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Abstract
The sense of agency – the subjective feeling of being in control of our own actions 
– is one central aspect of the phenomenology of action. Computational models 
provided important contributions toward unveiling the mechanisms underlying the 
sense of agency in individual action. In particular, the sense of agency is believed to 
be related to the match between the actual and predicted consequences of our own 
actions (comparator model). In the study of joint action, models are even more nec-
essary to understand the mechanisms underlying the development of coordination 
strategies and how the subjective experiences of control emerge during the inter-
action. In a joint action, we not only need to predict the consequences of our own 
actions; we also need to predict the actions and intentions of our partner, and to inte-
grate these predictions to infer their joint consequences. Understanding our partner 
and developing mutually satisfactory coordination strategies are key components of 
joint action and in the development of the sense of joint agency. Here we discuss a 
computational architecture which addresses the sense of agency during intentional, 
real-time joint action. We first reformulate previous accounts of the sense of agency 
in probabilistic terms, as the combination of prior beliefs about the action goals and 
constraints, and the likelihood of the predicted movement outcomes. To look at the 
sense of joint agency, we extend classical computational motor control concepts - 
optimal estimation and optimal control. Regarding estimation, we argue that in joint 
action the players not only need to predict the consequences of their own actions, 
but also need to predict partner’s actions and intentions (a ‘partner model’) and to 
integrate these predictions to infer their joint consequences. As regards action selec-
tion, we use differential game theory – in which actions develop in continuous space 
and time - to formulate the problem of establishing a stable form of coordination 
and as a natural extension of optimal control to joint action. The resulting model 
posits two concurrent observer-controller loops, accounting for ‘joint’ and ‘self’ 
action control. The two observers quantify the likelihoods of being in control alone 
or jointly. Combined with prior beliefs, they provide weighing signals which are 
used to modulate the ‘joint’ and ‘self’ motor commands. We argue that these signals 
can be interpreted as the subjective sense of joint and self agency. We demonstrate 
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the model predictions by simulating a sensorimotor interactive task where two play-
ers are mechanically coupled and are instructed to perform planar movements to 
reach a shared final target by crossing two differently located intermediate targets. In 
particular, we explore the relation between self and joint agency and the information 
available to each player about their partner. The proposed model provides a coher-
ent picture of the inter-relation of prediction, control, and the sense of agency in a 
broader range of joint actions.

Keywords Game theory · Partner model · State observer · Bayes

1 Introduction

Joint action is ubiquitous in activities of daily living. We coordinate our actions 
with peers most of our time – for example, while carrying objects, dancing, playing 
sports, making music or during rehabilitation exercises with a therapist. Research-
ers have started to investigate how humans deal with joint actions, challenging 
the assumption traditionally held in cognitive psychology that perception, action 
and higher-level cognitive processes can be understood by investigating individual 
minds in isolation.

The sense of agency – the subjective feeling of being in control of our own 
actions and, through them, of events in the external world – has been widely 
studied in individual action. The sense of agency has been often considered as 
the outcome of an inference process (Wegner, 2003; Wegner & Wheatley, 1999) 
which takes place after action completion. Others consider the sense of agency 
as an immediate component of the (ongoing) perceptual and sensory registra-
tion (Blakemore et al., 2002; Frith et al., 2000; Haggard, 2005). Processes which 
precede the action itself (Chambon et al., 2014) may constitute a ‘prospective’ 
component of the sense of agency.

During the last decade, a comprehensive theoretical and modeling framework 
has been developed, which attempts to capture the complexity and the multifac-
eted nature of the sense of agency (J. W. Moore & Fletcher, 2012; Pacherie, 2008; 
Synofzik et al., 2008; Zalla & Sperduti, 2015). These studies suggest that the sense 
of self agency results from cues related to the sensorimotor level (efference copy, 
sensory feedback, sensory predictions) and cues related to higher-order cognitive 
processes (intentions, beliefs), and relies on one core idea: the principle of congru-
ence – i.e. the match between prior knowledge and intentions, predictions and actual 
observations.

Bayesian concepts have been implicated in the formation of the sense of agency 
(Fletcher & Frith, 2009; Izawa et al., 2016; J. W. Moore & Fletcher, 2012; Synofzik 
et al., 2013).

Comparatively less attention has been addressed to the sense of agency 
in joint action. A joint action is any activity in which two or more persons 
need to coordinate their actions or movements in space and time to generate a 
change in the external world (Sebanz et al., 2006). The sense of joint agency 
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can be regarded as the sense of shared control over a joint action and its con-
sequences on the environment. Pacherie (2012, 2014) argued that in joint 
action agents need to predict not only their own actions’ outcomes, but also 
the consequences of the partner’s actions. The development of the sense of 
joint agency likely depends on matching such joint predictions with the actual 
action outcomes. While information about ourselves is easily accessible, infor-
mation about the partner typically has a greater degree of uncertainty, leading 
to possibly incomplete or ambiguous representations. However, little is known 
about how we perceive other people and to what extent we account for infor-
mation about our partner during action production and how this contribute to 
the sense of joint agency.

Coordination puts additional requirements in action planning and execution 
with respect to individual action, thus likely affecting the sense of joint agency. 
Emergent and planned coordination are regarded as facilitators for the develop-
ment of the sense of joint agency (Knoblich et al., 2011). Roles distribution and 
the number of persons involved in the action affect the capability of predicting 
partner’s actions in a joint action (Pacherie, 2014). It is not always straightfor-
ward to discriminate contributions in an ongoing action, thus affecting both self 
and joint agency (Dewey et al., 2014; van der Wel, 2015).

Self and joint agency seem to be modulated by different cues (Le Bars et al., 
2020), but they coexist in certain situations (Bolt et  al., 2016; Bolt & Loehr, 
2017; Pacherie, 2012). In some forms of joint action, the players may experi-
ence a strong sense of joint agency and a weak sense of self agency. This occurs 
when players perform similar actions with similar effects and synchronous tim-
ing, like marching soldiers (Bolt et al., 2016). In other situations, a strong sense 
of joint agency is accompanied by an equally strong sense of self agency. This 
is the case when the players are required to produce coordinated yet distinct and 
complementary actions. To reconcile these findings, it has been suggested that 
the sense of joint agency comes in two forms, namely we-agency – in which 
joint agency grows at the expenses of self agency (Gallotti & Frith, 2013; van 
der Wel, 2015) – and shared-agency – in which both the senses of joint and self 
agency remain high (Bolt & Loehr, 2017; Dewey et  al., 2014; Le Bars et  al., 
2020). At the very least, these observations suggest that we are capable to assess 
the senses of joint and self agency separately.

Here we propose a general modeling framework to describe how the sense of 
joint agency emerges from our experience of the goals, ongoing performance 
and final outcome of our own actions. We take a probabilistic (Bayesian) per-
spective, which naturally unifies the prospective and retrospective components 
of agency.

We then extend this model to account for joint actions, by also accounting 
for observations that we maintain distinct senses of self and joint agency, whose 
relationship is determined by the structural aspects of the interaction – e.g. the 
interaction modality and the type of joint task. To demonstrate the consistency 
of our formulation and to highlight its predictions, we use computer simulations 
to predict the emergence and evolution of the sense of joint agency in a recently 
reported sensorimotor interaction scenario (Chackochan & Sanguineti, 2019).
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2  Computational model of joint agency

2.1  General framework

Action generation is the end result of two inter-related processes, i.e. movement 
control and estimation of the state of the body and the external environment.

Movement control is the process of generating motor commands - muscle acti-
vations - on the basis of our movement goals and our belief on the current state 
(position, velocity) of our own body and the external environment (Wolpert, 1997; 
Wolpert & Miall, 1996).

