
A generic framework for handling constraints
with agent-based optimization algorithms
and application to aerodynamic design

Daniel J. Poole1 • Christian B. Allen1 •

Thomas C. S. Rendall1

Received: 21 January 2016 / Revised: 20 June 2016 / Accepted: 14 October 2016 /

Published online: 24 November 2016

� The Author(s) 2016. This article is published with open access at Springerlink.com

Abstract A generic constraint handling framework for use with any swarm-based

optimization algorithm is presented. For swarm optimizers to solve constrained

optimization problems effectively modifications have to be made to the optimizers

to handle the constraints, however, these constraint handling frameworks are often

not universally applicable to all swarm algorithms. A constraint handling framework

is therefore presented in this paper that is compatible with any swarm optimizer,

such that a user can wrap it around a chosen swarm algorithm and perform con-

strained optimization. The method, called separation-sub-swarm, works by dividing

the population based on the feasibility of individual agents. This allows all feasible

agents to move by existing swarm optimizer algorithms, hence promoting good

performance and convergence characteristics of individual swarm algorithms. The

framework is tested on a suite of analytical test function and a number of engi-

neering benchmark problems, and compared to other generic constraint handling

frameworks using four different swarm optimizers; particle swarm, gravitational

search, a hybrid algorithm and differential evolution. It is shown that the new

framework produces superior results compared to the established frameworks for all

four swarm algorithms tested. Finally, the framework is applied to an aerodynamic

shape optimization design problem where a shock-free solution is obtained.

Keywords Optimization � Constraint handling � Swarm algorithms � Aerodynamic

shape optimization

& Daniel J. Poole

d.j.poole@bristol.ac.uk

Christian B. Allen

c.b.allen@bristol.ac.uk

Thomas C. S. Rendall

thomas.rendall@bristol.ac.uk

1 Department of Aerospace Engineering, University of Bristol, Bristol BS8 1TR, UK

123

Optim Eng (2017) 18:659–691

DOI 10.1007/s11081-016-9343-0

http://crossmark.crossref.org/dialog/?doi=10.1007/s11081-016-9343-0&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s11081-016-9343-0&domain=pdf

1 Introduction

Optimization is the process of improving on a current solution. In engineering

design, historically, optimization has often been performed manually where

designers use intuition to produce solutions to problems so that the solution

performs better than the initial starting point. However, it has now become

commonplace to couple numerical optimization algorithms with computational

analysis to provide a robust engineering optimization approach and an example of

this is the coupling of iterative computational fluid dynamics (CFD) methods to

optimization algorithms to produce an aerodynamic shape optimization (ASO)

process (Jameson et al. 1998; Martins et al. 2004; Hicken and Zingg 2010; Allen

and Rendall 2013). The solution to many engineering optimization problems

requires feasibility; constraints appear on the total cost, or other physical barriers to

the solution, that must be adhered to. Mathematically, this can be described by

statement 1; a single objective constrained optimization problem.

min
x2S2RD

f ðxÞ

subject togðxÞ� 0

hðxÞ ¼ 0

ð1Þ

In statement 1, x is the solution vector ½x1; x2; . . .; xD�T where each element of the

vector is a design variable; f ðxÞ is the value of the objective function for the given

solution vector; gðxÞ represents inequality constraints and hðxÞ represents equality
constraints; S is the bounded region ofRD where the solution must lie, which has an

upper bound in the kth dimension, Uk, and a lower bound, Lk, where

k ¼ f1; 2; . . .;Dg.
The choice of optimization algorithm for solving statement 1 is often driven by

the degree of multimodality present in the problem, where global search algorithms

are popular for multimodal problems. Many global search algorithms are agent-

based, so use a set of agents who evolve and move by various mechanisms (often

inspired by nature) to provide robust design space interrogation. However, to handle

constraints, often an ad-hoc method is used that is added onto the optimization

algorithm which usually either alters the optimization problem or the algorithm

itself. Many of the state-of-the-art constraint handling methods are incompatible

with all agent-based algorithms so it would be an advantage for a constraint

handling method to be applicable for use with any agent-based optimization

algorithm. A user of the framework could then wrap it around any swarm algorithm

chosen and perform constrained optimization. Hence, a novel generic framework

has been developed which is designed for use with any agent-based optimizer and is

presented in Sect. 4 of this paper. This new framework is coupled to four different

agent-based optimization algorithms, and compared to using other commonly

employed constraint handling frameworks for purely analytical problems (Sect. 5)

and some engineering benchmark problems (Sect. 6). It is also demonstrated on a

constrained aerodynamic shape optimization problem (Sect. 7). The following two

660 D. J. Poole et al.

123

sections first present a brief outline of agent-based optimization and current methods

for handling constraints.

2 Agent-based search algorithms

This section introduces the agent-based search algorithm system. A system of agents

that form an agent-based search algorithm is made up of N individuals. The nth

agent in the population has a location within the search space defined by a vector of

design variables xn ¼ ½x1n; x2n; . . .; xDn �
T
where D is the number of design variables),

which has an initial position within the search space bounds hence L� xnð0Þ�U.
The optimizers used in this work are briefly outlined below, with references

provided for more in-depth discussions of the algorithms. It is important to note that

the motivation of the work presented herein is not whether one swarm algorithm is

superior to another, but it is the development and performance analysis of the new

framework when coupled to a number of different optimizers. A comprehensive

review and archive of swarm intelligence can be found in Engelbrecht (2005).

2.1 Particle swarm optimization (PSO)

The first algorithm considered is PSO (Kennedy and Eberhart 1995). PSO uses

knowledge of the cognitive (individual) and social (population) history of the search

to construct a search procedure. Equation 2 gives the velocity expression used in a

basic PSO optimizer which is used to calculate the movement of an agent.

vnðt þ 1Þ ¼ wðtÞvnðtÞ þ c1r1nðpn � xnðtÞÞ þ c2r2nðs� xnðtÞÞ ð2Þ

In Eq. 2 the subscript n is the variable for the nth agent in a swarm of N agents; w is

the inertia weight; pn is best position found by the nth agent so far during the

optimization, which gives the cognitive aspect of the search; s is the best position

found by the whole swarm so far (it should be noted that this location is often

denoted as g, but to avoid using the same nomenclature to represent constraints, the

symbol s is used throughout this paper) which gives the social aspect of the search.

The individuals’ and swarm’s best positions give the algorithm a memory quality

that help drive it towards the globally optimal solution. The vectors, r1n and r2n are
made up of D different random numbers (i.e., for each dimension, a new random

number is used) that add a stochastic nature to the algorithm and are uniformly

distributed between 0 and 1. The constants, c1 and c2, are the cognitive and social

parameters respectively which give the local and global search extent of the scheme.

