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Abstract Natural arylnaphthalene lactones are rep-

resentative lignans that are found in various dietary

and medicinal plants. Their unique structural features

and significant pharmacological activity have

attracted considerable attention from both synthetic

and medicinal chemists. Owing to their unique

structural features such as relative rigid tetracyclic

skeleton, structural diversity of more than five sub-

stituents, and no chiral center, arylnaphthalene lac-

tones are recognized as a valuable scaffold for drug

discovery, in addition to their significant pharmaco-

logical activities. This review covers the structures and

isolation of all naturally occurring arylnaphthalene

lactone congeners reported. Based on the aryl sub-

stituents, they were categorized as Type I and Type II

and further classified according to the oxidation state

of the ring and glycosylation level. Special attention

has been paid to natural arylnaphthalene lactones

owing to their broad spectrum of biological activities

such as cytotoxic, antiplatelet, antiviral, anti-HIV,

antifungal, neuroprotective, and anti-inflammatory

properties. All the products were reorganized based

on their biological activities, and selected data are

presented.
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Introduction

Arylnaphthalene lignan lactones are naturally occur-

ring fused tricyclic naphthalene lactones with aryl

substituents. Structurally, arylnaphthalene lignan lac-

tones consist of two arylpropanoid units and are

classified as Type I and Type II (Fig. 1) based on the

relative position of lactone and the aryl substituents

(Teponno et al. 2016). Approximately 59 natural

arylnaphthalene lignan lactones and their glycosylated

congeners have been isolated from various dietary and

medicinal plants and structurally elucidated. The

broad spectrum of their pharmacological benefits has

also been reported such as antiproliferative, antiplate-

let aggregation, antiviral, antifungal, neuroprotective,

and anti-inflammatory activities.

The unique structural features as well as promising

bioactivities of arylnaphthalene lactones have drawn

considerable attention from synthetic chemists. Since

the first synthesis of an arylnaphthalene lignan lactone

skeleton in 1895 by the Bucher group (Michael and

Bucher 1895) via the condensation of arylpropiolic
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acids, various synthetic approaches for arylnaph-

thalene lignan lactones have been designed and

applied successfully. Major synthetic approaches

include the intramolecular Diels–Alder reaction for

the construction of an arylnaphthalene lactone from

arylpropiolic anhydride (Brown and Stevenson

1964, 1965; Maclean and Stevenson 1966; Block

and Stevenson 1971; Holmes and Stevenson 1970,

1971; Stevenson and Holmes 1971; Stevenson and

Block 1971; Block and Stevenson 1973; Stevenson

and Weber 1989, 1991; Anastas and Stevenson 1991;

Park et al. 2014). Intermolecular Diels–Alder

approaches were also investigated using isobenzofu-

rans and acetylenedicarboxylate (de Silva et al. 1980;

Plaumann et al. 1980). Other valuable synthetic

methodologies utilizing key reactions such as the

Blaise reaction-intramolecular [4 ? 2] reaction (He

et al. 2012), Garratt–Braverman cyclization (Block

and Stevenson, 1971, 1973; Arnold et al. 1973;

Yamamoto et al. 2015), benzoin condensation-thermal

cyclization (Hayat et al. 2015a, b), and transition-

metal catalyzed synthesis (Park et al. 2020) have been

reported.

Although the isolation and chemistry of natural

lignan products has been broadly reviewed (Teponno

et al. 2016; Li et al. 2020), a focused and comprehen-

sive review on the structures and beneficial biological

activities of natural arylnaphthalene lignan lactones

has not been published. The purpose of this review is

to provide a compilation of naturally occurring

arylnaphthalene lignan lactones in terms of structure,

isolation, and pharmacological activity.

Structures and isolation

Arylnaphthalene lignan lactones are found in a variety

of dietary and medicinal herbs including Phyllanthus,

Justicia, Haplophyllum, and Cleistanthus. Arylnaph-

thalene lignan lactones are classified into two types

based on their structures, 1-phenyl-2-hydroxymethyl-

naphthalene-2-carboxylic acid lactone (Type I) and

1-phenyl-3-hydroxymethylnaphthalene-3-carboxylic

acid lactone (Type II). To provide a visual reference

guide for each compound and to present an overview

of the biological activities of arylnaphthalene lac-

tones, all naturally occurring derivatives are classified

by their types in Figs. 2 and 3. In Fig. 2, Type I

compounds are presented, and they can be divided into

three groups as 7-unsubstituted, 7-oxygenated-, and

7-O-glycosylated arylnaphthalene lactones. The first

subclass of arylnaphthalene lactones includes four

oxygenated congeners: justicidin B (1) (Gözler et al.

