Skip to main content

Advertisement

Log in

Arginine vasopressin (AVP): a review of its historical perspectives, current research and multifunctional role in the hypothalamo-hypophysial system

  • Published:
Pituitary Aims and scope Submit manuscript

Abstract

Introduction

This publication reviews the function of arginine vasopressin and focuses on the morphologic and functional correlation between the hormone and its effect on stress, the hypophysial–adrenocortical axis, neuroimmune responses, renal function and corticotroph pituitary tumors.

Materials and methods

A literature review was performed using various search engines for information regarding the morphology and the multifunctional role of arginine vasopressin.

Results

Although a large number of studies were published discussing these interactions, there are several important areas that are still obscure.

Conclusion

The questions of how does arginine vasopressin affect the morphology and function of these various areas, and how does the secretion of ACTH and adrenocortical hormones influence the morphology of arginine vasopressin-producing cells and their hormone secretion requires further investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Kamm O, Aldrich TB, Grote IW, Rowe LW, Bugbee EP (1928) The active principles of the posterior lobe of the pituitary gland: I. The demonstration of the presence of two active principles: II. The separation of the two principles and their concentration in the form of potent solid preparations. J Am Chem Soc 50(2):573–601

    Article  CAS  Google Scholar 

  2. du Vigneaud V, Gish DT, Katsoyannis PG (1954) A synthetic preparation possessing biological properties associated with arginine-vasopressin. J Am Chem Soc 76:4751–4752

    Article  Google Scholar 

  3. du Vigneaud V, Ressler C, Swan JM, Roberts CW, Katsoyannis PG (1954) The synthesis of oxytocin. J Am Chem Soc 76:3115–3121

    Article  Google Scholar 

  4. Sachs H, Takabatake Y (1964) Evidence for a precursor in vasopressin biosynthesis. Endocrinology 75:943–948

    Article  CAS  PubMed  Google Scholar 

  5. Takabatake Y, Sachs H (1964) Vasopressin Biosynthesis. In vitro studies. Endocrinology 75:934–942

    Article  CAS  PubMed  Google Scholar 

  6. Sachs H, Fawcett P, Takabatake Y, Portanova R (1969) Biosynthesis and release of vasopressin and neurophysin. Recent Prog Horm Res 25:447–491

    CAS  PubMed  Google Scholar 

  7. Oliver G, Schafer EA (1895) On the physiological action of extracts of pituitary body and certain other glandular organs: preliminary communication. J Physiol 18(3):277–279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Farini F (1913) Diabete insipido ed opoterapia. Gazz Osped Clin 34:1135–1139

    Google Scholar 

  9. Vongraven D (1913) Die nierenwirkung von hypophysenextrakten meschen. Berl Klin Wochenscgr 50:2083–2086

    Google Scholar 

  10. Oh YK (2008) Vasopressin and vasopressin receptor antagonists. Electrolyte Blood Press 6(1):51–55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Berczi I, Quintanar-Stephano A, Kovacs K (2009) Neuroimmune regulation in immunocompetence, acute illness, and healing. Ann NY Acad Sci 1153:220–239

    Article  CAS  PubMed  Google Scholar 

  12. Berczi I, Quintanar A, Campos R, Kovacs K (2012) Vasopressin, oxytocin and immune function. Adv Neuroimmune Biol 3(3–4):329–343

    Google Scholar 

  13. Richter D (1988) Molecular events in expression of vasopressin and oxytocin and their cognate receptors. Am J Physiol 255(2 Pt 2):F207–F219

    CAS  PubMed  Google Scholar 

  14. Donaldson ZR, Young LJ (2008) Oxytocin, vasopressin, and the neurogenetics of sociality. Science 322(5903):900–904

    Article  CAS  PubMed  Google Scholar 

  15. Goodson JL (2008) Nonapeptides and the evolutionary patterning of sociality. Prog Brain Res 170:3–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Burbach JP, Luckman SM, Murphy D, Gainer H (2001) Gene regulation in the magnocellular hypothalamo-neurohypophysial system. Physiol Rev 81(3):1197–1267

    CAS  PubMed  Google Scholar 

  17. Rao VV, Loffler C, Battey J, Hansmann I (1992) The human gene for oxytocin–neurophysin I (OXT) is physically mapped to chromosome 20p13 by in situ hybridization. Cytogenet Cell Genet 61(4):271–273

    Article  CAS  PubMed  Google Scholar 

  18. Richter D (1983) Synthesis, processing, and gene structure of vasopressin and oxytocin. Prog Nucl Acid Res Mol Biol 30:245–266

