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Abstract
Traditionally, the trees studied in infinite graphs are trees of height at most ω, with each 
node adjacent to its parent and its children (and every branch of the tree inducing a path 
or a ray). However, there is also a method, systematically introduced by Brochet and Dies-
tel, of turning arbitrary well-founded order trees T into graphs, in a way such that every 
T-branch induces a generalised path in the sense of Rado. This article contains an intro-
duction to this method and then surveys four recent applications of order trees to infinite 
graphs, with relevance for well-quasi orderings, Hadwiger’s conjecture, normal spanning 
trees and end-structure, the last two addressing long-standing open problems by Halin.

Keywords Order trees · Normal tree orders · Normal spanning trees · Well-quasi ordering · 
Minor antichains · Colouring number · End · Ray graph

1 Introduction

Ask someone working in graph theory or in order theory to explain the concept of a tree, 
and you get two quite different answers: to a graph theorist, a tree T is a minimally con-
nected graph, i.e. a connected graph such that deleting any edge disconnects it. To an order 
theorist, a tree is a partial order (T,≤) with a least element (called the root) such that down-
closures, i.e. subsets of the form ⌈t⌉ = {t� ∈ T ∶ t� ≤ t} for nodes t ∈ T, are well-ordered 
under ≤.1

Of course, the second concept encompasses the first, as graph-theoretic trees T can be 
interpreted as order trees: After designating one vertex of T as its root r and letting t ≤r s if 
t lies on the unique path from r to s in T, the relation ≤r describes a tree order on T (whose 
exact nature of course depends on the choice of r). Irrespectively of the choice of the root, 
however, the resulting order trees (T,≤r) are of the simplest kind: their down-closures ⌈t⌉ 
are well-ordered simply because they are finite, corresponding to the vertex set of the path 
from t to the root r in T. Another way to phrase this is to say that (T,≤r) contains no ω + 1 

 * Max Pitz 
 max.pitz@uni-hamburg.de

1 Department of Mathematics, Universität Hamburg, Bundesstrasse 55 (Geomatikum), 
20146 Hamburg, Germany

1 Some authors only require that down-closures are linearly ordered, and call our trees well-founded order 
trees.

http://orcid.org/0000-0001-8961-6132
http://crossmark.crossref.org/dialog/?doi=10.1007/s11083-022-09601-x&domain=pdf


 Order

1 3

chains, or that all linearly ordered subsets of (T,≤r) are of order type at most ω, or simply 
that graph-theoretic trees have height at most ω.

From an order theoretic viewpoint, the fact that trees of height ω are so ubiquitous in 
graph theory raises the question whether also general order trees have their uses in graph 
theory. The purpose of this paper is to argue that they do – and highlight one particular 
aspect of this by showing how one can encode the rich structure of order trees (T,≤) into, 
well, not graph-theoretic trees, but certain highly-connected subgraphs of the comparabil-
ity graph of (T,≤), called T-graphs. This method has been suggested by Rado in 1978 for 
well-orders, and in its general form for arbitrary order trees by Diestel and Brochet in 1994.

In this article I want to advertise this method: first, by giving an introduction to this 
method along with a number of examples, and then illustrate its use by four quite recent 
applications of it to infinite graphs, with relevance for normal spanning trees, colouring 
number, well-quasi orderings, and end-structure of graphs, with the first and last item solv-
ing two long-standing open problems by Halin. The sections in this article are organised as 
follows:

§2 Generalised paths,
§3 T-graphs: Definition and first examples,
§4 Normal spanning trees, colouring number and forbidden minors,
§5 T-graphs and Hadwiger’s conjecture,
§6 T-graphs and well-quasi orderings,
§7 T-graphs and Halin’s end degree conjecture.

This survey-like article aims to convey an impression of the methods and proofs about 
T-graphs from [4, 9, 19, 24, 27] by explaining the common theme and pointing a num-
ber of connections and parallels. However, this article does not give all proof details, nor 
should it be considered an exhaustive survey on the topic of order trees in combinatorics 
(for example, we don’t discuss two exciting recent applications [21, 30] of order trees to 
the study of uncountably chromatic graphs). Only one part is new, namely a short proof 
concerning Halin’s result about Hadwiger’s conjecture in infinite graphs, see Theorem 5.1.

For common notions in graph– and set theory see the textbooks by Diestel [6] and Jech 
[15]. We denote cardinals by λ,κ,σ and ordinals by i,j,k,ℓ.

2  Generalised Paths

A classic result by Erdős and Rado from 1978 [28] says that the vertex set of any countable 
complete graph where the edges have been coloured with finitely many, say r, colours, can 
be partitioned into at most r monochromatic paths or rays. In the same paper, Rado asked 
whether a similar result holds for all infinite complete graphs, even the uncountable ones. 
If we insist on the fixed quantity r and don’t change the objects allowed in our decomposi-
tion, this is clearly impossible: rays and paths are just countable, so finitely many of them 
won’t suffice to cover an uncountable vertex set.

