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Abstract
David Hume’s skeptical solution to the problem of induction was grounded in his 
belief that we learn by means of custom . We consider here how a form of reinforce-
ment learning like custom may allow an agent to learn how to learn in other ways as 
well. Specifically, an agent may learn by simple reinforcement to adopt new forms 
of learning that work better than simple reinforcement in the context of specific 
tasks . We will consider how such a bootstrapping process may lead to a system that 
includes trial-and-error forms of learning like win-stay/lose-shift, probe and adjust, 
and simple reinforcement itself together with higher-rationality inferential tools.

Keywords Humean learning · The problem of induction · Hume’s skeptical 
solution · Learning how to learn · Pragmatism

1 Introduction

David Hume was skeptical regarding our ability to rationally justify beliefs concern-
ing matters of fact, but he held that we nevertheless routinely learn matters of fact 
by means of custom. This sort of instinctive learning might be understood as a form 
of reinforcement where an agent’s dispositions to act are strengthened on success 
and perhaps weakened on failure in action. While Hume was right to suppose that 
humans, like other animals, very often learn by means of reinforcement, we also 
learn in other ways. 

We consider here how an agent may be led by simple reinforcement to adopt new 
forms of inductive learning. By such means she may evolve a learning system that 
includes trial-and-error forms of learning like win-stay/lose-shift, probe and adjust, 
and simple reinforcement itself together with higher-rationality inferential tools.1
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While simple reinforcement may lead an agent to adopt forms of learning that 
are more sophisticated or better-suited to the inferential tasks she faces, there is no 
magic. Even when she is led to adopt a learning rule that has been highly reliable 
for a particular purpose, it may fail to work well in the future.2 That said, simple 
reinforcement provides a reliable way of tracking which learning rules have worked 
well, and insofar as reinforcement on success is in fact psychologically efficacious 
in tuning our dispositions, this will lead one to evolve more sophisticated forms of 
learning regardless of whether one is rationally justified in doing so. This will serve 
the agent well in future action should those rules continue to work.

2  Humean learning

Hume believed that we can never have rational justification for our expectations or 
beliefs regarding matters of fact.3 While one may observe that an event of type A 
has always been followed by an event of type B, constant conjunction fails to entail 
any necessary connection. No sequence of past conjunctions, no matter how exten-
sive, provides any reason whatsoever for concluding even that the occurrence of A 
makes the occurrence of B more likely. To get something like this, one would need 
to assume that what has happened in the past is a reliable guide to what will hap-
pen in the future, but such an assumption begs the question. Even if the past has in 
some ways been a reliable guide to the future in the past, it need not be in the future. 
As a result, our experience provides no ultimate justification for any beliefs at all 
regarding future events. And since the same line of argument applies to conclusions 
regarding causal relations generally, only by means of which Hume argued can one 
learn matters of fact, one can have no ultimate justification for believing any matter 
of fact (1975, 25–39).

This poses an immediate problem for rational action. Inasmuch as one cannot 
infer anything concerning the future from the past, Hume held that one can never 
have any rational justification for acting one way rather than another. That said, there 
is an important sense in which he was not at all skeptical regarding the expected 
efficacy of his actions or his judgments regarding matters of fact more generally. 
Understanding the position requires some care.

2 In this regard, note that any particular learning algorithm R, no matter how subtle or sophisticated 
it may be, may routinely fail to provide successful predictions. Consider a world where whenever one 
learns by R to expect E on the basis of one’s evidence so far ¬E occurs. See Putnam (1963) for a more 
elaborate version of this argument.
3 He argued for this in both A Treatise of Human Nature (1739–40) and An Enquiry Concerning Human 
Understanding (1748). Here we will follow the argument of the latter. Regarding learning, we follow his 
natural propensity account grounded in custom. 

2022), Barrett and Gabriel (2022), and Barrett (2023) for descriptions and discussions of a great many 
alternative forms of learning. Each has potential virtues and vices depending on the learning problem at 
hand and the resources available to the learner. See Barrett (2023) for an extended discussion of learning 
how to learn and reflections on how various basic and task-specific forms of learning might self-assemble.

Footnote 1 (continued)
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Hume explicitly recognized that he, like everyone else, was in fact firmly com-
mitted to a rich collection of beliefs regarding future events and matters of fact. Fur-
ther, he found that he remained committed to these beliefs even when he knew that 
he possessed no ultimate justification for believing them. As a result, he was per-
fectly comfortable using beliefs that he had formed in the context of experience to 
guide even his most important actions (1975, 42).