Full reviews of implementations and performance aspects of PSO are presented in

Poli et al. (2007) and Clerc (2013).

2.2 Gravitational search algorithm (GSA)

The second algorithm considered is the gravitational search algorithm (GSA)

(Rashedi et al. 2009). GSA is an agent-based global search algorithm for

Generic framework for handling constraints… 661

123

unconstrained global optimization where the principles of basic Newtonian

mechanics act as the basis on which the algorithm is constructed. The agents in

GSA act as masses, where an agent’s mass is related to its fitness. This information

is propagated through the population by global gravitational attractive forces which

act as a vehicle to allow each agent in the population to have knowledge of the

fitness of all other agents in the population, leading to an efficient optimization

process.

The force acting on the agents is controlled by a gravitational constant, which

exponentially decays from G(0) at the start of the optimization procedure by a decay

constant a. An acceleration is then calculated from the force acting on an agent and

its mass, from which the movement can be calculated.

GSA has been considered in this work to test constraint handling on a swarm

optimizer that is constructed slightly differently to PSO; in GSA there is a global

transfer of data between all agents in the population. The number of computations to

evaluate the movement of agents is slightly higher than PSO, however, it has been

shown to be an effective algorithm.

2.3 Hybrid gravitational search particle swarm (HGSAPSO)

Individually, both PSO and GSA are effective at performing global optimization,

however, researchers have also considered the performance of a hybrid version of

PSO and GSA (Mirjalili et al. 2012; Tsai et al. 2013). This hybrid GSA/PSO

algorithm has no standard name in the literature so for clarity, in this paper it is

referred to as hybrid-GSA-PSO (HGSAPSO) and is the third algorithm considered.

The HGSAPSO algorithm merges the memory qualities of PSO with the global

knowledge qualities of GSA to provide a search algorithm that is superior to both.

The two are merged by adding together a weighted combination of the

acceleration from PSO, apson (which is the right two terms of the velocity of PSO),

which is given by:

apsonðtÞ ¼ c1r1nðpn � xnðtÞÞ þ c2r2nðs� xnðtÞÞ ð3Þ

with the acceleration from GSA, agsan , to give:

anðtÞ ¼ WagsanðtÞ þ ð1�WÞapsonðtÞ ð4Þ

where W provides tuning between the memory qualities of PSO (which are

emphasised more for lower W) and the knowledge transfer qualities of GSA (which

are emphasised more for higher W). The velocity and movement are calculated

using the same method as GSA, hence, ifW ¼ 0 then the PSO velocity equation can

be recovered with a random inertia term.

2.4 Differential evolution

Differential evolution (DE) (Storn and Price 1995) is the final algorithm considered

in this work. It is a swarm intelligence algorithm built around the concept of

evolutionary mechanics and is specifically designed for continuous optimization. An

662 D. J. Poole et al.

123

in-depth review of the use of DE and its developments is given in Das and

Suganthan (2011). To summarise, DE uses mutation, crossover and selection steps

to create candidate solutions, child solutions and new generations. The mutation

stage involves the production of a new, candidate solution to introduce variability

and exploration into the algorithm. The new solution is a weighted combination of

three randomly chosen agents within the swarm, where a factor F is used to control

the mutation. The crossover stage is used to enhance diversity in the population by

combining aspects of the new and old solutions based on a crossover probability,

CR. The new solution is accepted if its fitness is better than the old solution.

3 Constraint handling in agent-based search algorithms

Constraint handling is the name of the group of approaches developed to solve

constrained optimization problems using agent-based optimization algorithms. The

most common method are by penalty functions, special operators or separation

approaches. These three methods are briefly outlined here, though a comprehensive

review of constraint handling in nature-inspired numerical optimization algorithms

has been presented previously (Mezura-Montes and Coello Coello 2011).

The principle of penalty functions is that a constrained optimization problem can

be transformed into an unconstrained one by incorporating the constraints in an

augmented objective function. The augmented objective function can then be

directly solved by the optimizer. Common approaches are a death-penalty (Hu and

Eberhart 2002), static penalty (Venter and Sobieszczanski-Sobieski 2003) or

dynamic penalty (Parsopoulos and Vrahatis 2002). Penalty functions tend to be

simple to implement and therefore are a good option for users wishing to obtain an

optimized result quickly, however, the performance requires careful selection of the

penalty parameters. Most penalty approaches are generally applicable to any agent-

based search algorithm and this makes their performance particularly important for

comparison in this work.

The special operators work on the principle that a feasible solution is better than

an infeasible one, and as such manipulate the underlying search algorithm to drive

the solution towards the feasible space. The first methods of this nature were based

on the idea of feasible directions (Vanderplaats 1999), and have since been

developed into more sophisticated approaches (Venter and Sobieszczanski-Sobieski

2003; Sun et al. 2011; Lu and Chen 2008). An obvious prerequisite of these

operators is the requirement for at least one agent to be initially feasible. This can be

problematic when the feasible space is small compared to the whole design space, or

if equality constraints are present, where the feasible design space is a D� 1

manifold, i.e., a line for two dimensional space. Furthermore, they also tend to alter

the natural self-organising swarm dynamics that cause the algorithm to be effective

at optimizing search spaces.

Finally, separation approaches are also common. These are the antithesis to

penalty functions, where instead of combining the constraint violation and objective

function, the two are optimized separately (Lu and Chen 2006; Liang and Suganthan

2006). These methods can generally be split into ‘‘hard feasibility rules’’ (binary

Generic framework for handling constraints… 663

123

tournament selection is an example of this Deb 2000) and ‘‘soft feasibility rules’’ (a-
constrained (Takahama and Sakai 2005a) and �-constrained (Takahama and Sakai

2005b) methods are examples). Care has to be taken with methods such as these that

premature convergence is not obtained, or that many user-defined tuning parameters

are not added.

Many constraint handling techniques have been proposed for coupling to agent-

based search algorithms, however, not all techniques are suitable for coupling to all

agent-based optimizers. GSA, for example, is particularly difficult to couple to

many constraint handling techniques. The global transfer of data that occurs in GSA

(due to the global attractive forces) means data can be transferred from the

infeasible to the feasible region. In reality, what this means is that if, say a penalty

function is used, then the masses of the feasible agents may only vary by a small

amount due to the (possibly) very large difference in objective function that can

exist between the feasible and infeasible agents. This can severely restrict the ability

for GSA to locate the feasible globally optimal solution. Furthermore, GSA is an

example of a swarm algorithm that uses the fitness function directly in its update

scheme. This makes GSA (and its derivatives such as HGSAPSO) difficult to couple

to both traditional and state-of-the-art constraint handling frameworks without

compromising the performance of either GSA or the constraint handling framework.