State estimation – or sensorimotor integration – is the process of combining 
descending motor commands (efferent copy) and sensory information (sensory 
reafference) to estimate the evolution of the state of the body (and the external 
environment).

Both movement control and state estimation can be understood in terms of opti-
mality principles. There is indeed ample evidence that our nervous system exhibits a 
close-to-optimal performance in both movement control (Todorov & Jordan, 2002) 
and sensorimotor integration (Wolpert et al., 1995). Hence the combination of opti-
mal control and optimal estimation is the ideal framework for addressing the sense 
of agency.

2.1.1  Optimal estimation and agency

Optimal state estimation (Kalman, 1960) is a particular instance of Bayesian estima-
tion – a statistical inference process that optimally combines prior beliefs and the 
available observations to minimize the prediction uncertainty. In the case of senso-
rimotor integration (Daniel M. Wolpert et al., 1995), ‘internal models’ maintain rep-
resentations of the causality between the motor command and the body and environ-
ment state – ‘forward models’- and between such state and its sensory consequences 
– ‘sensory models’ (see Fig. 1). Prior beliefs about body and environment dynamics 
these internal representations and are combined, within the ‘state observer’, with the 
mismatch between predicted and actual sensory consequences the motor command 
- the ‘sensory prediction error’ - to estimate the state of the body and the external 
world - see Fig. 1.

Theoretical accounts of the sense of agency attribute a crucial role to error sig-
nals. In particular, Blakemore et al., 2000 and many others argued that the aware-
ness of being in control of an action reflects the match of the actual and predicted 
sensory signals – the ‘comparator’ model.

2.1.2  Optimal control and agency

Optimal control posits that humans behave as self-conscious agents, aiming at maxi-
mizing their subjective utility, i.e. a trade-off between task-dependent movement cost 
– in reaching movements, it may simply be the endpoint error – and the perceived 
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effort associated to movement. Hence actions result from a subjective evaluation of 
their associated costs and/or benefits. This subjective aspect can be summarized by a 
cost function that incorporates the task goals and requirements.

Given a certain goal, a variety of rules – control policies – can be conceived to 
map body and environment states into motor commands (Wolpert & Kawato, 1998). 
There is some evidence that the brain selects the optimal motor command as a trade-
off between cost and effort (Shadmehr & Krakauer, 2008; Todorov, 2004) – see 
Fig. 1.

While the role of optimal estimation has been widely acknowledged in the forma-
tion of the sense of agency, optimality of control is at least as important. Aware-
ness of what we are doing and how we are trying to achieve our goals is involved 
in building the sense of agency (Chambon et al., 2014; J. Moore & Haggard, 2008; 
Pacherie, 2008). In particular, these multiple cues likely affect our prospective 
judgement of agency (Lafleur et al., 2020; Synofzik et al., 2013; Zalla & Sperduti, 
2015). We may feel to have more or less control over an intended action depending 
on prior knowledge about the task, the context and the goals to be achieved.

2.1.3  A probabilistic perspective

The above considerations point at a comprehensive formulation for the sense of self 
agency, rooted on probabilistic concepts. Probabilities are intended in subjective or 
Bayesian terms, i.e. as measures of the degree of belief that some proposition is true.

Fig. 1  Computational model of self agency. The model involves an optimal estimator or state observer 
block (red) which optimally combines sensory information and motor command to predict the state of 
the body and the external environment. Here, it is seen as a decision process based on the available infor-
mation. The agency block (green) combines a prospective or prior component which relies on informa-
tion on the action goal, and a retrospective or posterior component that reflects the discrepancy between 
actual and predicted sensory afference after movement completion. The Optimal controller block (blue) 
generates the motor commands, which reflect the task requirements, and the current state as predicted by 
the state observer



 C. De Vicariis et al.

1 3

Specification of the action goals and task requirements and the subjective cost 
and benefits of an action contribute to the ‘prospective’ component of the sense 
of agency (Chambon et al., 2014; J. Moore & Haggard, 2008). As the action is 
initiated, the mismatch between observed and expected sensory outcomes (S. 
Blakemore et al., 2000; C. D. Frith et al., 2000) combined with the reliability of 
the sensory afference (J. W. Moore & Fletcher, 2012) continuously modifies such 
belief. In other words, the sense of agency is a dynamic process, which involves 
a continuing evaluation of one’s awareness of being in control. At the end of the 
movement, our overall (‘retrospective’) sense of agency results from the integra-
tion of these multiple sources – see Fig. 1.

In probabilistic terms, the prospective and retrospective components of the 
sense of agency while carrying out an action can be seen as prior and posterior 
probabilities of being in control. In more formal terms, prospective self agency 
can be seen as the subjective belief (probability) of being in control:

before action onset. Similarly, retrospective self agency can be seen as the probabil-
ity of being in control after the action is made, conditioned to all evidence collected 
during action (i.e. the sensory observations, i.e. the sensory inputs observed over 
the whole action, between time = 0 and time = T. We denote sensory observations as 
y(0 : T):

Bayes’ theorem states that posterior and prior probability are related through 
the ‘likelihood’ of the prediction, which reflects how likely those specific sensory 
observations are if we assume that we are actually in control. This is quantified as 
the probability density function of the observation, under the ‘self’ assumption:

Likelihood naturally emerges from the inference process underlying state esti-
mation, but is not simply reflected in the mismatch between observed and pre-
dicted consequences of action, but more generally in the likelihood of that pre-
diction – a quantity which, besides the mismatch, also reflects the reliability of 
observations– see Supplementary Materials. Overall, these quantities are related 
(Bayes theorem) as:

It should be noted that the likelihood accumulates over time as the action 
proceeds, which suggests that the sense of agency is also a dynamic process. At 
movement start, the sense of agency is coincident with prospective agency before 
the action takes place. While the action proceeds, the sense of agency may be at 
times weaker or stronger.

prospective agency (self) ≜ Pr (self)

retrospective agency(self) ≜ Pr (self | y(0 ∶ T))

likelihood(self) ≜ p(y(0 ∶ T) |self)

retrospective agency(self) =
likelihood(self) × prospective agency(self)

p(y(0 ∶ T))
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This formulation naturally extends the comparator model, and in particular 
implies that the sense of agency is not only strengthened by a greater match, but also 
by a greater reliability of the sensory information; see also (Izawa et al., 2016; J. W. 
Moore & Fletcher, 2012). Figure 1 (green block) depicts the relation between likeli-
hood, retrospective and prospective agency.

2.2  From self agency to joint agency

The above framework can be extended to the sense of joint agency, intended as the 
subjective sense of shared control over a joint action. We can safely assume that all 
players are equipped with their own state observer, movement controller – hence the 
ability to generate their own action - and their subjective sense of self agency.

In joint action each player has his/her own goals. The goals may be the same for 
all players; may be different, or even opposite. However, joint action implies that 
there is some incentive to act together, which may be a specific task requirement, 
e.g. the need to reach a shared goal at the same time - or is implied by mechanical 
coupling e.g. when dancing the waltz. In all cases, acting together always requires 
that each player accounts for their partner when selecting their action. Ganesh 
et al. (2014) examined a scenario in which two players are mechanically connected 
through an elastic force (a virtual spring) and are instructed to track the same mov-
ing target. The players share the same goal and, as they are physically coupled, 
goal fulfillment depends on both self and partner state. Chackochan and Sanguineti 
(2019) also focused on a scenario in which two players are mechanically connected. 
Both were instructed to perform reaching movements through different via-points, 
while at the same time keeping the interaction forces low (Fig. 2). Again, there is 
physical interaction and, although the goals are distinct, they still require players’ 
coordination. Bolt et  al. (2016) focused on a situation in which two players emit 
sounds by pressing keys, in alternation according to different rhythmic patterns. In 
this case there is no physical interaction, but the players need to account for each 
other in order to synchronize. All the above examples suggest that in joint action 
scenarios the control policy must necessarily account for both self and partner’s 
state.