1984; Luo et al. 2014; Rao et al. 2006; Batsuren et al.

1981; Batirov et al. 1981; Lin et al. 1995; Gertsch et al.

2003; Hesse et al. 1992; Hemmati et al. 2016;

Mohagheghzadeh et al. 2002) taiwanin C (2) (Yang

et al. 2006; Anjaneyulu et al. 1981; Ban et al. 2002;

Sastry and Rao 1983), daurinol (4) (Batsuren et al.

1981; Hesse et al. 1992), isodaurinol (5) (Hesse et al.

1992), and chinensin (7) (Ghosal et al. 1974; Cow

et al. 2000), which are basic forms of natural

arylnaphthalene lactones and only differ in the

substituents on the alcohols. Several compounds that

are further oxygenated at ring A or ring D such as

deoxydehydropodophyllotoxin (8) (Novelo et al.

1993), dehydro-b-peltatin methyl ether (11) (Novelo

et al. 1993), phyllamyricin C (12) (Rao et al. 2006; Lin

et al. 1995), koelreuterin-1 (6) (Song et al. 1994), and

justicidin H (3) (Yang et al. 2006) have been

identified. Justicidinoside C (9) (Asano et al. 1996),

which is the mono-glycosylated product of justicidin

C, has also been isolated. 9-Hydroxy or 9-methoxy

naphthalene lactones such as piscatorin (10) (Win-

dayani et al. 2014; Gertsch et al. 2003), phyllamyricin

Fig. 1 Structure of

arylnaphthalene lactones
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Fig. 2 Structure and isolation of Type I arylnaphthalene lactones

123

Phytochem Rev (2021) 20:1033–1054 1035



Fig. 2 continued
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Fig. 2 continued

123

Phytochem Rev (2021) 20:1033–1054 1037



Fig. 2 continued

123

1038 Phytochem Rev (2021) 20:1033–1054



D (13) (Lin et al. 1995), and phyllamyricin E (14) (Lin

et al. 1995) have been reported.

The second structural subclass includes C7-oxy-

genated Type I arylnaphthalene lactones. To date, 23

congeners have been isolated, in which the C7 of

arylnaphthalene lactone is substituted with either the

hydroxyl or methoxy group. Diphyllin (18) (Burden

et al. 1969; Chen et al. 1996; Rao et al. 2006; Gözler

et al. 1984; Anjaneyulu et al. 1981; Hesse et al. 1992;

Susplugas et al. 2005; Sastry and Rao 1983),

Fig. 2 continued
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chinensinaphthol (19) (Chen et al. 1996; Day et al.

1999Ghosal et al. 1974), taiwanin E (20) (Chen et al.

1996; Anjaneyulu et al. 1981; Wang et al. 2014),

cleistanone (21) (Ramesh et al. 2003), 60-hydroxyjus-
ticidin A (27) (Yang et al. 2006), 5-hydroxyjusticidin

A (36) (Tian et al. 2006a, b), dehydropodophyllotoxin

(24) (Novelo et al. 1993), 2’-hydroxyjustirumalin (25)

(Rezanka et al. 2009), justicidin A (26) (Burden et al.

1969; Day et al. 2002; Wu and Wu 2006; Lin et al.

1995; Hesse et al. 1992; Day et al. 1999; Susplugas

et al. 2005), Khalid et al. 1981, haplomyrtin (22) (Wu

and Wu 2006; Evcim et al. 1986), 5-methoxydehy-

dropodophyllotoxin (23) (Novelo et al. 1993), cili-

naphthalide A (28) (Day et al. 1999), cilinaphthalide B

(29) (Weng et al. 2004; Day et al. 1999), chinensi-

naphthol methyl ether (30) (Luo et al. 2014), phyllan-

thusmin A (31) (Wu and Wu 2006; Ren et al. 2014),

justicidin F (32) (Chen et al. 1996; Day et al. 1999),

justicidin P (33) (Wang and Ripka 1983), justicinol

(34) (Susplugas et al. 2005), and justicidinoside (35)

Fig. 2 continued
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(Asano et al. 1996), justalakonin (37) (Kavitha et al.

2003), procumbenoside K (38) (Jin et al. 2017),

pronapthalide A (39) (Jin et al. 2014) and 4’-O-

demthyl-7-O-methyldehydropodophylotoxin (40)

(Wei at al. 2018) have been reported. Among these,

justicidin P is a 7-oxygenated derivative of justicidin

A and justicidinoside B is the glycosylated product of

60-hydroxyjusticidin A.