GSA is used here as an example but this argument can be made for other agent-

based algorithms too, hence it would be advantageous for a constraint-handling

framework to be compatible with any agent-based algorithm. A user of the

framework could then wrap it around any swarm algorithm chosen and perform

constrained optimization. This is the point that is dealt with in this paper and has led

to the development of a generic constraint handling framework that is suitable for

coupling to any agent-based search algorithm.

4 Proposed constraint handling framework

The development of the framework proposed in this work is driven by the

requirement to have a general constraint handling method that can be used for any

agent-based optimization algorithm. Ideally, modifications to the fundamentals of a

given optimizer should be avoided as this can alter the underlying self-organising

swarm intelligence of the algorithm, but instead, the constraint handling framework

should be able to be added on to an existing optimizer. The approach that is

presented here adheres to this requirement and works with the general agent-based

optimizer system. Discussion points that are considered in the framework’s

development process are laid out below, followed by a formal explanation of the

constraint handling framework itself.

4.1 Development points for new framework

The requirement highlighted in this paper is to have a generic constraint handling

framework to be used with any agent-based optimizer, i.e., a user should be able to

add this framework onto an already existing unconstrained optimizer. Therefore, to

664 D. J. Poole et al.

123

be able to do this it is proposed that the total population of N agents be split into two

independent sub-swarms, where one sub-swarm contains entirely feasible agents

and the other is entirely infeasible agents. The constraint violation, /ðxnÞ is defined
as follows:

/ðxnÞ ¼
XG

k¼1

hgkðxnÞi þ
XH

k¼1

jhkðxnÞj ð5Þ

where G and H are the number of inequality and equality constraints respectively,

and hgkðxnÞi is the constraint violation of the inequality constraint. An infeasible

agent is defined as being one where /ðxnÞ[0. At any iteration during the search

there will be Nf feasible and N� infeasible agents (Eq. 6 must therefore hold). It

should be noted, however, that Nf and N� may change at every iteration as agents

migrate from the feasible to infeasible space and vice-versa.

N ¼ Nf þ N� ð6Þ

By splitting the population into sub-swarms, the constrained optimization problem

can also be split into two separate problems. Hence, the framework uses the problem

separation approach where the feasible agents optimize the value of the objective

function and the infeasible agents optimize the constraint violation, as shown in

Eq. 7 where f represents the objective function of an agent; this formulation

necessitates the use of sub-swarms.

fðxnÞ ¼
f ðxnÞ if/ðxnÞ� 0

/ðxnÞ else

(
ð7Þ

The solution that the infeasible swarm is searching for is located at every point in

the feasible region, hence this acts as a mechanism to firstly find the feasible space,

and secondly keep the agents there. The solution that the feasible swarm is

searching for is at the global minimum of the feasible region, which is the solution

to the constrained optimization problem given by statement 1, assuming a feasible

solution exists.

By considering sub-swarms, separate agent-based search algorithms can be used

for each of the two sub-problems. Hence, a user’s already existing unconstrained

optimizer can be used to solve the feasible part of Eq. 7 while being independent of

the infeasible part. This avoids unwanted dilution of the feasible data by the

infeasible data and promotes the performance qualities of a user’s swarm optimizer.

To solve Eq. 7 for the infeasible sub-swarm any agent-based search algorithm can

be used, however, for this constraint handling framework, a simple PSO is

suggested to take advantage of the memory components. The pn and s positions,

which are the individual and global best positions found so far should be made

feasible if they can be feasible to allow a velocity component to point towards the

feasible region. This can be done using a binary tournament selection procedure.

While a simple PSO movement procedure is suggested, in fact, a user could use any

swarm algorithm for the unconstrained problem too. This would add further

flexibility to the framework.

Generic framework for handling constraints… 665

123

4.2 Separation-sub-swarm (3S) framework

The constraint handling framework described in this paper is hereafter called

separation-sub-swarm (3S), and is fully outlined in this section for completion. At

any iteration, t, during the optimization there are a constant number of N agents in

the whole swarm, where an individual agent is the nth agent of the whole swarm.

The objective function and constraint values of each agent must be calculated, and

from that the population can be split into a sub-swarm containing Nf feasible agents

(all constraints are satisfied) and N� infeasible agents (at least one constraint is

violated). An individual agent in the feasible sub-swarm is the ith feasible agent,

whereas an individual in the infeasible sub-swarm is the jth infeasible agent.

The objective function of the ith agent in the feasible swarm is:

fðxiÞ ¼ f ðxiÞ ð8Þ

and the objective function of the jth agent in the infeasible swarm is:

fðxjÞ ¼ /ðxjÞ ð9Þ

The movement procedure of the infeasible agents in the population is by a simple

PSO so all agents in the population (including the feasible ones) must have their best

position, pn, updated. The swarm’s best position, s, also needs to be updated. A

domination procedure based on a tournament selection is used, where the domi-

nation operator � is used to determine the domination between two locations in the

search space, xa and xb. The domination operator then works as follows:

xa � xb ,
f ðxbÞ\f ðxaÞ and /ðxaÞ;/ðxbÞ� 0

/ðxbÞ� 0 and /ðxaÞ[0

/ðxbÞ\/ðxaÞ and /ðxaÞ;/ðxbÞ[0

8
><

>:
ð10Þ

and

xb 7!xa , xa � xb ð11Þ

Hence, if xa is dominated by xb then xa is updated with xb. pn � xn and s � xn are
used to update pn and s. The velocity and movement of the jth infeasible agent is

then calculated as:

vjðt þ 1Þ ¼r0jvjðtÞ þ c1r1jðpj � xjðtÞÞ þ c2r2jðs� xjðtÞÞ ð12Þ

xjðt þ 1Þ ¼xjðtÞ þ vjðtÞ ð13Þ

where r0j is a D long vector of random numbers, analogous to r1j and r2j . The

pseudocode of the 3S framework is given in Algorithm 1 where the highlighted line

of the code is where the user would add their selected agent-based search algorithm

for updating the feasible swarm. This demonstrates that the 3S framework is

compatible with any agent-based optimizer with no modification required to the

mechanics of a user’s swarm algorithm.

666 D. J. Poole et al.

123

When implementing the 3S framework to handle constraints with any swarm

optimizer, tracking of the swarm’s best position means that the user can track the

feasibility of the optimum design found so far. At the end of the optimization, if no

feasible solution has been found then the value stored in s is the closest solution to

the feasible region that could be found.