Hence, Rado introduced the following notion of generalised path (also called a long ray 
in [4]), which is a graph P together with a well-order ≼ on V (P) such that the neighbours 
of v are cofinal in 

◦

⌈v⌉ := {w ∈ P : w ≺ v} for every vertex v ∈ V (P), i.e. for every v′ ≺ v 
there is a neighbour w of v with v� ⪯ w ≺ v (cf. Figure 1). In particular, every successor 
element is adjacent to its predecessor in the well-order.
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Why is this definition appealing? A striking property of the ordinary finite path is 
that any interval is again connected. Hence, the term ‘generalised path’ is justified by the 
following:

(1) A well-order ≼ on P witnesses that P is a generalised path if and only if between any 
two vertices w ≼ v on P there exists a strictly increasing finite path from w to v.

Indeed, starting from the higher vertex v = v0 and using the defining property of a gener-
alised path, simply select the least down-neighbour of v above w and call it v1. If v1 = w, 
we are done. Otherwise select the least down-neighbour of v1 above w and call it v2. Con-
tinuing like this, we must eventually arrive at vn = w, since there is no infinite decreasing 
sequence v0 ≻ v1 ≻⋯ in the well-order ≼ on P. Conversely, if for fixed v any interval [w,v] 
for w ≺ v is connected, then the neighbours of v must be cofinal in ̊⌈v⌉  := {w ∈ P : w ≺ v}.

Rado’s suggestion turned out to be correct, but it took another 40 years to prove it. First, 
Elekes, Soukup, Soukup and Szentmiklòssy [8] confirmed Rado’s question for ℵ1-sized 
complete graphs and two colours, and shortly after in 2017, D. Soukup [31] gave a com-
plete affirmative answer to Rado’s question:

Theorem 2.1 (D. Soukup, [31, Theorem 7.1]) Let r be a positive integer. Every r-edge-
coloured complete graph of infinite order can be partitioned into monochromatic general-
ised paths of different colours.

In [31, Conjecture 8.1], D. Soukup conjectured a similar result for complete bipartite 
graphs, namely that every r-coloured infinite complete bipartite graph with bipartition 
classes of the same cardinality can be partitioned into 2r − 1 monochromatic generalised 
paths. Also this conjecture is now a theorem:

Theorem 2.2 (Bürger & Pitz [5]) Let r be a positive integer. Every r-edge-coloured infi-
nite complete balanced bipartite graph can be partitioned into 2r − 1 monochromatic gen-
eralised paths.

Let’s close this section with a fundamental fact about complete minors of uncountable 
generalised paths that will play a role throughout this survey:

(2) Any uncountable generalised path contains a subdivision of an uncountable clique.

To see why this is true, consider an uncountable generalised path P. Considering an initial 
segment only, we may assume that the order type of (P,≼) is ω1. From our earlier obser-
vation (1) it follows that all end-segments of (P,≼) are connected and so must contain 

Fig. 1  A generalised path
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vertices of uncountable degree. Hence, P has uncountably many vertices of uncountable 
degree. Using some of these vertices as branch vertices, we can now build a subdivision of 
an uncountable complete graph recursively in ω1 steps, at each step adding a new (unused) 
branch vertex and joining it to the previously selected branch vertices one by one by a 
monotone path between a sufficiently high pair of their neighbours.

It is straightforward to check that this argument generalises to show that for regular infi-
nite cardinals κ, every κ-sized generalised path contains a subdivision of the clique of size 
κ.

3  T‑graphs: Definition and First Examples

In this section we meet the main method of how to encode an order tree into a graph 
reflecting the tree structure, introduced systematically by Diestel and Brochet in [4]. We’ll 
use the following notation. Let T be an order tree, which we imagine to grow upwards from 
the root. Write ⌈t⌉ = {t� ∈ T ∶ t� ≤ t} and ⌊t⌋ ∶= {t� ∈ T ∶ t ≤ t�} . A maximal chain in T is 
called a branch of T; note that every branch inherits a well-ordering from T. The height of 
T is the supremum of the order types of its branches. The height of a node t ∈ T is the order 
type of ̊⌈t⌉ := ⌈t⌉∖{t}. The set T i of all nodes at height i is the i th level of T, and we write 
T<i ∶=

⋃
{Tj ∶ j < i}.

The intuitive interpretation of a tree order as expressing height will also 
be used informally. For example, we say that t is above t′ if t > t′ , and call 
⌈X⌉ = ⌈X⌉T ∶=

⋃
{⌈x⌉ ∶ x ∈ X} the down-closure of X ⊆ T  . And we say that X is down-

closed, or X is a rooted subtree, if X = ⌈X⌉.
If t < t′ , we write [t, t�] = {x ∶ t ≤ x ≤ t�} , and call this set a (closed) interval in T. 

(Open and half-open intervals in T are defined analogously.) If t < t′ but there is no node 
between t and t′ , we call t′ a successor of t and t the predecessor of t′ ; if t is not a successor 
of any node it is called a limit.