Hume held that beliefs regarding matters of fact, and expectations regarding the 
future in particular, were produced from experience by means of custom or habit. 
Custom, in the sense in which he used the term, is a principle of our psychological 
nature that acts to produce and adjust propensities when presented with experience. 
Hume explained that “wherever the repetition of any particular act or operation pro-
duces a propensity to renew the same act or operation, without being impelled by 
any reasoning or process of the understanding ... this propensity is the effect of Cus-
tom” (1975, 43). In other words, we learn just as animals do who “by the proper 
application of rewards and punishments, may be taught any course of action.” The 
upshot is that, rather than being an activity grounded in reason, the ability to engage 
in empirical inquiry is one that “we possess in common with beasts” and “is nothing 
but a species of instinct or mechanical power, that acts in us unknown to ourselves” 
(1975, 108).4

It is by custom, then, that each repeated instance of a pattern of events strength-
ens an agent’s dispositions to act as if that pattern will continue to hold in the future. 
In identifying human and animal learning, Hume suggests that to learn by custom 
is to learn by reinforcement on success and punishment failure in expectation and 
action.

That we learn matters of fact and form expectations regarding the future by rein-
forcement meshes well with Hume’s insistence that inductive learning does not 
involve rational inference. Even someone with a broader understanding than Hume’s 
concerning what should count as a rational faculty might find room for at agreement. 
An agent who learns by reinforcement may simply update her dispositions to act as a 
consequence of her past experience. To do so, she need not know any rules of logic 
or the ways of probabilistic inference or even that she is learning at all (1975, 41–2). 
The process may be entirely unreflective.5

Hume took the fact that we learn by reinforcement on experience to be a for-
tunate feature of our psychological nature. Reason is unable to justify our beliefs 
regarding matters of fact or our expectations, but even if it could, its psychologi-
cal effects are too weak to guide us in practical action. In contrast:

4 Again, on Hume’s naturalistic account, custom is just an irresistible “mechanical tendency” to update 
our propensities (1975, 42 and 55). Its effect is as “unavoidable as to feel the passion of love, when we 
receive benefits; or hatred, when we meet with injuries” (1975, 46). See Allison (2008) and Morris and 
Brown (2019) for discussions of the nature and role of custom in Hume and Sect. 2 of Henderson (2022) 
for a discussion of the options available, given Hume’s account of custom, for understanding the scope of 
his skeptical conclusion.
5 Hume moves easily between custom as a principle that produces propensities and custom as a principle 
that produces beliefs. While this aspect of his epistemology suggests a dispositional account of belief, 
one can also get his main conclusions if custom produces dispositions of a sort that lead to appropriate 
corresponding beliefs.
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Custom ... is the great guide of human life. It is that principle alone which 
renders our experience useful to us, and makes us expect, for the future, a 
similar train of events with those that have appeared in the past. Without the 
influence of custom, we should be entirely ignorant of every matter of fact 
beyond what is immediately present to the memory and senses. We should 
never know how to adjust means to ends, or to employ our natural powers in 
the production of any effect. There would be an end at once of all action, as 
well as of the chief part of speculation (1975, 44–45).

What matters for practical action is learned belief not justified belief. Shifting 
the focus from rational justification to how we in fact learn is the key move in 
Hume’s naturalistic approach to practical knowledge. Empirical inquiry is a mat-
ter of learning by custom, not rationally justifying beliefs or predictions.

Hume’s commitment to custom as a reliable and irresistible guide explains his 
own empirical practice. While he did not believe that the past success of cus-
tom in forming reliable beliefs provided rational justification for its use, he held 
that everyone, including himself, will nevertheless form beliefs and expecta-
tions regarding matters of fact by reinforcement on experience and that everyone, 
including himself, will find themselves believing that this practice will in fact 
lead to similar successes in the future to what it has in the past. His empirical 
account of human nature explains both of these points. In each case, custom leads 
one to form such beliefs in the context of regular past experience. Indeed, that 
one cannot resist the effects of custom explains his own acceptance of his empiri-
cal psychology on empirical grounds. That is, Hume’s account of human nature 
explains why he could not help but accept that very account given his empirical 
evidence even when he knew full well that the evidence he marshaled provided 
no rational justification for accepting it.

The efficacy of custom, then, explains why Hume accepted the principles of 
his empirical psychology on empirical grounds while simultaneously recognizing 
that there is nothing that rationally justifies this acceptance. And it explains why 
he believed that his readers would be similarly convinced when they reflected on 
the evidence he provided regarding the efficacy of custom. It is not because they 
have rational justification for being convinced. Rather, it is because they form 
their beliefs in the same way he forms his, by means of reinforcement on experi-
ence. Empirical inquiry is a form of cognitive conditioning, and they will be led 
by custom and their experience to similar beliefs.