5 Constrained analytical optimization

The 3S framework for handling constraints when using agent-based optimization

algorithms is outlined fully in Algorithm 1. This framework is compatible with any

agent-based algorithm, the user need only add the framework to their optimizer to

be able to handle constraints. To demonstrate this, constrained analytical

optimization is performed in this section for four different swarm algorithms:

PSO, GSA, HGSAPSO and DE. The simple PSO with inertia is used to demonstrate

the effect of using 3S with a PSO-based algorithm; it should be noted that many

other PSO algorithms are also available though the goal of this work is not to prove

whether one agent-based algorithm is superior to another, but to prove that the

newly designed 3S framework is suitable for use with any agent-based algorithm.

5.1 Methods used for comparison

To compare the performance of 3S, other constraint handling frameworks that are

also suitable for use with any swarm optimizer are also tested. These methods are a

death penalty method, static penalty method, dynamic penalty method and feasible

directions method. The formulations of these methods are also detailed below.

The death penalty, which is the simplest method implemented, randomly

reinitialises an infeasible agent.

Algorithm 1 3S framework
Initialise agents with random positions and velocities
for t = 1 → T do

Calculate f(x), g(x) and h(x) of all agents
Calculate φ(x) and ζ(x) of all agents
Separate feasible and infeasible agents
for n = 1 → N do

xn pn ⇔ pn ≺ xn

xn s ⇔ s ≺ xn

end for
for j = 1 → N× do

Update vj of all infeasible agents: equation 12
Update x of all infeasible agents: equation 13

end for
for i = 1 → Nf do

Update xi of all feasible agents by selected agent-based method
end for

end for

Generic framework for handling constraints… 667

123

For the static penalty, the formulation of the augmented objective function is

given as:

fðxnÞ ¼ f ðxnÞ þ h/ðxnÞ ð14Þ

where h is the static penalty factor. The penalty factor was chosen based on com-

paring three orders of magnitude factors (h ¼ 1; 10; 100) on the G7 problem using

PSO (details of runs are found later in Sect. 5.2). When h ¼ 1, from the 25 runs, not

one was found feasible and it appears that this factor is not large enough to create a

penalty suitable to find a feasible solution. However, when h ¼ 10 or h ¼ 100 the

feasibility rate was 100%, but the standard deviation of the h ¼ 10 factor was

approximately half of when h ¼ 100 indicating that a too high penalty factor

weights feasibility over exploitation and therefore inhibits a good optimum being

found. Hence, a penalty factor of h ¼ 10 was chosen to give a reasonable balance

between feasibility and exploitation.

The more complicated dynamic penalty formulation (Parsopoulos and Vrahatis

2002) is:

fðxnÞ ¼ f ðxnÞ þ j
XG

k¼1

hkhgkðxnÞick þ
XH

k¼1

hkjhkðxnÞjck
 !

ð15Þ

where j is the dynamic penalty which is given by t
ffiffi
t

p
at the tth iteration; hk ¼ 10 if

hgki; jhkj\0:001, else hk ¼ 20 if hgki; jhkj\0:1, else hk ¼ 100 if hgki; jhkj\1:0,
otherwise hk ¼ 300; ck ¼ 1:0 if hgki; jhkj\1, otherwise ck ¼ 2.

The feasible direction approach used here is based on an approach developed for

PSO (Venter and Sobieszczanski-Sobieski 2003) where amanipulation of the velocity

vector ismade if an agent is infeasible to attempt to force it towards the feasible region.

Hence for the jth infeasible particle, the velocity vector is constructed as:

vjðt þ 1Þ ¼ r0jðsðtÞ � xjðtÞÞ ð16Þ

where s is the swarm’s best position found, which is feasible if possible. If this is

feasible then the velocity vector will always point towards the feasible region. As

Table 1 Parameter values used in GSA, PSO, HGSAPSO and DE

Parameter GSA value PSO value HGSAPSO value DE value

N 200 200 200 50

T 1500 1500 1500 –

nfmax 300,000 300,000 300,000 300,000

G(0) 30 – 30 –

a 10 – 10 –

c1, c2 – 2 2 –

w – Rand (0, 1) Rand (0, 1) –

W – – 0.5 –

CR – – – 0.3

F – – – 0.7

668 D. J. Poole et al.

123

before, the update of the swarm’s best position is by the domination operator, hence

xn 7!s , s � xn.

5.2 Run details

The parameter values used for GSA, PSO, HGSAPSO and DE are given in Table 1

where N is the number of agents, T is maximum number of iterations, G(0) is the

initial gravitational constant, a is the gravitational decay constant, c1 is the cognitive
parameter, c2 is the social parameter, w is the inertia factor, and W controls the

influence of GSA and PSO in HGSAPSO respectively. These values were chosen as

they reflected parameter values found in the literature and gave all constraint

handling frameworks good performance. If any agent exits the bounds of the design

space, i.e., if xi 62 S (as given in statement 1) then it is reinitialised in its last

position. The stopping criteria is until the number of function evaluations reaches

nfmax. This is kept constant through all the tests to ensure fairness of comparison

between the different constraint handling techniques.

The CEC2006 constrained analytical function suite (Liang et al. 2013) is used in

this paper for testing the performance of the constraint handling techniques. The

suite contains 24 test cases that are all minimization problems and contain various

numbers of linear and non-linear inequality and equality constraints, various sizes of

feasible search space, and various types of objective function. Cases 20 and 22 are

omitted due to not having a feasible solution within the bounds of the stated design

space. The nature of the cases are outlined in Table 2. Equality constraints are

transformed into inequality constraints to within a small tolerance: jhjðxÞj � �� 0.

5.3 Results

25 independent runs of each of the test functions using each constraint handling

framework with each swarm algorithm were performed when testing. The degree of

violation for the equality constraints was � ¼ 0:0001, so as a result optimum

solutions better than the theoretical optimum were possible. The error was

calculated as the difference between the best feasible solution and the analytical

minimum objective value stated in the CEC 2006 definitions (Liang et al. 2013).

The final results were ranked based on the final error in the solution. Any infeasible

solutions were ranked after any feasible ones, and by their final constraint violation.

The best result (the one with the lowest error) of the 25 runs using the five different

constraint handling methods with GSA, PSO, HGSAPSO and DE are presented in

Tables 3, 4, 5 and 6. Also presented are the standard deviation of all of the feasible

results and the number of runs that resulted in a feasible solution. If an infeasible

solution results from any of the runs then the worst value is presented as INF,

meaning infeasible. If feasible solutions are available then the best results presented

are from the feasible solutions only, hence if no feasible solution can be found from

the 25 runs, then the best solutions will be infeasible. The average feasibility rate of

each constraint handling technique is shown graphically in Fig. 1. The feasibility

rate is the percentage of runs that found a feasible solution. Example convergence

Generic framework for handling constraints… 669

123

plots for the best solution found for a number of functions using different swarm

algorithms are shown in Fig. 2.