Are there useful graphs on order trees? One often-used variant is to consider the com-
parability graph, in which precisely the pairs of comparable vertices are connected by an 
edge, used e.g. in [10, 19, 20, 35]. However, the following concept, first systematically 
studied in [4], offers much more flexibility, as demonstrated for example in Theorem 4.1 
and 7.3 below.

Definition 3.1 (Brochet & Diestel) Given an order tree (T,≤), a graph G = (V,E) is a T-
graph if V = T, the ends of any edge e = tt� are comparable in T, and the neighbours of any 
t ∈ T are cofinal in ̊⌈t⌉ ∶= {t� ∈ T ∶ t� < t}.

It is easy to see how this relates to our earlier definition of a generalised path: a graph G 
with vertex set T is a T graph if and only if the subgraphs induced by the branches of T are 
generalised paths, together covering (all edges of) the graph G.

Rephrasing this once again, we require that all the edges of G run ‘parallel’ to branches 
of T, but never ‘across’, and that all intervals [t, t�] for t ≤ t′ in T induce a connected sub-
graph in G. In particular, if t, t′ are incomparable, then the only way to walk from t to t′ in 
G is to go down-and-up again, via a third element in T that is comparable to both t and t′ . 
The following captures this intuition about separation properties of T-graphs; see [4, §2] 
for details.
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(3) For incomparable vertices t, t′ in T, the set ⌈t⌉ ∩ ⌈t�⌉ separatest from t′ in G.
(4) Every connected subgraph of G has a unique T-minimal element.
(5) If T ′ ⊂ T  is down-closed, the components of G − T � are spanned by the sets ⌊t⌋ for t 

minimal in T − T �.

To see how these separation properties are used in practise, let us establish a converse 
to our earlier observation (2) that κ-sized generalised paths for regular κ contain Kκ-minors, 
where Kκ denotes the complete graph on κ vertices.2 This type of argument provides a blue-
print for how separation properties of T-graphs are usually applied.

(6) Suppose G is a T-graph and that κ is a regular infinite cardinal. Then G contains a Kκ 
minor if and only if T contains a branch of size at least κ.

The backwards implication follows from (2) and the fact that every branch in a T-graph 
induces a generalised path. Conversely, if G contains a Kκ minor for regular κ, then G also 
contains a subdivision of Kκ by a result of Jung [17]. Now if T did not contain a branch 
of size at least κ, then we’d find two branch vertices t ≠ t′ of this subdivided Kκ that are 
incomparable in T. But then X ∶= ⌈t⌉ ∩ ⌈t�⌉ would be a t − t� separator of size less than κ in 
G by (3), a contradiction.

Let us close this section with a class of T-graphs arising from order trees of height ω 
+ 1 that will play an important role in Sections 6 and 7. Given a cardinal λ ≥ 2, let (Tλ,≤) 
be the order tree where the nodes of Tλ are all sequences of elements of λ of length ≤ ω 
including the empty sequence, and t ≤ t′ if t is an initial segment of t′ . Then Tλ is an order 
tree of height ω + 1 in which every node of finite height has exactly λ successors and above 
every branch of Tλ

<ω there is exactly one node in T�
�

 , represented by a countable sequence 
of ordinals in λ.

Example 3.2 (Trees with tops) Let λ ≥ 2 be any cardinal and (Tλ,≤) be the λ-regular tree 
of height ω + 1 as defined above. Then the subtree T𝜆(X) ∶= T<𝜔

𝜆
∪ X of Tλ is a λ-tree with 

tops, the tops themselves being the nodes in X.

We remark that λ-regular trees with tops have been used recently in [9, 23]. They them-
selves form a generalisation of the so-called binary trees with tops, studied in more detail 
in [3, 7, 34].

As indicated by the dashed edges in Fig. 2, one obtains a T-graph from a λ-regular tree 
with tops by connecting every top to infinitely many vertices on ‘its’ branch.

The T-graphs for λ-regular trees with tops are especially interesting when the number 
of tops is larger than the cardinal max

{
ℵ0, 𝜆

}
 of the λ-regular tree. This is possible either 

in the case where 𝜆 < 2ℵ0 , or in the case where λ has countable cofinality (where it follows 
from König’s Theorem that Tλ has strictly more than λ many branches). In contrast, recall 
that under CH the ℵ1-regular tree only has ℵ1 many branches.

2 Recall that H is a minor of G if there are disjoint connected vertex sets {Vh : h ∈ H} in G such that G has 
a V

h
− V

h
� edge whenever hh′ is an edge in H.
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4  Normal Spanning Trees, Colouring Number and Forbidden Minors

The definition of a T-graph tells us how to construct from a given order tree T a certain 
graph G. What about a converse to this procedure? Given an arbitrary connected graph G, 
must it come from an order tree, and can we tell what the order tree (T,≤) is?

To make this question precise, if a graph G is (isomorphic to) a T-graph for some order 
tree (T,≤), we say that (T,≤) is a normal tree order for G. The following problem from [4, 
§3] is the main open problem in the area:

Problem 1 Characterise which connected graphs admit a normal tree order.