Hume’s skeptical solution to the problem of induction trades justification for 
learning. In this, it is both naturalistic and pragmatic.6 He was right to suppose that 
custom is in fact an essential guide to action for both animals and humans. We have 
a long history of experimental evidence that reinforcement learning, in its various 
forms, is ubiquitous in nature. These forms of learning evolved because they have 

6 See Henderson (2022) for a discussion of Hume’s skeptical solution and a survey of approaches to the 
problem of induction. Our aim here is to investigate the potential scope of Hume’s skeptical solution 
starting with how we in fact learn. This is in contrast with the long tradition of seeking to specify a meta-
inductive practice that would ultimately justify one’s inductive predictions. See Schurz (2008, 2019) for 
a recent example.
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afforded adaptive fitness to the organisms that implemented them.7 Insofar as one is 
concerned with successful action, one should want to learn in ways that work, and 
even the simplest form of reinforcement learning very often does. But even here one 
can see that there must be more to the story.

Custom is a great guide of human life, but it is not our only guide. In addition to 
there being a variety of forms of reinforcement learning, we often learn in ways that 
are not well characterized as reinforcement at all. This last point is pragmatically 
significant since reinforcement learning is often not the best way to learn. While 
Hume allowed for the involvement of other psychological faculties in learning, cus-
tom in even its simplest form provides a means of learning how to learn in more 
sophisticated ways. To see how, we will begin by considering the nature of custom 
in human and animal learning.

3  Learning by reinforcement

The psychologist Edward Thorndike (Thorndike, 1898) performed some of the first 
careful experiments to investigate the nature of reinforcement learning in animals. 
His experiments involved putting hungry cats, dogs, and chicks in puzzle boxes from 
which they might escape by performing a simple action like pulling a cord, pressing 
a lever, stepping on a platform, or turning a button.8 Food was placed outside the 
box in the sight of the animal, and its actions were observed. If the animal escaped 
and got the food, the length of time it took was recorded. If it did not escape within 
a reasonable period of time, the animal was removed from the box without being 
fed. If it never figured out how to escape, the case was recorded as one of “complete 
failure” and the data for that animal was set aside.

Thorndike found that for those animals that were eventually able to figure out 
how to escape, as the experiment was repeated, it took less time for them to escape. 
The time it took eventually became very short and relatively constant (1898, 6–7). 
He used time curves to present the progress of learning. Figure 1 is an example of 
one of these from his experiments with cats. Cat no. 10 was a kitten 4–8 months old. 
To escape from a type C box, it had to turn a button from the vertical to horizontal 
position. In the time curve, the horizontal axis indicates the trials in temporal order 
and the vertical axis indicates the length of time it took for each. The marks on the 
horizontal axis indicate significant breaks in time between trials. As the number of 
trials increases, the time it takes to solve the problem decreases. Thorndike took the 
curve to represent the evolution of the animal’s probabilistic dispositions in the con-
text of the particular puzzle box.

It was essential to Thorndike’s understanding that the process of learning involved 
the gradual evolution of dispositions. As he put it for his cat experiments, “gradually 
all the other non-successful impulses will be stamped out and the particular impulse 

7 Hume anticipated this virtue of custom in holding that it is a principle “necessary to the subsistence of 
our species, and the regulation of our conduct, in every circumstance of human life” (1975, 55).
8 He reported that all of the animals used in his experiments “were apparently in excellent health, save 
an occasional chick.”
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leading to the successful act will be stamped in by the resulting pleasure until, after 
many trials, the cat will, when put in the box, immediately claw the button or loop 
in a definite way.” (1898, 13). He considered reinforcement learning to be a physical 
process, one involving the nervous system of the animal:

The gradual increase in success means a gradual strengthening of one set of 
nerve-connections, and a gradual weakening of others. This method of learn-
ing may be called the method of trial and error, or of trial and success. ... The 
cause of such strengthening and weakening is the resulting pleasure in one 
case and discomfort in the others. (Thorndike, 1901, 38–39)

And he considered the ability to learn in this fashion to be the result of natural selec-
tion, “The most important of all original abilities is the ability to learn. It, like other 
capacities, has evolved.” (Thorndike, 1911, 278).

There is a great deal of subsequent evidence that, just as with Thorndike’s cats, 
dogs, and chicks, humans and other animals also very often learn by reinforcement. 
Salient examples include R. J. Herrnstein’s (1970) studies on birds and Alvin Roth’s 
and Ido Erev’s (1995) (1998) studies on humans.

In its most basic form, reinforcement learning works as follows. Let qi(t) be an 
agent’s propensity for strategy i at time t. Her propensities evolve according to the 
update rule:

Here �(t) is the payoff received by an agent taking the action i on round t. The pay-
off represents the degree of success or failure resulting from the action. It affects 
the agent’s propensities, and her propensities fix her dispositions by determining the 
probability of each action on a future round of play. How this works is given by the 
response rule:

Here pi(t) is the probability that the agent takes action i on a play at time t.
In order to say how the process gets started, one must also specify a set of initial 

propensities. Lower initial weights allow for more agile early exploration. Higher 
initial weights make for more stable dispositions but also slow the process of learn-
ing. And uneven initial weights bias the early dispositions of the learner in a way 
that may lead to very different behaviors depending on the learning problem. While 
one can assign initial propensities any way one wants, we will suppose that each 
strategic option is given an equal and small initial weight, say qi(0) = 1 for all i 
when �(t) = 1.