The performance of the 3S constraint handling framework compared to the other

generic frameworks of penalty functions and feasible directions demonstrates that,

overall, this new framework produces superior performance, both in terms of finding

a feasible solution and finding the best feasible solution. In terms of finding a

feasible solution through the optimizations, Fig. 1 demonstrates that the 3S

framework, overall, outperforms all of the other methods tested. The feasibility rate

for 3S is consistently above 90% for all of the swarm algorithms tested

demonstrating that the 3S framework can be described as a generic constraint

handling framework. The primary reason for the framework to be able to find a

feasible solution at such a high rate is possibly due to the domination procedure that

applies a lexicographic ordering that enforces feasibility to precede anything else.

This introduces a velocity component that points, at least, towards a less infeasible

Table 2 Summary of 24 analytical test cases, where q is the ratio of the feasible search space to the

whole search space, and GL, GN , HL, HN represent the number of linear inequalities, nonlinear

inequalities, linear equalities and nonlinear equalities respectively, a is number of active constraints at

solution

Function D Type of f q (%) GL GN HL HN a Optimal f

G1 13 Quadratic 0.0111 9 0 0 0 6 -15.0000

G2 20 Nonlinear 99.997 0 2 0 0 1 -0.8036

G3 10 Polynomial 0.0000 0 0 0 1 1 -1.0005

G4 5 Quadratic 52.123 0 6 0 0 2 -30,665.5387

G5 4 Cubic 0.0000 9 0 0 3 3 5126.4967

G6 2 Cubic 0.0066 9 2 0 0 2 -6961.8139

G7 10 Quadratic 0.0003 3 5 0 0 6 24.3062

G8 2 Nonlinear 0.8560 0 2 0 0 0 -0.0958

G9 7 Polynomial 0.5121 0 4 0 0 2 680.6301

G10 8 LInear 0.0010 3 3 0 0 6 7049.2480

G11 2 Quadratic 0.0000 0 0 0 1 1 0.7499

G12 3 Quadratic 4.7713 0 1 0 0 0 -1.0000

G13 5 Nonlinear 0.0000 0 0 0 3 3 0.0539

G14 10 Nonlinear 0.0000 0 0 3 0 3 -47.7649

G15 3 Quadratic 0.0000 0 0 1 1 2 961.7150

G16 5 Nonlinear 0.0204 4 34 0 0 4 -1.9052

G17 6 Nonlinear 0.0000 0 0 0 4 4 8853.5397

G18 9 Quadratic 0.0000 0 13 0 0 6 -0.8660

G19 15 Nonlinear 33.476 0 5 0 0 0 32.6556

G20 24 Linear 0.0000 0 6 2 12 16 Infeasible

G21 7 Linear 0.0000 0 1 0 5 6 193.7245

G22 22 Linear 0.0000 0 1 8 11 19 Infeasible

G23 9 Linear 0.0000 0 2 3 1 6 -400.0551

G24 2 Linear 79.656 0 2 0 0 2 -5.5080

670 D. J. Poole et al.

123

Table 3 Feasible results of 24 analytical function test suite optimized using various constraint handling

methods with GSA swarm (INF means no feasible solution could be found)

3S Static Death Dyn FD

Best

G1 -14.9907 -14.9833 -5.5840 -14.9061 INF

G2 -0.4522 -0.4272 -0.4587 -0.4354 -0.4369

G3 -0.9920 INF -0.0894 -0.9747 INF

G4 -30665.5354 INF -30394.9990 -30661.8813 -30033.6496

G5 5126.5114 5313.8254 INF INF INF

G6 -6961.8131 INF -6876.4704 -6717.7858 -6823.0618

G7 24.8426 26.1253 344.6819 80.9496 INF

G8 -0.0958 INF -0.0958 -0.0958 -0.0947

G9 680.8516 683.8443 703.3757 691.9333 714.4896

G10 7184.0823 7064.7437 13794.2317 7451.3936 INF

G11 0.7499 0.7500 0.7499 0.7500 0.9217

G12 -1.0000 -1.0000 -1.0000 -1.0000 -1.0000

G13 0.1777 0.4398 INF 0.4403 INF

G14 -46.4714 INF INF INF INF

G15 961.7151 963.0040 INF 961.8996 INF

G16 -1.9051 -1.3273 -1.7980 -1.3508 INF

G17 8870.2852 9782.8587 INF INF INF

G18 -0.8645 -0.6668 INF -0.6467 INF

G19 34.5653 96.3559 683.0107 480.7436 327.6714

G21 672.7320 475.3641 INF 9132.8898 INF

G23 -70.0588 INF INF INF INF

G24 -5.5080 -5.4960 -5.5042 -5.4904 -5.4634

Standard deviation (N. feasible runs)

G1 0.0151 (25) 0.0327 (25) 1.7482 (14) 0.9817 (25) -(0)

G2 0.0079 (25) 0.0288 (25) 0.0191 (25) 0.0262 (25) 0.0322 (25)

G3 0.0051 (25) -(0) 0.0252 (13) 0.0265 (25) -(0)

G4 0.0698 (25) -(0) 112.8312 (25) 74.8931 (6) 432.1321 (16)

G5 7.7903 (25) 472.9426 (25) -(0) -(0) -(0)

G6 0.0014 (25) -(0) 450.9520 (25) 351.4827 (25) 561.9018 (24)

G7 0.1608 (25) 0.5597 (25) 987.8801 (7) 57.3000 (25) -(0)

G8 0.0000 (25) -(0) 0.0000 (25) 0.0000 (25) 0.0273 (24)

G9 0.1220 (25) 1.3350 (25) 21.7667 (25) 10.6778 (25) 167.2007 (25)

G10 58.3379 (25) 303.2353 (3) 1022.9673 (8) 1281.6319 (24) -(0)

G11 0.0000 (25) 0.0020 (25) 0.0021 (25) 0.0269 (25) 0.0000 (1)

G12 0.0000 (25) 0.0000 (25) 0.0000 (25) 0.0000 (25) 0.0000 (25)

G13 0.1516 (25) 0.1790 (25) -(0) 0.1874 (25) -(0)

G14 0.8196 (25) -(0) -(0) -(0) -(0)

G15 0.2823 (25) 0.7276 (25) -(0) 1.6090 (25) -(0)

G16 0.0000 (25) 14.2727 (25) 0.0775 (25) 2905.0956 (18) -(0)

G17 21.9869 (25) 511.1305 (25) -(0) -(0) -(0)

Generic framework for handling constraints… 671

123

solution, or towards feasibility is a feasible solution is known. Secondary to this is

also the separation that takes place in the algorithm which inhibits data being

transferred from the infeasible search to the feasible search. This benefits the search

properties of the user specified swarm algorithm, which are promoted.