To see that not all graphs do, consider an uncountable clique G where every edge 
has been subdivided once. By (6) any normal tree order for G would need to contain an 
uncountable branch. However, any limit node in that branch would require infinitely many 
lower neighbours of degree at least three, a contradiction.

It is, however, interesting to note that the uncountable clique itself, a minor of the sub-
divided clique, does have a normal tree order. This is not an accident: Brochet and Diestel 
have shown in [4, Theorem 4.2] that every connected graph G ‘almost’ has a normal tree 
order, if one is allowed to contract some small sets.

Theorem 4.1 (Brochet & Diestel) Every connected graph G admits a contraction minor 
that comes with a normal tree order (T,≤), such that its branch sets (Vt)t∈T in G are small in 
that |Vt| is bounded by the cofinality of the height of t in T.

The earlier argument for the subdivided uncountable clique did split into two cases, rul-
ing out the cases where there is normal tree order of height at most ω, and where there is 
normal tree order of height at least ω + 1. The first question which graphs have a normal 
tree order of height at most ω is in itself a fascinating subcase of Problem 1. When T has 
height at most ω, we say T is a normal spanning tree for G. In this case, T is a (rooted) 
spanning tree of G in the usual graph theoretic sense such that all cords of the tree run 
between vertices comparable in the tree order, see also [6, §1.5 and §8.2].

Fig. 2  An ℵ0-regular tree with tops
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In contrast to Problem  1, we now have quite a good understanding which connected 
graphs have a normal spanning tree. First of all, every finite graph has one, even with 
arbitrarily prescribed root: Indeed, it is an easy exercise to show that these are precisely 
the depth-first search trees starting from the given root. By a result of Jung, also every 
countable graph contains a normal spanning tree with any arbitrarily chosen vertex as the 
root, see [16] or [6, 8.2.4]. Uncountable cliques, however, witness that uncountable graphs 
might not have normal spanning trees by (6). What is known is that

(7) If G contains no subdivision of a countable clique, then G has a normal spanning tree.
(8) If G has a normal spanning tree, then it contains no subdivision of an uncountable 

clique.

Indeed, (7) is a result by Halin from [13], with a short proof now available in [26]. Item 
(8) is just a corollary to (6). Further, we have the following characterisation for the exist-
ence of normal spanning trees due to Jung [16]. Here, a set of vertices U is dispersed in G 
if every ray in G can be separated from U by a finite set of vertices.

(9) A connected graph has a normal spanning tree if and only if its vertex set is a countable 
union of dispersed sets.

Item (9) implies in particular that having a normal spanning tree is a minor-closed prop-
erty, which opens up the possibility of characterising the property of having a normal span-
ning tree by forbidden minors, and this is what we shall discuss next.

Definition 4.2 (Erdős & Hajnal) The colouring number col(G) is the least cardinal μ such 
that V (G) has a well-order ≼ such that every vertex has < μ neighbours preceding it in ≼.

The connection between normal spanning trees and colouring number is as follows: 
Every graph with a normal spanning tree T has countable colouring number: simply well-
order level by level, then all earlier neighbours of a vertex t belong to the finite down-clo-
sure of t. The naïve converse fails, however, as witnessed by uncountable cliques with all 
edges subdivided: if one first enumerates all real vertices followed by all subdivision ver-
tices, we get a well-ordering in which every vertex has at most two neighbours preceding 
it. However, the property of having a normal spanning tree is preserved under taking con-
nected minors, and this means that also all their minors have countable colouring number. 
In [14, Conjecture 7.6] from 1998 Halin conjectured a converse to this observation. This is 
now a theorem [27]:

Theorem 4.3 (Pitz, ’20+) A connected graph has a normal spanning tree if and only if 
every minor of it has countable colouring number.

As there is a forbidden subgraph characterisation for having colouring number ≤ μ [2], 
this yields a forbidden minor characterisation for the property of having a normal spanning 
tree. For countable colouring number μ = ℵ0 these forbidden minors come in two structural 
types: First, the class of (λ,λ+)-graphs, bipartite graphs (A,B) such that |A| = λ, |B| = λ+ for 
some infinite cardinal λ, and every vertex in B has infinite degree. And second, the class of 
(κ,S)-graphs, graphs whose vertex set is a regular uncountable cardinal κ such that station-
ary many vertices s ∈ S ⊆ 𝜅 have countably many neighbours that are cofinal below s.
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Corollary 4.4 (Pitz) A graph G has a normal spanning tree if and only if it contains nei-
ther a (λ,λ+)-graph nor a (κ,S)-graph as a minor.

A surprising consequence of Corollary 4.4 is that a graph of singular uncountable cardi-
nality κ has a normal spanning tree as soon as all its minors of size strictly less than κ admit 
normal spanning trees. This is not the case when κ is regular [23, Theorem 5.1].

Finally, I remark that while (9) implies that having a normal spanning tree is preserved 
under taking connected minors, I do not currently know whether the same is true for the 
property of having a normal tree order.