qi(t + 1) =

{

qi(t) + �(t) if action i was taken

qi(t) otherwise

pi(t) =
qi(t)

∑

j qj(t)
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Both Hume and Thorndike allowed for reinforcement on success and punishment 
on failure. The formal scheme above also does by allowing for negative payoffs.9 
That said, we are primarily interested here in the simplest form of reinforcement 
learning. Specifically, we will begin by supposing that payoffs are always positive. 
Such simple reinforcement learning can be thought of as drawing a ball from an urn 
to determine one’s action then adding balls of the type drawn to the urn if and only 
if the action was successful. We will consider precisely how this works in the next 
section.

Hume was right to suppose that we and other animals learn inductively by rein-
forcement, but we often use other similarly simple forms of trial-and-error learning, 
and we sometimes use significantly more sophisticated and cognitively costly forms 
of learning. In this we are also fortunate. While simple reinforcement learning is 
ubiquitous in nature, low cost, and very often effective, there are many tasks where 
other forms of learning work better.

4  Two problems

Consider two learning problems. In each a subject must determine the location of a 
food reward to be successful. The food is initially placed in one or the other of two 
opaque but distinguishable boxes A or B according to a placement rule. The subject 
chooses between the boxes. If she chooses the correct box, she is rewarded with the 
food. Whether or not she is successful, the boxes are concealed for a moment and the 
placement rule is applied again. Then the subject is given another chance to choose.10

Fig. 1  Cat no. 10 in box type C

9 One just needs to guard against negative propensities. A natural way to do so is to stipulate that if a 
punishment would cause a propensity to fall below a small value k > 0 , then the propensity is set to k.
10 This sort of discrimination problem has a long history in experiments in comparative psychology. The 
present setup is much like the one studied by Harry Harlow (1949) in his learning-set experiments with 
monkeys. While our reflections here are clearly relevant to such experiments, there is good reason to 
suppose that Harlow’s monkeys learned how to learn in a more subtle way than the sort of Humean 
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The two problems differ only in the placement rule. On each run of a fixed-box 
problem, the experimenter initially chooses one or the other of the two boxes at ran-
dom, either A or B, as special for that run. He then places the food in the special 
box to begin the run. He does nothing when the boxes are concealed between plays 
unless the subject just chose the special box and ate the food. If so, the experimenter 
places food in the same special box again when the boxes are concealed between 
plays.

On each run of a random-box problem, the experimenter initially chooses one 
of the two boxes at random as special for that run, then places the food in that box 
with probability 2/3 and in the other box with probability 1/3 to begin. Then, regard-
less of whether the subject was successful on the last play, when the boxes are con-
cealed, the experimenter randomly determines the location of the food for the next 
play using the same probabilities for the special box ( p = 2∕3 ) and the other box 
( p = 1∕3 ). This process continues until the end of the run.

Now consider two learning rules an agent might use to decide which box to pick 
on a play. The first is simple reinforcement. On this dynamics the agent begins the 
run with an urn containing one ball labeled A and one ball labeled B. When given 
the chance to choose a box, she draws a ball at random from her urn then chooses 
the corresponding box. If she finds the food in the box on that play, she returns the 
ball she drew to the urn and adds a duplicate ball of the same type; otherwise, she 
simply returns the ball that she drew.

The second learning rule is win-stay/lose-shift, another simple trial-and-error 
form of learning. Here the agent randomly and unbiasedly chooses a box to open 
on the first play of a run. If she finds the food, and hence wins, she stays with the 
same box when given the chance to chose on the next play; otherwise she chooses 
the other box on the next play. On this dynamics the agent stays with a box as long 
as she finds food there and shifts to the other box if the present box is ever found 
empty. Then she stays with the new box only as long she finds food there.

The best learning rule for an agent to use depends on the type of learning prob-
lem she faces. Consider a sequence of ten-play runs of the fixed-box problem. Sim-
ple reinforcement does fairly well with a mean success rate on simulation of 0.74 of 
finding the food on a play.11 But win-stay/lose-shift does better. Since the location 
of the food does not change during the run on a fixed-box problem, if a win-stay/
lose-shift agent is right on her first guess, then she will be right on every play of the 
run. And if she is wrong on her first guess, she will be right on her second guess and 
from then on. Since the probability of each initial guess is 1/2 on a run, she will end 
up with a mean success rate of 0.95 over all the plays in the sequence of runs. As a 
result, a simple reinforcement learner should prefer to learn by win-stay/lose-shift 
rather than by simple reinforcement for this sort of problem.

