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Abstract We review the existing mathematical models which describe physico-
chemical mechanisms capable of producing a symmetry-breaking transition to a
state in which one chirality dominates the other. A new model is proposed, with
the aim of elucidating the fundamental processes at work in the crystal grinding
systems of Viedma (Phys Rev Lett 94:065504, 2005) and Noorduin (J Am Chem
Soc 130:1158–1159, 2008). We simplify the model as far as possible to uncover the
fundamental competitive process which causes the symmetry-breaking, and analyse
other simplifications which might be expected to show symmetry-breaking.

Keywords Symmetry-breaking · Homochirality · Crystal growth ·
Enantiomeric excess · Mathematical modelling

Introduction

A significant stage in the formation of living systems was the transition from a
symmetric chemistry involving mirror-symmetric and approximately equal numbers
of left- and right-handed chiral species into a system involving just one-handedness
of chiral molecules.

In this paper we focus on mathematical models of one example of a physico-
chemical system which undergoes such a symmetry-breaking transition, namely the
crystal grinding processes investigated by Viedma (2005) and Noorduin et al. (2008),
which have been recently reviewed by McBride and Tully (2008). Our aim is to
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describe this process by way of a detailed microscopic model of the nucleation and
growth processes and then to simplify the model, retaining only the bare essential
mechanisms responsible for the symmetry-breaking bifurcation.

We start by reviewing the processes which are already known to cause a symmetry-
breaking bifurcation. By this we mean that a system which starts off in a racemic state
(one in which both left-handed and right-handed structures occur with approximately
equal frequencies) and, as the system evolves, the two handednesses grow differently,
so that at a later time, one handedness is predominant in the system.

Models for Homochiralisation

Many models have been proposed for the emergence of homochirality from an
initially racemic mixture of precursors. Frank (1953) proposed an open system into
which R and S particles are continually introduced, and combine to form one of
two possible products: left- or right-handed species, X, Y. Each of these products
acts as a catalyst for its own production (autocatalysis), and each combines with
the opposing handed product (cross-inhibition) to form an inert product (P) which
is removed from the system at some rate. These processes are summarised by the
following reaction scheme:

external source → R, S input, k0,

R + S � X R + S � Y slow, k1,

R + S + X � 2X R + S + Y � 2Y fast, autocatalytic, k2

X + Y → P cross-inhibition, k3,

P → removal, k4.

(1.1)

Ignoring the reversible reactions (for simplicity), this system can be modelled by the
differential equations

dr
dt

= k0 − 2k1rs − k2rs(x + y) + k−1(x + y) + k−2(x2 + y2), (1.2)

ds
dt

= k0 − 2k1rs − k2rs(x + y) + k−1(x + y) + k−2(x2 + y2), (1.3)

dx
dt

= k1rs + k2rsx − k3xy − k−1x − k−2x2, (1.4)

dy
dt

= k1rs + k2rsy − k3xy − k−1 y − k−2 y2, (1.5)

dp
dt

= k3xy − k4 p, (1.6)

from which we note that at steady-state we have

rs = k0 + k−1(x + y) + k−1(x2 + y2)

2k1 + k2(x + y)
. (1.7)
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We write the absolute enantiomeric excess as ee = x − y and the total concentration
as σ = x + y; adding and subtracting the equations for dx/dt and dy/dt, we find

σ 2 = 2k0

k3
+ ee2, (1.8)

ee
[

k2(k−2ee2 + k−2σ
2 + 2k−1σ + 2k0)

2(2k1 + k2σ)
− k−1 − k−2σ

]
= 0. (1.9)

Hence ee = 0 is always a solution, and there are other solutions with ee �= 0 if the
rate constants k∗ satisfy certain conditions (these include k3 > k−2 and k0 being
sufficiently large).

The important issues to note here are:

(i) this system is open, it requires the continual supply of fresh R, S to maintain
the asymmetric steady-state. Also, the removal of products is required to avoid
the input terms causing the total amount of material to increase indefinitely;

(ii) the forcing input term drives the system away from an equilibrium solution,
into a distinct steady-state solution;

(iii) the system has cross-inhibition which removes equal numbers of X and Y,
amplifying any differences caused by random fluctuations in the initial data
or in the input rates.

Saito and Hyuga (2004) discuss a sequence of toy models describing homochirality
caused by nonlinear autocatalysis and recycling. Their family of models can be
summarised by

dr
dt

= kr2(1 − r − s) − λr, (1.10)

ds
dt

= ks2(1 − r − s) − λs, (1.11)

where r and s are the concentrations of the two enantiomers. Initially they consider
kr = ks = k and λ = 0 and find that enantiomeric exess, r − s is constant. Next the
case kr = kr, ks = ks, λ = 0 is analysed, wherein the relative enantiomeric excess r−s

r+s
is constant. Then the more complex case of kr = kr2, ks = ks2, λ = 0 is analysed,
and amplification of the enantiomeric excess is obtained. This amplification persists
when the case λ > 0 is finally analysed. This shows us strong autocatalysis may cause
homochiralisation, but in any given experiment, it is not clear which form of rate
coefficients (kr, ks, λ) should be used.

Saito and Hyuga (2005) analyse a series of models of crystallisation which include
some of features present in our more general model. They note that a model
truncated at tetramers exhibits different behaviour from one truncated at hexamers.
In particular, the symmetry-breaking phenomena is not present in the tetramer
model, but is exhibited by the hexamer model. Hence, later, we will consider models
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truncated at the tetramer and the hexamer levels and investigate the differences in
symmetry-breaking behaviour (“The Truncation at Tetramers” and “The Truncation
at Hexamers”).

Denoting monomers by c, small and large left-handed clusters by x1, x2 respec-
tively and right-handed by y1, y2, Uwaha (2004) writes down the scheme

dc
dt

= −2k0c2 − k1c(x1 + y1) + λ1(x2 + y2) + λ0(x1 + y1), (1.12)

dx1

dt
= k0c2 − kux1x2 − kcx2

1 + λux2 + λ0x1, (1.13)

dx2

dt
= k1x2c + kux1x2 + kcx2

1 − λ1x2 − λux2, (1.14)

dy1

dt
= k0c2 − ku y1 y2 − kc y2

1 + λu y2 + λ0 y1, (1.15)

dy2

dt
= k1 y2c + ku y1 y2 + kc y2

1 − λ1 y2 − λu y2, (1.16)

which models

– the formation of small chiral clusters (x1, y1) from an achiral monomer (c) at
rate k0,

– small chiral clusters (x1, y1) of the same handedness combining to form larger
chiral clusters (rate kc),

– small and larger clusters combining to form larger clusters (rate ku),
– large clusters combining with achiral monomers to form more large clusters at

the rate k1,
– the break up of larger clusters into smaller clusters (rate λu),
– the break up of small clusters into achiral monomers (rate λ0),
– the break up of larger clusters into achiral monomers (rate λ1).

Such a model can exhibit symmetry-breaking to a solution in which x1 �= x2 and
x2 �= y2. Uwaha points out that the recycling part of the model (the λ∗ parameters)
are crucial to the formation of a ‘completely’ homochiral state. One problem with
such a model is that since the variables are all total masses in the system, the size
of clusters is not explicitly included. This can easily be overcome by using a more
formal coarse-grained model such as that of Bolton and Wattis (2003). In asymmetric
distributions, the typical size of left- and right- handed clusters may differ drastically,
hence the rates of reactions will proceed differently in the cases of a few large crystals
or many smaller crystals.

Sandars has proposed a model of symmetry-breaking in the formation of chiral
polymers (2003). His model has an achiral substrate (S) which splits into chiral
monomers L1, R1 both spontaneously at a slow rate and at a faster rate, when
catalysed by the presence of long homochiral chains. This catalytic effect has both
autocatalytic and crosscatalytic components, that is, for example, the presence of
long right-handed chains Rn autocatalyses the production of right-handed monomers
R1 from S, (autocatalysis) as well as the production of left-handed monomers,
L1 (crosscatalysis). Sandars assumes the growth rates of chains are linear and not



Mathematical Models of the Homochiralisation of Crystals by Grinding 137

catalysed; the other mechanism required to produce a symmetry-breaking bifurca-
tion to a chiral state is cross-inhibition, by which chains of opposite handednesses in-
teract and prevent either from further growth. These mechanisms are summarised by

S → L1, S → R1, slow,

S + Ln → L1 + Ln, S + Rn → R1 + Rn, autocatalytic, rate ∝ 1 + f ,

S + Rn → L1 + Rn, S + Ln → R1 + Ln, cross-catalytic, rate ∝ 1 − f ,

Ln + L1 → Ln+1, Rn + R1 → Rn+1, chain growth, rate = a,

Ln + R1 → Qn+1, Rn + L1 → Pn+1, cross-inhibition, rate = aχ.

This model and generalisations of it have been analysed by Sandars (2003),
Brandenburg et al. (2005a, b), Multimaki and Brandenburg (2005), Wattis and
Coveney (2005a, b), Gleiser and Walker (2008), Gleiser et al. (2008), Coveney and
Wattis (2006). Typically a classic pitchfork bifurcation is found when the fidelity ( f )
of the autocatalysis over the cross-catalysis is increased. One counterintuitive effect
is that increasing the cross-inhibition effect (χ) aids the bifurcation, allowing it to
occur at lower values of the fidelity parameter f .

Experimental Results on Homochiralisation

The Soai reaction was one of the first experiments which demonstrated that a
chemical reaction could amplify initial small imbalances in chiral balance; that is,
a small enantiomeric exess in catalyst at the start of the experiment led to a much
larger imbalance in the chiralities of the products at the end of the reaction. Soai et al.
(1995) was able to achieve an enantiomeric exess exceeding 85% in the asymmetric
autocatalysis of chiral pyrimidyl alkanol.

The first work showing that crystallisation experiments could exhibit symmetry
breaking was that of Kondepudi and Nelson (1990). Later Kondepudi et al. (1995)
showed that the stirring rate was a good bifurcation parameter to analyse the final
distribution of chiralities of crystals emerging from a supersaturated solution of
sodium chlorate. With no stirring, there were approximately equal numbers of left-
and right-handed crystals. Above a critical (threshold) stirring rate, the imbalance
in the numbers of each handedness increased, until, at large enough stirring rates,
total chiral purity was achieved. This is due to all crystals in the system being derived
from the same ‘mother’ crystal, which is the first crystal to become established in
the system; all other crystals grow from fragments removed from it (either directly
or indirectly). Before this, Kondepudi and Nelson (1984, 1985) worked on the
theory of chiral symmetry-breaking mechanisms with the aim of predicting how
parity-violating perturbations could be amplified to give an enantiomeric exess in
prebiotic chemistry, and the timescales involved. Their results suggest a timescale
of approximately 104 years. More recently, Kondepudi and Asakura (2001) have
summarised both the experimental and theoretical aspects of this work.