2.2.1  The partner model

Computational accounts of joint action are relatively rare, and even less (Chack-
ochan & Sanguineti, 2019; Li et al., 2019; Pesquita et al., 2018; Takagi et al., 2018) 
explicitly address the need to account for both self and partner state. If there is 
no mechanical coupling, this can be achieved with distinct ‘self’ and ‘other’ state 
observers; see for instance (Pesquita et al., 2018). However, if two players interact 
physically, i.e. they exchange forces, their body states cannot be estimated inde-
pendently. Consequently, to provide reliable estimates the ‘self’ and ‘other’ state 
observers must account for each other. In the words of Noy et al. (2017), ‘coupled 
forward models are necessary for producing co-confident motion’.
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Fig. 2  A joint action scenario and its game theoretic interpretation. a) Experimental apparatus and task. 
Two players are connected via a virtual spring. They were instructed to perform planar reaching move-
ment from the same initial point to a final target, by crossing different via-points. b) Experimental condi-
tions. Three experimental groups different in the amount of information provided about their partner: in 
the haptic condition (H) players could only feel their partner haptically, through the interaction force; 
in the visuo-haptic condition (VH), the interaction force vector was displayed on the computer screen; 
in the partner visible condition (PV), players could see their partner’s ongoing movements through a 
second cursor displayed on the screen. c) Experimental results. Last ten movements of the two players 
after a training session. d) Game Theory predictions. Players have distinct sets of best responses to part-
ner actions, specified by their cost function minima  (J1 and  J2, displayed by their contours) in the space 
of possible actions (player 1:  u1; player 2:  u2). The game has two Nash equilibria – both players passing 
through both via-points. The Nash equilibria are specified by the intersection of the players’ reaction 
curves – i.e. the locus of the optimal actions which a player may take for any given action chosen by 
the partner. The experimental results suggest that as the available information increases (PV group), the 
players tend to converge to the lowest-effort Nash equilibrium. Modified from Chackochan and Sangui-
neti (2019).

Fig. 3  Computational model of joint agency. The assumption that agency is a decision process implies 
the choice between a set of options. The model involves two optimal estimator (state observer) and opti-
mal controller pairs running in parallel. Each state observer estimates the likelihood of, respectively, 
self and joint. These quantities are combined with prior information from the task representations to get 
posterior probabilities of self and joint. These quantities gate the outputs of the optimal controllers and 
therefore affect the control policy
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In conclusion, in joint action we must posit an additional module as part of the 
state observer, which accounts for the partner’s state and possibly motor actions, 
which we will refer as the ‘partner model’ – see Figs. 3 and 4. Estimating the partner 
state is no different from estimating their own state, in the sense that it requires a 
forward model of partner’s body and the availability of sensory signals – e.g. vision, 
proprioception, audition, etc. - which provide information about the partner.

From a computational perspective, partner models may take various forms. They 
may just estimate the ongoing partner movements by combining measures and prior 
assumptions. More accurate models may additionally account for the partner’s body 
dynamics, e.g. inertial properties. For instance they may use internal representations 
of the partner’s body dynamics to infer their underlying motor commands (Chack-
ochan & Sanguineti, 2019; Gillijns & De Moor, 2007). Further, partner models may 
be capable of inferring the partner’s control policy, i.e. the mapping between the 
state of both players and the partner’s motor command (Li et al., 2019). This type of 
partner model is much more informative, as it provides not only an estimate of past 
action, but more generally on the partner’s ongoing strategy, which can be seen as a 
representation of the partner’s ultimate goal or intentions.

There is no agreement in the literature about the type of partner models and on 
how they are formed. During joint action players may simply estimate the ongoing 
partner actions (Chackochan & Sanguineti, 2019). Other studies suggest that play-
ers may develop more general partner representations, also accounting for intentions 
and ultimate goals (Sebanz et al., 2005). Humans are indeed very good at extrapolat-
ing higher order information by observing the motion of their peers: not only they 
can infer intentions or goals, but can also discriminate between actual human move-
ments from movements that have artificial spatio-temporal features, e.g. they are 
incompatible with human body biomechanics (Zunino et al., 2020).

Fig. 4  Joint state observer. In addition to a model of own body dynamics (self model), it also maintains a 
representation of the partner and of the self-partner mechanical coupling (if any). The observer predicts 
the state of both self and other. These quantities are combined to predict the sensory outcomes which 
are compared with actual sensory afferences. The sensory prediction error quantifies the joint likelihood. 
Combined with the prior, it generates the joint sense of agency
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Our main focus here is on ‘the mutual give and take between two or more indi-
viduals involved in social interactions’ (Chris D. Frith & Frith, 2008), but the ‘part-
ner model’ notion implies, more generally, an ability to infer the intentions, desires 
and beliefs of others – the Theory of Mind.

We are not explicitly addressing the nature of these processes here. We posit that 
sensory observations are compared with their predictions under a specific hypoth-
esis to form a likelihood. Likelihoods of the different hypotheses are combined with 
prior knowledge (priors) into posterior probabilities, which mediate the subsequent 
action generation. These computational modules constitute a basic form of Theory 
of Mind.

The current partner model formulation focuses on implicit and immediate per-
ceptual processes (Gallagher, 2008). More explicit and aware forms of reasoning 
about the partner (Carruthers & Smith, 1996; Gallese & Goldman, 1998) may con-
tribute to higher-level prediction of partner actions, which includes intentions (i.e. 
the control policies) and ultimate goals (i.e. their objective function). Although 
these mechanisms are not covered in the current description of the model, they are 
clearly consistent with the overall architecture. Overall, the proposed model points 
at a Theory of Mind which posits fast perceptual processes and slower, more cog-
nitively demanding processes which contribute to an efficient understanding of the 
partner’s mental states (Chris D. Frith & Frith, 2008; Gangopadhyay & Miyahara, 
2015; Meinhardt-Injac et al., 2018).

In conclusion, joint action requires that the state observer has an additional ‘part-
ner model’, which may be either distinct or interrelated to the ‘self’ state observer 
– see Figs. 3 and 4. We suggest that the partner model plays a pivotal role in devel-
oping and modulating the sense of agency in joint action.

2.2.2  Game theory in joint action

Game theory provides the analytic and computational substrate for the decision-
making and control processes underlying joint action. A ‘game’ is a situation 
‘involving two or more individuals whose interest are neither completely opposed, 
nor completely coincident’ (J. F. Nash, 1953). Concepts from game theory have been 
widely applied in the social sciences to understand how multiple agents coordinate 
their actions. In a joint action, individuals still aim at maximizing their own subjec-
tive utility, but the latter also depends on their partner’s state. This introduces addi-
tional complexity in the individual action selection mechanisms, and likely plays a 
role in forming our sense of joint agency.

In some joint action scenarios, agents agree on a common strategy – for instance, 
through verbal communication - before the action takes place, thus behaving as a 
collective (Bacharach, 1999; Newton, 2018; Tuomela, 2007). These situations are 
referred as ‘cooperative games’. We argue that in these situations the sense of joint 
agency has a mainly ‘prospective’ character as it largely develops before action 
initiation.

In other scenarios there is no explicit prior agreement on a common strat-
egy. While we know our goals, we may not be equally aware of the goals of our 
counterpart. In these situations, coordination emerges gradually as each agent 
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collects information about their partner actions, their outcomes and possibly 
their ultimate goals, using various mechanisms (Vesper et al., 2017), during con-
tinuous or repeated interaction. Situations in which each player autonomously 
decides the action to take are referred to as ‘non-cooperative games’. Situations 
in which none of the players can unilaterally improve their benefit are known as 
Nash equilibria (J. Nash, 1951).