The third subclass of Type I arylnaphthalene

lactones are 7-O-glycosyl congeners. A variety of

saccharides are conjugated at the 7-hydroxy group of

diphyllin, haplomyrtin, taiwanin E, and 4-hydroxy-

daurinol. The 7-O-glycosylated Type I naphthalene

lactones presented in Fig. 1 summarize the naturally

occurring glycosylated congeners. Monosaccharide-

conjugated derivatives include tuberculatin (41)

Fig. 3 Structure and isolations of Type II arylnaphthalene lactones
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(diphyllin apioside) (Susplugas et al. 2005; Innocenti

et al. 2002), cleistanthin D (42) (Anjaneyulu et al.

1981), diphyllin acetylapioside (43) (Nukul et al.

1987; Prieto et al. 2002), haplomyrtoside (44) (Gözler

et al. 1996), cleistanthin A (45) (Anjaneyulu et al.

1981; Sastry and Rao 1983; Tuchinda et al. 2006),

cleistanthin A methyl ether (46) (Tuchinda et al.

2006), cleistanthin B (47) (diphyllin O-glycoside)

(Anjaneyulu et al. 1981; Al-Abed et al. 1990; Ren

et al. 2014), mananthoside A (48) (Chen et al. 2002),

phyllanthusmin B (49) (Lin et al. 1995; Ren et al.

2014), phyllanthusmin C (50) (Lin et al. 1995; Ren

et al. 2014), phyllanthusmin D (51) (Ren et al. 2014),

phyllanthusmin E (52) (Ren et al. 2014), procum-

benoside C (53) (Liu et al. 2008a), procumbenoside D

(54), Liu et al. (2008b), patentiflorin A (55) (Susplugas

et al. 2005), patentiflorin B (56) (Susplugas et al.

2005), procumbenoside I (57) (Jin et al. 2017)

acutissimalignan A (58) (Tuchinda et al. 2008) 7-O-

b-D-glucopyranosyljusticidin B (59) (Borges et al.

2018), 7-O-(b-D-glucopyranosyl)-dehydropodophyl-
lotoxin (60) (Liu et al. 2015) and 400-O-acetylpaten-
tiflorin B (61) (Susplugas et al. 2005). Disaccharide-

conjugated congeners include majidine (62) (Al-Abed

et al. 1990; Innocenti et al. 2002), procumbenoside A

(63) (Day et al. 2002), procumbenoside B (64) (Weng

et al. 2004), justiprocumin A (65) (Zhang et al. 2017),

justiprocumin B (66) (Zhang et al. 2017), ramontoside

(67) (Satyanarayana et al. 1991), cleistanthin C (68)

(Anjaneyulu et al. 1981), mananthoside B (69) (Chen

et al. 2002), 400-O-acetylmananthoside B (70) (Sus-

plugas et al. 2005), mananthoside C (71) (Tian et al.

2006a, b), mananthoside F (72) (Tian et al.

2006a, 2006b), mananthoside I (73) (Tian et al.

2008), taxodiifoloside (74) (Tuchinda et al. 2006),

arabelline (75) (Al-Abed et al. 1990; Innocenti et al.

Fig. 3 continued
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2002), and 7-O-b-D-apiofuranosyl-(1’’’?6’’)-b-D-
glucopyranosyldiphyllin (76) (Pandey et al. 2011),

procumbenoside M (77) (Jin et al 2017), reticulatuside

A (78) (Ma et al. 2012), reticulatuside B (79) (Ma et al.

2012), pronapthalide J (80) (Jin et al. 2014), Diphyllin

7-O-a-L-arabinopyranosyl-(1’’’?3’’)-a-L-ara-
binopyranoside (81) (Yu et al. 2016) and cleistan-

thoside A (86) (Zhang et al. 2014). Eight trisaccharide-

conjugated diphyllins, namely mananthoside D (83)

(Tian et al. 2006a, b), mananthoside E (84) (Tian et al.

2006a, b), procumbenoside E (85) (Wu et al. 2012),

mananthoside J (88) (Tian et al. 2006a, b), patavine

(87) (Innocenti et al. 2002), ciliatoside B (89) (Day

et al. 2000), ciliatoside A (90) (Burden et al. 1969),

and qudsine (82) (Al-Abed et al. 1990), have been

reported.

Type II arylnaphthalene lactones are characterized

by the trans relationship of lactone carbonyl and the

aryl group. Twelve Type II congeners were isolated

and structurally elucidated, including retrojusticidin B

(91) (Lin et al. 1995), procumphthalide A (92) (Weng

et al. 2004), phyllamyricin A (93) (Windayani et al.