Viedma (2005) was the first to observe that grinding a mixture of chiral crystals
eventually led to a distribution of crystals which were all of the same handedness. The
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crystalline material used was sodium chlorate, as used by Kondepudi et al. (1990).
Samples of L and D crystals are mixed with water in round-bottomed flasks and the
system is stirred by a magnetic bar (of length 3–20mm) at 600 rpm. The system is
maintained in a supersaturated state; small glass balls are added to continually crush
the crystals. The grinding is thus continuous, and crystals are maintained below a
size of 200 μm. The chirality of the resulting crystals was determined by removing
them from the flask, allowing them to grow and measuring their optical activity.
The results show that, over time, the percentages of left- and right-handed crystals
steadily change from about 50/50 to 100/0 or 0/100—a state which is described as
complete chiral purity. With stirring only and no glass balls, the systems conserve
their initial chiral excesses; with glass balls present and stirring, the chiral excess
increases, and this occurs more rapidly if more balls are present or the speed of
stirring is increased.

More recently, Noorduin et al. (2008) have observed a similar effect with amino
acids—a much more relevant molecule in the study of origins of life. This work has
been reviewed by McBride and Tully (2008), who add to the speculation on the
mechanisms responsible for the phenomenon. Noorduin et al. describe grinding as
‘dynamic dissolution/crystallization processes that result in the conversion of one
solid enantiomorph into the other’. They also note that ‘once a state of single chirality
is achieved, the system is “locked” because primary nucleation to form and sustain
new crystals from the opposite enantiomer is kinetically prohibited’. Both these
quotes include the crucial fact that the process evolves not towards an equilibrium
solution (which would be racemic), but towards a different, dynamic steady-state
solution. As noted by Plasson (personal communication, 2008), this nonequilibrium
state is maintained due to the constant input of energy into the system through the
grinding process.

McBride and Tully (2008) discuss the growth of one enantiomorph, and the
dissolution of the other as a type of Ostwald ripening process; with the large surface
area to volume ratio of smaller crystals giving a rapid dissolution rate, whilst larger
crystals, have a lower surface area to volume ratio meaning that they dissolve more
slowly. However appealing such an argument maybe, since surface area arguments
can equally well be applied to the growth side of the process, it is not clear that this
is either necessary or sufficient. Infact, the model analysed later in this paper will
show that a critical cluster size is not necessary to explain homochiralisation through
grinding.

Our Aims

We aim to describe the results of the crystal grinding phenomenon through a model
which recycles mass through grinding, which causes crystals to fragment, rather than
having explicit mass input and removal. Simultaneously we need crystal growth
processes to maintain a distribution of sizeable crystals.

We assume that the crystals are solids formed in an aqueous environment, how-
ever, we leave open questions as to whether they are crystals of some mineral of direct
biological relevance (such as amino acids), or whether they are some other material,
which after growing, will later provide a chirally selective surface for biomolecules
to crystallise on, or be a catalyst for chiral polymerisation to occur. Following
Darwin’s (1871) “warm little pond”, an attractive scenario might be a tidal rock pool,
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where waves agitating pebbles provide the energetic input for grinding. Taking more
account of recent work, a more likely place is a suboceanic hydrothermal vent where
the rapid convection of hot water impels growing nucleii into the vent’s rough walls
as well as breaking particles off the walls and entraining them into the fluid flow,
simultaneously grinding any growing crystals.

In “The BD Model with Dimer Interactions and an Amorphous Metastable
Phase” we propose a detailed microscopic model of the nucleation and crystal growth
of several species simultaneously. This has the form of a generalised Becker–Döring
system of equations (1935). Due to the complexity of the model we immediately sim-
plify it, making assumptions on the rate coefficients. Furthermore, to elucidate those
processes which are responsible for homochiralisation, we remove some processes
completely so as to obtain a simple system of ordinary differential equations which
can be analysed theoretically.

The simplest model which might be expected to show homochiralisation is one
which has small and large clusters of each handedness. Such a truncated model
is considered in “The Truncation at Tetramers” wherein it is shown that such a
model might lead to amplification of enantiomeric exess in the short time, but that
in the long-time limit, only the racemic state can be approached. This model has
the structure akin to that of Saito and Hyuga (2005) truncated at the tetramer
level.

Hence, in “The Truncation at Hexamers” we consider a more complex model
with a cut-off at larger sizes (one can think of small, medium, and large clusters of
each handedness). Such a model has a similar structure to the hexamer truncation
analysed by Saito and Hyuga (2005). We find that such a model does allow a final
steady-state in which one chirality dominates the system and the other is present
only in vanishingly small amounts.

However, as discussed earlier, there may be subtle effects whereby it is not
just the number of crystals of each type that is important to the effect, but a
combination of size and number of each handedness of crystal that is important to the
evolution of the process. Hence, in “New Simplifications of the System” we introduce
an alternative reduction of the system of governing equations. In this, instead of
truncating and keeping only clusters of a small size, we postulate a form for the
distribution which includes information on both the number and size of crystals, and
use these two quantities to construct a system of five ordinary differential equations
for the system’s evolution.

We discuss the results in “Discussion” and “Conclusions” which conclude the
paper. The Appendix A shows how, by removing the symmetry in the growth rates of
the two handednesses, the model could be generalised to account for the competitive
nucleation of different polymorphs growing from a common supply of monomer.

The BD Model with Dimer Interactions and an Amorphous Metastable Phase

Preliminaries

Smoluchowski (1916) proposed a model in which clusters of any sizes could combine
pairwise to form larger clusters. Chemically this process is written Cr + Cs → Cr+s
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where Cr represents a cluster of size r. Assuming this process is reversible and occurs
with a forward rate given by ar,s and a reverse rate given by br,s, the law of mass
action yields the kinetic equations

dcr

dt
= 1

2

r−1∑
s=1

(
as,r−scscr−s − b s,r−scr

) −
∞∑

s=1

(
ar,scrcs − br,scr+s

)
. (2.1)

These are known as the coagulation-fragmentation equations. There are sim-
plifications in which only interactions between clusters of particular sizes are per-
mitted to occur, for example when only cluster-monomer interactions can occur,
the Becker–Döring equations (1935) are obtained. da Costa (1998) has formulated a
system in which only clusters upto a certain size (N) are permitted to coalesce with or
fragment from other clusters. In the case of N = 2, which is pertinent to the current
study, only cluster-monomer and cluster-dimer interactions are allowed, for example

Cr + C1 � Cr+1, Cr + C2 � Cr+2. (2.2)

This leads to a system of kinetic equations of the form

dcr

dt
= Jr−1 − Jr + Kr−2 − Kr, (r ≥ 3), (2.3)

dc2

dt
= J1 − J2 − K2 −

∞∑
r=1

Kr, (2.4)

dc1

dt
= −J1 − K2 −

∞∑
r=1

Jr, (2.5)

Jr = arcrc1 − br+1cr+1, Kr = αrcrc2 − βr+2cr+2. (2.6)

A simple example of such a system has been analysed previously by Bolton and
Wattis (2002).

In the next subsection we generalise the model (Eq. 2.1) to include a variety of
‘species’ or ‘morphologies’ of cluster, representing left-handed, right-handed and
achiral clusters. We simplify the model in stages to one in which only monomer
and dimer interactions are described, and then one in which only dimer interactions
occur.

A Full Microscopic Model of Chiral Crystallisation

We start by outlining all the possible cluster growth, fragmentation and transforma-
tion processes. We denote the two handed clusters by Xr, Yr, where the subscript r
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specifies the size of cluster. Achiral clusters are denoted by Cr, and we allow clusters
to change their morphology spontaneously according to

Cr → Xr rate = μr, Xr → Cr rate = μrνr,

Cr → Yr rate = μr, Yr → Cr rate = μrνr.
(2.7)

We allow clusters to grow by coalescing with clusters of similar handedness or an
achiral cluster. In the case of the latter process, we assume that the cluster produced
is chiral with the same chirality as the parent. Thus

Xr + Xs → Xr+s, rate = ξr,s,

Xr + Cs → Xr+s, rate = αr,s,

Cr + Cs → Cr+s, rate = δr,s,

Yr + Cs → Yr+s, rate = αr,s,

Yr + Ys → Yr+s, rate = ξr,s.

(2.8)

We do not permit clusters of opposite to chirality to merge. Finally we describe
fragmentation: all clusters may fragment, producing two smaller clusters each of the
same chirality as the parent cluster

Xr+s → Xr + Xs rate = βr,s,

Cr+s → Cr + Cs rate = εr,s,

Yr+s → Yr + Ys rate = βr,s.

(2.9)

Setting up concentration variables for each size and each type of cluster by defining
cr(t) = [Cr], xr(t) = [Xr], yr(t) = [Yr] and applying the law of mass action, we
obtain

dcr

dt
= −2μrcr + μrνr(xr + yr) −

∞∑
k=1

αk,rcr(xk + yk) (2.10)

+1
2

r−1∑
k=1

(
δk,r−kckcr−k − εk,r−kckcr−k

) −
∞∑

k=1

(
δk,rckcr − εk,rcr+k

)
,

dxr

dt
= μrcr − μrνrxr +

r−1∑
k=1

αk,r−kckxr−k − 1
2

r−1∑
k=1

(
ξk,r−kxkxr−k − βk,r−kxr

)

−
∞∑

k=1

(
ξk,rxkxr − βk,rxr+k

)
, (2.11)

dyr

dt
= μrcr − μrνr yr +

r−1∑
k=1

αk,r−kck yr−k − 1
2

r−1∑
k=1

(
ξk,r−k yk yr−k − βk,r−k yr

)

−
∞∑

k=1

(
ξk,r yk yr − βk,r yr+k

)
. (2.12)
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The main problem with such a model is the vast number of parameters that have
been introduced (αr,k, ξr,k, βr,k, μr, νr, δr,k, εr,k, for all k, r).

Hence we make several simplifications:

(i) we assume that the dominant coagulation and fragmentation processes are
between large and very small clusters (rather than large clusters and other
large clusters). Specifically, we assume that only coalescences involving C1 and
C2 need to be retained in the model, and fragmentation always yields either a
monomer or a dimer fragment. This assumption means that the system can
be reduced to a generalised Becker–Döring equation closer to the form of
Eqs. 2.3–2.6 rather than Eq. 2.1;

(ii) we also assume that the achiral clusters are unstable at larger size, so that their
presence is only relevant at small sizes. Typically at small sizes, clusters are
amorphous and do not take on the properties of the bulk phase, hence at small
sizes clusters can be considered achiral. We assume that there is a regime of
cluster sizes where there is a transition to chiral structures, and where clusters
can take on the bulk structure (which is chiral) as well as exist in amorphous
form. At even larger sizes, we assume that only the chiral forms exist, and no
achiral structure can be adopted;

(iii) furthermore, we assume that all rates are independent of cluster size,
specifically,

αk,1 = a, αk,2 = α, αk,r = 0, (r ≥ 2) (2.13)

μ2 = μ, μr = 0, (r ≥ 3), (2.14)

ν2 = ν, νr = 0, (r ≥ 3), (2.15)

δ1,1 = δ, δk,r = 0, (otherwise) (2.16)

ε1,1 = ε, εk,r = 0, (otherwise) (2.17)

ξk,2 = ξ2,k = ξ, ξk,r = 0, (otherwise) (2.18)

βk,1 = β1,k = b , βk,2 = β2,k = β, βk,r = 0, (otherwise),

(2.19)

Ultimately we will set a = b = 0 = δ = ε so that we have only five parameters
to consider (α, ξ , β, μ, ν).