Differential game theory is the natural extension of optimal control 
to joint action scenarios as it addresses those situations in which actions 
develop in time (Başar & Olsder, 1999). In motor control scenarios, differ-
ential non-cooperative games have been used to model situations in which 
humans deal with their counterpart without speaking and by communicating 
just through sensory cues (visual, acoustic or haptic), but they independently 
determine their actions (Braun et al., 2009; Chackochan & Sanguineti, 2019; 
Jarrassé et  al., 2012; Li et  al., 2019). In sensorimotor versions of the pris-
oner dilemma and of the rope pulling games, Braun et al. (2009) found that 
the players converge to Nash equilibria. In contrast, when the same task is 
performed by one single agent using two hands, they converged to a coop-
erative solution. These results suggest that, if they have perfect information 
about their partners, two players are capable of establishing stable coordina-
tion strategies which correspond to Nash equilibria. When combined with 
state and partner estimation, differential game theory can be used to study 
situations characterized by partial information (Harsanyi, 1967) in which 
players form conjectures about the other player’s actions. In situations where 
the players have competing goals and need to negotiate a joint strategy, 
knowledge about the partner is a major determinant of the resulting coor-
dination strategy. In a recent work in which dyads performed a sensorimo-
tor coordination game, Chackochan and Sanguineti (2019) manipulated the 
information about the partner available to each player, ranging from rela-
tively unreliable haptic information to highly reliable visual information; see 
Fig. 2. Depending on the available sensory information, they found that the 
players converged to different coordination strategies. When the information 
was more reliable, they converged to a Nash equilibrium. When the informa-
tion uncertainty increased, they converged to a strategy which assumed there 
were no partner.

Another aspect of coordination strategies, which is highly relevant to joint 
agency, is that they often develop gradually. Fictitious play (Berger, 2007; 
Brown, 1951) has been proposed as a general mechanism for the development of 
a stable coordination (Chackochan & Sanguineti, 2019; Grau-Moya et al., 2013). 
In repeated trials, subjects gradually refine their partner model and determine 
their best response given that partner model. This can be interpreted in Bayes-
ian terms – at each trial, the players combine prior beliefs with the available 
information on the action outcome to improve their next moves. Nash equilibria 
are absorbing states in the fictitious play learning process (Fudenberg & Levine, 
1998) - once you get there, you stay there.

The sense of joint agency likely evolves as the coordination develops. For 
instance, the sense of joint agency may be reduced when coordination is unstable 
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and players have difficulty in synchronizing their actions, but may increase grad-
ually as they converge toward a stable coordination.

2.2.3  A modular control architecture to reconcile self and joint agency

The above considerations suggest an extension of the comparator model – or 
rather the probabilistic model - to account for the sense of joint agency. Like self 
agency, the subjective experience of acting as a group would have a prospective 
component. The latter can be intended as the subjective evaluation of costs and 
benefits associated to the development of a coordination, before the latter takes 
place. Contextual conditions (Lafleur et  al., 2020) and personal traits directly 
affect the subjective evaluation of tasks and goals (Vallacher & Wegner, 1989). 
Therefore, they both contribute to shaping the sense of agency.

In probabilistic terms this can be captured by a joint agency ‘prior’:

After action completion, a ‘joint’ observer, involving a self and a partner 
model, see Fig.  4, evaluates the ‘joint’ likelihood, i.e. the extent to which the 
presence of multiple players explains the sensory information y(0 : T):

Finally, the retrospective sense of joint agency results from the combination 
of prior assumptions (prospective agency) and the match between actual and 
expected observations (likelihood) – see Supplementary Materials for details:

How are the sense of self and joint agency related? In a joint action context, 
either the self or the group may be perceived as being in control of an action. As 
mentioned in the Introduction, empirical findings suggest that we maintain dis-
tinct senses of self and joint agency.

To explain these observations, we argue that during joint action, at least two 
state observers are active at the same time, respectively accounting for the ‘self’ 
and ‘joint’ scenario. The ‘self’ observer assumes that the player is alone in con-
tributing to the body and environment state. The ‘joint’ observer assumes that 
one or more partners are involved in the action.

A general structure for the ‘joint’ observer is depicted in Fig.  4. The joint 
observer extends the ‘self’ observer of Fig. 1  in that it also includes an internal 
representation of partner dynamics and of their mechanical coupling (if any); see 
the Supplementary Material for details. The state predictions of self and other are 
then combined to form a prediction of the sensory outcome. The sensory predic-
tion error is used to quantify the ‘joint’ likelihood. In the general – see Fig. 4 - the 
‘self’ and ‘joint’ observers simultaneously estimate the corresponding likelihoods 
from the same sensory information. Combined with prior beliefs (prospective 

prospective agency (joint) ≜ Pr (joint)

likelihood(joint) ≜ p(y(0 ∶ T) |joint)

retrospective agency(joint) =
likelihood(joint) × prospective agency(joint)

p(y(0 ∶ T))
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component of self and joint agency), they generate separate retrospective self and 
joint agency beliefs (self and joint posteriors).

We also argue that the subjective awareness of being in control alone or with 
other partners also has an influence on action selection: we may choose different 
actions if we believe we are acting alone, or another player is contributing to our 
action. To account for this, the model posits two controllers: the ‘joint feedback con-
troller’, which determines a motor command under the assumption of coordinating 
with a partner, and the ‘self feedback controller’ which assumes that the player acts 
alone. Each controller generates a motor command based on the state predictions 
made by the corresponding observer. The self and joint posterior probabilities serve 
as gating signals to select which motor command will be eventually generated.

The overall model is summarized in Fig.  3. The ‘task’ is represented in terms 
of goals and requirements, including the requirement of coordinating with one or 
more partners, and possibly prior agreements with them, and can be captured by a 
cost function which keeps the interaction into account. This is the prior belief that a 
player has before the action starts – prospective components of agency. Based on the 
assumptions of either acting alone or jointly, the two state observers generate differ-
ent state predictions on the basis of the same sensory information.

An Agency Judgement subsystem combines the prior beliefs with the evidence 
collected during action (self and joint likelihoods), thus providing an ongoing pos-
terior belief of either acting alone or as a group. During movements the agency 
judgement continuously gates the motor command generated by the ‘self’ and ‘joint’ 
controllers.

The proposed architecture is inspired by the ‘MOdular Selection And Identi-
fication for Control’ (MOSAIC) model (Haruno et  al., 2001; D. M. Wolpert & 
Kawato, 1998). Originally proposed to address the modularity of the motor system, 
the MOSAIC model posits that the motor system uses multiple observer-controller 
pairs, each dedicated to a certain aspect of the action and characterized by differ-
ent assumptions on our body and the environment in which the action takes place. 
This architecture is more parsimonious than using a single enormously complex 
model of the external world and accounts for experimental findings suggesting that 
humans are capable of learning multiple internal representations, switching between 
them, or combining them, based on the context in which the action is occurring to 
determine an appropriate motor command – see D. M. Wolpert and Kawato (1998) 
for more details. The model relies on specialized predictors (observers) for each of 
the hypotheses under consideration. In joint action these hypotheses include act-
ing alone (‘self’), just observing someone else’s action (‘other’), or acting jointly 
(‘joint’). The ‘self’ and ‘other’ observers require forward models of, respectively, 
own and other dynamics. A ‘joint’ observer requires both (plus a model of their 
mechanical coupling if any). The model keeps duplication of resources at a mini-
mum as some of these modules may be shared at the implementation level.