    Article  CAS  Google Scholar 

  19. Bolignano D, Cabassi A, Fiaccadori E, Ghigo E, Pasquali R, Peracino A et al (2014) Copeptin (CTproAVP), a new tool for understanding the role of vasopressin in pathophysiology. Clin Chem Lab Med 52(10):1447–1456

    Article  CAS  PubMed  Google Scholar 

  20. Koshimizu TA, Nakamura K, Egashira N, Hiroyama M, Nonoguchi H, Tanoue A (2012) Vasopressin V1a and V1b receptors: from molecules to physiological systems. Physiol Rev 92(4):1813–1864

    Article  CAS  PubMed  Google Scholar 

  21. Schmidt A, Audigier S, Barberis C, Jard S, Manning M, Kolodziejczyk AS, Sawyer WH (1991) A radioiodinated linear vasopressin antagonist: a ligand with high affinity and specificity for V1a receptors. FEBS Lett 282(1):77–81

    Article  CAS  PubMed  Google Scholar 

  22. Li JD, Burton KJ, Zhang C, Hu SB, Zhou QY (2009) Vasopressin receptor V1a regulates circadian rhythms of locomotor activity and expression of clock-controlled genes in the suprachiasmatic nuclei. Am J Physiol Regul Integr Comp Physiol 296(3):R824–R830

    Article  CAS  PubMed  Google Scholar 

  23. Xu Y, Kim ER, Fan S, Xia Y, Xu Y, Huang C, Tong Q (2014) Profound and rapid reduction in body temperature induced by the melanocortin receptor agonists. Biochem Biophys Res Commun 451(2):184–189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Albers HE (2015) Species, sex and individual differences in the vasotocin/vasopressin system: relationship to neurochemical signaling in the social behavior neural network. Front Neuroendocrinol 36:49–71

    Article  CAS  PubMed  Google Scholar 

  25. Mittapalli G, Argaryan L, Brown SJ, Saldanha SA, Volmar CH, Ferguson J, Roberts E, Hodder P, Rosen H (2010–2013) Optimization and characterization of an antagonist for vasopressin 1a (V1a) receptor. Probe reports from the NIH Molecular Libraries Program [Internet]. National Center for Biotechnology Information (US), Bethesda

  26. Barberis C, Audigier S (1985) Vasopressin and oxytocin receptors in the central nervous system of the rat. Ann Endocrinol (Paris) 46(1):35–39

    CAS  Google Scholar 

  27. Antoni FA (1984) Novel ligand specificity of pituitary vasopressin receptors in the rat. Neuroendocrinology 39(2):186–188

    Article  CAS  PubMed  Google Scholar 

  28. Born J, Pietrowsky R, Fehn HL (1998) Neuropsychological effects of vasopressin in healthy humans. Prog Brain Res 119:619–643

    Article  CAS  PubMed  Google Scholar 

  29. Thibonnier M, Coles P, Thibonnier A, Shoham M (2001) The basic and clinical pharmacology of nonpeptide vasopressin receptor antagonists. Annu Rev Pharmacol Toxicol 41:175–202

    Article  CAS  PubMed  Google Scholar 

  30. Thibonnier M, Preston JA, Dulin N, Wilkins PL, Berti-Mattera LN, Mattera R (1997) The human V3 pituitary vasopressin receptor: ligand binding profile and density-dependent signaling pathways. Endocrinology 138(10):4109–4122

    CAS  PubMed  Google Scholar 

  31. Kaufmann JE, Oksche A, Wollheim CB, Gunther G, Rosenthal W, Vischer UM (2000) Vasopressin-induced von Willebrand factor secretion from endothelial cells involves V2 receptors and cAMP. J Clin Invest 106(1):107–116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Haberichter SL, Shi Q, Montgomery RR (2006) Regulated release of VWFand FVIII and the biologic implications. Pediatr Blood Cancer 46(5):547–553

    Article  CAS  PubMed  Google Scholar 

  33. North WG (2000) Gene regulation of vasopressin and vasopressin receptors in cancer. Exp Physiol 85:27S–40S

    Article  CAS  PubMed  Google Scholar 

  34. Iannucci NB, Ripoll GV, Garona J, Cascone O, Ciccia GN, Gomez DE, Alonso DF (2011) Antiproliferative effect of 10deamino-8-d-arginine vasopressin analogs on human breast cancer cells. Future Med Chem 3(16):1987–1993

    Article  CAS  PubMed  Google Scholar 

  35. Noh JM, Park W, Huh SJ, Cho EY, Choi Y, Lee JH, Bae DS (2009) Correlation between tumor volume response to radiotherapy and expression of biological markers in patients with cervical squamous cell carcinoma. J Gynecol Oncol 20(4):215–220