11 This is for 1000 ten-play runs of the fixed-box problem.

Footnote 10 (continued)
bootstrapping that we are considering at present. See Barrett (2023) for an account of how bootstrapping 
might work in Harlow’s experiments.
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While win-stay/lose-shift does better than simple reinforcement on short runs of 
the fixed-box problem, simple-reinforcement does better than win-stay/lose-shift 
on long runs of the random-box problem. Consider a sequence of one-thousand-play 
runs of the random-box problem. On simulation, simple reinforcement does nearly 
as well as possible given the rule for placing the food with a mean cumulative suc-
cess rate of 0.63. Win-stay/lose-shift in contrast exhibits a mean cumulative suc-
cess rate of 0.55.12 This is better than chance, but only just. A simple reinforcement 
learner, then, should sometimes prefer to learn by simple reinforcement rather than 
by win-stay/lose-shift.  So how might a simple reinforcement learner come to use 
win-stay/lose-shift for fixed-box problems and simple reinforcement for random-box 
problems?

5  Bandit games

While simple reinforcement learning is not always optimal for a given task, it very 
often provides a way for an agent to learn how to learn more effectively when pre-
sented with the task. Inasmuch as she tends to act in ways that have been successful 
in the past, a reinforcement learner will tend to reuse learning rules that have worked 
well. If a learning rule has in fact worked well in a salient way for a particular task, 
she may consequently learn to use that rule for that type of task when she desires the 
sort of success it affords. In this way, she may assemble a learning system where she 
continues to use simple reinforcement learning for some purposes but adopts other, 
possibly more sophisticated, forms of learning for others.13

To see how this works, we will begin by considering how a simple reinforcement 
learner might evolve optimal dispositions for playing an n-armed bandit game, then 
return to the problem of learning how to learn in the next section.14 In an n-armed 
bandit game, an agent is presented with n slot machines with the goal of finding and 
playing the machine that in fact pays at the highest rate.

Consider three slot machines A, B, and C that each pays in dollar coins and has a 
maximum payoff of $10 on a play. Suppose that each machine pays randomly with 
a different, but unknown, expected return. There is a straightforward procedure by 
which a simple reinforcement learner will almost always evolve to play the machine 
with the highest expected return with probability 1.

Suppose that the agent starts with an urn containing one ball of each type A, B, 
and C. On each play, she draws a ball at random from the urn and plays the indicated 

12 Both of these results are for 1000 runs of the random-box problem with 1000 plays per run. Win-stay/
lose-shift does better than chance since winning provides at least some evidence that one has found the 
higher-chance box.
13 See Barrett and Skyrms (2017), Barrett (2020), and Barrett (2023) for more general discussions of  
such self-assembly.
14 Bandit problems provide a natural framework for modeling simple inquiry. Mayo-Wilson et al. (2011) 
and Mayo-Wilson et al. (2013) use an approach similar to the one we consider below to model scientific 
inquiry within a community. See Berry and Fristedt (1985) for a survey of bandit problems and Hutteg-
ger (2017) for a discussion of rational learning in bandit problems.
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machine. Then she returns the ball drawn to the urn and adds a duplicate ball for 
each dollar coin she received on the play. As she repeats this procedure, with prob-
ability 1 both the probability that she will play and the empirical frequency with 
which she will play the machine with the highest expected return will converge to 
1 in the limit of play. As a result, she will almost always evolve dispositions to play 
optimally. This is true for any finite number of slot machines she might investigate if 
one of them in fact pays best.15

Not all learning dynamics have this property. Some are, as Brian Skyrms put it, 
too hot and some are too cold.16 If the learning dynamics is too cold, then the agent 
may get stuck always playing the same suboptimal machine. If it is too hot, she may 
get stuck always exploring her options. Simple reinforcement solves the Goldilocks 
problem of finding an effective learning dynamics by being just right for the stand-
ard n-armed bandit game.

In contrast, consider a probe-and-adjust learner, another simple trial-and-error 
form of learning. Here the agent chooses an initial machine to play at random. On 
each round, she has a constant probability p of probing instead of playing her cur-
rent machine. If she probes, she chooses another machine with unbiased probabili-
ties and plays it. If the payoff is higher on that play than on her last play of the 
machine she was playing before the probe, she shifts to playing the new machine 
until her next probe. If the payoff on her play of the new machine is lower, she goes 
back to the machine she was playing before the probe. And if the payoffs are equal, 
she flips a coin to decide which machine to play. Skyrms (2015) shows that while 
the learner will spend more of her time playing higher paying machines, she will 
never settle on the highest paying machine and hence never learn to play optimally. 
This dynamics is too hot.17

In a standard n-armed bandit game, one supposes that each machine has a con-
stant expected payoff and that the outcome of each play is independent. Simple rein-
forcement will find the optimal strategy in this case, but one can get something sig-
nificantly stronger.