The proposed model posits a bidirectional relationship between action control 
and the sense of agency. In this view, agency is a dynamic decision process, which 
continuously evaluates the assumptions underlying each observer pair. Players rea-
son about themselves – their goals, their role in the action, the perceived features 
of their body and environment, the presence of additional partners or opponents. 
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Our behavior changes depending on whether we feel to have a joint control over an 
event, or we feel we are acting individually. This suggests that the sense of agency is 
not simply the outcome of an inference process, but also plays a role in determining 
the joint control policy.

The proposed model implies that the sense of self agency and the sense of joint 
agency are distinct, though not independent. Rather, they reflect parallel mecha-
nisms that make sense of the available information in different ways. The Agency 
Judgment block uses all the available information to evaluate what is more likely. 
One key model prediction is that the likelihood of acting jointly is always greater 
or equal than the likelihood of acting individually. This is a consequence of the fact 
that if you add a component in a model, its likelihood with reference to a specific 
set of observations can only be greater or equal, but never be worse than the model 
without that component. If there is no partner or the partner plays no role in the 
interaction, the ‘joint’ observer would provide no better explanation of the sen-
sory observations than an observer which neglects the partner, hence the ‘self’ and 
‘joint’ likelihoods would be the same. Conversely, if the partner plays any role in 
the action, this is reflected in the action’s sensory consequences. As such, the ‘joint’ 
observer would provide a more likely explanation of the sensory observations than 
its ‘self’ counterpart.

Hence the ‘joint’ observer, which also includes the partner model, always pro-
vides more accurate predictions than the ‘self’ observer if a partner is actually pre-
sent. Conversely, if no partner were present, the two state observers would lead 
to identical predictions and consequently identical likelihoods. The relationship 
between self and joint-likelihood may explain the different experiences of joint 
agency in different interaction scenarios. In ‘we-agency’ scenarios like marching 
soldiers, the partner counts a lot. Therefore, the joint-likelihood is much greater than 
the self-likelihood. In shared-agency scenarios the two players have complementary 
roles and tend to be less interdependent. Therefore, joint and self-likelihoods tend to 
be more similar. It should be noted, however, that the overall sense of agency also 
depends on the priors – the prospective components of agency – which can make 
the ‘self’ posterior probability greater than its ‘joint’ counterpart. This occurs for 
instance in extreme situations when the two players do not interact at all and there-
fore no joint action takes place.

Here we only consider the ‘self’ and ‘joint’ scenarios because they are the most 
relevant for self and joint agency, but the model may even include a ‘other’ scenario 
(in which the ‘self’ does not participate in the action). Indeed, the observers asso-
ciated to each scenario, the likelihoods they generate and their combinations with 
the priors may be seen as a Bayesian classifier which, at any given time instant and 
cumulatively at the end of an action, compares posterior probabilities which can be 
interpreted as the sense of self and joint agency. This model can account for the 
attribution problems discussed in Frith et al. (2000).
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3  Joint agency in a sensorimotor interactive task

To understand the implications of the proposed model, we simulated the task and 
the experimental protocol used in a published study (Chackochan & Sanguineti, 
2019), which specifically addressed the way coordination strategies are affected by 
uncertainty about the partner; see Fig. 2 for a summary of the experimental protocol 
and main results.

Simulations have a twofold purpose: (i) to test the internal coherence and com-
pleteness of the proposed model; and (ii) to explore model predictions as regards 
the sense of self and joint agency, in different phases of the experiment and different 
experimental conditions.

3.1  Task

In the actual experiment, two players were instructed to perform planar arm move-
ments with the same start and end points, but different via-points, while mechani-
cally coupled through a virtual spring. In particular, each player operated the han-
dle of a robot manipulandum, whose movements were mapped into the motion of a 
cursor on a computer screen placed in front of each player. To simulate the virtual 
spring, the forces generated by the robots at the level of each end-effector were set 
to be proportional to the distance between the two hand positions. The participants 
could not see each other and could not speak. They were not explicitly informed 
about performing a joint task, but were instructed to keep their interaction forces 
low, which is an incentive to aim at coordination. The experiment involved three 
groups of dyads, which differed for the amount of information available about their 
partner. In the haptic condition (H), the players only perceived their partner through 
the interaction force. In the visuo-haptic condition (VH) the interaction force was 
also displayed on the screen, as an arrow attached to their hand cursor. In the part-
ner-visible condition (PV), in addition to the haptic force each player could see their 
partner as a second cursor moving on the screen. The experimental protocol involved 
a total of 156 trials. The players were initially not connected (baseline phase, 12 tri-
als). Then the virtual spring was turned on (training phase, 120 trials). Then the con-
nection was removed again (after effect phase, 24 trials). The peculiarity of this task 
is that the players have different sub-goals and need to negotiate a joint strategy, but 
have no other cue about their partner’s intentions or ongoing actions than the inter-
action force alone (H group) and additional visual feedback in various forms (VH, 
PV groups).

3.2  Model implementation

We simulated the two-loop model of Fig. 3. The task is completely specified by a 
pair of quadratic cost functions, one for each player. The cost functions have four 
terms, respectively accounting for (i) reaching the final target; (ii) keeping the 
interaction force low (only present during the training phase); (iii) passing through 
the via-point; and (iv) keeping the mechanical effort low; see the Supplementary 
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Material file for details. We modelled the players as a single linear dynamical sys-
tem (with Gaussian process noise) and two separate sensory systems (with Gaussian 
measurement noise). The H and VH groups only differed in the uncertainty (meas-
urement noise) of the measured interaction force (lower in the VH group, in which 
the force is visually displayed to the players). In the PV group, the sensory system 
had an additional term – visual information about partner’s position and velocity 
which further reduces the uncertainty about the partner movements.

For each player, we posited two parallel observer-controller loops.
The ‘self’ observer assumes that there is no partner. The ‘joint’ observer predicts 

the body state by additionally accounting for a partner model, which continuously 
estimates the ongoing partner actions. Both state observers optimally combine prior 
state predictions with the current sensory afferences to estimate the next state. The 
‘joint’ observer included a partner model which additionally predicts the partner’s 
ongoing motor command. At each time instant, the two observers compute cumula-
tive self and joint likelihoods, which quantify whether the sensory afferences up to 
that time instant are best predicted by self or joint action. At each time instant, these 
measures are combined with a prior probability term which reflects the prior knowl-
edge about the task (prospective sense of agency), to form dynamic self and joint 
agency beliefs (posterior probabilities). We assumed that all players initially have 
little or no cues about the presence of a partner. Therefore, in all phases and in all 
simulations, we assumed that the prospective sense of self agency is slightly greater 
than the corresponding joint agency. In particular, we set prospective(self) = 0.6 and 
prospective(joint) = 0.4. This choice is clearly questionable and the prospective com-
ponent of agency within this task would deserve a study on its own, as personal 
traits (Vallacher & Wegner, 1989) and external context (Lafleur et al., 2020) likely 
affect the prospective component of agency.

The ‘self’ and ‘joint’ controllers have an identical structure, resulting from the 
same cost function. The ‘joint’ controller additionally incorporates the partner motor 
command estimated on the previous trial, whereas the ‘self’ controller assumes 
that that there is no partner (the partner motor command is identically zero). This 
implements the fictitious play learning model. At every time instant, both controllers 
generate motor commands based on the corresponding state observers. The over-
all motor command is calculated as the sum of the self and joint motor commands, 
weighed by the corresponding self and joint agency beliefs.

All details of the model implementation, the values of the model parameters and 
the technical details of the simulation are reported in a Supplementary Material file.

3.3  Simulation results

We simulated the evolution of the behavior of three dyads, respectively in the haptic 
(H), visuo-haptic (VH) and partner visible (PV) group, over the entire three-phase 
(baseline, training, aftereffect) 156-trial experimental protocol.
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3.3.1  Effect of training and partner information

We initially focused on the self and joint-likelihood (and the corresponding self and 
joint agency beliefs) calculated at the end of each simulated movement (retrospec-
tive agency).