    Article  PubMed  PubMed Central  Google Scholar 

  36. Wang FF, Tang KT, Yen YS, Ho DM, Yang AH, Hwang CI, Lin HD, Won JG (2012) Plasma corticotrophin response to desmopressin in patients with Cushing’s disease correlates with the expression of vasopressin receptor 2, but not with that of vasopressin 1 or 3, in their pituitary tumours. Clin Endocrinol (Oxf) 76(2):253–263

    Article  CAS  Google Scholar 

  37. Kondo N, Arima H, Banno R, Kuwahara S, Sato I, Oiso Y (2004) Osmoregulation of vasopressin release and gene transcription under acute and chronic hypovolemia in rats. Am J Physiol 286(3):E337–E346

    CAS  Google Scholar 

  38. Dunn FL, Brennan TJ, Nelson AE, Robertson GI (1973) The role of blood osmolality and volume in regulating vasopressin secretion in the rat. J Clin Invest 52(12):3212–3219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Turner J, Sazonova O, Wang H, Pozzi A, Wagner GF (2010) Induction of the renal stanniocalcin-1 gene in rodents by water deprivation. Mol Cell Endocrinol 328(1–2):8–15

    Article  CAS  PubMed  Google Scholar 

  40. Bankir L, Bichet DG, Bouby N (2010) Vasopressin V2 receptors, ENaC, and sodium reabsorption: a risk factor for hypertension? Am J Physiol 299(5):917–928

    Google Scholar 

  41. Boone M, Deen PM (2008) Physiology and pathophysiology of the vasopressin-regulated renal water reabsorption. Pflugers Arch 456(6):1005–1024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Sharabi FM, Schmid PG (1983) Evidence for a role of vasopressin in hypertension. Am J Nephrol 3(2–3):164–171

    Article  CAS  PubMed  Google Scholar 

  43. Bichet DG (1998) Nephrogenic diabetes insipidus. Am J Med 105(5):431–442

    Article  CAS  PubMed  Google Scholar 

  44. Bichet DG (2006) Nephrogenic diabetes insipidus. Adv Chronic Kidney Dis 13(2):96–104

    Article  PubMed  Google Scholar 

  45. Makaryus AN, McFarlane SI (2006) Diabetes Insipidus: diagnosis and treatment of a complex disease. Cleve Clin Med 73(1):65–71

    Article  Google Scholar 

  46. Garofeanu CG, Weir M, Rosas-Arellano MP, Henson G, Garg AX, Clark WF (2005) Causes of reversible nephrogenic diabetes insipidus: a systematic review. Am J Kidney Dis 45(4):626–637

    Article  PubMed  Google Scholar 

  47. Sands JM, Bichet DG (2006) Nephogenic diabetes insipidus. Ann Int Med 144(3):186–194

    Article  CAS  PubMed  Google Scholar 

  48. Nagayama Y, Shigeno M, Nakagawa Y, Suganuma A, Takeshita A, Fujiyama K, Ashizawa K, Kiriyama T, Yokoyama N, Nagataki S (1994) Acquired nephrogenic diabetes insipidus secondary to distal renal tubular acidosis and nephrocalcinosis associated with Sjogren’s syndrome. J Endocrinol Invest 17(8):659–663

    Article  CAS  PubMed  Google Scholar 

  49. Bichet DG (2008) Vasopressin receptor mutations in nephrogenic diabetes insipidus. Semin Nephrol 28(3):245–251

    Article  CAS  PubMed  Google Scholar 

  50. Magaldi AJ (2000) New insights into the paradoxical effect of thiazides in diabetes insipidus therapy. Nephrol Dial Transplant 15(12):1903–1905

    Article  CAS  PubMed  Google Scholar 

  51. Moses AM, Notman DD (1982) Diabetes insipidus and syndrome of inappropriate antidiuretic hormone secretion (SIADH). Adv Intern Med 27:73–100

    CAS  PubMed  Google Scholar 

  52. Nussbaum CE, Okawara SH, Jacobs LS (1991) Lymphocytic hypophysitis with involvement of the cavernous sinus and hypohalamus. Neurosurgery 28(3):440–444

    Article  CAS  PubMed  Google Scholar 

  53. Gregor NG, Kirkland RT, Clayton GW, Kirkland JL (1986) Central diabetes insipidus: 22 years’ experience. Am J Dis Child 140(6):551–554

