Skip to main content

Advertisement

Log in

Effect of melatonin priming on photosynthetic capacity of tomato leaves under low-temperature stress

  • Published:
Photosynthetica

Abstract

Melatonin has different functions in plant growth and development, especially in the protection of plants suffering from various forms of abiotic stress. We explored the effect of melatonin priming on photosynthetic activity of tomato (Lycopersicon esculentum L.) leaves. Our results showed that 100 µM is the optimal concentration used for alleviation of the damage to photosynthetic apparatus. Melatonin priming both in the form of leaf spray and direct root application was found to reduce the damage to photosynthetic apparatus, and increase the electron transfer rate and quantum yield of PSI and PSII photochemistry, to protect the thylakoid membrane from damage caused by low-temperature stress. Our study provides fundamental information for further research on the molecular mechanism of melatonin function in regulating photosynthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

C a :

ambient CO2 concentration

C i :

intercellular CO2 concentration

Chl:

chlorophyll

CK:

control

CK0:

plants were grown at normal temperature (day and night temperature of 25/15°C) for 3 d after pretreatment by spraying water on leaves and applying 50 mL of water on roots

CK1:

plants were grown at low temperature (day and night temperature of 15/6°C) for 3 d after pretreatment by spraying water on leaves and applying 50 mL of water on roots

E :

transpiration rate

ETRI :

electron transfer rate of PSI

ETRII :

electron transfer rate of PSII

Fv/Fm :

the maximum photochemical quantum yield of PSII

Fv′/Fm′:

the efficiency of excitation energy capture by open PSII reaction center

g s :

stomatal conductance

L100:

plants were grown at low temperature (day and night temperature of 15/6°C) for 3 d after pretreatment by leaf spraying 100 µM melatonin on leaves and applying 50 mL of water on roots

Ls :

stomatal limitation

MDA:

malondialdehyde

NPQ:

nonphotochemical quenching

Pm :

PSI content

P N :

net photosynthetic rate

PSI-CEF:

cyclic electron flow around PSI

qP :

photochemical quenching coefficient

R100:

plants were grown at low temperature (day and night temperature of 15/6°C) for 3 d after pretreatment by spraying water on leaves and applying 100 mL of melatonin on roots

RLC:

rapid light curve

RNS:

reactive nitrogen species

ROS:

reactive oxygen species

WUE:

water-use efficiency (= PN/E)

YI :

quantum yield of PSI photochemistry

YII :

actual quantum yield of PSII photochemistry for light-adapted state

YNA :

quantum yield of nonphotochemical energy dissipation due to acceptor side limitation

YND :

quantum yield of nonphotochemical energy dissipation due to donor side limitation

YNPQ :

quantum yield of regulatory energy dissipation

YNO :

quantum yield of nonregulatory energy dissipation.

References

  • Ahn T.K., Avenson T.J., Ballottari M. et al.: Architecture of a charge-transfer state regulating light harvesting in a plant antenna protein.–Science 320: 794–797, 2008.

    Article  PubMed  CAS  Google Scholar 

  • Arnao M.B., Hernández-Ruiz J.: Functions of melatonin in plants: a review.–J. Pineal Res. 59: 133–150, 2015.

    Article  PubMed  CAS  Google Scholar 

  • Arnao M.B., Hernández-Ruiz J.: Melatonin: plant growth regulator and/or biostimulator during stress?–Trends Plant Sci. 19: 789–797, 2014.

    Article  PubMed  CAS  Google Scholar 

  • Back K., Tan D.X., Reiter R.J.: Melatonin biosynthesis in plants: multiple pathways catalyze tryptophan to melatonin in the cytoplasm or chloroplasts.–J. Pineal Res. 61:426–437, 2016.

    Article  PubMed  CAS  Google Scholar 

  • Baránková B., Lazár D., Nauš J.: Analysis of the effect of chloroplast arrangement on optical properties of green tobacco leaves.–Remote Sens. Environ. 174: 181–196, 2016.

    Article  Google Scholar 

  • Beilby M.J., Turi C.E., Baker T.C. et al.: Circadian changes in endogenous concentrations of indole-3-acetic acid, melatonin, serotonin, abscisic acid and jasmonic acid in Characeae (Chara australis Brown).–Plant Signal Behav. 10: e1082697, 2015.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Borges A.A., Jiménez-Arias D., Expósito-Rodríguez M. et al.: Priming crops against biotic and abiotic stresses: MSB as a tool for studying mechanisms.–Front. Plant Sci. 5: 642, 2014.