A clear picture of the quality and repeatability of the final results obtained can be

sought by considering the standard deviation and the number of feasible runs. In

particular, the 3S framework has consistently small standard deviations and large

numbers of results that gave a feasible solution and is homogeneous across the four

swarm algorithms tested. It is interesting to note, that when coupling to DE, 3S

provides best solutions that are, overall, closer to the best available solution than the

other swarm algorithms. Another example of where DE has high performance is

when using feasible direction with DE. In general, the feasible directions framework

has poor results both in terms of feasibility, and quality of the final solution. This

performance is, however, vastly improved when considering DE as the swarm

algorithm, over PSO, GSA and HGSAPSO.

Comparing Fig. 2a with b and e with f allows comparisons of the performance of

the constraint handling frameworks on problems containing different numbers of

inequality and equality constraints. Figure 2a is the convergence of the frameworks

with GSA on problem G11, which has 1 equality constraint, whereas, Fig. 2b is the

convergence of the frameworks with GSA on problem G16, which has 38 inequality
constraints. An equality constrained problem effectively acts as an optimization

along a line, hence represents a difficult optimization problem. The 3S framework,

however, has performed well in both cases, producing a final error that is multiple

orders of magnitude lower than the other frameworks for both cases. This is a trend

that is seen when considering the use of DE as the swarm algorithm too. Comparing

Fig. 2e (1 equality constraint) with Fig. 2f (2 inequality constraints) shows, again,

that the 3S framework performs well with both inequality and equality constrained

problems.

If rate of convergence is a limiting factor for making a choice of which constraint

handling framework to use then the 3S framework allows the limiting factor of the

convergence to be driven by the attached swarm optimizer. This is particularly

useful in examples where the number of objective function evaluations should be

kept to a minimum. This behaviour is demonstrated by considering the different

rates of convergence of Fig. 2c (HGSAPSO), d (PSO) and f (DE). The convergence

rates of all three of these optimizers are considerably different, and are driven by the

Table 3 continued

3S Static Death Dyn FD

G18 0.0018 (25) 0.0096 (25) -(0) 0.0709 (25) -(-(0)

G19 0.4775 (25) 17.4433 (25) 73.9192 (25) 51.3574 (25) 493.9967 (25)

G21 0.0000 (1) 27.8311 (25) -(0) 0.0000 (1) -(0)

G23 161.0525 (7) -(0) -(0) -(0) -(0)

G24 0.0000 (25) 0.0102 (25) 0.0146 (25) 0.0182 (25) 0.1161 (25)

672 D. J. Poole et al.

123

Table 4 Feasible results of 24 analytical function test suite optimized using various constraint handling

methods with PSO swarm (INF means no feasible solution could be found)

3S Static Death Dyn FD

Best

G1 �15.0000 �15.0000 �5.7498 �15.0000 INF

G2 �0.8036 �0.8036 �0.7977 �0.8035 �0.7460

G3 �0.9943 INF �0.0570 �0.9683 INF

G4 �30665.5395 INF �30660.7782 �30663.8131 �30604.0093

G5 5126.4985 5126.5266 INF 5126.5551 INF

G6 �6961.8139 INF �6825.0976 �6961.8139 INF

G7 24.3452 24.3412 489.5621 24.3400 INF

G8 �0.0958 INF �0.0958 �0.0958 �0.0958

G9 680.6308 680.6313 683.7978 680.6337 INF

G10 7051.8133 INF 12858.4867 7151.1207 INF

G11 0.7499 0.7499 0.7500 0.7499 INF

G12 �1.0000 �1.0000 �1.0000 �1.0000 �1.0000

G13 0.0928 0.2399 INF 0.7805 INF

G14 �45.9470 INF INF INF INF

G15 961.7168 961.7165 INF 961.7349 INF

G16 �1.9052 �1.9052 �1.8072 �1.9052 INF

G17 8866.0629 8873.2060 INF 8874.6330 INF

G18 �0.8660 �0.8660 INF �0.8660 INF

G19 32.9288 33.7257 92.8825 33.4726 52.0220

G21 INF 208.6892 INF 3134.5820 INF

G23 �305.4569 INF INF 4728.5811 INF

G24 �5.5080 �5.5080 �5.5077 �5.5080 �5.5080

Standard deviation (N. feasible runs)

G1 0.0000 (25) 0.8956 (25) 1.6716 (15) 0.8956 (25) �(0)

G2 0.0041 (25) 0.0220 (25) 0.0446 (25) 0.0370 (25) 0.0525 (25)

G3 0.0100 (25) �(0) 0.0173 (13) 0.1290 (25) �(0)

G4 0.0000 (25) �(0) 10.9913 (25) 10.8116 (3) 169.9077 (9)

G5 5.8372 (25) 33.4327 (25) �(0) 290.2647 (21) �(0)

G6 0.0000 (25) �(0) 455.2729 (25) 0.0005 (14) �(0)

G7 0.0554 (25) 0.2703 (25) 928.9641 (10) 0.5058 (25) �(0)

G8 0.0000 (25) �(0) 0.0000 (25) 0.0000 (25) 0.0000 (3)

G9 0.0013 (25) 0.0075 (25) 6.4125 (25) 0.0083 (25) �(0)

G10 72.4586 (25) �(0) 1519.0320 (7) 795.2348 (16) �(0)

G11 0.0000 (25) 0.0000 (25) 0.0055 (25) 0.0000 (25) �(0)

G12 0.0000 (25) 0.0000 (25) 0.0000 (25) 0.0000 (25) 0.0000 (25)

G13 0.2274 (25) 0.2443 (25) �(0) 223.8461 (25) �(0)

G14 0.5747 (25) �(0) �(0) �(0) �(0)

G15 0.3319 (25) 0.4739 (25) �(0) 3.3241 (25) �(0)

G16 0.0000 (25) 0.0000 (25) 0.0617 (25) 0.0000 (25) �(0)

G17 24.2533 (25) 76.6460 (25) �(0) 741.1933 (16) �(0)

Generic framework for handling constraints… 673

123

chosen swarm algorithm. These three figures also demonstrate, unlike the other

methods, that the 3S framework does not restrict the high rates of convergence seen

with methods such as DE and PSO. This functionality of the 3S framework comes

about due to splitting the population into independent swarms depending on

feasibility. The coupling of other high performance swarm optimizers is therefore

facilitated without restricting the performance of these optimizers.

6 Engineering benchmark problems

The 3S framework is also tested on a number of common mechanical engineering

benchmark problems. Again, as with the CEC2006 suite of problems, the 3S

framework is used with four different swarm algorithms (GSA, PSO, HGSAPSO

and DE) and is compared to the other generic constraint handling methods outlined

in this paper (death penalty, static penalty, dynamic penalty and feasible directions).