5  T‑graphs and Hadwiger’s Conjecture

The purpose of this section is to discuss Halin’s infinite version of Hadwiger’s conjecture, 
and to see an example of a T-graph that describes an interesting boundary case.

Theorem 5.1 (Halin ’67 12) Suppose G is a graph without a Kλ minor for some infinite 
cardinal λ. Then χ(G) ≤ col(G) ≤ λ.

Halin’s original proof from [12] (see also [13, §8]) employs his theory of simplicial 
decompositions. The following short argument, inspired by the closure arguments from 
[25, 26], is new.

For distinct vertices v,w of G denote by κ(v,w) = κG(v,w) the connectivity between v 
and w in G, i.e. the largest size of a family of independent v − w paths. If v and w are non-
adjacent, this is by Menger’s theorem equivalent to the minimal size of a v − w separator in 
G. The following basic observation by Halin from [12, (15)] gives a sufficient condition for 
a graph to contain subdivisions of large cliques on prescribed vertex sets.

 (10) Let U be an infinite set of vertices in G such that κ (u,v) > |U| for all u≠v ∈ U. Then 
there is a subdivision of an infinite clique of size |U| with branch vertices U.

Proof Proof of Theorem 5.1 By induction on σ := |G|. We may assume that σ > λ. We con-
struct a continuous increasing transfinite sequence (Gi: i < σ) of subgraphs with |Gi| ≤ |i| ⋅ λ 
< σ and G =

⋃
i<𝜎 Gi such that

(⋆) the end vertices of any Gi-path3 in G have connectivity strictly larger than λ in G.

Indeed, enumerate V (G) = {vi : i < σ} and put G0 ∶=
{
v0
}
 . If ℓ < σ is a limit, let 

G� ∶=
⋃

i<� Gi and note that (⋆) is preserved under increasing unions. To define Gi+ 1 from 
Gi, we use a countable closure argument. Set G0

i
∶= G[Gi ∪ vi+1] and construct Gn+1

i
 from 

Gn
i
 by adding for every pair v,w ∈ V(Gn

i
) with κG(v,w) ≤ λ a maximal family of independ-

ent v − w paths in G to Gn
i
 . Then Gi+1 ∶=

⋃
n∈ℕ G

n
i
 is as desired.

3 A Gi-path is a path in G that meets Gi in precisely its end vertices.
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Now every vertex v ∈ Gi+ 1 ∖ Gi satisfies |N(v) ∩ Gi| < λ, as otherwise property (⋆) 
together with (10) imply that G has a Kλ minor.

By induction assumption, we may well-order each Gi+ 1 ∖ Gi individually to witness 
col(Gi+ 1 ∖ Gi) ≤ λ. Now concatenate all these well-orders to obtain a well-order ≼ on G. 
Consider an arbitrary vertex v. If v ∈ Gi+ 1 ∖ Gi, then all vertices preceding v in ≺ belong 
to Gi+ 1. By construction, v has fewer than λ neighbours in Gi+ 1 ∖ Gi preceding it in ≺, and 
fewer than λ neighbours in Gi altogether. Thus, ≼ witnesses that col(G) ≤ λ. □

Corollary 5.2 (Halin) Every graph G with col(G) > λ ≥ ℵ0 contains a subdivision of Kλ.

We remark that col(G) ≥ λ+ does not imply the existence of a subdivided K�+ in G. 
Indeed, consider a complete bipartite graph G = K�,�+ , which clearly cannot contain a K�+ ; 
but it is an easy exercise to check that col(G) = λ+.

A harder question is whether χ(G) ≥ λ+ implies the existence of a subdivided K�+ in G. 
It turns out that the answer to this question is also in the negative; for the counterexample, 
we shall make use of a T-graph.

Example 5.3 (Komjáth ’17 [19]) For every infinite cardinal κ there is a graph of cardinality 
 2κ, chromatic number κ+, with no K�+ minor.

Proof Sketch Our candidate for such a graph will be a T-graph G for a suitable order tree 
T. If G is not to contain a K�+ minor, we should choose a tree T without branches of size κ+ 
by (6).

If G is to have large chromatic number, it can only help to add as many edges to our 
T-graph as possible, i.e. take G to be the comparability graph of T. Then independent sets 
of G correspond precisely to antichains of T, and so for G to have chromatic number at least 
κ+ our tree should not be the union of κ many antichains (i.e. T should not be κ-special).

A tree with these properties is given by the tree consisting of all injective functions α↪κ 
for all α < κ+, ordered by extension (studied first by Galvin/Baumgartner [1, Section 4.1]). 
□

6  T‑graphs and Well‑quasi Orderings

A binary relation ⊴ on a set X is a well-quasi-order if it is reflexive and transitive, and for 
every sequence x1,x2,… ∈ X there is some i < j such that xi ⊴ xj . Kruskal proved that finite 
trees are well-quasi-ordered by topological embeddings, i.e. whenever T1,T2,… are finite 
trees, then there are i < j such that Tj contains a subdivision of Ti, see [6, Theorem 12.2.1]. 
This was subsequently extended to all graph-theoretic trees by Nash-Williams [22]. In fact, 
this statement does also hold in the following, slightly stronger formulation: The class of 
order trees of height at most ω is well-quasi-ordered under order-embeddings that preserve 
meets. Galvin has observed that trees of height ω + 1 are no longer well-quasi ordered 
under order embeddings (unpublished, quoted from [34]), but see also Theorems 6.2 and 
6.4 below.