    Article  PubMed  PubMed Central  Google Scholar 

  • Derks A., Schaven K., Bruce D.: Diverse mechanisms for photoprotection in photosynthesis. Dynamic regulation of photosystem II excitation in response to rapid environmental change.–BBA-Bioenergetics 1847: 468–485, 2015.

    Article  PubMed  CAS  Google Scholar 

  • Fan D.Y., Ye Z.P., Wang S.C. et al.: Multiple roles of oxygen in the photoinactivation and dynamic repair of Photosystem II in spinach leaves.–Photosynth. Res. 127: 307–319, 2016.

    Article  PubMed  CAS  Google Scholar 

  • Fan J., Hu Z., Xie Y. et al.: Alleviation of cold damage to photosystem II and metabolisms by melatonin in Bermudagrass.–Front. Plant Sci. 6: 925, 2015.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gururani M.A., Venkatesh J., Tran L.S.P.: Regulation of photosynthesis during abiotic stress-induced photoinhibition.–Mol Plant. 8: 1304–1320, 2015.

    Article  PubMed  CAS  Google Scholar 

  • Hao J., Gu F., Zhu J. et al.: Low night temperature affects the phloem ultrastructure of lateral branches and raffinose family oligosaccharide (RFO) accumulation in RFO-transporting plant melon (Cucumismelo L.) during fruit expansion.–Plos One 11: e0160909, 2016.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hu Z.R., Fan J.B., Xie Y. et al.: Comparative photosynthetic and metabolic analyses reveal mechanism of improved cold stress tolerance in bermudagrass by exogenous melatonin.–Plant Physiol. Bioch. 100: 94–104, 2016.

    Article  CAS  Google Scholar 

  • Johnson G.N., Lawson T., Murchie E.H. et al.: Photosynthesis in variable environments.–J. Exp. Bot. 66: 2371–2372, 2015.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lazár D., Murch S.J., Beilby M.J. et al.: Exogenous melatonin affects photosynthesis in characeae Chara australis.–Plant Signal. Behav. 8: e23279, 2013.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lazár D.: Parameters of photosynthetic energy partitioning.–J. Plant Physiol. 175: 131–147, 2015.

    Article  PubMed  CAS  Google Scholar 

  • Lei Y., Zheng Y., Dai K. et al.: Different responses of photosystem I and photosystem II in three tropical oilseed crops exposed to chilling stress and subsequent recovery.–Trees 28: 923–933, 2014.

    Article  CAS  Google Scholar 

  • Li X., Tan D.X., Jiang D. et al.: Melatonin enhances cold tolerance in drought-primed wild-type and abscisic aciddeficient mutant barley.–J. Pineal Res. 61: 328–339, 2016.

    Article  PubMed  CAS  Google Scholar 

  • Liu J., Wang W., Wang L. et al.: Exogenous melatonin improves seedling health index and drought tolerance in tomato.–Plant Growth Regul. 77: 317–326, 2015a.

    Article  CAS  Google Scholar 

  • Liu N., Jin Z.Y., Wang S.S. et al.: Sodic alkaline stress mitigation with exogenous melatonin involves reactive oxygen metabolism and ion homeostasis in tomato.–Sci. Hortic.-Amsterdam 181: 18–25, 2015b.

    Article  CAS  Google Scholar 

  • Liu Y.F., Zhang G.X., Qi M.F. et al.: Effects of calcium on photosynthesis, antioxidant system, and chloroplast ultrastructure in tomato leaves under low night temperature stress.–J. Plant Growth Regul. 34: 263–273, 2015c.

    Article  CAS  Google Scholar 

  • Lu T., Meng Z., Zhang G. et al.: Sub-high temperature and high light intensity induced irreversible inhibition on photosynthesis system of tomato plant (Solanum lycopersicum L.).–Front. Plant Sci. 8: 365, 2017.

    PubMed  PubMed Central  Google Scholar 

  • Lyu H., Lazár D.: Modeling the light-induced electric potential difference (ΔΨ), the pH difference (ΔpH) and the proton motive force across the thylakoid membrane in C3 leaves.–J. Theor Biol. 413: 11–23, 2017.

    Article  PubMed  CAS  Google Scholar 

  • Nawaz M.A., Huang Y., Bie Z. et al.: Melatonin: current status and future perspectives in plant science.–Front. Plant Sci. 6: 1230, 2015.

    PubMed  Google Scholar 

  • Nishiyama Y., Allakhverdiev S.I., Murata N.: Protein synthesis is the primary target of reactive oxygen species in the photoinhibition of photosystem II.–Physiol. Plantarum 142: 35–46, 2011.

    Article  CAS  Google Scholar 

  • Reiter R.J., Tan D.X., Zhou Z.: Phytomelatonin: assisting plants to survive and thrive.–Molecules 20: 7396–7437, 2015.