    Article  Google Scholar 

  54. Fujiwara TM, Morgan K, Bichet DG (1995) Molecular biology of diabetes insipidus. Annu Rev Med 46:331–343

    Article  CAS  PubMed  Google Scholar 

  55. Elias PC, Elias LL, Torres N, Moreira AC, Antunes-Rodrigues J, Castro M (2003) Progressive decline of vasopressin secretion in familial autosomal dominant neurohypophyseal diabetes insipidus presenting a novel mutation in vasopressin–neurophysin II gene. Clin Endocrinol (Oxf) 59(4):511–518

    Article  CAS  Google Scholar 

  56. Perrotta S, Di Iorgi N, Ragione FD, Scianguetta S, Borriello A, Allegri A, Ferraro M, Santoro C, Napoli F, Calcagno A, Giaccardi M, Cappa M, Salerno MC, Cozzolino D, Maghnie M (2015) Early-onset of central diabetes insipidus is associated with de novo vasopressin–neurophysin II or Wolfram syndrome 1 gene mutations. Eur J Endocrinol 172(4):461–472

    Article  CAS  PubMed  Google Scholar 

  57. Tanoue A, Ito S, Honda K, Oshikawa S, Kitagawa Y, Koshimizu TA, Mori T, Tsujimoto G (2004) The vasopressin V1b receptor critically regulates hypothalamic–pituitary–adrenal axis activity under both stress and resting conditions. J Clin Invest 113(2):302–309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ma S, Shipston MJ, Morilak D, Russell JA (2005) Reduced hypothalamic vasopressin secretion underlies attenuated adrenocorticotropin stress responses in pregnant rats. Endocrinology 146(3):1626–1637

    Article  CAS  PubMed  Google Scholar 

  59. Kovács KJ, Sawchenko PE (1996) Sequence of stress-induced alterations in indices of synaptic and transcriptional activation in parvocellular neurosecretory neurons. J Neurosci 16(1):262–273

    PubMed  Google Scholar 

  60. Stewart LQ, Roper JA, Young WS 3rd, O’Carroll AM, Lolait SJ (2008) Pituitary–adrenal response to acute and repeated mild restraint, forced swim and change in environment stress in arginine vasopressin receptor 1b knockout mice. J Neuroendocrinol 20(5):597–605

    Article  CAS  PubMed  Google Scholar 

  61. de Goeij DC, Kvetnansky R, Whitnall MH, Jezova D, Berkenbosch F, Tilders FJ (1991) Repeated stress-induced activation of corticotropin-releasing factor neurons enhances vasopressin stores and colocalization with corticotropin-releasing factor in the median eminence of rats. Neuroendocrinology 53(2):150–159

    Article  PubMed  Google Scholar 

  62. Aguilera G, Subburaju S, Young S, Chen J (2008) The parvocellular vasopressinergic system and responsiveness of the hypothalamic pituitary adrenal axis during chronic stress. Prog Brain Res 170:29–39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Aguilera G (1998) Corticotropin releasing hormone, receptor regulation and the stress response. Trends Endocrinol Metab 9(8):329–336

    Article  CAS  PubMed  Google Scholar 

  64. Aguilera G (1994) Regulation of pituitary ACTH secretion during chronic stress. Front Neuroendocrinol 15:321–350

    Article  CAS  PubMed  Google Scholar 

  65. Sawchenko PE, Brown ER, Chan RK, Ericsson A, Li HY, Roland BL, Kovács KJ (1996) The paraventricular nucleus of the hypothalamus and the functional neuroanatomy of visceromotor responses to stress. Prog Brain Res 107:201–222

    Article  CAS  PubMed  Google Scholar 

  66. Turnbull AV, Rivier C (1997) Corticotropin-releasing factor (CRF) and endocrine responses to stress: CRF receptors, binding protein, and related peptides. Proc Soc Exp Biol Med 215(1):1–10

    Article  CAS  PubMed  Google Scholar 

  67. Vale W, Spiess J, Rivier C, Rivier J (1981) Characterization of a 41-residue ovine hypothalamic peptide that stimulates secretion of corticotropin and beta-endorphin. Science 213(4514):1394–1397

    Article  CAS  PubMed  Google Scholar 

  68. Keller-Wood ME, Dallman MF (1984) Corticosteroid inhibition of ACTH secretion. Endocr Rev 5(1):1–24

    Article  CAS  PubMed  Google Scholar 

  69. Young WS 3rd, Mezey E, Siegel RE (1986) Quantitative in situ hybridization histochemistry reveals increased levels of corticotropin-releasing factor mRNA after adrenalectomy in rats. Neurosci Lett 70(2):198–203

    Article  CAS  PubMed  Google Scholar 

  70. Seasholtz A (2000) Regulation of adrenocorticotropic hormone secretion: lessons from mice deficient in corticotropin-releasing hormone. J Clin Invest 105(9):1187–1188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Owens MJ, Nemeroff CB (1991) Physiology and pharmacology of corticotropin-releasing factor. Pharmacol Rev 43(4):425–473