The three engineering benchmark cases investigated represent commonly used

problems to investigate algorithm performance. The chosen problems are (1) welded

beam design (Rao 2013) (2) pressure vessel design (Kannan and Kramer 1994) and

(3) spring design (Belegundu and Arora 1985).

A summary of the number of design variables, design variable designations and

number of constraints (all are inequalities) are shown in Table 7. The problem

geometries are shown in Figs. 3, 4 and 5 respectively. Hence, the welded beam

problem has four continuous design variables which are weld thickness h, weld

length l, bar thickness t and bar width b; the pressure vessel problem has design

variables are the thickness of the cylinder, Ts, the thickness of the head, Th, the

radius of the cylinder, R, and the length of the cylinder L; the spring problem

variables are the number of coils of the spring, N (i.e., the total length of the material

to produce the spring), the maximum diameter of the spring, D, and the thickness of

the material, d. The pressure vessel problem is a mixed integer problem. That is, x1
and x2 must be integer multiples of 0.0625 to represent the different gauges of steel

available. In the implementation of the swarm algorithms an integer design variable

is derived from a continuous set by rounding the continuous variable to the nearest

integer multiple of 0.0625. It should be noted that the four constraints are not related

to the requirement of having integer variables, and these constraints are separate to

this requirement.

Table 4 continued

3S Static Death Dyn FD

G18 0.0008 (25) 0.0923 (25) �(0) 0.0888 (18) �(0)

G19 0.4927 (25) 1.7673 (25) 55.9256 (25) 1.7651 (25) 81.0963 (12)

G21 �(0) 82.0738 (13) �(0) 2162.5011 (4) �(0)

G23 174.9549 (11) �(0) �(0) 1428.6489 (3) �(0)

G24 0.0000 (25) 0.0000 (25) 0.0006 (25) 0.0000 (25) 0.4636 (13)

674 D. J. Poole et al.

123

Table 5 Feasible results of 24 analytical function test suite optimized using various constraint handling

methods with HGSAPSO swarms (INF means no feasible solution could be found)

3S Static Death Dyn FD

Best

G1 �15.0000 �15.0000 �5.1698 �15.0000 INF

G2 �0.8036 �0.8036 �0.8006 �0.8036 �0.7909

G3 �0.9925 INF �0.1834 �1.0000 INF

G4 �30665.5394 INF �30662.5644 �30626.3635 �30381.0190

G5 5126.5107 5126.8962 INF 5131.7650 INF

G6 �6961.8139 INF �6623.7927 �6961.8138 �6961.8060

G7 24.3128 24.3515 206.6377 24.3281 INF

G8 �0.0958 INF �0.0958 �0.0958 �0.0958

G9 680.6302 680.6310 682.8158 680.6310 697.3279

G10 7051.7103 INF 11877.3682 7326.3568 INF

G11 0.7499 0.7499 0.7500 0.7499 INF

G12 �1.0000 �1.0000 �1.0000 �1.0000 �1.0000

G13 0.1051 0.4484 INF 11.3736 INF

G14 �45.8997 INF INF INF INF

G15 961.7163 961.7151 INF 961.7253 INF

G16 �1.9052 �1.9052 �1.8046 �1.9052 INF

G17 8859.7080 8855.1521 INF 13226.0210 INF

G18 �0.8660 �0.8660 INF �0.8660 INF

G19 33.0281 42.9999 86.0055 48.1947 67.2288

G21 INF 195.5876 INF 791.1765 INF

G23 �230.7389 INF INF 5850.4888 INF

G24 �5.5080 �5.5080 �5.5080 �5.5080 �5.5080

Standard deviation (N. feasible runs)

G1 0.0000 (25) 0.0000 (25) 1.4675 (16) 0.0000 (19) �(0)

G2 0.0039 (25) 0.0318 (25) 0.0434 (25) 0.0356 (25) 0.0525 (25)

G3 0.0069 (25) �(0) 0.0447 (18) 0.0047 (25) �(0)

G4 0.0000 (25) �(0) 7.5015 (25) 73.9682 (5) 313.0055 (11)

G5 7.5209 (25) 113.7252 (25) �(0) 2575.4534 (16) �(0)

G6 0.0007 (25) �(0) 571.4141 (25) 0.0007 (25) 20.8651 (19)

G7 0.0148 (25) 0.1781 (25) 906.4599 (9) 0.1731 (24) �(0)

G8 0.0000 (25) �(0) 0.0000 (25) 0.0000 (25) 0.0000 (23)

G9 0.0004 (25) 0.0037 (25) 2.3130 (25) 0.0058 (25) 0.0000 (1)

G10 43.7134 (25) �(0) 1459.8375 (6) 1315.2868 (15) �(0)

G11 0.0000 (25) 0.0000 (25) 0.0018 (25) 0.0055 (25) �(0)

G12 0.0000 (25) 0.0000 (25) 0.0000 (25) 0.0000 (25) 0.0000 (25)

G13 0.1495 (25) 0.1813 (25) �(0) 332.9316 (25) �(0)

G14 0.6098 (25) �(0) �(0) �(0) �(0)

G15 0.1202 (25) 0.0654 (25) �(0) 733.8463 (25) �(0)

G16 0.0000 (25) 0.0283 (25) 0.0650 (25) 0.0359 (25) �(0)

G17 24.8150 (25) 40.4461 (25) �(0) 1200.3351 (2) �(0)

Generic framework for handling constraints… 675

123

Again, the various constraint handling frameworks combined with the swarm

optimizers are run on the three benchmark problems 25 times to obtain a

distribution of results. The parameter values used in the algorithms are those used in

the CEC2006 test (Table 1). The results of the runs for each of the cases are shown

in Tables 8, 9 and 10 and Fig. 6. Tables 8, 9 and 10 also gives the number of

constraints that satisfy a given tolerance, which have been taken from the best

solution of the engineering benchmark cases, i.e., this is the total number of

constraints that satisfy gkðxÞ� e for the best solution, where e is the chosen

tolerance. The discussion of the results follows in the next sections after the

definition of each of the problems. To obtain a comparison of how the 3S method is

working, as well as comparing to the other constraint handling methods outlined in

this paper, previously published results are also given in a subsequent section.

6.1 Welded beam design

The results of the 25 runs using each of the constraint handling frameworks with

each of the swarm algorithms is shown in Table 8. It can be seen, like in the

CEC2006 runs, that the 3S framework performs consistently better than the other

frameworks. The best, median and mean solutions for all the swarm algorithms is

regularly lower when using the 3S framework. Furthermore, the standard deviation

is always low, indicating that 3S is a very consistent algorithm compared to the

others tested. Again, feasible directions performs the poorest of the constraint

handling methods tested, however, the static penalty performs on par with 3S when

using the PSO and HGSAPSO algorithms. It is also clear, from Table 8 that the 3S

framework is able to converge the active constraint values right down when coupled

with both DE and PSO.