2014), detetrahydroconidendrin (94) (Kuo et al. 1990),

retrochinensin (95) (Ghosal and Banerjee 1979),

justicidin E (96) (Wada and Munakata 1970), jusm-

icranthin (97) (Rajasekhar and Subbaraju 2000),

helioxanthin (98) (Ban et al. 2002; Ghosal et al.

1974; Burden et al. 1969), and elenoside (99) (Navarro

et al. 2001), vitexdoin I (101) (Zheng et al. 2014),

Chaihunaphthone (102) (Liu et al. 2008a, b) and 5,3’-

dihydroxy-4,4’-dimethoxy-2,7’-cycloligna-7,7’-di-

ene-9,9’-lactone (103) (Zhang et al, 2010)

Pharmacological activities

Cytotoxic activities

The reported antiproliferative activities of natural

arylnaphthalene lactones are presented in Fig. 4.

Significant cytotoxic activity was observed with

justicidin A (26) and tuberculatin (41) against human

hepatoma cellular carcinoma (Hep3B and HepG2),

human breast cancer (MCF-7 and MCF-7-ras), human

cervical carcinoma (SiHa), and other cancer cell lines.

In addition, these two compounds strongly enhanced

tumor-necrosis factor a (TNF-a) generation in

lipopolysaccharide (LPS)-stimulated RAW 264.7

cells (Day et al. 2002). Later, 60-hydroxyjusticidin A

(27), which was isolated from Justicia procumbens,

was evaluated for its cytotoxicity against human

cancer cell lines. It showed remarkable inhibitory

activity in human bladder cancer cells (EJ) with 50%

inhibitory concentration (IC50) values of 57.1 lM and

enhanced the generation of reactive oxygen species

and induced apoptosis through the caspase pathway

(He et al. 2012). Similar results of the mechanism of

action were reported by Luo and Hu et al. in 2014.

They isolated five lignans, 60-hydroxyjusticidin A

(27), justicidin H (3), justicidin B (1), chinensinaph-

thol methyl ether (30), and taiwanin E methyl ether

(32) from J. procumbens and tested their cytotoxic

activities. Justicidin H (3) exhibited the best inhibitory

activity against human promyelocytic leukemia (HL-

60) and mouse lymphocytic leukemia (L1210 and

P3881D1) cells with an IC50 ranging from 3.9 to

26.2 lM (Luo et al. 2014). To investigate the mech-

anism of action of justicidin H (3), these authors also

evaluated its effects on human leukemia K562 cells.

The IC50 of justicidin H (3) was 15.07 lM for K562

cells and reduced mitochondria membrane potential

(deltapsi(m)). It also increased the expression of

TRPC6 related to regulating calcium homeostasis in

cell signaling and induced apoptosis through the

caspase pathway (Luo et al. 2018).

Diphyllin (18) was tested to investigate whether it

could act as a vacuolar-ATPase (V-ATPase) inhibitor

against human gastric cancer cells (SGC7901) and

esophageal cancer cells (TE-1 and ECA-109). The

IC50 for SGC7901 was demonstrated to be 7.8 lM.

Diphyllin (18) also inhibited the expression of

V-ATPases in a dose-dependent manner. In addition,

the transmembrane pH gradient was reversed, thereby

causing tumor microenvironment acidification (Shen

et al. 2011). It also showed significant inhibition

against TE-1 and ECA-109 cells with IC50 values of

0.3 and 0.2 lM, respectively, with S-phase arrest and

reduced V-ATPase activity. Reportedly, diphyllin

inhibited mammalian target of rapamycin complex 1

(mTORC1), hypoxia-inducible factor-1a (HIF-1a),
and vascular endothelial growth factor (VEGF)

mRNA expression (Chen et al. 2018). Three diphyllin

glycosides cleistanthin A (45), cleistanthoside A (86),

and cleistanthoside A tetraacetate were also evaluated

for their effect as V-ATPases and their cytotoxicity

against human cell lines. Apart from cleistanthoside A

(86), cleistanthin A (45) and cleistanthoside A

tetraacetate were more potent than paclitaxel against

123

Phytochem Rev (2021) 20:1033–1054 1045



HepG2 cells with the IC50 values of 36 and 39 nM,

respectively. They also inhibited V-ATPase activity,

which is critical to tumor invasion and metastasis

development. At nanomolar concentrations, they

neutralize the pH of lysosomes (Zhang et al. 2014).