    CAS  PubMed  Google Scholar 

  72. Tilders FJ, Schmidt ED, de Goeij DC (1993) Phenotypic plasticity of CRF neurons during stress. Ann NY Acad Sci 697:39–52

    Article  CAS  PubMed  Google Scholar 

  73. Watanabe T, Oth DN (1987) Detailed kinetic analysis of adrenocorticotropin secretion by dispersed rat anterior pituitary cells in a microperfusion system: effects of ovine corticotropin-releasing factor and arginine vasopressin. Endocrinol 121(3):1133–1145

    Article  CAS  Google Scholar 

  74. Acharjee S, Do-rego JL, Oh DY, Ahn RS, Choe H, Vaudry H, Kim K, Seong JY, Kwon HB (2004) Identification of amino acid residues that direct differential ligand selectivity of mammalian and nonmammalian V1a type receptors for arginine vasopressin and vasotocin. Insights into molecular coevolution of V1a type receptors and their ligands. J Biol Chem 279(52):54445–54453

    Article  CAS  PubMed  Google Scholar 

  75. Vallotton MB (1991) The multiple faces of vasopressin receptors. Mol Cell Endocrinol 78(1–2):C73–C76

    Article  CAS  PubMed  Google Scholar 

  76. Patchev VK, Kalogeras KT, Zelazowski P, Wilder RL, Chrousos GP (1992) Increased plasma concentrations, hypothalamic content, and in vitro release of arginine vasopressin in inflammatory disease-prone, hypothalamic corticotropin-releasing hormone-deficient Lewis rats. Endocrinology 131(3):1453–1457

    CAS  PubMed  Google Scholar 

  77. Patchev VK, Mastorakos G, Brady LS, Redwine J, Wilder RL, Chrousos GP (1993) Increased arginine vasopressin secretion may participate in the enhanced susceptibility of Lewis rats to inflammatory disease. Neuroendocrinology 58(1):106–110

    Article  CAS  PubMed  Google Scholar 

  78. Nagy E, Berczi I (1978) Immunodeficiency in hypophysectomized rats. Acta Endocrinol (Copenh) 89(3):530–537

    CAS  Google Scholar 

  79. Nagy E, Berczi I (1989) Pituitary dependence of bone marrow function. Br J Haematol 71(4):457–462

    Article  CAS  PubMed  Google Scholar 

  80. Turnbull AV, Rivier CL (1999) Regulation of the hypothalamic-pituitary-adrenal axis by cytokines: actions and mechanisms of action. Physiol Rev 79(1):1–71

    CAS  PubMed  Google Scholar 

  81. Ray DW, Ren SG, Melmed S (1996) Leukemia inhibitory factor (LIF) stimulates proopiomelanocortin (POMC) expression in a corticotroph cell line. Role of STAT pathway. J Clin Invest 97(8):1852–1959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Naito Y, Fukata J, Masui Y, Hirai Y, Murakami N, Tominaga T, Nakai Y, Tamai S, Mori K, Imura H (1990) Interleukin-1 beta analogues with markedly reduced pyrogenic activity can stimulate secretion of adrenocorticotropic hormone in rats. Biochem Biophys Res Commun 167(1):103–109

    Article  CAS  PubMed  Google Scholar 

  83. Mastorakos G, Weber JS, Magiakou MA, Gunn H, Chrousos GP (1994) Hypothalamic–pituitary–adrenal axis activation and stimulation of systemic vasopressin secretion by recombinant interleukin-6 in humans: potential implications for the syndrome of inappropriate vasopressin secretion. J Clin Endocrinol Metab 79(4):934–939

    CAS  PubMed  Google Scholar 

  84. Harbuz MS, Stephanou A, Sarlis N, Lightman SL (1992) The effects of recombinant human interleukin (IL)-1 alpha, IL-1 beta or IL-6 on hypothalamo-pituitary-adrenal axis activation. J Endocrinol 133(3):349–355

    Article  CAS  PubMed  Google Scholar 

  85. Ericsson A, Kovacs KJ, Sawchenko PE (1994) A functional anatomical analysis of central pathways subserving the effects of interleukin-1 on stress-related neuroendocrine neurons. J Neurosci 14(2):897–913

    CAS  PubMed  Google Scholar 

  86. Lee S, Rivier C (1994) Hypophysiotropic role and hypothalamic gene expression of corticotropin-releasing factor and vasopressin in rats injected with interleukin-1 beta systemically or into the brain ventricles. J Neuroendocrinol 6(2):217–224