Alan  Beggs (2005) showed that if there exists a constant 𝛾 > 1 such that the 
expected return of one action is in fact always greater than � times the expected 
return of each other action at each step in the learning process, then with probabil-
ity 1 both the probability of and the empirical frequency with which a suboptimal 
action will be played by a simple reinforcement learner goes to zero in the limit of 

15 See Skyrms (2015) for a discussion of this point in light of Hopkins and Posch (2005). Beggs (2005) 
provides a more general result that we will discuss shortly.
16 See Skyrms (2010, 87–8) for a discussion and Barrett (2023) for a survey of the properties of various 
learning rules.
17 A more sophisticated probe-and-adjust learner might track the statistical features of the machine she 
is playing, then when she probes, play the new machine for a while before deciding whether to shift. She 
only shifts if the new machine exhibits better statistics over the duration of the probe. Such a learner 
might do significantly better than a probe-and-adjust learner who only remembers the results of her last 
play on each machine. Even so, she will not converge to optimal play as there will always be a constant 
positive probability of shifting away from playing the machine with the highest expected return. As a 
quick example of a learning dynamics that is too cold, consider the simple strategy of always playing the 
same machine come what may.
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play (6–7). The upshot is that if one machine dominates the others in this sense, an 
agent who learns by simple reinforcement will eventually evolve optimal disposi-
tions, and this holds even if the expected payoffs of the machines change over time 
or if they depend on the history of play or even the behavior of the other machines.

This gives us something concrete to say concerning the reliability of simple rein-
forcement learning in contexts of practical choice. If one learns by simple reinforce-
ment, then if one action always �-dominates the other available actions in the sense 
just described, an agent who considers that action will almost always learn to act 
optimally. Depending on the situation, it may take a long time even to get close, but 
under these conditions, one is guaranteed with probability 1 to evolve optimal dis-
positions in the limit.18 Hume was, in this sense, right to be optimistic regarding the 
reliability of custom as a guide to human life.

One consequence of all this is that, while there is no canonically best learning 
rule for all occasions, simple reinforcement is a form of low-rationality learning that 
is often particularly well-suited to learning how to learn.

6  Learning how to learn

Sometimes learning how to learn has the structure of an n-armed bandit game. Con-
sider an agent who has the task of determining which of three learning rules A, B, 
or C works best for a particular type of learning problem. Suppose that she has a 
criterion such that a learning rule either succeeds or fails each time it is applied to 
a problem and that she starts with an urn containing one ball of each type A, B, and 
C. On each play, she draws a ball at random, then tries the learning rule indicated by 
that ball on the learning problem at hand. If the rule succeeds on her criterion, then 
she returns the ball drawn to the urn and adds a duplicate. Otherwise, she simply 
returns the ball drawn to the urn.

If the outcome of each trial of the learning rule is independent and if each rule 
has a constant reliability (probability of success given the learner’s criterion) for the 
type of learning problem one is considering, then with probability 1, the probability 
that the learner will use that rule and the empirical frequency that she will use it will 
both converge to  1 as she continues learn by simple reinforcement on successful 
plays. This holds for any finite set of learning rules she might consider.19 Depend-
ing on the task at hand, a simple reinforcement learner might even learn that simple 
reinforcement is best among the competitors for accomplishing it.

18 Simple reinforcement learning is sometimes very slow as early chance reinforcements may lead away 
from the optimal strategy, and it can take a long time to recover. Further, depending on the task, expected 
reinforcements for suboptimal play may be nearly as high as those for optimal play, and it is hard to get 
traction on playing the best option when the others are nearly as good. See Beggs for a further discussion 
of these points (2005, 7). Allowing for both reinforcement and punishment, as Hume did in his concep-
tion of learning by custom (1975, 105–6), often yields much faster learning. But as Beggs’ results are for 
simple reinforcement learning, we will stick with that for now.
19 See again (Skyrms, 2015) and Hopkins and Posch (2005) for discussions.
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But as we discussed in the last section, the efficacy of reinforcement learning 
does not depend on the independence of plays. This allows us to say somewhat more 
here as well.

Consider an oracle-selection game. Suppose that, in preparation for war with the 
Persians, Croesus wishes to determine which of seven oracles is most reliable. To 
this end, he places one ball representing each of the oracles in the royal urn. On 
each play, he draws a ball from the urn then sends an emissary to the corresponding 
oracle to ask a question of the oracle. If the oracle’s answer proves correct, he rein-
forces by adding a duplicate of the ball drawn to the urn.

Some questions may be harder than others. Or the oracles may get better at mak-
ing predictions with experience. Or the answer of one oracle may depend on the 
answer of another. But if one of the oracles is always in fact more reliable than a 
constant factor 𝛾 > 1 times the reliability of each other oracle in answering the ques-
tions asked, then, by Beggs’ theorem, Croesus will almost always learn to consult 
that oracle. If so, he has learned which oracle is in fact best to learn from by rein-
forcing on the successes of each.