This scheme is illustrated in Fig. 1. However, before writing down a further
system of equations, we make one further simplification. We take the transition
region described in (ii), above, to be just the dimers. Thus the only types of achiral
cluster are the monomer and the dimer (c1, c2); dimers exist in achiral, right- and
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Fig. 1 Reaction scheme
involving monomer and dimer
aggregation and fragmentation
of achiral clusters and those of
both handednesses (right and
left). The aggregation of
achiral and chiral clusters is
not shown (rates α, ξ)

left-handed forms (c2, x2, y2); at larger sizes only left- and right-handed clusters exist
(xr, yr, r ≥ 2).

The kinetic equations can be reduced to

dc1

dt
= 2εc2 − 2δc2

1 −
∞∑

r=2

(ac1xr + ac1 yr − b xr+1 − b yr+1), (2.20)

dc2

dt
= δc2

1 − εc2 − 2μc2 + μν(x2 + y2) −
∞∑

r=2

αc2(xr + yr), (2.21)

dxr

dt
= ac1xr−1 − b xr − ac1xr + b xr+1 + αc2xr−2 − αc2xr

−βxr + βxr+2 + ξx2xr−2 − ξx2xr, (r ≥ 4), (2.22)

dx3

dt
= ac1x2 − b x3 − ac1x3 + b x4 − αc2x3 − ξx2x3 + βx5, (2.23)

dx2

dt
= μc2 − μνx2 + b x3 − ac1x2 − αx2c2 + βx4

+
∞∑

r=2

βxr+2 −
∞∑

r=2

ξx2xr − ξx2
2, (2.24)

dyr

dt
= ac1 yr−1 − b yr − ac1 yr + b yr+1 + αc2 yr−2 − αc2 yr

−βyr + βyr+2 + ξy2 yr−2 − ξy2 yr, (r ≥ 4), (2.25)

dy3

dt
= ac1 y2 − b y3 − ac1 y3 + b y4 − αc2 y3 − ξy2 y3 + βy5, (2.26)

dy2

dt
= μc2 − μνy2 + b y3 − ac1 y2 − αy2c2 + βy4

+
∞∑

r=2

βyr+2 −
∞∑

r=2

ξy2 yr − ξy2
2. (2.27)
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Summary and Simulations of the Macroscopic Model

The advantage of the above simplifications is that certain sums appear repeatedly; by
defining new quantities as these sums, the system can be written in a simpler fashion.
We define Nx = ∑∞

r=2 xr, Ny = ∑∞
r=2 yr, then

dc1

dt
= 2εc2 − 2δc2

1 − ac1(Nx + Ny) + b(Nx − x2 + Ny − y2), (2.28)

dc2

dt
= δc2

1 − εc2 − 2μc2 + μν(x2 + y2) − αc2(Nx + Ny), (2.29)

dNx

dt
= μc2 − μνx2 + β(Nx − x3 − x2) − ξx2 Nx, (2.30)

dx2

dt
= μc2 − μνx2 + b x3 − ac1x2 − αx2c2 + β(x4 + Nx − x2 − x3)

−ξx2
2 − ξx2 Nx, (2.31)

dNy

dt
= μc2 − μνy2 + β(Ny − y3 − y2) − ξy2 Ny, (2.32)

dy2

dt
= μc2 − μνy2 + b y3 − ac1 y2 − αy2c2 + β(y4 + Ny − y2 − y3)

−ξy2
2 − ξy2 Ny. (2.33)

However, such a system of equations is not ‘closed’. The equations contain
x3, y3, x4, y4, and yet we have no expressions for these; reintroducing equations
for x3, y3 would introduce x5, y5 and so an infinite regression would be entered
into.

Hence we need to find some suitable alternative expressions for x3, y3, x4, y4;
or an alternative way of reducing the system to just a few ordinary differential
equations that can easily be analysed. Such systems are considered in “The
Truncation at Tetramers”, “The Truncation at Hexamers” and “New Simplifications
of the System. Before that, however, we illustrate the behaviour of the system by
briefly presenting the results of some numerical simulations. In Figs. 2 and 3 we show
the results of a simulation of Eqs. 2.28–2.33. The former shows the evolution of the
concentrations c1 which rises then decays, c2 which decays since the parameters have
been chosen to reflect a cluster-dominated system. Also plotted are the numbers of
clusters Nx, Ny and the mass of material in clusters �x, �y defined by

�x =
K∑

j=2

jx j, �y =
K∑

j=2

jy j. (2.34)

Note that under this definition �x + �y + c1 + 2c2 is conserved, and this is plotted
as rho. Both the total number of clusters, Nx + Ny, and total mass of material in
handed clusters �x + �y appear to equilibrate by t = 102, however, at a much later
time (t ∼ 104 − 105) a symmetry-breaking bifurcation occurs, and the system changes
from almost racemic (that is, symmetric) to asymmetric. This is more clearly seen
in Fig. 3, where we plot the cluster size distribution at three time points. At t = 0
there are only dimers present (dashed line), and we impose a small difference in the
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Fig. 2 Plot of the
concentrations c1, c2, Nx, Ny,
N = Nx + Ny, �x, �y, �x + �y
and �x + �y + 2c2 + c1 against
time, t on a logarithmic
timescale. Since model
equations are in
nondimensional form, the time
units are arbitrary. Parameter
values μ = 1.0, ν = 0.5, δ = 1,
ε = 5, a = 4, b = 0.02, α = 10,
ξ = 10, β = 0.03, with initial
conditions c2 = 0.49,
x4(0) = 0.004, y4(0) = 0.006,
and all other concentrations
zero
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concentrations of x2 and y2. At a later time, t = 112 (dotted line), there is almost no
difference between the X- and Y-distributions, however by the end of the simulation
(t ∼ 106, solid line) one distribution clearly completely dominates the other.

Simplified Macroscopic Model

To obtain the simplest model which involves three polymorphs corresponding to
right-handed and left-handed chiral clusters and achiral clusters, we now aim to
simplify the processes of cluster aggregation and fragmentation in Eqs. 2.28–2.33.
Our aim is to retain the symmetry-breaking phenomenon but eliminate physical
processes which are not necessary for it to occur.

Fig. 3 Plot of the cluster size
distribution at t = 0 (dashed
line), t = 112 (dotted line) and
t = 9.4 × 105. Parameters and
initial conditions as in Fig. 2
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Our first simplification is to remove all clusters of odd size from the model, and
just consider dimers, tetramers, hexamers, etc. This corresponds to putting a = 0,
b = 0 which removes x3 and y3 from the system. Furthermore, we put ε = 0 and
make δ large, so that the achiral monomer is rapidly and irreversibly converted to
achiral dimer. Since the monomers do not then influence the evolution of any of the
other variables, we further simplify the system by ignoring c1 (or, more simply, just
impose initial data in which c1(0) = 0). Thus we are left with

dc2

dt
= −2μc2 + μν(x2 + y2) − αc2(Nx + Ny), (2.35)

dNx

dt
= μc2 − μνx2 + β(Nx − x2) − ξx2 Nx, (2.36)

dx2

dt
= μc2 − μνx2 − αx2c2 + β(Nx − x2 + x4) − ξx2

2 − ξx2 Nx, (2.37)

dNy

dt
= μc2 − μνy2 + β(Ny − y2) − ξy2 Ny, (2.38)

dy2

dt
= μc2 − μνy2 − αy2c2 + β(Ny − y2 + y4) − ξy2

2 − ξy2 Ny. (2.39)

Since we have removed four parameters from the model, and halved the number of
dependent variables, we show a couple of numerical simulations just to show that the
system above does still exhibit symmetry-breaking behaviour.

Figure 4 appears similar to Fig. 2, suggesting that removing the monomer interac-
tions has changed the underlying dynamics little. We still observe the characteristic

Fig. 4 Plot of the
concentrations c1, c2, Nx, Ny,
N = Nx + Ny, �x, �y, �x + �y
and �x + �y + 2c2 + c1 against
time, t on a logarithmic
timescale. Since model
equations are in
nondimensional form, the time
units are arbitrary. Parameter
values μ = 1, ν = 0.5, α = 10,
ξ = 10, β = 0.03, with initial
conditions c2 = 0.49,
x4(0) = 0.004, y4(0) = 0.006,
all other concentrations zero

10
-2

10
0

10
2

10
4

10
6

0

0.2

0.4

0.6

0.8

1

c1
c2
nx

ny
n
rox

roy
rox+roy
rho



Mathematical Models of the Homochiralisation of Crystals by Grinding 147

Fig. 5 Plot of the cluster size
distribution at t = 0 (dashed
line), t = 250 (dotted line) and
t = 6 × 105. Parameters and
initial conditions as in Fig. 4
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equilibration of cluster numbers and cluster masses as c2 decays, and then a period of
quiesence (t ∼ 10 to 104) before a later symmetry-breaking event, around t ∼ 105. At
first sight, the distribution of X- and Y-clusters displayed in Fig. 5 is quite different
to Fig. 3; this is due to the absence of monomers from the system, meaning that only
even-sized clusters can now be formed. If one only looks at the even-sized clusters
in Fig. 5, we once again see only a slight difference at t = 0 (dashed line), almost no
difference at t ≈ 250 (dotted line) but a significant difference at t = 6 × 105 (solid
line). We include one further graph here, Fig. 6 similar to Fig. 4 but on a linear rather
than a logarithmic timescale. This should be compared with figures such as Figs. 3
and 4 of Viedma (2005) and Fig. 1 of Noorduin et al. (2008).