    Article  PubMed  Google Scholar 

  87. Rivier C (1995) Blockade of nitric oxide formation augments adrenocorticotropin released by blood-borne interleukin-1 beta: role of vasopressin, prostaglandins, and alpha 1-adrenergic receptors. Endocrinology 136(8):3597–3603

    CAS  PubMed  Google Scholar 

  88. Quintanar-Stephano A, Kovacs K, Berczi I (2004) Effects of neurointermediate pituitary lobectomy on humoral and cell-mediated immune responses in the rat. NeuroImmunoModulation 11(4):233–240

    Article  CAS  PubMed  Google Scholar 

  89. Quintanar-Stephano A, Organista-Esparza A, Chavira-Ramirez R, Kovacs K, Berczi I (2012) Effects of neurointermediate pituitary lobectomy and desmopressin on acute experimental autoimmune encephalomyelitis in Lewis rats. NeuroImmunoModulation 19(3):148–157

    Article  CAS  PubMed  Google Scholar 

  90. Campos-Rodriguez R, Quintanar-Stephano A, Jarillo-Luna RA, Oliver-Aguillon G, Ventura-Juarez J, Rivera-Aguilar V, Berczi I, Kovacs K (2006) Hypophysectomy and neurointermediate pituitary lobectomy reduce serum immunoglobulin M (IgM) and IgG and intestinal IgA responses to Salmonella enterica serovar Typhimurium infection in rats. Infect Immun 74(3):1883–1889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Quintanar-Stephano A, Abarca-Rojano E, Jarillo-Luna RA, Rivera-Aguilar V, Ventura-Juarez J, Berczi I, Kovacs K, Campos-Rodriguez R (2010) Hypophysectomy and neurointermediate pituitary lobectomy decrease humoral immune responses to T-independent and T-dependent antigens. J Physiol Biochem 66(1):7–13

    Article  CAS  PubMed  Google Scholar 

  92. Bell J, Adler MW, Greenstein JI (1992) The effect of arginine vasopressin on the autologous mixed lymphocyte reaction. Int J Immunopharmacol 14(1):93–103

    Article  CAS  PubMed  Google Scholar 

  93. Bell J, Adler MW, Greenstein JI, Liu-Chen LY (1993) Identification and characterization of [125I]arginine vasopressin binding sites on human peripheral blood mononuclear cells. Life Sci 52(1):95–105

    Article  CAS  PubMed  Google Scholar 

  94. Elands J, Resink A, De Kloet ER (1990) Neurohypophyseal hormone receptors in the rat thymus, spleen, and lymphocytes. Endocrinology 126(5):2703–2710

    Article  CAS  PubMed  Google Scholar 

  95. Hu SB, Zhao ZS, Yhap C, Grinberg A, Huang SP, Westphal H, Gold P (2003) Vasopressin receptor 1a-mediated negative regulation of B cell receptor signaling. J Neuroimmunol 135(1–2):72–81

    Article  CAS  PubMed  Google Scholar 

  96. Lolait SJ, O’Carroll AM, Mahan LC, Felder CC, Button DC, Young WS 3rd, Mezey E, Brownstein MJ (1995) Extrapituitary expression of the rat V1b vasopressin receptor gene. Proc Natl Acad Sci USA 92(15):6783–6787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Lloyd RV, Kovacs K, Young WF Jr, Farrell WE, Asa SL, Trouillas J, Kontogeorgos G, Sano T, Scheithauer BW, Horvath E (2004) World Health Organization classification of tumours: pathology and genetics of tumours of endocrine organs. In: DeLellis R, RVL, Heitz PU, Eng C (eds) International Agency for Research on Cancer (IRAC), Lyon

  98. Herman V, Fagin J, Gonsky R, Kovacs K, Melmed S (1990) Clonal origin of pituitary adenomas. J Clin Endocrinol Metab 71(6):1427–1433

    Article  CAS  PubMed  Google Scholar 

  99. Scott LV, Medbak S, Dinan TG (1999) ACTH and cortisol release following intravenous desmopressin: a dose-response study. Clin Endocrinol 51(5):653–658

    Article  CAS  Google Scholar 

  100. Abe T, Tachikawa T, Sasaki A, Taniyama M, Okamura Y, Izumiyama H, Matsumoto K (2000) Histopathological and physiological characteristics of cultured human ACTH-secreting cells derived from a rapidly growing pituitary adenoma. Brain Tumor Pathol 17(3):133–138