A graph H is a minor of G if there are disjoint connected vertex sets {Vh : h ∈ H} in G 
such that G has a Vh − Vh� edge whenever hh′ is an edge in H. Write H ≼ G if H is a minor 
of G.
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Theorem 6.1 (Robertson & Seymour, ’80s) Finite graphs are well-quasi ordered under 
the minor relation ≼.

The main open problem in the field concerning infinite graphs is the following:

Problem 2 Are countable graphs well-quasi ordered by ≼?

See [29] for additional information. Are all graphs well-quasi ordered under the minor 
relation? The answer is no – and the most transparent counterexamples are built once again 
from T-graphs.

Theorem  6.2 (Thomas ’88 [34]) Graphs of size 2ℵ0 are not well-quasi ordered by ≼ : 
There is a sequence G1,G2,… of binary trees with tops such that Gi ⋠ Gj whenever i < j.

Proof Sketch The binary trees with tops, cf. Example 3.2, used by Thomas are most con-
veniently phrased in topological terms. Indeed, the level of all tops of the binary tree is 
naturally isomorphic to the Cantor space. Thomas’ strategy is to select continuum-sized 
subspaces X0,X1,X2,… of the Cantor space such that there is no continuous ‘almost’ embed-
ding from Xi into Xj for i < j (Xi almost embeds into Xj if some co-countable subspace of 
Xi embeds into Xj.) Since there are only 2ℵ0 many almost-continuous images of a space 
with a countable dense subset, this can be quite easily achieved by a transfinite recursion. 
Then the binary trees with tops Gn := T2(Xn) give the desired counterexample, as supposing 
T2(Xi) ≼ T2(Xj) translates precisely to an almost embedding from Xi into Xj, an impossibil-
ity. □

Given that Thomas’ counterexample are graphs of size 2ℵ0 , the reader interested in car-
dinal arithmetic might ask whether uncountable graphs smaller than size continuum are 
well-quasi ordered? The answer is no, and much more is true: for all uncountable cardinali-
ties κ, the class of graphs of size κ always contains minor-antichains of maximal possible 
size.

Theorem 6.3 (Komjáth ’95 [18]) For every uncountable cardinal κ there is a family {Gi : 
i <  2κ} of κ-sized graphs such that Gi ⋠ Gj whenever i ≠ j.

A quite different construction for 𝜅 = 2ℵ0 assuming the continuum hypothesis has 
been obtained by Diestel and Leader, [7, §9]. But both constructions are somewhat hard 
to define. The following gives a more transparent construction for Komjáth’s result in the 
regular case, which reinstates a pleasant similarity to Thomas’s original strategy in that it 
uses T-graphs.

Theorem 6.4 (Pitz ’20+) For every uncountable regular κ there is a family {Gi : i <  2κ} of 
κ-regular trees with tops such that Gi ⋠ Gj whenever i≠j.

For a sketch of the construction, let T = Tκ denote the κ-regular tree with all tops intro-
duced in Example 3.2. Recall that a top s on level Tω is formally represented by an infinite 
sequence s∶ ℕ → � . Let Λ ⊂ κ denote the set of limit ordinals of countable cofinality. For 
every ℓ ∈ Λ pick an increasing cofinal sequence s� ∶ ℕ → � , which we may interpret as a 
top of T (Fig. 3).
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Let T(Λ) denote the κ-regular tree with all chosen tops sℓ for ℓ ∈Λ, and let G be any 
T(Λ)-graph. Let us choose a collection {Si : i <  2κ} of stationary subsets of Λ such that Si ∖ 
Sj is stationary for every i≠j, and let Gi = G(Si) be the subgraph of G induced by tree with 
tops Tκ(Si). We claim that the Gi are as desired.

The proof then proceeds as follows: Supposing for a contradiction that G(Si) ≼ G(Sj), 
then also G(Si ∖ Sj) ≼ G(Sj). Hence, to complete the proof, one has to show that if S,R are 
disjoint stationary subsets consisting of cofinality ω ordinals, then G(S) ⋠ G(R).