Fig. 6 Plot of the
concentrations c1, c2, Nx, Ny,
N = Nx + Ny, �x, �y, �x + �y
and �x + �y + 2c2 + c1 against
time, t on a logarithmic
timescale. Parameters and
initial conditions as in Fig. 4
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The Truncation at Tetramers

The simplest possible reaction scheme of the form Eqs. 2.20–2.27 which we might
expect to exhibit symmetry-breaking to homochirality is the system truncated at
tetramers (Fig. 7), namely

dc2

dt
= −2μc2 + μν(x2 + y2) − αc2(x2 + y2), (3.1)

dx2

dt
= μc2 − μνx2 − αc2x2 − 2ξx2

2 + 2βx4, (3.2)

dy2

dt
= μc2 − μνy2 − αc2 y2 − 2ξy2

2 + 2βy4, (3.3)

dx4

dt
= αx2c2 + ξx2

2 − βx4, (3.4)

dy4

dt
= αy2c2 + ξy2

2 − βy4. (3.5)

We investigate the symmetry-breaking by transforming the variables x2, x4, y2, y4

according to

x2 = 1
2

z(1 + θ), y2 = 1
2

z(1 − θ), (3.6)

x4 = 1
2
w(1 + φ), y4 = 1

2
w(1 − φ), (3.7)

Fig. 7 Simplest possible
reaction scheme which might
exhibit chiral
symmetry-breaking
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where z = x2 + y2 is the total concentration of chiral dimers, w = x4 + y4 is the total
tetramer concentration, θ = (x2 − y2)/z is the relative chirality of the dimers, φ =
(x4 − y4)/w is the relative chirality of tetramers. Hence

dc2

dt
= −2μc2 + μνz − αc2z, (3.8)

dz
dt

= 2μc2 − μνz − αc2z − ξz2(1 + θ2) + 2βw, (3.9)

dw

dt
= αzc2 + 1

2
ξz2(1 + θ2) − βw, (3.10)

dθ

dt
= −θ

(
2μc

z
+ 2βw

z
+ ξz(1 − θ2)

)
+ 2βwφ

z
, (3.11)

dφ

dt
= θ

z
w

(αc + ξz) −
(

αc + 1
2
ξz(1 + θ2)

)
z
w

φ. (3.12)

The stability of the evolving symmetric-state (θ = φ = 0) is given by the eigenvalues
(q) of the matrix

⎛
⎜⎝−

(
2μc

z
+ 2βw

z
+ ξz

)
2βw

z

(αc + ξz)
z
w

−(αc + 1
2
ξz)

z
w

⎞
⎟⎠ , (3.13)

which are given by

q2 + q
(

αcz
w

+ ξz2

w
+ 2μc

z
+ ξz + 2βw

z

)
+

1
w

(
2μαc2 + μcξz + αcξz2 + 1

2
ξ 2z3 − βξzw

)
= 0. (3.14)

Hence there is an instability if

βξzw > 2μαc2 + μcξz + αcξz2 + 1
2
ξ 2z3, (3.15)

using the steady-state result that 2βw = z(2αc + ξz) and factorising (2αc + ξz) out
of the result, reduces the instability Eq. 3.15 to the contradictory ξz2 > ξz2 + 2μc.
Hence the racemic steady-state of the system is stable for all choices of parameter
values and is approached from all initial conditions. However, initial perturbations,
may be amplified due to the presence of nonlinear terms.
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Fig. 8 The concentrations c2,
z and w Eqs. 3.6–3.7 plotted
against time, for the
tetramer-truncated system
with the two sets of initial data
(Eq. 3.16). Since model
equations are in
nondimensional form, the time
units are arbitrary. The
parameter values are μ = 1,
ν = 0.5, α = ξ = 10, β = 0.1
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Evolution from two sets of initial conditions of the system Eqs. 3.1–3.5 are shown
in each of Figs. 8 and 9. The continuous and dotted lines correspond to the initial
data

c2(0) = 0.29, x2(0) = 0.0051, y2(0) = 0.0049,

x4(0) = 0.051, y4(0) = 0.049; and
c2(0) = 0, x2(0) = 0.051 y2(0) = 0.049,

x4(0) = 0.1, y4(0) = 0.1;
(3.16)

respectively. In the former case, the system starts with considerable amount of
amorphous dimer, which is converted into clusters, and initially there is a slight chiral
imbalance in favour of x2 and x4 over y2 and y4. Over time this imbalance reduces
(see Fig. 9); although there is a region around t = 1 where θ increases, both θ and φ

eventually approach the zero steady-state.
For both sets of initial conditions we note that the chiralities evolve over a

significantly longer timescale than the concentrations, the latter having reached
steady-state before t = 10 and the former still evolving when t = O(102). In the
second set of initial data, there is no c2 present initially and there are exactly equal

Fig. 9 The chiralities θ , φ

Eqs. 3.6–3.7 plotted against
time, for the
tetramer-truncated system
with the two sets of initial data
(Eq. 3.16). Since model
equations are in
nondimensional form, the time
units are arbitrary. The
parameter values are the same
as in Fig. 8
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numbers of the two chiral forms of the larger cluster, but a slight exess of x2 over y2.
In time an imbalance in larger clusters is produced, but over larger timescales, both
θ and φ again approach the zero steady-state.

Hence, we observe that the truncated system Eqs. 3.1–3.5 does not yield a chirally
asymmetric steady-state. Even though in the early stages of the reaction chiral
perturbations may be amplified, at the end of the reaction there is a slower timescale
over which the system returns to a racemic state. In the next section we consider a
system truncated at hexamers to investigate whether that system allows symmetry-
breaking of the steady-state.

The Truncation at Hexamers

The above analysis has shown that the truncation of the model Eqs. 2.20–2.27 to
Eqs. 3.1–3.5 results in a model which always ultimately approaches the symmetric
(racemic) steady-state. In this section, we show that a more complex model, the
truncation at hexamers retains enough complexity to demonstrate the symmetry-
breaking bifurcation which occurs in the full system. In this case the governing
equations are

dc2

dt
= −2μc2 + μν(x2 + y2) − αc2(x2 + y2) − αc2(x4 + y4), (4.1)

dx2

dt
= μc2 − μνx2 − αc2x2 − 2ξx2

2 − ξx2x4 + 2βx4 + βx6, (4.2)

dx4

dt
= αx2c2 + ξx2

2 − βx4 − αc2x4 − ξx2x4 + βx6, (4.3)

dx6

dt
= αx4c2 + ξx2x4 − βx6, (4.4)

dy2

dt
= μc2 − μνy2 − αc2 y2 − 2ξy2

2 − ξy2 y4 + 2βy4 + βy6, (4.5)

dy4

dt
= αy2c2 + ξy2

2 − βy4 − αc2 y4 − ξy2 y4 + βy6, (4.6)

dy6

dt
= αy4c2 + ξy2 y4 − βy6. (4.7)

To analyse the symmetry-breaking in the system we transform the dependent
coordinates from x2, x4, x6, y2, y4, y6 to total concentrations z, w, u and relative
chiralities θ, φ, ψ according to

x2 = 1
2

z(1 + θ), x4 = 1
2
w(1 + φ), x6 = 1

2
u(1 + ψ),

y2 = 1
2

z(1 − θ), y4 = 1
2
w(1 − φ), y6 = 1

2
u(1 − ψ).

(4.8)
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We now separate the governing equations for the total concentrations of dimers
(c, z), tetramers (w) and hexamers (u)

dc
dt

= −2μc + μνz − αcz − αcw, (4.9)

dz
dt

= 2μc − μνz − αcz − ξz2(1 + θ2) − 1
2

zw(1 + θφ) + βu + 2βw,

(4.10)

dw

dt
= αcz + 1

2
ξz2(1 + θ2) − βw + βu − αcw − 1

2
ξzw(1 + θφ), (4.11)

du
dt

= αcw + 1
2
ξzw(1 + θφ) − βu, (4.12)

from those for the chiralities

dψ

dt
= αcw

u
(φ − ψ) + ξzw

2u
(θ + φ − ψ − ψφθ) (4.13)

dφ

dt
= αcz

w
(θ − φ) + ξz2

2w
(2θ − φ − φθ2) + βu

w
(ψ − φ) − 1

2
ξzθ(1 − φ2),

(4.14)

dθ

dt
= −2μcθ

z
− ξzθ(1 − θ2) − 1

2
ξwφ(1 − θ2) + βuψ

z
− βuθ

z

+2βwφ

z
− 2βwθ

z
. (4.15)

In applications, we expect ν < 1, so that the small amorphous clusters (dimers)
prefer to adopt one of their chiral states rather than the achiral structure. In addition,
we note that the grinding process observed in experiments is much longer than the
crystallisation process, and that there are many larger, macroscopic crystals hence
we consider two limits in which β 
 αξ . We will consider the case of small β with
all other parameters being O(1) and then the case where α ∼ ξ � 1 and all other
parameters are O(1).

Symmetric Steady-State for the Concentrations

Firstly, let us solve for the symmetric steady-state. In this case we assume θ = 0 =
φ = ψ , simplifying Eqs. 4.9–4.12. One of these is a redundant equation, hence we
have the solution

w = z
β

(αc + 1
2
ξz), u = z

β2 (αc + 1
2
ξz)2, (4.16)

c = 1
α

⎛
⎝

√(
β

2
+ βμ

αz
+ ξz

4

)2

+ βμν − β

2
− βμ

αz
− ξz

4

⎞
⎠ , (4.17)
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with z being determined by conservation of total mass in the system

2c + 2z + 4w + 6u = �. (4.18)

In the case of small grinding, (β 
 1), with � and all other parameters being O(1),
we find

z =
(

2�β2

3(αν + ξ)2

)1/3

, c = ν

(
�β2

12(αν + ξ)2

)1/3

,

w =
(

�2β

18(αν + ξ)

)1/3

, u = �

6
.

(4.19)

In this case most of the mass is in hexamers with a little in tetramers and very little in
dimers.

In the asymptotic limit of α ∼ ξ � 1 and all other parameters O(1), we find

c = μν

α

(
12β

�ξ

)1/3

, z =
(

2β2�

3ξ 2

)1/3

, w =
(

β�2

18ξ

)1/3

, u = �

6
. (4.20)

This differs significantly from the other asymptotic scaling as, not only are c and z
both small, they are now different orders of magnitude, with c 
 z. We next analyse
the stability of these symmetric states.

Stability of Symmetric State

In deriving the above solutions (Eqs. 4.16–4.17), we have assumed chiral symmetry,
that is, θ = 0 = ψ = φ. We now turn to analyse the validity of this assumption.
Linearising the system of Eqs. 4.13–4.15 which govern the chiralities, we determine
whether the symmetric solution is stable from

d
dt

⎛
⎝ψ

φ

θ

⎞
⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎝

−αcw
u

− ξzw

2u
αcw

u
+ ξzw

2u
ξzw

2u
βu
w

−αcz
w

− ξz2

2w
− βu

w

αcz
w

+ ξz2

w
− 1

2
ξz

βu
z

2βw

z
− ξw

2
−2μc

z
− ξz − βu

z
− 2βw

z

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎝ψ

φ

θ

⎞
⎠ .