    Article  PubMed  CAS  Google Scholar 

  • Roach T., Krieger-Liszkay A.: Regulation of photosynthetic electron transport and photoinhibition.–Curr Protein Pept. Sc. 15: 351–362, 2014.

    Article  CAS  Google Scholar 

  • Savvides A., Ali S., Tester M., Fotopoulos V.: Chemical priming of plants against multiple abiotic stresses: Mission Possible?–Trends Plant Sci. 21: 329–340, 2016.

    Article  PubMed  CAS  Google Scholar 

  • Schreiber U., Klughammer C.: New accessory for the Dual-PAM-100: The P515/535 module and examples of its application.–PAM Appl. Notes 1: 1–10, 2008a.

    Google Scholar 

  • Schreiber U., Klughammer C.: Saturation pulse method for assessment of energy conversion in PSI.–PAM Appl. Notes 1: 11–14, 2008b.

    Google Scholar 

  • Sejima T., Takagi D., Fukayama H. et al.: Repetitive short-pulse light mainly inactivates photosystem I in sunflower leaves.–Plant Cell Physiol. 55: 1184–1193, 2014.

    Article  PubMed  CAS  Google Scholar 

  • Suorsa M.: Cyclic electron flow provides acclimatory plasticity for the photosynthetic machinery under various environmental conditions and developmental stages.–Front. Plant Sci. 6: 800, 2015.

    Article  PubMed  PubMed Central  Google Scholar 

  • Suzuki K., Ohmori Y., Ratel E.: High root temperature blocks both linear and cyclic electron transport in the dark during chilling of the leaves of rice seedlings.–Plant Cell Physiol. 52: 1697–1707, 2011.

    Article  PubMed  CAS  Google Scholar 

  • Takahashi S., Milward S.E., Fan D.Y. et al.: How does cyclic electron flow alleviate photoinhibition in Arabidopsis?–Plant Physiol. 149: 1560–1567, 2009.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang P., Sun X., Li C. et al.: Long-term exogenous application of melatonin delays drought-induced leaf senescence in apple.–J. Pineal Res. 54: 292–302, 2013.

    Article  PubMed  CAS  Google Scholar 

  • Yang S.L., Lan S.S., Deng F.F. et al.: Effects of calcium and calmodulin antagonists on chilling stress-induced proline accumulation in Jatropha curcas L.–J. Plant Growth Regul. 35: 815–826, 2016.

    Article  CAS  Google Scholar 

  • Zhang G., Liu Y., Ni Y. et al.: Exogenous calcium alleviates low night temperature stress on the photosynthetic apparatus of tomato leaves.–PLoS One 9: e97322, 2014a.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang J., Jiang X.D., Li T.L. et al.: Photosynthesis and ultrastructure of photosynthetic apparatus in tomato leaves under elevated temperature.–Photosynthetica 52: 430–436, 2014b.

    Article  CAS  Google Scholar 

  • Zhang X., da Silva J.A.T., Niu M. et al.: Physiological and transcriptomic analyses reveal a response mechanism to cold stress in Santalum album L. leaves.–Sci Rep. 7: 42165, 2017.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhao H., Ye L., Wang Y. et al.: Melatonin increases the chilling tolerance of chloroplast in cucumber seedlings by regulating photosynthetic electron flux and the ascorbate-glutathione cycle.–Front. Plant Sci. 7: 1814, 2016.

    PubMed  PubMed Central  Google Scholar 

  • Zhou X., Zhao H., Cao K. et al.: Beneficial roles of melatonin on redox regulation of photosynthetic electron transport and synthesis of D1 protein in tomato seedlings under salt stress.–Front. Plant Sci. 7: 1823, 2016.

    PubMed  PubMed Central  Google Scholar 

  • Zhu J.K.: Abiotic stress signaling and responses in plants.–Cell 167: 313–324, 2016.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ziogas V., Tanou G., Belghazi M. et al.: Roles of sodium hydrosulfide and sodium nitroprusside as priming molecules during drought acclimation in citrus plants.–Plant Mol. Biol. 89: 433–450, 2015.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Wang.

Additional information

Acknowledgements: This work was supported by the National Key Research Program of China (2016YFD0201004); National Natural Science Foundation of China (Grant No. 31301813) and China Agriculture Research System (Grant No. CARS-25).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, X.L., Xu, H., Li, D. et al. Effect of melatonin priming on photosynthetic capacity of tomato leaves under low-temperature stress. Photosynthetica 56, 884–892 (2018). https://doi.org/10.1007/s11099-017-0748-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11099-017-0748-6

Additional key words

Navigation