Google Scholar 

  • Tuteja N, Tuteja R (2004a) Prokaryotic and eukaryotic DNA helicases. Essential molecular motor proteins for cellular machinery. Eur J Biochem 271:1835–1848

    Article  CAS  PubMed  Google Scholar 

  • Tuteja N, Tuteja R (2004b) Unraveling DNA helicases. Motif, structure, mechanism and function. Eur J Biochem 271:1849–1863

    Article  CAS  PubMed  Google Scholar 

  • Tuteja N, Sahoo RK, Garg B, Tuteja N (2013) OsSUV3 dual helicase functions in salinity stress tolerance by maintaining photosynthesis and antioxidant machinery in rice (Oryza sativa L. cv. IR64). Plant J 76:115–127. doi:10.1111/tpj.12277

    CAS  PubMed  Google Scholar 

  • Tuteja N, Banu MSA, Huda KMK, Gill SS, Jain P, Pham XH, Tuteja R (2014) Pea p68, a DEAD-box helicase, provides salinity stress tolerance in transgenic tobacco by reducing oxidative stress and improving photosynthesis machinery. PLOS One 9(5):e98287. doi:10.1371/journal.pone.0098287

  • Vashisht AA, Tuteja N (2006) Stress responsive DEAD-box helicases: a new pathway to engineer plant stress tolerance. J Photochem Photobiol B 84:150–160

    Article  CAS  PubMed  Google Scholar 

  • Vashisht AA, Pradhan A, Tuteja R, Tuteja N (2005) Cold- and salinity stress-induced bipolar pea DNA helicase 47 is involved in protein synthesis and stimulated by phosphorylation with protein kinase C. Plant J 44:76–87

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Gao X, Huang Y, Yang J, Liu ZR (2009) P68 RNA helicase is a nucleocytoplasmic shuttling protein. Cell Res 19:1388–1400

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wang H, Gao X, Yang JJ, Liu ZR (2013) Interaction between p68 RNA helicase and Ca2+–calmodulin promotes cell migration and metastasis. Nat Commun 4:1354

    Article  PubMed Central  PubMed  Google Scholar 

  • Wilson BJ, Bates GJ, Nicol SM, Gregory DJ, Perkins ND, Fuller-Pace FV (2004) The p68 and p72 DEAD box RNA helicases interact with HDAC1 and repress transcription in a promoter-specific manner. BMC Mol Biol 5:11. doi:10.1186/1471-2199-5-11

    Article  PubMed Central  PubMed  Google Scholar 

  • Yang T, Poovaiah BW (2003) Calcium/calmodulin-mediated signal network in plants. Trends Plant Sci 8:505–512

    Article  CAS  PubMed  Google Scholar 

  • Yang L, Lin C, Liu ZR (2005) Signaling to the DEAD box—regulation of DEAD-box p68 RNA helicase by protein phosphorylations. Cell Signal 17:1495–1504

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Work on plant helicases and abiotic stress tolerance in NT’s laboratory is partially supported by Department of Biotechnology (DBT) and ICGEB, New Delhi. NT is thankful to Dr. Hoi Xuan Pham for his help in the initial stage of the work. We do not have any conflict of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Narendra Tuteja.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tuteja, N., Tarique, M., Banu, M.S.A. et al. Pisum sativum p68 DEAD-box protein is ATP-dependent RNA helicase and unique bipolar DNA helicase. Plant Mol Biol 85, 639–651 (2014). https://doi.org/10.1007/s11103-014-0209-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-014-0209-6

Keywords

Navigation