(4.21)

For later calculations it is useful to know the determinant of this matrix. Using the
steady-state solutions (Eq. 4.16), the determinant simplifies to

D = 3c
4βρ

(2αc + ξz)2(αξz2 − 4βμ). (4.22)
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For general parameter values, the signs of the real parts of the eigenvalues of the
matrix in Eq. 4.21 are not clear. However, using the asymptotic result (Eq. 4.19), for
β 
 1, we obtain the simpler matrix

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−β β
βξ

ξ + αν(
β2�(ξ + αν)

12

)1/3

−
(

β2�(ξ + αν)

12

)1/3

−ξ

2

(
2β2�

3(ξ + αν)2

)1/3

β1/3
(

ξ + αν

12�

)2/3

−ξ

2

(
β�2

18(ξ + αν)

)1/3

−μν − β1/3
(

ξ + αν

12�

)2/3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (4.23)

whose characteristic polynomial is

0 = q3 + μνq2 + μν

(
1

12
β2�(ξ + αν)

)1/3

q − D, (4.24)

Formally D is the determinant of the matrix in Eq. 4.23, which is zero, giving a zero
eigenvalue, which indicates marginal stability. Hence, we return to the more accurate
matrix in Eq. 4.21, which gives D ∼ −β2μν. The polynomial (Eq. 4.24) thus has roots

q1 ∼ −μν, q2 ∼ −
(

β2�(ξ + αν)

12

)1/3

, q3 ∼ −
(

12β4

�(αν + ξ)

)1/3

. (4.25)

This means that the symmetric state is always linearly stable for this asymptotic
scaling. We expect to observe evolution on three distinct timescales, one of O(1),
one of O(β−2/3) and one of O(β−4/3).

We now consider the other asymptotic limit, namely, α ∼ ξ � 1 and all other
parameters are O(1). In this case, taking the leading order terms in each row, the
stability matrix in Eq. 4.21 reduces to

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−6μν

(
12β

�ξ

)2/3

6μν

(
12β

�ξ

)2/3

0
(

β2�ξ

12

)1/3

−
(

β2�ξ

12

)1/3

−
(

β2�ξ

12

)1/3

(
β�2ξ 2

144

)1/3

−
(

β�2ξ 2

144

)1/3

−
(

β�2ξ 2

144

)1/3

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (4.26)

which again formally has a zero determinant. The characteristic polynomial is

0 = q3 + q2 + 6βμνq − D, (4.27)

wherein we again take the more accurate determinant obtained from a higher-order
expansion of Eq. 4.21, namely D = β2μν. The eigenvalues are then given by

q1 ∼ −
(

β�2ξ 2

144

)1/3

, q2,3 ∼ ±√
βμν

(
12β

�ξ

)1/3

. (4.28)
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Fig. 10 Illustration of the evolution of the total concentrations c2, z, w, u for a numerical solution of
the system truncated at hexamers (Eqs. 4.1–4.7) in the limit α ∼ ξ � 1. Since model equations are
in nondimensional form, the time units are arbitrary. The parameters are α = ξ = 30, ν = 0.5, β =
μ = 1, and the initial data is x6(0) = y6(0) = 0.06, x4(0) = y4(0) = 0.01, x2(0) = 0.051, y2(0) = 0.049,
c2(0) = 0. Note the time axis has a logarithmic scale

We now observe that there is always one stable and two unstable eigenvalues, so we
deduce that the system breaks symmetry in the case α ∼ ξ � 1. The first eigenvalue
corresponds to a faster timescale where t ∼ O(ξ−2/3) whilst the latter two correspond
to the slow timescale where t = O(ξ 1/3).

Simulation Results

We briefly review the results of a numerical simulation of Eqs. 4.1–4.7 in the
case α ∼ ξ � 1 to illustrate the symmetry-breaking observed therein. Although the
numerical simulation used the variables xk and yk (k = 2, 4, 6) and c2, we plot the
total concentrations z, w, u in Fig. 10. The initial conditions have a slight imbalance in
the handedness of small crystals (x2, y2). The chiralities of small (x2, y2, z), medium
(x4, y4, w), and larger (x6, y6, u) are plotted in Fig. 11 on a log-log scale. Whilst Fig. 10
shows the concentrations in the system has equilibrated by t = 10, at this stage the

Fig. 11 Graph of the
evolution of the chiralities
against time on a log-log scale;
results of numerical simulation
of the same
hexamer-truncated system,
with identical initial data and
parameters as in Fig. 10
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chiralities are in a metastable state, that is, a long plateau in the chiralities between
t = 10 and t = 103 where little appears to change. There then follows a period of
equilibration of chirality on the longer timescale when t ∼ 104. We have observed this
significant delay between the equilibration of concentrations and that of chiralities
in a large number of simulations. The reason for this difference in timescales is due
to the differences in the sizes of the eigenvalues in Eq. 4.25.

We have also investigated the case β 
 1 with all other parameters O(1) to verify
that this case does indeed approach the racemic state at large times (that is, θ, φ, ζ →
0 as t → ∞). However, once again the difference in timescales can be observed, with
the concentrations reaching equilibration on a faster timescale than the chiralities,
due to the different magnitudes of eigenvalues (Eq. 4.28).

New Simplifications of the System

We return to the Eqs. 2.35–2.39 in the case δ = 0, now writing x2 = x and y = y2 to
obtain

dc
dt

= −2μc + μν(x + y) − αc(Nx + Ny), (5.1)

dx
dt

= μc − μνx − αxc + β(Nx − x + x4) − ξx2 − ξxNx, (5.2)

dy
dt

= μc − μνy − αyc + β(Ny − y + y4) − ξy2 − ξyNy, (5.3)

dNx

dt
= μc − μνx + β(Nx − x) − ξxNx, (5.4)

dNy

dt
= μc − μνy + β(Ny − y) − ξyNy, (5.5)

which are not closed, since x4, y4 appear on the rhs’s of Eqs. 5.2 and 5.3, hence we
need to find formulae to determine x4 and y4 in terms of x, y, Nx, Ny.

One way of achieving this is to expand the system to include other properties of the
distribution of cluster sizes. For example, equations governing the mass of crystals in
each chirality can be derived as

d�x

dt
= 2μc − 2μνx + 2αcNx,

d�y

dt
= 2μc − 2μνy + 2αcNy. (5.6)

These introduce no more new new quantities into the macroscopic system of equa-
tions, and do not rely on knowing x4 or y4, (although they do require knowledge of
x and y).

In the remainder of this section we consider various potential formulae for x4, y4 in
terms of macroscopic quantities so that a macroscopic system can be constructed. We
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then analyse such macroscopic systems in two specific limits to show that predictions
relating to symmetry-breaking can be made.

Reductions

The equations governing the larger cluster sizes xk, yk, are

dx2k

dt
= β(x2k+2 − x2k) − (x2k − x2k−2)(αc + ξx); (5.7)

in general this has solutions of the form x2k = ∑
j A j(t)�k−1

j , where � j are parame-
ters (typically taking values between unity (corresponding to a steady-state in which
mass is being added to the distribution) and αc+ξx

β
(the equilibrium value); and A j(t)

are time-dependent; for some � j, A j will be constant.
We assume that the distribution of each chirality of cluster is given by

x2k = x
(

1 − 1
λx

)k−1

, y2k = y
(

1 − 1
λy

)k−1

, (5.8)

since solutions of this form may be steady-states of the governing Eq. 5.7. However,
in our approximations for x4 and y4 the parameters λx, λy are permitted to vary
with time in some way that depends on other quantities in the model equations. The
resulting expressions for the macroscopic number and mass quantities are

Nx =
∞∑

k=1

x2k = xλx, Ny =
∞∑

k=1

y2k = yλy, (5.9)

�x =
∞∑

k=1

2kx2k = 2xλ2
x, �y =

∞∑
k=1

2ky2k = 2yλ2
y. (5.10)

Our aim is to find a simpler expression for the terms x4 and y4 which occur in Eqs. 5.2
and 5.3, these are given by x4 = x(1 − 1/λx) where

λx = Nx

x
= �x

2Nx
=

√
�x

2x
, (5.11)

hence

x4 = x − x2

Nx
, x4 = x − 2xNx

�x
, or x4 = x − x

√
2x
�x

. (5.12)

There are thus three possible reductions of the Eqs. 5.1–5.5, each eliminating one
of x, Nx, �x (and the corresponding y, Ny, �y). We consider each reduction in turn in
the following subsections. Since some of these reductions involve �x, �y, we also use
the evolution Eq. 5.6 for these quantities.
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Reduction 1: to x, y, Nx, Ny

Here we assume λx = Nx/x, λy = Ny/y, so, in addition to Eqs. 5.1, 5.4–5.5 the
equations are

dx
dt

= μc − μνx + βNx − βx2

Nx
− ξx2 − ξxNx, (5.13)

dy
dt

= μc − μνy + βNy − βy2

Ny
− ξy2 − ξyNy; (5.14)

we have no need of the densities �x, �y in this formulation.
The disadvantage of this reduction is that, due to Eq. 5.11, the total mass is

given by

� = 2c + �x + �y = 2c + 2N2
x

x
+ 2N2

y

y
, (5.15)

and there is no guarantee that this will be conserved.
We once again consider the system in terms of total concentrations and relative

chiralities by applying the transformation

x = 1
2

z(1 + θ), y = 1
2

z(1 − θ), Nx = 1
2

N(1 + φ), Ny = 1
2

N(1 − φ),

(5.16)

to obtain the equations

dc
dt

= −2μc + μνz − αcN, (5.17)

dz
dt

= 2μc − μνz − αcz + βN − βz2(1 + θ2 − 2θφ)

N(1 − φ2)

−1
2
ξz2(1 + θ2) − 1

2
ξzN(1 + θφ), (5.18)

dN
dt

= 2μc − μνz + βN − βz − 1
2
ξzN(1 + θφ). (5.19)

dθ

dt
= −

(
μν + αc + ξz + 1

2
ξ N + 2βz

N(1 − φ2)
+ 1

z
dz
dt

)
θ

+
(

βN
z

− 1
2
ξ N + βz(1 + θ2)

N(1 − φ2)

)
φ, (5.20)

dφ

dt
= −

(
μν + β + 1

2
ξ N

)
z
N

θ +
(

β − 1
2
ξz − 1

N
dN
dt

)
φ.

(5.21)

These equations have the symmetric steady-state given by θ = 0 = φ and c, z, N
satisfying

c = μνz
2μ + αN

, z = 2βN(2μ + αN)

(2β + ξ N)(2μ + αN) + 2αμνN
, (5.22)
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from Eqs. 5.17 and 5.19. Note that the steady state value of N will depend upon
the initial conditions, it is not determined by Eq. 5.18. This is because the steady-
state equations obtained by setting the time derivatives in Eqs. 5.17–5.19 are not
independent. The difference (Eqs. 5.18 and 5.19) is equal to z/N times the sum
(Eqs. 5.17 + 5.19).

In “Asymptotic Limit 1: β 
 1” and “Asymptotic Limit 2: α ∼ ξ � 1” below, so
as to discuss the stability of a solution in the two asymptotic regimes β 
 1 and α ∼
ξ � 1, we augment the steady-state Eqs. 5.17–5.19 with the condition � = 2N2/z,
with � assumed to be O(1).