The dominance condition does not hold if the Pythia at Delphi is the most reli-
able in answering one type of question and the Sybil at Cumae is most reliable at 
answering another type of question and the king can decide which type of question 
to ask. Nor does it hold if the Pythia is always the most reliable oracle on weekdays 
and always the least reliable on weekends and the king can decide when to ask a 
question. It only holds if one oracle is in fact the most reliable in answering each 
question given that the king asks it. The most reliable oracle may answer a question 
incorrectly, but it must always have the lowest probability of doing so.

Just as the king will learn which oracle to consult if one dominates the others, a 
simple reinforcement learner will evolve to use a dominant learning rule for the task 
at hand if there is one and if it happens to be among those that she tries. An agent 
who begins as a simple reinforcement learner may, by such means, self-assemble a 
learning system where different rules gradually come to be used for different learn-
ing tasks. She may come to use a form of win-stay/lose-shift to decide where to 
get her morning coffee and a form of reinforcement with iterated punishment when 
learning complex signaling conventions.20 She may even come use a form of Bayes-
ian conditioning for learning problems where the stakes are high if she has the req-
uisite cognitive capacity and the sort of background information she needs to imple-
ment such a dynamics. We will return to this in a moment.

In the Croesus story, an oracle either predicts correctly or not on each play, but a 
simple reinforcement agent may also learn which learning rule is best with respect 
to virtues that come in degrees. This works in the same way that an agent might 
learn which machine pays best in an n-armed bandit game.

Consider the food-location task that we started with and a simple reinforcement 
learner who wants to learn whether simple reinforcement or win-stay/lose-shift 
works better on a sequence of ten-play runs of the fixed-box problem. Suppose that 

20 See Barrett and Gabriel (2022) for a discussion of the latter type of learning and its efficacy in Lewis-
Skyrms signaling games.
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she cares, in particular, about the mean cumulative success rate on each run of the 
problem.

Suppose that the agent starts with equal propensities for using simple rein-
forcement and using win-stay/lose-shift on each ten-play run. Specifically, let 
q
0
(t
0
) = q

1
(t
0
) = 1 , where q

0
(t) and q

1
(t) are the propensities of using simple rein-

forcement and win-stay/lose-shift respectively. At the beginning of each new  ten-
play fixed-box problem she chooses a learning rule to use for that problem. The 
probability that she will use rule i is given by

After running the problem on that rule, the agent reinforces her propensity to use the 
rule by the cumulative success rate that it provided on the ten-play run. This repre-
sents the degree of success she achieved given what she cares about.

On the first round, the agent will use each of the two learning rules for the ten-
play fixed-box problem at random and with equal probabilities. But as she plays, 
since she achieves a mean success rate of 0.95 when she uses win-stay/lose shift 
and a mean success rate of 0.74 when she uses simple reinforcement, she will rein-
force somewhat more on average when she uses win-stay/lose-shift than when she 
uses simple reinforcement on a ten-play fixed-box problem. The cumulative effect of 
this difference will be to make it more likely that she will use win-stay/lose-shift on 
future problems.

The process is not fast, but it is sure. On simulation, when presented with a series 
of 1000 runs each consisting of 104 ten-play fixed-box problems, a simple reinforce-
ment learner evolves to use win-stay/lose-shift better than 0.90 of the time cumula-
tively on approximately 0.36 of the runs with a mean probability of playing using 
the optimal rule at the end of a run of about 0.81. She continues to learn how to 
learn better over time. When presented with 106 ten-play  fixed-box problems she 
uses the optimal rule better than 0.90 of the time cumulatively on approximately 
0.67 of the runs with a mean probability of playing optimally at the end of a run 
of about 0.91.21 And it follows from the results above that with probability 1 in the 
limit the simple reinforcement learner will learn to use the most effective learning 
dynamics for the problem at hand with probability 1. If she investigates her options 
for how she might learn best in the context of this type of learning problem in the 
way we have described, she is  in this sense fated to learn to use the best learning 
dynamics for the problem at hand.22

An agent will similarly learn to use simple  reinforcement instead of win-stay/
lose-shift learning in the context of random-box problems. And she may do so 

pi(t) =
qi(t)

∑

j qj(t)
.

21 These simulations were originally run in c++ . See the supplementary material for a python version of 
the code.
22 Concerning the speed of convergence, a learning rule need not be optimal to be useful. It may not 
matter much for the sake of practical action if the rule one is using is suboptimal if it is difficult for a 
simple reinforcement learner to distinguish it from an optimal rule by the associated track records of 
short- to medium-run success.
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without reflective justification or even knowing the means by which she acquired her 
context-dependent dispositions regarding how to learn. She may even learn to act by 
a form of Bayesian conditioning if her situation calls for it. The Monty Hall game 
provides a simple example.