    Article  CAS  PubMed  Google Scholar 

  101. Jard S (1988) Mechanisms of action of vasopressin and vasopressin antagonists. Kidney Int Suppl 26:S38–S42

    CAS  PubMed  Google Scholar 

  102. Sakai Y, Horiba N, Tozawa F, Sakai K, Kuwayama A, Demura H, Suda T (1997) Desmopressin stimulation test for diagnosis of ACTH-dependent Cushing’s syndrome. Endocr J 44(5):687–695

    Article  CAS  PubMed  Google Scholar 

  103. Wang FF, Tang KT, Yen YS, Ho DM, Yang AH, Huang CI, Lin HD, Won JG (2012) Plasma corticotrophin response to desmopressin in patients with Cushing’s disease correlates with the expression of vasopressin receptor 2, but not with that of vasopressin receptor 1 or 3, in their pituitary tumours. Clin Endocrinol 76(2):253–263

    Article  CAS  Google Scholar 

  104. Rene P, Grino M, Viollet C, Videau C, Jullian E, Bucchini D, Epelbaum J, Bertagna X, de Keyzer Y (2002) Overexpression of the V3 vasopressin receptor in transgenic mice corticotropes leads to increased basal corticosterone. J Neuroendocrinol 14(9):737–744

    Article  CAS  PubMed  Google Scholar 

  105. Rozengurt E, Legg A, Pettican P (1979) Vasopressin stimulation of mouse 3T3 cell growth. Proc Natl Acad Sci USA 76(3):1284–1287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Hunt NH, Perris AD, Sandford PA (1977) Role of vasopressin in the mitotic response of rat bone marrow cells to haemorrhage. J Endocrinol 72(1):5–16

    Article  CAS  PubMed  Google Scholar 

  107. Ghosh PM, Mikhailova M, Bedolla R, Kreisberg JI (2001) Arginine vasopressin stimulates mesangial cell proliferation by activating the epidermal growth factor receptor. Am J Physiol Renal Physiol 280(6):F972–F979

    CAS  PubMed  Google Scholar 

  108. Russell WE, Bucher NL (1983) Vasopressin modulates liver regeneration in the Brattleboro rat. Am J Physiol 245(2):G321–G324

    CAS  PubMed  Google Scholar 

  109. van Wijk PA, van Neck JW, Rijnberk A, Croughs RJ, Mol JA (1995) Proliferation of the murine corticotropic tumour cell line AtT20 is affected by hypophysiotrophic hormones, growth factors and glucocorticoids. Mol Cell Endocrinol 111(1):13–19

    Article  PubMed  Google Scholar 

  110. Subburaju S, Aguilera G (2007) Vasopressin mediates mitogenic responses to adrenalectomy in the rat anterior pituitary. Endocrinology 148(7):3102–3110

    Article  CAS  PubMed  Google Scholar 

  111. Nolan LA, Thomas CK, Levy A (2004) Pituitary mitosis and apoptotic responsiveness following adrenalectomy are independent of hypothalamic paraventricular nucleus CRH input. J Endocrinol 181(3):521–529

    Article  CAS  PubMed  Google Scholar 

  112. Horiba N, Suda T, Aiba M, Naruse M, Nomura K, Imamura M, Demura H (1995) Lysince vasopressin stimulation of cortisol secretion in patients with adrenocorticotropin-independent macronodular adrenal hyperplasia. J Clin Endocrinol Metab 80(8):2336–2341

    CAS  PubMed  Google Scholar 

  113. Abou-Samra AB, Harwood JP, Catt KJ, Aguilera G (1987) Mechanisms of action of CRF and other regulators of ACTH release in pituitary corticotrophs. Ann NY Acad Sci 512:67–84

    Article  CAS  PubMed  Google Scholar 

  114. Kuryshev YA, Childs GV, Ritchie AK (1996) Corticotropin-releasing hormone stimulates Ca2+ entry through L- and P-type Ca2+ channels in rat corticotropes. Endocrinology 137(6):2269–2277

    CAS  PubMed  Google Scholar 

  115. Guerineau N, Corcuff JB, Tabarin A, Mollard P (1991) Spontaneous and corticotropin-releasing factor-induced cytosolic calcium transients in corticotrophs. Endocrinology 129(1):409–420

    Article  CAS  PubMed  Google Scholar 

  116. Lee AK, Tse A (1997) Mechanism underlying corticotropin-releasing hormone (CRH) triggered cytosolic Ca2+ rise in identified rat corticotrophs. J Physiol 504(Pt 2):367–378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Kuryshev YA, Haak L, Childs GV, Ritchie AK (1997) Corticotropin releasing hormone inhibits an inwardly rectifying potassium current in rat corticotropes. J Physiol 502(Pt 2):265–279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Abou-Samra AB, Catt KJ, Aguilera G (1986) Role of arachidonic acid in the regulation of adrenocorticotropin release from rat anterior pituitary cell cultures. Endocrinology 119(4):1427–1431