The linear stability of θ = 0 = φ is given by assuming θ and φ are small, yielding
the system

d
dt

⎛
⎝ θ

φ

⎞
⎠ =

⎛
⎜⎜⎝

−
(

2μc
z

+ ξz
2

+ βz
N

+ βN
z

) (
βN

z
+ βz

N
− ξ N

2

)

−(μν + β + 1
2
ξ N)

z
N

(
β + μν − 2μc

z

)
z
N

⎞
⎟⎟⎠

⎛
⎝ θ

φ

⎞
⎠ . (5.23)

An instability of the symmetric solution is indicated by the determinant of this matrix
being negative. Substituting Eq. 5.22 into the determinant, yields

det = βμν(4βμ − αξ N2)

4βμ + 2αβN + 2μξ N + 2αμνN + αξ N2 . (5.24)

Hence we find that the symmetric (racemic) state is unstable if N > 2
√

μβ/αξ , that
is, large aggregation rates (α, ξ) and slow grinding (β) are preferable for symmetry-
breaking.

We consider two specific asymptotic limits of parameter values so as to derive
specific results for steady-states and conditions on stability. In both limits, we have
that the aggregation rates dominate fragmentation (α ∼ ξ � β), so that the system
is strongly biased towards the formation of crystals and the dimer concentrations are
small. In the first case we assume that the fragmentation is small and the aggregation
rates are of a similar scale to the interconversion of dimers (β 
 μ ∼ α ∼ ξ = O(1));
whilst the second has a fragmentation rate of similar size to the dimer conversion
rates and larger aggregation rates (α ∼ ξ � μ ∼ β = O(1)).

Asymptotic Limit 1: β 
 1

In the case of asymptotic limit 1, β 
 1, we find the steady-state solution

N ∼
√

β�

ξ + αν
, z ∼ 2β

ξ + αν
, c ∼ βν

ξ + αν
. (5.25)

From Eq. 5.24, we find an instability if � > �c := 4μ(ξ + αν)/αξ . That is, larger
masses (�) favour symmetry-breaking, as do larger aggregation rates (α, ξ). The
eigenvalues of Eq. 5.23 in this limit are q1 = −μν – a fast stable mode of the dynamics
and

q2 = αξβ3/2

2μ
√

�(ξ + αν)3/2

(
� − 4μ(ξ + αν)

αξ

)
, (5.26)

which indicates a slowly growing instability when � > �c. Hence the balace of achiral
to chiral morphologies of smaller clusters (ν) also influences the propensity for
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non-racemic solution. However, since the dynamics described by this model does
not conserve total mass, the results from this should be treated with some caution,
and we now analyse models which do conserve total mass.

Asymptotic Limit 2: α ∼ ξ � 1

In this case we find the steady-state solution is given by

N ∼
√

β�

ξ
, z ∼ 2β

ξ
, c ∼ 4μν

α

√
β

ξ�
. (5.27)

The condition following from Eq. 5.24 then implies that we have an instability if � >

�c := 4μ/α 
 1. The eigenvalues of the stability matrix are q1 = − 1
2

√
β�ξ , which is

large and negative, indicating attraction to some lower dimensional solution over a
relatively fast timescale; the eigenvector being (1, 0)T showing that θ → 0. The other
eigenvalue is q2 = 2μν

√
β/�ξ 
 1, and corresponds to a slow growth of the chirality

of the solution, since it relates to the eigenvector (0, 1)T . Assuming the system is
initiated near its symmetric solution (θ = φ = 0), this shows that the distribution of
clusters changes its chirality first, whilst the dimer concentrations remain, at least to
leading order, racemic. We expect that at a later stage the chirality of the dimers too
will become nonzero.

Reduction 2: to x, y, �x, �y

Here we eliminate x4 = x(1 − 1/λx), y4 = y(1 − 1/λy) together with Nx and Ny using

λx =
√

�x

2x
, λy =

√
�y

2y
, Nx =

√
x�x

2
, Ny =

√
y�y

2
, (5.28)

leaving a system of equations for (c, x, y, �x, �y)

dc
dt

= μν(x + y) − 2μc − √
2αc

(√
x�x + √

y�y
)
, (5.29)

dx
dt

= μc − μνx − αcx − ξx2 − ξx

√
x�x

2
+ β

√
x�x

2
− βx

√
2x
�x

, (5.30)

d�x

dt
= −2μνx + 2μc + 2αc

√
x�x

2
, (5.31)

with similar equations for y, �y. Transforming to total concentrations and relative
chiralities by way of

x = 1
2

z(1 + θ), y = 1
2

z(1 − θ), �x = 1
2

R(1 + ζ ), �y = 1
2

R(1 − ζ ), (5.32)
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we find

dc
dt

= μνz − 2μc − αc
√

zR

2
√

2

[√
(1 + θ)(1 + ζ ) + √

(1 − θ)(1 − ζ )
]
, (5.33)

dz
dt

= 2μc − μνz − αcz − 1
2
ξz2(1 + θ2)

+β
√

zR

2
√

2

[√
(1 + θ)(1 + ζ ) + √

(1 − θ)(1 − ζ )
]

−ξz3/2 R1/2

4
√

2

[
(1 + θ)3/2(1 + ζ )1/2 + (1 − θ)3/2(1 − ζ )1/2]

−βz3/2

√
2R

[
(1 + θ)3/2

(1 + ζ )1/2 + (1 − θ)3/2

(1 − ζ )1/2

]
, (5.34)

dR
dt

= −2μνz + 4μc + 1
2
αc

√
2zR

[√
(1 + θ)(1 + ζ ) + √

(1 − θ)(1 − ζ )
]
,

(5.35)

together with the Eqs. 5.38 and 5.39 for the relative chiralities θ and ζ , which will be
analysed later.

Since the equations for dR/ddt and dc/dt are essentially the same, we obtain a
third piece of information from the requirement that the total mass in the system is
unchanged from the initial data, hence the new middle equation above. Solving these
we find c = 1

2 (� − R) and use this in place of the equation for c.
In the symmetric case (θ = ζ = 0) we obtain the steady-state conditions

0 = 2μνz − 4μc − αc
√

2zR, � = R + 2c, (5.36)

0 = 2μc − μνz − αcz − 1
2
ξz2 + 1

2
β
√

2zR − βz

√
2z
R

− ξz
2

√
zR
2

. (5.37)

For small θ, ζ , the equations for the chiralities can be approximated by

dθ

dt
= −

(
2μc

z
+ 1

2
ξz + 1

2
β

√
R
2z

+ 1
2
β

√
2z
R

+ 1
4
ξ

√
zR
2

)
θ

+
(

β(R + 2z)

2
√

2zR
− ξ

4

√
Rz
2

)
ζ, (5.38)

dζ

dt
=

(
2μνz

R
− αc

√
zR
2

)
θ −

(
2μνz

R
− 4μc

R

)
ζ, (5.39)

We analyse the stability of the symmetric (racemic) state in the two limits β 
 1 and
α ∼ ξ � 1 in the next subsections.

Asymptotic Limit 1: β 
 1

In this case, solving the conditions (Eqs. 5.36 and 5.37) asymptotically, we find

z ∼ 2β

ξ + αν
, c ∼ βν

ξ + αν
, R ∼ � − 2c. (5.40)
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Substituting these values into the differential equations which determine the stability
of the racemic state leads to

d
dt

⎛
⎝ θ

ζ

⎞
⎠

⎛
⎜⎜⎜⎝

−μν
αν

4

√
β�

ξ + αν

− 4βμν

�(ξ + αν)

ανβ3/2

(ξ + αν)3/2√�

⎞
⎟⎟⎟⎠

⎛
⎝ θ

ζ

⎞
⎠ . (5.41)

Formally this matrix has eigenvalues of zero and −μν. Since the zero eigenvalue
indicates marginal stability of the racemic solution, we need to consider higher-order
terms to obtain a more definite result.

Going to higher order, gives the determinant of the resulting matrix as
−αξν/(αν + ξ)2 hence the eigenvalues are

q1 = −μν, and q2 = αξ

μ(αν + ξ)2 , (5.42)

the former indicating a rapid decay of θ (corresponding to the eigenvector (1, 0)T),
and the latter showing a slow divergence from the racemic state in the ζ -direction, at
leading order, according to

(
θ

ζ

)
∼ C1

(
0
1

)
exp

(
αξ t

μ(αν + ξ)2

)
. (5.43)

Hence in the case β 
 1, we find an instability of the symmetric solution for all other
parameter values.

Asymptotic Limit 2: α ∼ ξ � 1

In this case, solving the conditions (Eqs. 5.36 and 5.37) asymptotically, we find

z ∼ 2β

ξ
, c ∼ 2μν

α

√
β

�ξ
, R ∼ � − 2c. (5.44)

Substituting these values into the differential Eqs. 5.38 and 5.39 which determine the
stability of the racemic state leads to

d
dt

(
θ

ζ

)⎛
⎜⎝

− 1
2

√
βξ� o(

√
ξ)

−4βμν

�ξ

4βμν

�ξ

⎞
⎟⎠

(
θ

ζ

)
, (5.45)

hence the eigenvalues are q1 = − 1
2

√
β�ξ and q2 = 4μνβ/�ξ , (in the above o(

√
ξ)

means a quantity q satisfying q 
 √
ξ as ξ → ∞). Whilst the former indicates the

existence of a stable manifold (with a fast rate of attraction), the latter shows that
there is also an unstable manifold. Although the timescale associated with this is
much slower, it shows that the symmetric (racemic) state is unstable.
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Reduction 3: to Nx, Ny, �x, �y

In this case our aim is to retain only information on the number and typical size of
crystal distribution, so we eliminate the dimer concentrations x, y, using

λx = �x

2Nx
, λy = �y

2Ny
, x = 2N2

x

�x
, y = 2N2

y

�y
. (5.46)

These transformations reformulate the governing Eqs. 5.1–5.6 to

dNx

dt
= 1

2
μ(� − R) + βNx − 2(μν + β)

N2
x

�x
− 2ξ N3

x

�x
, (5.47)

dNy

dt
= 1

2
μ(� − R) + βNy − 2(μν + β)

N2
y

�y
− 2ξ N3

y

�y
, (5.48)

d�x

dt
= (� − R)(μ + αNx) − 4μνN2

x

�x
, (5.49)

d�y

dt
= (� − R)(μ + αNy) − 4μνN2

y

�y
, (5.50)

where R := �x + �y. We now transform to total concentrations (N, R) and relative
chiralities (φ and ζ ) via

Nx = 1
2

N(1 + φ), Ny = 1
2

N(1 − φ), �x = 1
2

R(1 + ζ ), �y = 1
2

R(1 − ζ ),

(5.51)
together with c = 1

2 (� − R), to obtain

dR
dt

= (� − R)(2μ + αN) − 4μνN2(1 + φ2 − 2φζ)

R(1 − ζ 2)
, (5.52)

dN
dt

= μ(� − R) + βN (5.53)

− N2

R(1 − ζ 2)

[
2(μν + β)(1 + φ2 − 2φζ) + ξ N(1 + 3φ2 − 3φζ − φ3ζ )

]
,

dφ

dt
= βφ − 1

N
dN
dt

φ (5.54)

− N
R(1 − ζ 2)

[
2(β + μν)(2φ − ζ − φ2ζ ) + ξ N(3φ − ζ + φ3 − 3φ2ζ )

]
,

dζ

dt
= α(� − R)Nφ

R
− 1

R
dR
dt

ζ − 4μνN2(2φ − ζ − φ2ζ )

R2(1 − ζ 2)
. (5.55)

We now analyse this system in more detail, since this set of equations conserves mass,
and is easier to analyse than Eqs. 5.33–5.35 due to the absence of square roots. We
consider the two asymptotic limits (β 
 1 and α ∼ ξ � 1) in which, at steady-state,
the majority of mass is in the form of clusters.
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The Symmetric Steady-State

Putting ζ = 0 = φ, we find the symmetric steady-state is given by

0 = (� − R)(2μ + αN) − 4μνN2

R
, (5.56)

0 = μ(� − R) + βN − 2(μν + β)
N2

R
− ξ N3

R
. (5.57)

the former is solved by one of

R = 1
2
�

⎛
⎝1 ±

√
1 − 16μνN2

(2μ + αN)�2

⎞
⎠ , (5.58)

N = αR(� − R)

8μν

⎛
⎝1 +

√
1 + 32μ2ν

α2 R(� − R)

⎞
⎠ . (5.59)

More complete asymptotic solutions will be derived in the sections titled
“Asymptotic Limit 1: β 
 1” and “Asymptotic Limit 2: α ∼ ξ � 1”.