The simulation results indicate that during the baseline phase, when the two play-
ers are disconnected, the partner model does not contribute significantly to state esti-
mation, hence the self and joint-likelihood are the same. Consequently, the posterior 
probabilities and thus the retrospective senses of self and joint agency are dominated 
by the task requirements, encoded by the agency priors. Therefore, retrospective self 
agency prevails over joint agency.

During the training phase, when the two players are physically connected, the 
partner model significantly improves the prediction of the sensory outcomes and 
therefore joint-likelihood is always greater than the self-likelihood. Consequently, 
the joint posterior probability is greater than its self counterpart, and the joint con-
trol action is weighed much more.

In conclusion, interaction with the partner is quickly incorporated in the joint 
observer and - through fictitious play - in the joint controller. In simulations, we 
assumed that both players already have a ‘connected’ forward model, i.e. they know 
already about the connected dynamics. This may be unrealistic, hence in actual 
experiments the convergence may not be that fast.

Both self and joint-likelihood are affected by uncertainty about the partner. 
When more reliable information is available to a player – e.g. from the H to the PV 

Fig. 5  Between-trials evolution of self- and joint-likelihoods (top) and self- and joint posterior probabili-
ties (bottom), with increasing amounts (left to right) of available sensory information: haptic (H, left), 
visuo-haptic (VH, middle) and partner visible (PV, right)
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condition – both joint and self-likelihood increase. The prediction of partner actions 
also becomes more reliable; therefore, the joint-likelihood tends to overcome the 
self-likelihood. As a consequence, the players increasingly perceive themselves as 
acting jointly; see Fig. 5.

In conclusion, simulations demonstrate two key model predictions. First, the rela-
tive strengths of the sense of self and joint agency are determined by a combina-
tion of the task requirements and the match between predicted and observed sensory 
information. Second, when the information is more reliable the partner model plays 
a more important role in predicting the sensory outcomes, which strengthens the 
sense of joint agency with respect to self agency.

3.3.2  Self and joint agency within a trial

The proposed model also predicts that both the senses of self and joint agency are 
time-varying within a single movement. In simulations, we additionally looked at 
this temporal dynamic. In all three experimental groups we took the last trial within 
the training phase, when the players have developed a stable joint strategy.

These simulation results are summarized in Fig. 6. The instantaneous joint-like-
lihood varies little throughout the trial. As expected, it increases when more reliable 
sensory information is available. This confirms the prediction that reliable sensory 
information is a major determinant of joint agency.

Fig. 6  Self- and joint-likelihood of both players within a trial (last trial in the training phase). From left 
to right: haptic (H), visuo-haptic (VH) and partner visible (PV) groups, for, respectively, Player 1 (top) 
and Player 2 (bottom). The vertical dashed lines represent the times at which each player crossed their 
via-point
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In contrast, self-likelihood is always smaller and changes within the movement. 
The discrepancy between self and joint-likelihood reflects the importance of the 
partner action in estimating the dyad state in different portions of the movement. A 
large discrepancy implies a stronger partner contribution.

In the simulations, the self-likelihood of both players exhibits a minimum 
around 300 ms before the time the partner is crossing their own via-point. Interest-
ingly, these results are consistent with previously reported experimental findings. 
In particular, Chackochan and Sanguineti (2019) observed that when crossing their 
own via-point, each player tends to pull their partner – thus behaving like a leader, 
whereas their partner acts more like a follower.

In our simulations, when the amount of information is greater (e.g. the PV condi-
tion), there is a greater gap between self and joint-likelihood, which points at a we-
type joint agency (the players tend to lose their sense of self agency as joint agency 
gets stronger). In contrast, when less information is available (e.g. the H condition), 
both self- and joint-likelihood remain large throughout the whole trial, thus suggest-
ing a joint agency of shared-type. In conclusion, our simulations predict that when 
more information about the partner is available, the joint strategy shifts from shared-
type to we-type joint agency.

4  Discussion

We formulated a comprehensive computational framework to account for the sense 
of agency in joint action. By extending previous accounts (Fletcher & Frith, 2009; 
Izawa et al., 2016) of self agency, we suggest that both the senses of self and joint 
agency can be interpreted in probabilistic terms.

In particular, the prospective (Chambon et  al., 2014) and retrospective 
(Blakemore et al., 2002; Frith et al., 2000; Haggard, 2005) components of the sense 
of agency can be seen as prior and posterior subjective probabilities (beliefs) of 
being in control.

Using simple arguments from the optimization framework, widely used in senso-
rimotor control (Todorov & Jordan, 2002; Daniel M. Wolpert et al., 1995), we first 
introduce a more general formulation of the comparator model (S. Blakemore et al., 
2000; C. D. Frith et al., 2000) for the sense of self agency.

We then argue that in order to address joint action scenarios, the state observer 
must explicitly account for the partner’s ongoing activity (partner model) (Chack-
ochan & Sanguineti, 2019; Li et al., 2019; Pesquita et al., 2018; Takagi et al., 2017). 
The partner model is essential for the development of a joint action and a sense of 
joint agency. It may take different forms and may have different degrees of reliabil-
ity. Both aspects are central to the development of the sense of joint agency.

We propose differential game theory and non-cooperative games as a general 
modeling framework to study joint action scenarios which develop in space and time 
(e.g. involving movements) and are characterized by incomplete information about 
the partner (Braun et  al., 2009; Chackochan & Sanguineti, 2019; Jarrassé et  al., 
2012; Li et al., 2019). We propose fictitious play as a general learning mechanism to 
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describe the gradual development of a stable coordination (Chackochan & Sangui-
neti, 2019; Grau-Moya et al., 2013) and the sense of joint agency.

The proposed model is not just a mere mechanistic solution to a control problem. 
Its level of description is computational (what has to be computed and why) and 
relies on the well-established notion that the nervous system compares a variety of 
hypotheses in order to understand the external environment and to take decisions 
(Gallivan et al., 2017; Heald et al., 2018). Consistent with reports (Bolt & Loehr, 
2017; Dewey et al., 2014; Le Bars et al., 2020; Pacherie, 2012) that we maintain dis-
tinct senses of self and joint agency, we posited separate observer-controller pairs, 
one assuming that we are acting alone (‘self’ loop) and another assuming that we 
are acting jointly (‘joint’ loop). The loops run continuously and in parallel. The two 
observers provide continuously updated subjective assessments of the ‘self’ (I am 
acting alone) and ‘joint’ (I am acting jointly with someone else) hypotheses, which 
in turn determine action selection. Each observer provides a specific interpretation. 
The ‘agency’ signal (posterior probability of either self or joint) is used to decide 
which controller is appropriate for the current scenario (Haruno et al., 2001). The 
model can be easily extended to address more scenarios, in which we just observe 
someone else’s action (‘other’ scenario) or interaction with multiple agents, where 
the partner model combines the contributions of multiple partners (Takagi et  al., 
2019).

4.1  Model predictions

To clarify how the model works and to explore less intuitive model predictions and 
implications, we simulated a joint action experiment from a published study (Chack-
ochan & Sanguineti, 2019).

4.1.1  Self and joint agency are affected by the quality of sensory information

The extended probabilistic formulation of the comparator model (Frith., 2005; C. D. 
Frith et al., 2000; Pacherie, 2008) predicts that the amount of information available 
about the dyad (player and partner) modulates our sense of self and joint agency. 
This prediction is demonstrated by the model simulations: when sensory uncertainty 
is reduced, the players’ ability to predict their partners’ actions improves, and they 
feel more strongly to be part of a group, thus leading to a stronger sense of joint 
agency. This is consistent with reports that humans feel a stronger sense of joint 
agency when they coordinate their actions with a more predictable partner (Bolt & 
Loehr, 2017).