The Monty Hall game is played between a host and a contestant. The host ran-
domly and without bias places a prize in one of three opaque boxes. The contestant 
chooses a box at random, then the host opens a box that he knows does not contain 
the prize. If the host can open either remaining box without revealing the prize, he 
opens one at random. The contestant is then given the option to switch her choice to 
the unopened box that she did not initially choose. It follows from the rules of the 
game, the axioms of probability theory, and the principle of strict conditionalization, 
that the contestant should expect switching boxes to be successful with probability 
2/3 and staying with her original choice to be successful with probability 1/3. The 
upshot is that a rational agent should switch.

Given the significant difference in the expected payoffs, a simple reinforcement 
learner will quickly learn to switch rather than stay, just as a sophisticated Bayesian 
agent does who knows the rules of the game, by reinforcing on the payoffs associated 
with each type of action. Similarly, a more sophisticated reinforcement learner, one 
with the cognitive ability to represent the rules of the game and to choose an action 
by an application of Bayesian conditionalization given her evidence, will learn to do 
so in the context of this problem if this is among the options she considers and if she 
has access to sufficient evidence of  this method’s efficacy in this type of problem. 
Such are the virtues of simple reinforcement in learning how to learn.

The sort of reinforcement with punishment that Hume used to characterize cus-
tom in his analogy with animal learning can be significantly more effective than the 
special case of simple reinforcement learning we have been considering. While it 
is difficult to prove analogous results for reinforcement with punishment, a mod-
est degree of negative reinforcement on failure often allows for much faster, and in 
many cases, more reliable learning. It also provides a way for agents to retool by 
unlearning dispositions that no longer lead to successful action given changes in the 
world they inhabit. In this sense, one might often expect to do yet better using rein-
forcement with punishment in learning how to learn.23

23 See Barrett (2006) and Barrett (2007), Barrett and Zollman (2009), and Barrett and Gabriel (2022) 
for examples of the relative advantages of various forms of reinforcement with punishment learning in 
signaling games. Signaling games pose a particularly difficult type of learning problem since each agent 
is chasing an always moving target. Beggs’ (2005) results for the efficacy of simple reinforcement learn-
ing do not apply to this type of problem, and it, indeed, typically fails to yield optimal dispositions. That 
said, reinforcement with punishment is not always preferable to simple reinforcement even here. If the 
level of punishment on failure is too high given the level of reinforcement on success and the difficulty of 
learning problem, reinforcement with punishment may fail to yield any useful dispositions at all.
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7  Discussion

None of this means that a simple reinforcement learner will always learn how to 
learn optimally. It may be that none of the learning rules she considers work well for 
the type of problem at hand. Or it may be that there is no one learning rule that is 
always the most reliable given the problem. Or she may fail to conduct her trials or 
to reinforce with sufficient care. Or it may be that reinforcement learning is simply 
too slow, given her patience or lifespan, to yield reliable learning dispositions. Such 
reflections are consonant with the observation that we often fail to learn optimally.

That said, Hume recognized, even in himself, the psychological efficacy of cus-
tom. While he held that there can be no ultimate justification for the inductive prac-
tice afforded by custom, inasmuch as we are naturally constituted to pursue empiri-
cal inquiry in this way and to be satisfied by its results, he also held that the lack of 
such justification matters to neither inquiry nor our satisfaction in its results. Just 
as we tend to expect similar effects from similar causes, if a form of learning has 
proven successful for a particular task, we will tend to use it for that task. And just 
as constant conjunction between events often yields confidence in there being a con-
nection between those events even when we have no ultimate justification for so 
believing, one should expect the regular success of a form of learning to be accom-
panied by a conviction that it will continue to serve as a reliable guide in future 
action. The learning rule may not in fact continue to facilitate successful action, but 
if it does, its continued success will tend to reinforce further both our use of the rule 
and our confidence in its use.

Hume’s trade of rational justification for learning has another pragmatic virtue. 
As we have seen, even the simplest form of reinforcement learning provides a way 
of investigating the relative success of alternative ways of learning. A simple rein-
forcement learner will almost always learn the best way of learning in the context of 
a particular task if there is a best way (a way that �-dominates the others), if she is 
fortunate enough to consider it, and if she is able to pursue the matter with sufficient 
care and diligence. And if there is variation in how we apply a learning rule over 
time, reinforcing on especially successful instances of application may even serve to 
tune the rule itself, better fitting our practice to successful inquiry.

Hume was prescient in his appeal to custom as the grounds for his skeptical solu-
tion to the problem of induction. There is good empirical reason to believe that rein-
forcement on experience often guides human action. That we have evolved to learn 
in this way is unsurprising given that reinforcement requires few resources to imple-
ment and is very often effective given the world we inhabit. And even the simplest 
form of reinforcement provides a path to the adoption of more reliable and poten-
tially more sophisticated forms of learning.

Supplementary Information The online version contains supplementary material available at https:// doi. 
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