Stability of the Symmetric State

We now consider the stability of the symmetric steady-state. For small φ, ζ we have

R
N

d
dt

⎛
⎝φ

ζ

⎞
⎠=

⎛
⎜⎝

−2β − 2μν − 2ξ N −μ(� − R)R
N2 2β + 2μν +ξ N(

α(� − R) − 8μνN
R

)
8μν− (� − R)(2μ+αN)R

N2

⎞
⎟⎠

⎛
⎝φ

ζ

⎞
⎠ ,

(5.60)

and this is unstable if the determinant of this matrix is negative. Now we consider the
two asymptotic limits in more detail.

Asymptotic Limit 1: β 
 1

When fragmentation is slow, that is, β 
 1, at steady-state we have N = O(
√

β) and
R = � − O(β). Balancing terms in Eqs. 5.56 and 5.57 we find the same leading order
equation twice, namely 2νN2 = β�(� − R). Taking the difference of the two yields
an independent equation from higher order terms, hence we obtain

N ∼
√

β�

ξ + αν
, R ∼ � − 2νβ

ξ + αν
. (5.61)

Note that this result implies that the dimer concentrations are small, with c ∼ z and
c ∼ βν/(ξ + αν), z ∼ 2β/(ξ + αν).
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Substituting these expressions into those for the stability of the symmetric steady-
state (Eq. 5.60), we find

R
4μνN

d
dt

(
φ

ζ

)
=

⎛
⎜⎝

−1
1
2

−2
√

β

�(ξ + αν)
1

⎞
⎟⎠

(
φ

ζ

)
. (5.62)

This matrix has one stable eigenvalue (corresponding to (1, 0)T and hence the decay
of φ whilst ζ remains invariant), the unstable eigenvector is (1, 4)T , hence we find

(
φ(t)
ζ(t)

)
∼ C

(
1
4

)
exp

(
4μνt

√
β√

�(ξ + αν)

)
. (5.63)

If we compare the timescale of this solution to that over which the concentrations
N, R vary, we find that symmetry-breaking occurs on a slower timescale than the
evolution of cluster masses and numbers. This is illustrated in the numerical simu-
lation of Eqs. 5.47–5.50 shown in Fig. 12. More specifically, the time-scale increases
with the mass in the system, and with the ratio of aggregation to fragmentation rates,
(αν + ξ)/β, and is inversely related to the chiral switching rate of small clusters (μν).

Asymptotic Limit 2: α ∼ ξ � 1

In this case we retain the assumptions that μ, ν = O(1), however, we now impose
β = O(1) and α ∼ ξ � 1. For a steady-state, we require the scalings N = O(1/

√
ξ)

and � − R = O(1/ξ 3/2). Specifically, solving Eqs. 5.56 and 5.57 we find

N ∼
√

β�

ξ
, R ∼ � − 4μν

α�

√
β�

ξ
, (5.64)

hence the dimer concentrations c = 1
2 (� − R) ∼ N3 = O(1/ξ 3/2) and z = 2N2/� ∼

N2 = O(1/ξ). More precisely, c ∼ (2μν/α)
√

β/�ξ and z ∼ 2β/ξ , in contrast with the
previous asymptotic scaling which gave z ∼ N2).

Fig. 12 Graph of
concentrations
Nx, Ny, �x, �y, c against time
on a logarithmic time for the
asymptotic limit 1, with initial
conditions Nx = 0.2 = Ny,
�x = 0.45, �y = 0.44, other
parameters given by
α = 1 = ξ = μ, β = 0.01 ,
� = 8. Since model equations
are in nondimensional form,
the time units are arbitrary
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To determine the timescales for crystal growth and dissolution, we use Eq. 5.64 to
define

N ∼ n(t)
√

β�/ξ, R ∼ � − 4μνr(t)
α�

√
β�

ξ
, (5.65)

and so rewrite the governing Eqs. 5.52 and 5.53 as

dn
dt

= βn
(

1 − n2 − 2n(β + μν)√
�ξβ

)
, (5.66)

dr
dt

= α

√
β�

ξ

(
n2 − r − 2μr

α

√
ξ

β�

)
. (5.67)

Here, the former equation for n(t) corresponds to the slower timescale, with a rate
β, the rate of equilibration of r(t) being α

√
β�/ξ .

The stability of the symmetric state is determined by

R
N

d
dt

(
φ(t)
ζ(t)

)
=

( −2
√

β�ξ
√

β�ξ

−4μν
√

β/ξ� 4μν

) (
φ

ζ

)
. (5.68)

This matrix has one large negative eigenvalue (∼ −2
√

β�ξ) and one (smaller)
positive eigenvalue (∼ 4μν); the former corresponds to (1, 0)T hence the decay of φ,
whilst the latter corresponds to the eigenvector (1, 2)T . Hence the system (Eq. 5.68)
has the solution

(
φ

ζ

)
∼ C

(
1
2

)
exp

(
4μνt

√
β

�ξ

)
. (5.69)

The chiralities evolve on two timescales, the faster being 2β corresponding to the
stable eigenvalue of Eq. 5.68 and the slower unstable rate being 4μν

√
β/ξ�. This

timescale is similar to Eq. 5.63, being dependent on mass and the ratio of aggre-
gation to fragmentation, and inversely proportional to the chiral switching rate of
dimers (μν). This case is illustrated in Figure 13.

The Asymmetric Steady-State

Since the symmetric state can be unstable, there must be some other large-time
asymmetric attractor(s) for the system, which we now aim to find. From Eqs. 5.47
and 5.49, at steady-state, we have

2c2(2μ + αNx) = 4μνN2
x

�x
, μc2 + βNx = 2(μν + β + ξ Nx)

N2
x

�x
. (5.70)

Taking the ratio of these we find a single quadratic equation for Nx

0 = αξ N2
x −

(
βμν

c2
− αβ − αμν − ξμ

)
Nx + βμ, (5.71)
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with an identical one for Ny. Hence there is the possibility of distinct solutions for
Nx and Ny if both roots of Eq. 5.71 are positive; this occurs if

c2 <
βμν

αβ + ξμ + αμν + 2
√

αβξμ
. (5.72)

Given Nx (Ny), we then have to solve one of Eq. 5.70 to find �x (�y), via

�x = 2μνN2
x

c2(μ + αNx)
, (5.73)

and then satisfy the consistency condition that �x + �y + 2c2 = �. After some alge-
bra, this condition reduces to

1
2
α2ξc2

2(β − αc2)(� − 2c2) = β2μ2ν2 − βμνc2[αβ + 2αμν + 2ξμ]

+μc2
2

[
μ(αν + ξ)2 + αβ(αν − ξ)

]
. (5.74)

Being a cubic, it is not straightforward to write down explicit solutions of this
equation, hence we once again consider the two asymptotic limits (β 
 1 and α ∼
ξ � 1).

Asymptotic Limit 1: β 
 1

In this case, c2 = O(β) hence we put c2 = βC and the consistency condition (Eq. 5.74)
yields

O(β3) = β2 [
ν − (αν + ξ)C

]2
, (5.75)

hence, to leading order, C = ν/(αν + ξ) . Unfortunately, the resulting value for c2

leads to all the leading order terms in the linear Eq. 5.71 for Nx to cancel. We thus
have to find higher order terms in the expansion for c2; due to the form of Eq. 5.75,
the next correction term is O(β3/2). Putting c2 = βC(1 + C̃

√
β), we find

C̃2 = αξ
[
αξ� + 4μ(αν + ξ)

]
2μ2(αν + ξ)3 . (5.76)

In order to satisfy the inequality (Eq. 5.72), we require the negative root, that is,
C̃ < 0.

Fig. 13 Graph of the
concentrations
Nx, Ny, �x, �y, c against time
on a logarithmic time for the
asymptotic limit 2, with initial
conditions Nx = 0.2 = Ny,
�x = 0.45, �y = 0.44, other
parameters given by
α = 10 = ξ , β = 1 = μ,
ν = 0.5, � = 2. Since model
equations are in
nondimensional form, the time
units are arbitrary
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Although the formulae for Nx, Ny are lengthy, their sum and products simplify to

� = Nx + Ny = μC̃
√

β(αν + ξ)

αξ
, � = Nx Ny = βμ

αξ
. (5.77)

The chirality φ can be simplified using φ2 = 1 − 4�/�2 which implies

φ2 = α�ξ − 4μ(αν + ξ)

α�ξ + 4μ(αν + ξ)
. (5.78)

Hence we require � > �c := 4μ(αν + ξ)/αξ in order for the system to have nonsym-
metric steady-states, that is, the system undergoes a symmetry-breaking bifurcation
as � increases through � = �c. As the mass in the system increases further, the
chirality φ approaches (±) unity, indicating a state in which one handedness of crystal
completely dominates the other.

Asymptotic Limit 2: α ∼ ξ � 1

In this case, the left-hand side of the consistency condition (Eq. 5.74) is O(α2ξc2
2)

whilst the right-hand side is O(1) + O(αc2
2), which implies the balance c2 = O(ξ−3/2).

Solving for c2 leads to

c2 ∼ μν

α

√
2β

�ξ
. (5.79)

The leading order equation for Nx, Ny is then

0 = αξ N2 − αN

√
1
2
β�ξ + βμ, (5.80)

hence we find the roots

Nx, Ny ∼
√

β�

2ξ
,

2μ

α

√
β

2ξ�
, �x, �y ∼ �,

2μ

α
. (5.81)

Since we have either �x � Nx � �y � Ny or �y � Ny � �x � Nx, in this asymp-
totic limit, the system is completely dominated by one species or the other. Putting
� = Nx + Ny and � = Nx Ny we have φ2 = 1 − 4�/�2 ∼ 1 − 8μ/α�.