    Article  CAS  PubMed  Google Scholar 

  119. Won JG, Orth DN (1994) Role of lipoxygenase metabolites of arachidonic acid in the regulation of adrenocorticotropin secretion by perifused rat anterior pituitary cells. Endocrinology 135(4):1496–1503

    CAS  PubMed  Google Scholar 

  120. Patel AJ, Honore E (2001) Properties and modulation of mammalian 2P domain K+ channels. Trends Neurosci 24(6):339–346

    Article  CAS  PubMed  Google Scholar 

  121. Lee AK, Smart JL, Rubinstein M, Low MJ, Tse A (2011) Reciprocal regulation of TREK-1 channels by arachidonic acid and CRH in mouse corticotropes. Endocrinology 152(5):1901–1910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Malerbi DA, Mendonca BB, Liberman B, Toledo SP, Corradini MC, Cunha-Neto MB, Fragoso MC, Wajchenberg BL (1993) The desmopressin stimulation test in the differential diagnosis of Cushing’s syndrome. Clin Endocrinol 38(5):463–472

    Article  CAS  Google Scholar 

  123. Arnaldi G, Angeli A, Atkinson AB, Bertagna X, Cavagnini F, Chrousos GP, Fava GA, Findling JW, Gaillard RC, Grossman AB, Kola B, Lacroix A, Mancini T, Mantero F, Newell-Price J, Nieman LK, Sonino N, Vance ML, Giustina A, Boscaro M (2003) Diagnosis and complications of Cushing’s syndrome: a consensus statement. J Clin Endocrinol Metab 88(12):5593–5602

    Article  CAS  PubMed  Google Scholar 

  124. Tabarin A, San Galli F, Dezou S, Leprat F, Corcuff JB, Latapie JL, Guerin J, Roger P (1990) The corticotropin-releasing factor test in the differential diagnosis of Cushing’s syndrome: a comparison with the lysine-vasopressin test. Acta Endocrinol (Copenh) 123(3):331–338

    CAS  Google Scholar 

  125. Newell-Price J, Perry L, Medbak S, Monson J, Savage M, Besser M, Grossman A (1997) A combined test using desmopressin and corticotropin-releasing hormone in the differential diagnosis of Cushing’s syndrome. J Clin Endocrinol Metab 82(1):176–181

    CAS  PubMed  Google Scholar 

  126. Malerbi DA, Fragoso MC, Vieira Filho AH, Brenlha EM, Mendonca BB (1996) Cortisol and adrenocorticotropin response to desmopressin in women with Cushing’s disease compared with depressive illness. J Clin Endocrinol Metab 81(6):2233–2237

    CAS  PubMed  Google Scholar 

  127. Alwani RA, Schmit Jongbloed LW, de Jong FH, van der Lely AJ, de Herder WW, Feelders RA (2014) Differentiating between Cushing’s disease and pseudo-Cushing’s syndrome: comparison of four tests. Eur J Endocrinol 170(4):477–486

    Article  CAS  PubMed  Google Scholar 

  128. Kaltsas GA, Giannulis MG, Newell-Price JD, Dacie JE, Thakkar C, Afshar F et al (1999) A critical analysis of the value of simultaneous inferior petrosal sinus sampling in Cushing’s disease and the occult ectopic adrenocorticotropin syndrome. J Clin Endocrinol Metab 84(2):487–492

    CAS  PubMed  Google Scholar 

  129. Kaskarelis IS, Tsatalou EG, Benakis SV, Malagari K, Komninos I, Vassiliadi D, Tsagarakis S, Thalassinos N (2006) Bilateral inferior petrosal sinuses sampling in the routine investigation of Cushing’s syndrome: a comparison with MRI. AJR Am J Roentgenol 187(2):562–570

    Article  PubMed  Google Scholar 

  130. Orth DN, DeBold CR, DeCherney GS, Jackson RV, Alexander AN, Rivier J, Spiess J, Vale W (1982) Pituitary macroadenomas causing Cushing’s disease respond to corticotropin-releasing factor. J Clin Endocrinol Metab 55(5):1017–1019

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Authors are grateful to the Jarislowsky and Lloyd Carr-Harris foundations for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabio Rotondo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rotondo, F., Butz, H., Syro, L.V. et al. Arginine vasopressin (AVP): a review of its historical perspectives, current research and multifunctional role in the hypothalamo-hypophysial system. Pituitary 19, 345–355 (2016). https://doi.org/10.1007/s11102-015-0703-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11102-015-0703-0

Keywords

Navigation