A bioassay-guided fractionation of the stems and

roots of Phyllanthus oligospermus resulted in the

Fig. 4 Arylnaphthalene lactones with cytotoxic activity against

different cell lines. Hep3B, human cervical carcinoma; HepG2,

human hepatoma cell; MCF-7, human breast cancer cell; MCF-7

ras, Ha-ras oncogene transformed from MCF-7; EJ, human

bladder cell; K562, human leukemia cell; SGC7901, human

gastric cancer cell; TE-1 and ECA-109, human esophageal

cancer cells; SK-OV-3, human ovarian carcinoma; SK-MEL-5,

melanoma; PLC/PRF/5, human hepatoma; HT-3, SiHa, and

CaSki, human cervical carcinoma
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isolation of three arylnaphthalene lignan lactones,

phyllanthusmin A-C (31, 49, 50). The most active

compound was phyllanthusmin A (31) showing a

marked cytotoxic effect against mouse leukemia (P-

388) and human epidermoid carcinoma (KB) cells

with IC50 values of 0.13 and 2.24 lg/mL, respectively

(Wu and Wu 2006). Phyllanthusmin A-E (31, 49–52),

diphyllin (18), and cleistanthin B (47) were also

evaluated for cytotoxicity against colon cancer cells

(HT-29). Phyllanthusmin D (51) was the most potent

with IC50 values at 170 nM; however, cleistanthin B

(47) and phyllanthusmin A (31) were inactive. These

results suggest that the presence of more lipophilic

acetyl groups results in higher cytotoxicity. In this

connection, mechanistic studies of phyllanthusmin D

(51) were also evaluated. It was found that unlike

etoposide, phyllanthusmin D (51) did not mediate its

cytotoxic effects by inhibiting DNA topoisomerase IIa
but did so by inducing HT-29 apoptosis through

caspase-3 activation (Ren et al. 2014). However,

daurinol (4) acts as a catalytic human topoisomerase

IIa inhibitor and demonstrated significant cytotoxic

activity against human colorectal cancer cells

(HCT116) with an IC50 of 2.03 lM. It induced

S-phase arrest through the increased expression of

cyclin E and A (Kang et al. 2011). In a further

investigation, Woo et al. (2017) evaluated daurinol (4)

for anti-metastatic activity against human breast

cancer cells (MDA-MB-231) and human lung cancer

cells (A549). Daurinol (3) decreased the expression of

focal adhesion kinase, which is hyper-activated and

overexpressed in most solid tumors, but did not block

the AKT pathway in both cell lines. Using a trans-well

assay, daurinol (3) was found to inhibit migration and

invasion (Woo et al. 2017).

Among the eight compounds, cilinaphthalide A

(28), cilinaphthalide B (29), chinensinaphthol methyl

ether (30), justicidin A (26), neojusticin B (103),

taiwanin E methyl ether (32), chinensinaphthol (19),

and diphyllin (18) were isolated from the whole plant

of Justicia ciliate. The potent cytotoxic effects of

justicidin A (26) were reported against human cervical

carcinoma (CaSki, SiHa, and HT-3) and human

hepatoma (PLC/PRF/5 and T-24) cells with IC50

values at 3.0 9 10-3, 7.4 9 10-3, 1.8 9 10-3,

2.2 9 10-3, and 2.0 9 10-3 lg/mL, respectively

(Day et al. 1999). Significant cytotoxicity was

observed for most of the compounds, justicinol (34),

patentiflorin A-B (55, 56), 400-O-acetylpatentiflorin B

(61), and 400-O-acetylmananthoside B (70), isolated

from the leaves and stems of Justicia patentiflora with

nanomolar values of IC50. The most active compound

was patentiflorin A (55) with the nanomolar range of

IC50 0.004 and 0.003 against mouth epidermoid

carcinoma (KB) and breast cancer (MCF-7) cells,

respectively (Susplugas et al. 2005).

Antiplatelet aggregation activities

In 1996, Chen et al. determined the 50% inhibitory

activity to the arachidonic acid (AA)-induced aggre-

gation of rabbit platelets at 20 lg/mL from the EtOH

extract of the whole plant of J. procumbens. They

isolated nine arylnaphthalide lignans, neojusticin A

(105), justicidin B (1), justicidin A (26), taiwanin E

methyl ether (32), neojusticin B (103), chinensinaph-

thol methyl ether (30), taiwanin E (20), chinensinaph-

thol (19), and diphyllin (18), from J. procumbens and

evaluated these for their antiplatelet activity. All

compounds were less effective than indomethacin;