This verification relies on technical but routine arguments involving the combinatorics 
of stationary sets and Fodor’s pressing down lemma; see [24] for the details. At the heart of 
the argument, however, lies the fact that this chosen collection of tops {sℓ : ℓ ∈Λ} behaves 
in the following curious way: On the one hand, the selected tops are evenly spread out 
across T�

�
 in the sense that any <κ-sized subtree T ′ of T<𝜔

𝜅
 contains strictly fewer than |Λ| 

= κ many of the selected tops. One the other hand, the selected tops cluster after all: By 
Fodor’s pressing down lemma, there is a stationary subset Λ� ⊂ Λ such that sℓ(1) agree 
for all � ∈ Λ� , and iterating this observation, for any n ∈ ℕ there are still stationary many 
elements of Λ whose sequences sℓ agree on the first n elements. This tension was first 
observed by A.H. Stone in his work on Borel isomorphisms [32, §5] and [33, §3.5]. This 
clustering property is also responsible for the fact that G(Λ) does not contain a normal 
spanning tree [23, Theorem 5.1].

Finally, these trees with tops Tκ(Si) also form antichains in the category of order trees of 
height ω + 1 ordered by injective order embeddings, giving another construction for Gal-
vin’s observation mentioned above.

7  T‑graphs and Halin’s End Degree Conjecture

An end of a graph G is an equivalence class of rays, where two rays of G are equivalent if 
there are infinitely many vertex-disjoint paths between them in G. The degree deg(�) of an 
end ε is the maximum cardinality of a collection of pairwise disjoint rays in ε, see Halin 
[11].

Fig. 3  Adding a top above the ray sℓ = (1,2,4,…)
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A typical example of an end of countable degree is given by the half-grid, the 
graph on ℕ2 in which two vertices (n,m) and (n�,m�) are adjacent if and only if 
|n − n�| + |m − m�| = 1 . More generally, prototypes of ends of any prescribed degree can 
be obtained from the Cartesian product of a sufficiently large connected graph with a 
ray (see Fig. 4).

However, for many purposes a degree-witnessing collection R ⊂ 𝜀 on its own forgets 
significant information about the end, as it tells us nothing about how G links up the 
rays in R ; in fact G[

⋃
R] is usually disconnected. This raises the question of whether 

one can describe typical configurations in which G must link up the disjoint rays in 
some degree-witnessing subset of a pre-specified end.

That this is possible in the case of countable end-degree is a famous result by Halin: 
It says that every such end contains a modified version of the half-grid, namely the hex-
agonal half-grid, where one deletes every other rung from the half-grid as shown in 
Fig. 5.

Fig. 4  The Cartesian product of a star and a ray

Fig. 5  The hexagonal half grid
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Theorem 7.1 (Halin’s grid theorem ’65) Every graph with an end of infinite degree con-
tains a subdivision of the hexagonal half-grid whose rays belong to that end.

To find a satisfying answer to this question for ends of arbitrary degree, however, is a 
longstanding open problem due to Halin. In fact, Halin put forward one conjecture how 
an answer for higher end degree could look like. Intuitively, this conjecture says that 
in every end of degree κ one finds a slightly modified Cartesian product of a connected 
graph with a ray, where the modifications model the shift from half-grid to hexagonal 
half-grid encountered in Theorem 7.1.

Given a set R of disjoint equivalent rays in a graph G, we call a graph H with vertex 
set R a ray graph in G if there exists a set P of independent R-paths (independent paths 
with precisely their endvertices on rays from R ) in G such that for each edge RS of H 
there are infinitely many disjoint R–S paths in P . Given an end ε in a graph G, a ray 
graph for ε is a connected ray graph in G on a degree-witnessing subset of ε.

Using this set-up, Halin conjectured the following in [14, Conjecture 6.1]:

Conjecture 7.2 (Halin’s end degree conjecture) Every graph has ray graphs for all its 
ends.

For finite degree ends it is straightforward to answer this in the affirmative. For ends 
of countably infinite degree the answer is positive, too, by Halin’s grid theorem. For 
uncountable end degree, however, the answer depends on the cardinality of the end 
degree in question.

Theorem 7.3 (Geschke, Kurkofka, Melcher, Pitz  20+ [9]) Halin’s conjecture fails for end 
degrees deg(𝜖) = ℵ1 , holds for all end degrees ℵ2,ℵ3,…,ℵω, fails again for deg(𝜖) = ℵ𝜔+1 , 
and is undecidable for the next ℵω+n for n ∈ ℕ , n ≥ 2.

Informally, we may think of Halin’s conjecture as saying that the only way to build 
an end of degree κ is to take a Cartesian product of a ray with some tree T with |T| = κ 
(where formally, T represents the ray graph in question). If κ is regular, then every such 
tree contains a vertex of degree κ, and so in this case Halin’s conjecture further simpli-
fies as saying that the only way to build an end of degree κ is to take a Cartesian product 
of a ray with a star with κ many leaves.