4.1.2  Are there different types of joint agency?

The proposed model posits that we experience distinct senses of self and joint 
agency, but they are not independent. Pacherie (2012) argued that there are two 
qualitatively different types of sense of joint agency. In ‘we-agency’ (Gallotti & 
Frith, 2013; Pacherie, 2012), strong sense of joint agency is associated to a weak 
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sense of self agency. In ‘shared-agency’ a strong sense of joint agency is compatible 
with a strong sense of self agency (Loehr, 2018; Pacherie, 2012).

Our proposed model captures both scenarios, with no need to assume differ-
ent ‘types’ or ‘modes’ of the sense of joint agency (Pacherie, 2012). We suggest 
that the relation between the senses of joint and self agency is determined by 
the task requirements and the predictability of partner’s actions, with no need to 
assume qualitatively different ‘modes’ of the sense of joint agency. In particular, 
the ‘we-agency’ scenarios corresponds to situations – or phases of a joint action 
– in which our partner’s actions have a strong impact on our sensory afferences. 
In this case, the joint-likelihood would be much greater than the self-likelihood, 
which would place a bias toward joint agency. For instance, singers in a choir 
with different voices coordinate their actions to achieve a shared goal and equally 
contribute in its fulfillment. As such they are likely to experience a greater sense 
of joint agency and a comparatively lower sense of self agency as each individ-
ual only contributes a fraction of the overall performance. Conversely, ‘shared-
agency’ scenarios correspond to situations in which partner actions play a weaker 
role in the overall coordination, or have different impacts in different phases of 
the movement, e.g. when the players have different roles. In this case the part-
ner information would not add much to the joint-likelihood with respect to the 
self-likelihood.

Similarly, the model predicts that we experience different proportions of sense of 
joint and self agency in competitive situations with respect to collaborative scenar-
ios. For instance, two fighters likely experience a lower sense of joint agency with 
respect to two partners lifting a heavy object together. Joint weight lifting implies a 
strong prospective sense of joint agency and a high joint-likelihood, hence a strong 
retrospective sense of joint agency as compared to self-agency. Fighting implies 
a strong prospective sense of joint agency, but the joint-likelihood would be low, 
as the competitor would aim at being less predictable. As a consequence, fighting 
implies a weaker retrospective sense of joint agency (as compared to self-agency). 
These predictions are also consistent with (Silver et  al., 2021), which identify the 
level of cooperation as the key action feature which modulates the sense of joint 
agency.

The model provides a computational substrate for the concepts of we-ness and 
we-representation (Gallotti & Frith, 2013; Kourtis et al., 2019). A partner in a joint 
action gathers significance only if he/she is seen in the self-perspective, as an aug-
mentation of the self. We would not need to account for our partner if there are no 
requirements to undergo a joint action, as in the unconnected phases of the simu-
lated experiment.

4.1.3  Agency as a dynamic experience

Our proposed model suggests that both senses of joint and self agency evolve in 
time. Before an action takes place, an early (prospective) sense of agency is deter-
mined by the task goal, requirements and constraints, and additional cognitive and 
emotional factors, as suggested by Synofzik et al. (2013) and Chambon et al. (2014). 
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This initial bias – the self and joint priors in our model – is combined with self and 
joint-likelihood signals, each quantifying the reliability of a different predictor of the 
ongoing action. The relative magnitudes of self and joint-likelihood change within 
a single action, up to action completion (retrospective agency). In the simulations, 
each player coordinates with their partner, but also needs to maintain their identity 
to achieve their own sub-goal – i.e. crossing their respective via-point. When the 
sensory information is more reliable, the sense of joint agency becomes stronger. 
However, the sense of self agency only increases if the partner is not perceived to 
effectively contribute to the action.

4.1.4  Agency determines the decision/control process

In our proposed multi-loop control architecture, the experienced self and joint 
agency play a pivotal role in motor command selection and therefore in the devel-
opment of the joint strategy. In other words, the sense of agency is not just about 
perception, but also affects action. The ‘self’ and ‘joint’ state observers give rise 
to separate controllers, whose relative importance is weighed by the sense of 
self and joint agency. Hence the sense of agency (self and joint) is not simply a 
byproduct of perception, but emerges from this dynamic process which involves a 
bidirectional interplay between action control and estimation of own and partner 
state.

A strong sense of joint agency places more emphasis on more collaborative 
actions and facilitates the convergence to a stable coordination, in which each 
player accounts for their partner and selects their action accordingly. If informa-
tion about the partner is more uncertain, the sense of joint agency is lower and the 
players converge to a strategy which relies less on partner’s actions. In both cases, 
the selected actions further emphasize either the senses of joint or self agency.

4.2  Learning in joint action

An open issue in joint action is how two players converge to a coordination strat-
egy. Fictitious play assumes that the players select the action which maximizes their 
respective objective function, by accounting for the empirical probability distribu-
tions of the actions of their opponent. A key property of fictitious play is that it 
only requires that each agent knows their partner’s probability distribution of previ-
ous actions. Higher-order theories of mind, possibly representing partner intentions 
(i.e. the control policies) or goals (i.e. their objective function) would lead to more 
efficient learning and/or to different Nash equilibria. Higher-order forms of theory 
of mind may lead to an infinite regression - each agent represents their opponent’s 
policy which accounts for their own and so on; see also Yoshida et al. (2008).

If an agent does not know in advance the relation between action and its subjec-
tive ‘value’ (in terms of our model, the ‘task representation’ block), he/she can learn 
it through some biologically plausible form of reinforcement learning, like Q-learn-
ing (Claus & Boutilier, 1998). In joint action scenarios, this is more complicated as 
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each agent’s goal – and its subjective value - depends on the actions of both agents. 
Here a question arises of whether learning the action(s)-value and predicting the 
partner actions occur independently, or are actually part of one single process. In a 
recent study focusing on sensorimotor versions of classical discrete games, Lindig-
León et  al. (2021) observed that convergence to a Nash equilibrium is consistent 
with a model-free form of reinforcement learning, in which actions are generated as 
a trade-off between their value and the requirement of minimizing their change with 
respect to the previous trial. This learning mechanism does not explicitly account for 
partner actions, but it is unclear if it would extend to more complex forms of coordi-
nation that involve more than just discrete decisions.

In conclusion, how a coordination strategy is learned is an open issue, and the 
value of the fictitious play hypothesis is that it represents a reference hypothesis 
against which other possibilities can be tested empirically.

4.3  Relation with previous models of joint action

As noted in section 2.2.3, the proposed model is inspired to the MOSAIC computa-
tional architecture (D. M. Wolpert & Kawato, 1998), which was originally developed 
to address motor system modularity. MOSAIC posits multiple observer-controller 
pairs, each specialized for specific actions (e.g. grasping a specific object) or envi-
ronmental conditions. In addition to the observer and the controller, each module 
has a responsibility predictor which uses contextual information to estimate the prior 
of that module. Priors and likelihoods (provided by the observer) are then combined 
into a weighing signal for the motor commands calculated by each controller mod-
ule. The model was later extended to address sensorimotor learning (Haruno et al., 
2001) and action observation (Wolpert et al., 2003). This latter study suggested that 
one pair of such models – one for action control, and the other devoted to action 
observation - could capture the mechanisms underlying social interaction. A recent 
study (Haar & Donchin, 2019) discusses MOSAIC’s possible neural substrates.

Here we extend the MOSAIC model by (i) incorporating priors which, combined 
with the likelihoods, provide the posterior probability of each scenario; and (ii) 
allowing for loops reflecting self and joint action. Self and joint action are treated as 
different scenarios, and self and joint agency are determined as their respective pos-
terior probabilities. Similar to ‘responsibilities’ in the MOSAIC model, the agency 
signals affect the action selection process.