however, neojusticin A (105), taiwanin E methyl ether

(32), justicidin B (1), and taiwanin E (20) were more

active than aspirin with IC50 values at 1.1, 1.7, 8.0, and

8.0 lM, respectively (C.-C. Chen et al. 1996). In a

further study, Weng et al. isolated two additional new

arylnaphthalide lignans, procumbenoside B (64) and

cilinaphthalide B (29) from J. procumbens and tested

the antiplatelet effects induced by adrenaline in human

platelet-rich plasma. Cilinaphthalide B (29), justicidin

A (26), and taiwanin E methyl ether (32) exhibited a

moderate antiplatelet activity in a concentration-

dependent manner. Among these, at high concentra-

tions, taiwanin E methyl ether (32) completely abol-

ished the aggregation with an IC50 value of 27.7 lM
and inhibited the secondary phase aggregation at low

concentrations. These results indicate that justicidin A

(26) and taiwanin E methyl ether (32) likely suppress

cyclooxygenase activity and reduce thromboxane

formation (Weng et al. 2004) (Fig. 5).

Antiviral activities

A series of lignans isolated from J. procumbens were

tested for activities against the vesicular stomatitis

virus. Justicidin A-B (26, 1), diphyllin (18), diphyllin

apioside (41), and diphyllin apioside-5-acetate exhib-

ited strong antiviral activities. Their minimum inhibi-

tory concentration (MIC) values were less than
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0.25 lg/mL whereas 60-glucosides justicidinoside

A-C (106, 35, 9) and Type II justicidin C and D

(103, 105) exhibited lower antiviral activity (the MICs

ranged from 16 to 125 lg/mL). It is tempting to

suggest that the weak activity of justicidinoside A-C

(106, 35, 9) is because of the steric bulk of their sugar

moiety and that Type I arylnaphthalene lactones were

more effective than Type II (Luo et al. 2018). Using

the standard plaque reduction assay against human

cytomegalovirus, only taiwanin C (2) and retrojusti-

cidin B (91) showed clear antiviral activity with half

maximal effective concentration (EC50) values at 1.2

and 7.2 lM, respectively (Chen et al. 1996). Similar

antiviral activities were reported for helioxanthin (98)

in HepG2.2.15 cells using Southern blot hybridization

with the EC50 value at 1 lM. Helioxanthin (98)

reduced 3.5 kb of hepatitis B virus mRNA in a dose-

dependent manner with EC50 values at 0.09 lM (Li

et al. 2005). In addition, helioxanthin (98) also

exhibited strong antiviral activities against hepatitis

C virus and herpes simplex virus type 1 with EC50

values at 3 and 2 lM, respectively, but showed weak

activity against herpes simplex virus type 2 and

Epstein–Barr virus with EC50 values at 35 and above

20 lM, respectively (Yeo et al. 2005) (Table1).

Anti-HIV activities

Anti-HIV bioassays with six lignans, phyllamyricin A

(93), phyllamyricin B, phyllamyricin C (12), retrojus-

ticidin B (91), justicidin A (26), and justicidin B (1)

isolated from Phyllanthus myrtifolius were first

Fig. 5 Arylnaphthalene lactones with antiplatelet activity.

Inhibitory concentrations (IC) were determined in arachidonic

acid (AA)-induced aggregation of rabbit platelets (C.-C. Chen

et al. 1996), a. Platelet aggregation induced by adrenaline in

human platelet-rich plasma (Weng et al. 2004)

Table 1 Arylnaphthalene

lactones with antiviral

activities

MIC, minimum inhibitory

concentration; EC50, half

maximal effective

concentration

Compound Virus MIC (lg/mL)

Justicidin A (26) Vesicular stomatitis virus 0.13

Justicidin B (1) Vesicular stomatitis virus C 0.06

Diphyllin (18) Vesicular stomatitis virus 0.25

Tuberculatin (41) Vesicular stomatitis virus 0.25

EC50 [lM]