However, for some end degrees such as ℵ1 or ℵω+ 1, the rays of an end may not only 
be arranged like a connected graph, but may actually be arranged like an order tree 
(specifically, in the ℵ1-case, they may be arranged like an Aronszajn tree). This is made 
precise as follows:

Suppose T is an order tree of height at most ω1. We say that a family R = {Rt ∶ t ∈ T} 
of disjoint rays in a graph G is arranged like the order tree T if there exists a family P of 
independent paths with precisely their endvertices on rays from R such that

(i) if t is a successor of s in T, there exist infinitely many disjoint Rt − Rs paths in P , 
and
(ii) if t is a limit node in T there are infinitely many disjoint paths (Pn)n∈ℕ from P 
where each Pn is an Rt − Rtn

 path such that the nodes tn are cofinal below t in T.
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Similar to how Cartesian products of a connected graph with a ray give prototypes of 
ray graphs, there is a canonical way to turn T-graphs into ray families which are arranged 
like T:

Definition 7.4 Let G be a T-graph where T be an order tree of height at most ω1 such that 
for every limit node t of T, N(t) ∩⌈t⌉ has order type ω. The ray-inflation G ♯ ℕ of G is the 
graph with vertex set T × ℕ , and the following (Fig. 6) edges:

(i) For every t ∈ T and n ∈ ℕ we add the edge (t,n)(t,n + 1) (such that Rt ∶= {t} × ℕ 
induces a ray).
(ii) If t ∈ T is a successor with predecessor t′ , we add all edges (t, n)(t�, n) for all n ∈ ℕ.
(iii) If t ∈ T is a limit with down-neighbours t0 <T t1 <T t2 <T ⋯ in G we add the edges 
(t,n)(tn,n) for all n ∈ ℕ.

It is straightforward to check that the ray inflation G ♯ ℕ has only one end, which has 
degree |T|. Our counterexamples to Halin’s conjecture in the cases ℵ1 and ℵω+ 1 are now 
obtained from ray inflations of suitable T-graphs, two instances of which look as follows:

 (11) Some ray family arranged like an Aronszajn tree refutes Halin’s conjecture for ℵ1.
 (12) Some ray family arranged like anℵω-regular tree with ℵω+ 1-many tops refutes Halin’s 

conjecture for ℵω+ 1.

Before explaining the idea behind (12) in detail, let me sketch the construction for (11): 
Recall that an Aronzsajn tree is a tree of size ℵ1 with all levels and branches countable. 
The example for (11) is given by a ray inflation G ♯ ℕ where G is a suitable T-graph for a 

Fig. 6  The ray inflation of an (ω + 1)-graph G 
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suitable Aronzsajn tree T, relying on an idea of Diestel, Leader and Todorcevic [7]: Start-
ing from a special Aronzsajn tree T, i.e. one that has an antichain partition (Un)n∈ℕ , we 
construct a T-graph as follows: Successors are connected to their predecessors, and given 
a limit t ∈ T, pick down-neighbours t0 <T t1 <T t2 <T ⋯ <T t with ti ∈ Uni

 recursively such 
that ti− 1 < ti < t and each ni is smallest possible. The resulting T-graph G has the property 
that for each t there is a finite set St ⊂ ̊⌈t⌉  such that every s >T t satisfies N(s) ∩ ⌈t⌉̈ ⊂ St. 
This is enough to show that G ♯ ℕ contains no ℵ1-star of rays, thus refuting Halin’s conjec-
ture. See [9, §6] for details.

The idea behind (12) is easier as long as one assumes the continuum hypothesis (the 
result also holds without the continuum hypothesis, but the proof becomes more compli-
cated). So let T be an order tree corresponding to an ℵω-regular tree with ℵω+ 1 many tops 
(cf. Example 3.2), and let G be any T-graph. If Halin’s conjecture were true for κ = ℵω+ 1, 
we would find in H = G ♯ ℕ a configuration of rays arranged like a κ-star with say center 
ray R and leaf rays (Ri: i < κ). Since T<𝜔 × ℕ has size < κ, we may assume without loss of 
generality that each leaf ray Ri is a tail of a horizontal ray Rt(i) ⊂ H for a top t(i) ∈ Tω, and 
that no path system from Ri to R uses an inner vertex from T<𝜔 × ℕ . Next, observe that 
there exists a countable subtree T ′ of T such that R ⊂ T � × ℕ ⊂ V(H) . Since a countable 
tree can have at most 2ℵ0 many tops, which is far smaller than κ assuming CH, we assume 
that no leaf ray Ri chooses a top t(i) whose downclosure in included in T ′ . But now it fol-
lows from (5) that every leaf ray Ri is contained in some component Ct ∶= ⌊t⌋ × ℕ for t 
a minimal element of T<𝜔 ⧵ T ′ . However, each Ri has only finitely many neighbours in 
⌈t⌉ × ℕ , contradicting that Ri sends an infinite path system to R avoiding T<𝜔 × ℕ.

Without CH, one has to pick a collection of tops of T corresponding to a scale in 
Shelah’s pcf -theory, see [9, §7] for details.

I conclude with an open question. Halin’s original conjecture for end degree ℵ1 turned 
out to be false, because there is a second configuration: ray families of size ℵ1 can not only 
be arranged like a connected graph of size ℵ1, but also like an Aronszajn tree. I wonder 
whether these are now all possible configurations.

Problem 3 Is it true that every end of degree ℵ1 contains a connected ray graph of size ℵ1 
or a ray family arranged like an Aronszajn tree?
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