Discussion

We now try to use the above theory and experimental results of Viedma (2005)
to estimate the relevant timescales for symmetry-breaking in a prebiotic world.
Extrapolating the data of time against grinding rate in rpm from Fig. 2 of Viedma
(2005) suggests times of 2 × 105 hours using a straight line fit to log(time) against
log(rpm) or 1000–3000 hours if log(time) against rpm or time against log(rpm) is
fitted. A reduction in the speed of grinding in prebiotic circumstances is expected
since natural processes such as water waves are much more likely to operate at the
order of a few seconds−1 or minutes−1 rather than 600 rpm.

Similar extrapolations on the number and mass of balls used to much lower
amounts gives a further reduction of about 3, using a linear fit to log(time) against
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mass of balls from Fig. 1 of Viedma (2005). There is an equally good straight line
fit to time against log(ball-mass) but it is then difficult to know how small a mass of
balls would be appropriate in the prebiotic scenario. There is an additional factor due
to the experiments of Viedma being on a small volume of 10 ml, whereas a sensible
volume for prebiotic chemistry is 1000 l, giving an additional factor of 105. Combining
these three factors (103, 3, and 105) with the 10 days of the original experiment, we
estimate that the timescale for prebiotic symmetry breaking is O(3 × 109) days, which
is equivalent to the order of about ten million years.

This extrapolation ignores the time required to arrive at the initial enantiomeric
excesses of 5% used by Viedma (2005) from a small asymmetry caused by either
a random fluctuation or by the parity-violation. Although the observed chiral
structures are the minimum energy configurations as predicted by parity violation,
there is an evens probability that the observed handedness could simply be the result
of a random fluctuation which was amplified by the same mechanisms. In order to
perform an example calculation, we take a random fluctuation of the size predicted
by parity violation, which is of the order of 10−17, as suggested by Kondepudi and
Nelson (1984). Our goal is now to find the time taken to amplify this to an O(1) (5%)
enantiomeric excess.

The models derived in this paper, for example in “Asymptotic Limit 2:
α ∼ ξ � 1”, predict that the chiral excess grows exponentially in time. Assuming,
from Eq. 5.69, that φ(t0) = 10−17 and φ(t1) = 0.1, then the timescale for the growth
of this small perturbation is

t1 − t0 = 1
4μν

√
ξ�

β
log

10−1

10−17 .

Since the growth of enantiomeric excess is exponential, it only takes 16 times as long
for the perturbation to grow from 10−17 to 10−1 as from 10−1 to 1. Hence we only
need to increase our estimate of the timescale by one power of ten, to 100 million
years.

This estimate should be taken as a very rough estimate, since it relies on ex-
trapolating results by many orders of magnitude. Also, given the vast differences in
temperature from the putative subzero prebiotic world to a tentative hot hydrother-
mal vent, there could easily be changes in timescale by a factor of several orders of
magnitude.

Conclusions

After summarising the existing models of chiral symmetry-breaking processes we
have systematically derived a model in which through aggregation and fragmentation
chiral clusters compete for achiral material. The model is closed, in that there is no
input of mass into the system, although the form of the aggregation and fragmenta-
tion rate coefficients mean that there is an input of energy, keeping the system away
from equilibrium. Furthermore, there is no direct interaction of clusters of opposite
handedness; rather just through a simple competition for achiral substrate, the system
can spontaneously undergo chiral symmetry-breaking. This model helps explain the
experimental results of Viedma (2005) and Noorduin et al. (2008).
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The microscopic model originally derived has been simplified successively to
a minimalistic model, which, numerical results show, exhibits symmetry-breaking.
Even after this reduction, the model is extremely complex to analyse due to the
large number of cluster sizes retained in the model. Hence we construct two
truncated models, one truncated at tetramers, which shows no symmetry-breaking
and one at hexamers which shows symmetry-breaking under certain conditions on
the parameter values. Alternative reductions are proposed: instead of retaining the
concentrations of just a few cluster sizes, we retain information about the shape
of the distribution, such as the number of clusters and the total mass of material
in clusters of each handedness. These reduced models are as simple to analyse
as truncated models yet, since they more accurately account for the shape of the
size-distribution than a truncated model, are expected to give models which more
easily fit to experimental data. Of course, other ansatzes for the shape of the size
distributions could be made, and will lead to modified conditions for symmetry-
breaking; however, we believe that the qualitative results outlined here will not be
contradicted by analyses of other macroscopic reductions.

One noteworthy feature of the results shown herein is that the symmetry-breaking
is inherently a product of the two handednesses competing for achiral material.
The symmetry-breaking does not rely on critical cluster sizes, which are a common
feature of theories of crystallisation, or on complicated arguments about surface area
to volume ratios to make the symmetric state unstable. We do not deny that these
aspects of crystallisation are genuine, these features are present in the phenomena
of crystal growth, but they are not the fundamental cause of chiral symmetry-
breaking.

More accurate fitting of the models to experimental data could be acheived if one
were to fit the generalised Becker–Döring model (Eqs. 2.11 and 2.12) with realistic
rate coefficients. Questions to address include elucidating how the number and size
distribution at the start of the grinding influences the end state. For example, if
one were to start with a few large right-handed crystals and many small left-handed
crystals, would the system convert to entirely left- or entirely right-handed crystals ?
Answers to these more complex questions may rely on higher moments of the size
distributions, surface area to volume ratios and critical cluster nuclei sizes.
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Appendix A: General Theory for Crystallisation and Grinding with Competition
Between Polymorphs

This model can be generalised so as to be applicable to the case of grinding a
system undergoing crystallisation in which several polymorphs of crystal nucleate
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simultaneously. It may then be possible to use grinding to suppress the growth of one
polymorph and allow a less stable form to be expressed. In this case, the growth and
fragmentation rates of the two polymorphs will differ, we denote the two polymorphs
by x and y following Bolton and Wattis (2004). In place of a, b , α, ξ , β we have ax,r,
ay,r, b x,r, αx,r, etc. Hence in place of Eqs. 2.20–2.27 we have

dxr

dt
= ax,r−1c1xr−1 − b x,rxr − ax,rc1xr + b x,r+1xr+1 − βx,rxr + βx,r+2xr+2

+(αx,r−2c2 + ξx,r−2x2)xr−2 − (αx,rc2 + ξx,rx2)xr, (r ≥ 4), (A1)

dyr

dt
= ay,r−1c1 yr−1 − b y,r yr − ay,rc1 yr + b y,r+1 yr+1 − βy,r yr + βy,r+2 yr+2

+(αy,r−2c2 + ξy,r−2 y2)yr−2 − (αy,rc2 + ξy,r y2)yr, (r ≥ 4), (A2)

dx2

dt
= μxc2 − μxνxx2 − ax,2c1x2 + b x,3x3 − (αx,rc2 + ξx,rx2)xr

+βx,4x4 +
∞∑

k=4

βx,rxr −
∞∑

k=2

ξx,kx2xk, (A3)

dy2

dt
= μyc2 − μyνy y2 − ay,2c1 y2 + by,3 y3 − (αy,rc2 + ξy,r y2)yr

+βy,4 y4 +
∞∑

k=4

βy,r yr −
∞∑

k=2

ξy,k y2 yk, (A4)

dx3

dt
= ax,2x2c1 − b x,3x3 − ax,3c1x3 + b x,4x4 − (αx,3c2 + ξx,3x2)x3 + βx,5x5, (A5)

dy3

dt
= ay,2 y2c1 − by,3 y3 − ay,3c1 y3 + by,4 y4 − (αy,3c2 + ξy,3 y2)y3 + βy,5 y5,

(A6)

dc2

dt
= μxνxx2 + μyνy y2 − (μx + μy)c2 + δc2

1 − εc2 −
∞∑

k=2

c2(αx,rxr + αy,r yr),

(A7)

dc1

dt
= 2εc2 − 2δc2

1 −
∞∑

k=2

(ax,kc1xk − b x,k+1xk+1 + ay,kc1 yk − by,k+1 yk+1). (A8)

For simplicity let us consider an example in which all the growth and fragmenta-
tion rate parameters are independent of cluster size, (ax,r = ax, ξy,r = ξy, etc. for all
r). The thermodynamic stability of the two types of crystal depends on their relative
interactions with monomers from solution, that is, if ax/b x > ay/b y then X is the
more stable form. This is because, in the absence of c2, we can define free energy
functions

Qx
r =

(
ax

bx

)r−1

, Qy
r =

(
ay

by

)r−1

, (A9)
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which generate the equilibrium distributions

ceqx
r = Qx

r cr
1 = bx

ax

(
axc1

bx

)r

> ceqy
r = Qy

r cr
1 = by

ay

(
ayc1

by

)r

. (A10)

If ax/b x < ay/b y then the latter (Y) will be the dominant crystal type at equilibrium,
whilst X is the less stable morphology at equilibrium. These last two words are vital,
since, at early times, the growth rates depend on the relative sizes of the growth
rates ax and ay. It is possible for the less stable form to grow first and more quickly
from solution, and be observed for a significant period of time, since the rate of
convergence to equilibrium also depends on the fragmentation rates and so can be
extremely slow (see Wattis 1999 for details).

In the presence of grinding, the crystal size distributions also depend upon the
strength of dimer interactions, that is, the growth rates αxc2 + ξxx2, αyc2 + ξy y2 and
the grinding rates βx, βy. The steady-state size distributions will depend on the
relative growth ratios due to grinding (αxc2 + ξxx2)/βx and (αyc2 + ξy y2)/βy as well as
the more traditional terms due to growth from solution, namely axc1/b x and ayc1/b y.
Such systems with dimer interactions have been analysed previously by Bolton and
Wattis (2002). The presence of dimer interactions can alter the size distribution, and
in non-symmetric systems such as those analysed here, dimer interactions can alter
the two distributions differently. Two points are worth noting here:

(i) for certain parameter values, the less stable stable form (Y, say, with ay/b y <

ax/b x) may be promoted to the more stable morphology by grinding (if (αyc2 +
ξy y2)/βy is sufficiently greater than (αxc2 + ξxx2)/βx);

(ii) grinding may make a less rapidly nucleating and growing form (Y, say, with
ay < ax) into a more rapidly growing form if αyc2 + ξy y2 is sufficiently greater
than αxc2 + ξ2x2.

In systems which can crystallise into three or more forms, we may have the case
where x is more stable than y and y is more stable than z; thus, at equilibrium x will
be observed. Furthermore, if ax < ay > az we may observe type y at early times due
to it having faster nucleation and growth rates than x and z. However, it is possible
that the presence of grinding could suppress both x and y and allow z to be expressed,
if some combination of the inequalities

αzc2 + ξzz2

βz
>

αyc2 + ξy y2

βy
,

αxc2 + ξxx2

βx
, (A11)

αz > αy, αx, ξz > ξx, ξy hold.
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