Taiwanin C (2) Cytomegalovirus 1.2

Retrojusticidin B (91) Cytomegalovirus 7.2

Helioxanthin (98) Cytomegalovirus 7.3

Hepatitis B virus 1

Hepatitis C virus 3

Herpes simplex virus type 1 2
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conducted by Chang et al. (1995) using human

immunodeficiency virus-1 reverse transcriptase assay

(HIV-RT). Among these, phyllamyricin B and retro-

justicidin B (91) were shown to contribute to the

selective inhibitory effect against HIV-RT with IC50

values at 3.5 and 5.5 lM, respectively, whereas they

exhibited much lower activity against human DNA

polymerase-a (hDNAP-a) with IC50 values at 289 and

989 lM (Chang et al. 1995) (Table 2). In a subsequent

study in 1996, Lee et al. identified additional lignans

from P. myrtifolius and evaluated their anti-HIV

activities. Phyllamyricin B and C were inactive and

phyllamyricin E (14) exhibited very low anti-HIV-RT

activity; however, phyllamyricin A (93) showed an

increase in HIV-RT activity by 65% at 1.89 lM (Lee

et al. 1996). From the stems and barks of Justicia

gendarussa justiprocumin A and B (65, 66) were

isolated and justiprocumin B (66) was assayed for its

anti-HIV activity against four HIV-1 isolates using a

standardized human peripheral blood mononuclear

cell culture assay. The HIV-1 isolates BAL, SF162,

LAV0.04, and 89.6 were used. Justiprocumin B

exhibited IC50 values at 15, 15, 14, and 21 nM,

respectively, whereas the clinically used drug for HIV-

1 zidovudine (AZT) showed less activity with the IC50

value ranging from 77 to 95 nM (Zhang et al. 2017).

Antifungal activities

Antifungal activities of arylnaphthalene lactones are

summarized in Table 3. In 2003, the Gertsch group

validated antifungal properties of water, dichloro-

methane, and MeOH extracts of Phyllanthus piscato-

rum. While the extracts did not exhibit an inhibitory

effect against gram-positive bacterial strains of Pseu-

domonas aeruginosa, Bacillus cereus, Staphylococcus

aureus, and Staphylococcus epidermis, they showed

significant activity against Aspergillus fumigatus,

Aspergillus flavus, and Candida albicans (Gertsch

et al. 2004). In a subsequent study, the dichloro-

methane extract of P. piscatorum resulted in the

activity of arylnaphthalene lactone justicidin B (1) and

piscatorin (10) when tested against A. flavus, A.

fumigatus, and C. albicans. The most active com-

pound was justicidin B (1) with MIC values ranging

from 1 to 16 lg/mL; however, showing a higher

concentration of 128 lg/mL against Blas-

toschizomyces capitatus and Cryptococcus neofor-

mans neoformans (Gertsch et al. 2003). Bioassay-

guided fractionation of the leaf extract of P. myrti-

folius led to the isolation of seven lignans, namely,

phyllamyricin C (12), retrojusticidin B (91), phyl-

lamyricin A (93), phyllamyricin F, justicidin B (1),

Table 2 Anti-HIV activities of arylnaphthalene lignan

lactones

Compound IC50

Retrojusticidin B (91)a

HIV-RT 5.5 lM

Justiprocumin B (66)b

BAL 15 nM

SF162 15 nM

LAV0.04 14 nM

89.6 21 nM

BAL, SF162, LAV0.04, and 89.6 are HIV-1 clinical isolates
aUsing reverse transcriptase assay
bUsing standardized human peripheral blood mononuclear cell

culture assay (PBMC assay)

Table 3 Antifungal activities of arylnaphthalene lignan lactones

Compound MIC [lg/mL]

Fusarium oxysporum Aspergillus fumigatus Candida albicans Aspergillus flavus

Retrojusticidin B (91) 16 – – –

Phyllamyricin A (93) 32 – – –

Phyllamyricin C (12) 4 – – –

Phyllamyricin E (14) 16 – – –

Piscatorin (10) 16 C3 C8 C25

Justicidin B (1) 8 C1 C4 C16

MIC, minimum inhibitory concentration
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phyllamyricin E (14), and piscatorin (10). Their

activities were validated using the susceptibility test

and conidial germination inhibition assay. Phyl-

lamyricin A (93), phyllamyricin E (14), justicidin B

(1), and phyllamyricin F exhibited strong inhibition

against Fusarium oxysporum ATCC 44,187 with an

average inhibition zone of 62–68% (1000 lg/mL). In

addition, phyllamyricin C (12) showed the most

significant antifungal activity with MIC and minimum

fungicidal concentration values of 4.0 and 62.5 lg/
mL, respectively, and the seven lignans inhibited

conidia germination of F. oxysporum in a concentra-

tion-dependent manner (Windayani et al. 2014).

Neuroprotective activities

Justicidin A (26) was investigated for neuroprotective

activities in a cellular model of Alzheimer’s disease

induced by amyloid beta (Ab)25-35 in SH-SY5Y cells.

Ab25-35-induced hyperphosphorylation of tau and

okadaic acid-induced hyperphosphorylation were sig-

nificantly inhibited by pre-treatment with justicidin A

at 62.5, 125, and 250 nM in a dose-dependent manner.