The Predictive Joint Action Model, PJAM (Pesquita et  al., 2018) specifically 
addresses joint action. PJAM builds on HMOSAIC, an evolution of the original 
model (Haruno et al., 2003) which addresses the multilevel character of perception 
and action through a hierarchy of MOSAIC layers. Each layer receives posterior 
probabilities from the lower level module (bottom-up path), which specify the cur-
rently selected module in the current behavioral situation. The output of higher-level 
modules is a set of (top-down) prior probabilities of the subordinate modules, which 
act to prioritize lower-level module selection.

PJAM posits a hierarchy of ‘predictive processors’ (i.e. observer-controller pairs), 
which captures multiple levels of action representation, from high-level (symbolic) 
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to low-level (movement feature). Each layer posits a ‘self’ and a ‘other’ observer-
controller loop. At higher levels in the hierarchy the loops merge into a ‘joint’ loop, 
whereas at lower levels of the hierarchy the ‘self’ and ‘other’ loops remain distinct. 
Although the architecture is only described qualitatively, it seems effective in cap-
turing situations in which the incentive to act together is encoded into each play-
er’s objective function and is evaluated before the action takes place. PJAM is not 
intended for generating motor commands in a joint action context, but rather as a 
module for hierarchical predictive processing, focusing on action planning.

With respect to PJAM, our proposed model focuses on the generation of motor 
commands aimed at gradually achieving a stable coordination with a partner, 
even in  situations in which there is minimal or no information about partner’s 
actions or intentions. This necessarily requires a ‘joint’ controller, which explic-
itly accounts for both the ‘self’ and ‘other’ states. We also suggest that the con-
troller block is an optimal feedback controller, a more general formulation than 
MOSAIC or PJAM, which is easily extended through differential game theory to 
address joint action controllers.

Likewise, on the prediction side we point out that in general the ‘self’ and 
‘other’ state predictions cannot run independently, even at lower levels of repre-
sentation – think for instance of mechanical coupling. This suggests that a gen-
eral hierarchical predictor-observer architecture must involve a ‘joint’ loop at all 
levels of representation. In other words, a ‘joint’ predictive processor (or equiva-
lently two inter-dependent self-other predictive processors) is required at all lev-
els of the hierarchy.

In our model, we added a ‘self’ observer-controller loop to the ‘joint’ loop to 
account for the empirical observation of distinct experiences of joint and self agency. 
In conclusion, our proposed model differs from PJAM in that it posits a ‘joint’ and 
‘self’ rather than a ‘self’ and ‘other’ loop. Another difference is that our model does 
not address the multilevel character of action representation and only focuses on the 
lower level (movement feature), but the extension is straightforward.

Finally, and distinctively, we suggest that the responsibility signals can be inter-
preted as distinct subjective ‘joint’ and ‘self’ agency beliefs, an aspect which is not 
specifically addressed by HMOSAIC or PJAM.

In conclusion, our proposed model departs significantly from PJAM. We believe 
it provides a coherent picture of the inter-relation of prediction, control, and the 
sense of agency in a broader range of joint actions.

Recently, in the context of a gaze-contingent virtual task, Brandi et  al. (2019) 
proposed a Bayesian model for “social agency”, defined as the experience of control 
over the social environment. Based on experimental work of Pfeiffer et al. (2012), 
the model relies on specific key features of partner action, namely gaze direction 
(e.g. making eye contact) and temporal responsiveness. They propose that the (pre-
cision-weighted) mismatch between these observations and their predictions deter-
mines the degree of social agency. The precision-weighted sensory prediction error 
can be interpreted as the logarithm of the likelihood, hence the model is very related 
to the one proposed here. In fact, in a Bayesian framework the specific features that 
are more relevant to joint agency automatically emerge as the main contributors to 
the likelihood, with no need to specify them a priori.
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Our proposed model can be related to the free energy principle (FEP) framework 
(Friston et  al., 2006). FEP aims at unifying perception and action in terms of the 
minimization of one single quantity – free energy. Like the FEP, our proposed model 
relies on an optimization framework, but assumes separate costs for action genera-
tion and perception. Recently, Kahl and Kopp (2018) proposed a hierarchical FEP-
based model of sensorimotor coordination, which is capable to discriminate between 
self and other actions. Self and other agency are simulated in a handwriting task, by 
manipulating perception so that it is either consistent or not with their own action. 
They found that inconsistent (i.e. other) behavior corresponds to a greater free 
energy magnitude. However, the model does not directly address joint action and 
it is unclear how it would select the correct action in ‘joint’ scenarios in which the 
players are required to act at the same time, like in continuous coordination games.

All the above models (Brandi et  al., 2019; Haruno et  al., 2003; Kahl & Kopp, 
2018; Pesquita et  al., 2018) propose a hierarchical architecture to address the dif-
ferent levels of abstraction of the perception-action process. Here we only focus on 
a minimal architecture which focuses on the bottom layer of the prediction-action 
cycle, but the proposed framework can be extended to multiple layers to account for 
the integration of partner models at different levels of description.

5  Conclusions

Based on a Bayesian probabilistic framework we propose a general model of joint 
action which brings together prediction, control and the sense of agency in a broad 
range of joint action scenarios. The model extends previous models of the sense of 
self agency with two main extensions: a partner model which is capable of predict 
the partner actions or intentions as part of a ‘joint’ state observer, and an optimal 
controller based on differential game theory. The model posits two observer-con-
troller loops which run in parallel, accounting for ‘joint’ and ‘self’ prediction and 
control and provide continuous estimates of the experienced sense of joint and self 
agency. The proposed probabilistic framework captures the inter-individual variabil-
ity in joint action, so that the sense of agency is a highly subjective experience. Vari-
ability affects the sensorimotor loop at different levels. Individual differences are 
apparent in sensory acuity and in the accuracy of our internal representations, and 
personal traits affect the subjective evaluation of goals and task (Vallacher & Weg-
ner, 1989), leading to a more distal or proximal experience of action. These features 
are accounted by the priors and by the reliability of the sensory channels.

The proposed model has several speculative aspects which call for empirical test. 
The nature of the partner (‘other’) model is debated. It may only focus on ongo-
ing movements; or the ongoing motor commands; or even the underlying intentions/
goals. This aspect probably depends on the task and its context, and can be explored 
empirically. Another aspect is the relation of the partner model with the prediction 
of our own action (‘self’ observer). Different to similar accounts (Pesquita et  al., 
2018) we suggest that ‘self’ and ‘other’ observer are interdependent, so that they 
should be really considered as a single ‘joint’ observer.
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How is a stable coordination strategy developed is another aspect of the proposed 
model. We proposed fictitious play as a general mechanism, but there are alterna-
tives – e.g. reinforcement learning – which may better capture the experimental 
observations and could provide additional insights about the prospective and retro-
spective components of the sense of agency.

Another aspect of the model that call for additional empirical test is the intro-
duction of a ‘self’ observer-controller loop as the basis to account for the empirical 
observations of distinct senses of joint and self agency: how does it compare with 
the accounts of we-agency and shared-agency subtypes of joint agency?

Differential game theory in conjunction with optimal estimations provides a wide 
range of tools which can be used to address joint action.

The design of experiments to disentangle the senses of self and joint agency is 
extremely challenging. Questionnaires provide useful tools to quantify the sense 
of self and joint agency, but they have limitations in capturing the temporal evolu-
tion of the agency during a sustained joint action performance and in the independ-
ent assessment of joint and self agency. Other approaches, like intentional binding 
(Haggard et al., 2002), need to be extended to specifically address joint agency.

Overall, computational and empirical approaches can potentially inform each 
other for a complete understanding and a general description of the sense of agency 
and its behavioral implications.
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