At the same concentration, justicidin A produced a

significant level of decrease in the phosphorylation of

glycogen synthase kinase-3beta (GSK-3b) and stim-

ulated the phosphorylation of AMP-activated protein

kinase (AMPK). In addition, treatment with justicidin

A, resulted in an increase in the level of the LC3 II/I

ratio. These results show that justicidin A induced

autophagy and inhibited neuronal cell death through

reducing hyperphosphorylation of tau (Gu et al. 2016).

Anti-inflammatory activities

Prieto et al. (1996) reported for the first time the anti-

inflammatory activity of an MeOH extract of Haplo-

phyllum hispanicum. The edema of carrageenan-

induced paw and TPA-induced ear in mice showed

50% and 37% inhibition at 0.5 mg/ear. Following the

guided bioassay, the active compound diphyllin

acetylapioside (43) was isolated and showed a signif-

icant inhibitory effect against TPA-induced inflam-

mation in mice with a 50% inhibitory dose (ID50)

value at 0.27 lMol/ear (Prieto et al. 1996). In a further

investigation, the same authors validated the anti-

inflammatory effects on eicosanoid metabolism using

an HPLC–DAD-based method. Diphyllin acetyla-

pioside showed complete inhibition of 5-lipoxygenase

activity at 50 lM and exhibited strong inhibitory

effects against LTB4 and 5-hydroxy-6,8,11,14-

eicosateraenoic acid with IC50 values of 0.6 and

0.7 lM, respectively; however, diphyllin apioside

(41) did not exhibit any effect on 5-lipoxygenase

(Prieto et al. 2002). Five lignans isolated from the root

of Acanthopanax chiisanenesis were examined for

their effect on the production of TPA-induced PGE2 in

rat peritoneal macrophages to elucidate their mecha-

nism of action. Taiwanin C (2) exhibited the most

significant inhibitory effect with an IC50 value at

0.12 lM but showed no effect on the expression of

TPA-induced COX-2 protein. However, with IC50

values at 1.06 and 9.3 1 lM, taiwanin C inhibited the

activities of separated COX-1 and COX-2. These

results suggest that taiwanin C (2) inhibits PGE2

production by directly inhibiting COX enzymatic

activity (Ban et al. 2002). Three arylnaphthalide

lignans from Phyllanthus polyphyllus displayed anti-

inflammatory effects as measured by NO, TNF-a, and
interleukin (IL-12). Justicidin B (1) exhibited the

highest IC50 values of NO production from LPS/IFN-

c-stimulated peritoneal macrophages at 12.5 lM fol-

lowed by phyllamyricin C (12) at 25 lM, and dipyllin

(18) at 50 lM and 100 lM showing inhibition

percentages of 99%, 99%, and 64%, respectively. In

addition, they showed significant inhibition of IL-12

and TNF-a production with IC50 values ranging from

12.5 to 100 lM (Rao et al. 2006).

Conclusion

Natural arylnaphthalene lactones have a 70-phenyl
naphthalene lactone skeleton in which the phenyl ring

and naphthalene ring are polyhydroxylated, which are

further transformed to methyl ethers or dioxolane. The

hydroxy group, especially that at the C7 position is

commonly conjugated with a variety of sugars to

present mono-, di-, and triglycoside metabolites.

Structurally, they can be classified into Type I and

Type II arylnaphthalene lactones by the cis and trans

relationship of lactone carbonyl and the aryl sub-

stituents. More than a hundred natural arylnaphthalene

lactones have been reported from a wide range of

natural sources such as Acanthaceae, Phyllanthaceae,

and Schisandraceae.

Arylnaphthalene lactones exhibit various signifi-

cant biological activities, which have been
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summarized here based on their pharmacological

activity. Although all the natural compounds were

not fully evaluated, some results such as antiprolifer-

ative and antiviral activity could give insights for drug

discovery. In fact, several arylnaphthalene lactones

such as diphyllin and daurinol have been investigated

as anticancer drug candidates with impressive in vitro

and in vivo antiproliferative activity. More recently,

daurinol was investigated extensively as an anti-

autoimmune arthritis drug candidate. In the realm of

medicinal chemistry, identifying new and valuable

scaffolds is always of great interest. Thus, arylnaph-

thalene lactones attract considerable attention owing

to their unique structural features, which include a

relative rigid structure, no stereogenic center, and

more than nine potential derivatizable sites. The

unique structural features and promising pharmaco-

logical activities of arylnaphthalene lactones provide

great prospects for future drug discovery.
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