An example convergence history of the welded beam problem when using DE

with the five constraint handling frameworks is shown in Fig. 6a. Only the first

20000 function evaluations are shown just to demonstrate the convergence. It can be

seen that when using 3S for constraint handling, the high convergence rate

associated with DE is not compromised and the solution is converged onto within

only a few iterations of the optimization. An optimum solution is converged onto in

less than 15,000 function evaluations. A high convergence rate was also observed in

the CEC2006 runs. The separation of the two swarms promotes good convergence

Table 5 continued

3S Static Death Dyn FD

G18 0.0001 (25) 0.0824 (25) �(0) 0.0835 (24) �(0)

G19 0.1868 (25) 11.1215 (25) 42.6108 (25) 12.1735 (25) 117.1247 (24)

G21 �(0) 69.6570 (25) �(0) 2730.0626 (8) �(0)

G23 187.4413 (13) �(0) �(0) 1222.5503 (10) �(0)

G24 0.0000 (25) 0.0000 (25) 0.0002 (25) 0.0000 (25) 0.0000 (25)

676 D. J. Poole et al.

123

Table 6 Feasible results of 24 analytical function test suite optimized using various constraint handling

methods with DE swarms (INF means no feasible solution could be found)

3S Static Death Dyn FD

Best

G1 �15.0000 �15.0000 �6.9717 �15.0000 �8.0216

G2 �0.8035 �0.8036 �0.7994 �0.8036 �0.7390

G3 �0.9799 INF �0.4696 �0.6465 �0.0000

G4 �30665.5395 INF �30600.4501 �30665.5395 �30432.0489

G5 5126.6494 5126.4967 INF 5126.4967 INF

G6 �6961.8139 INF �6697.3707 �6961.8139 �5082.4156

G7 24.3107 24.3062 246.7845 24.3062 263.4170

G8 �0.0958 INF �0.0958 �0.0958 �0.0958

G9 680.6308 680.6301 718.9932 680.6301 703.6845

G10 7051.7018 INF 14913.9644 7049.2480 INF

G11 0.7499 0.7499 0.7500 0.7499 0.7499

G12 �1.0000 �1.0000 �1.0000 �1.0000 �1.0000

G13 0.0857 0.0539 INF 0.0961 INF

G14 �45.9878 INF INF �47.7470 INF

G15 961.7151 961.7150 INF 961.7150 INF

G16 �1.9052 �1.9052 �1.8193 �1.9052 �1.5102

G17 8857.9984 8853.5397 INF 8854.9085 INF

G18 �0.8660 �0.8660 INF �0.8660 INF

G19 32.9170 32.6665 34.6530 32.6587 176.7297

G21 328.9515 INF INF 193.7245 INF

G23 �232.3515 INF INF �400.0551 INF

G24 �5.5080 �5.5080 �5.5080 �5.5080 �5.5079

Standard deviation (N. feasible runs)

G1 0.0000 (25) 0.0000 (25) 1.7525 (14) 0.0000 (25) 0.5193 (24)

G2 0.0000 (25) 0.0129 (25) 0.0034 (25) 0.0148 (25) 0.0138 (25)

G3 0.0312 (25) �(0) 0.1313 (12) 0.1438 (25) 0.0000 (1)

G4 0.0000 (25) �(0) 42.6622 (25) 0.0000 (18) 96.1643 (25)

G5 6.8654 (25) 0.0000 (25) �(0) 0.7296 (25) �(0)

G6 0.0000 (25) �(0) 412.7536 (25) 0.0000 (25) 1018.4201 (13)

G7 0.0217 (25) 0.0000 (25) 984.4026 (3) 0.0000 (25) 745.5171 (24)

G8 0.0000 (25) �(0) 0.0000 (25) 0.0000 (25) 0.0001 (25)

G9 0.0018 (25) 0.0000 (25) 45.2053 (25) 0.0000 (25) 38.6484 (25)

G10 45.7948 (25) �(0) 625.4232 (3) 0.0023 (23) �(0)

G11 0.0000 (25) 0.0000 (25) 0.0029 (25) 0.0000 (25) 0.0502 (25)

G12 0.0000 (25) 0.0000 (25) 0.0000 (25) 0.0000 (25) 0.0000 (25)

G13 0.1611 (25) 0.1521 (25) �(0) 0.1164 (25) �(0)

G14 0.6042 (25) �(0) �(0) 0.4360 (25) �(0)

G15 0.2456 (25) 0.0000 (25) �(0) 0.0000 (25) �(0)

G16 0.0000 (25) 0.0000 (25) 0.0750 (25) 0.0000 (25) 0.1259 (23)

G17 22.3588 (25) 0.0000 (25) �(0) 37.3445 (25) �(0)

Generic framework for handling constraints… 677

123

characteristics by allowing the feasible swarm to inherit the convergence

characteristics of the parent swarm algorithm, and this is an advantage of using 3S.

6.2 Pressure vessel design

The results of the tests of running the optimizations using each of the swarm

algorithms with each of the constraint handling frameworks 25 times are shown in

Table 9. It can be seen that over all four of the swarm algorithms tested that the 3S

framework has outperformed the other constraint handling frameworks. It has

produced lower best solutions as well as smaller standard deviations, again

indicative of an effective algorithm. The death penalty constraint handling method

when used with DE is the only method over all of those tested that performs on par

with the 3S framework. Convergence tolerance is similar to the welded beam

examples, again showing that 3S is able to converge down the active constraints to

very small tolerances.

Table 6 continued

3S Static Death Dyn FD

G18 0.0005 (25) 0.0000 (25) �(0) 0.0000 (25) �(0)

G19 0.1466 (25) 0.0913 (25) 3.7131 (25) 0.1830 (25) 160.1440 (25)

G21 0.6786 (3) �(0) �(0) 38.2021 (25) �(0)

G23 171.5676 (20) �(0) �(0) 8.3131 (25) �(0)

G24 0.0000 (25) 0.0000 (25) 0.0000 (25) 0.0000 (25) 0.0106 (25)

Constraint Handling Framework

A
v.

 F
ea

s.
 R

at
e

0

20

40

60

80

100

GSA
PSO
HGSAPSO
DE

htaeDS3 DFnyDcitatS

Fig. 1 Average feasibility rates

678 D. J. Poole et al.

123

nf (x105)

E
rr

or

0 1 2 3
10-10

10-8

10-6

10-4

10-2

100

(a) GSA -G11
nf (x105)

E
rr

or

0 1 2 3
10-5

10-4

10-3

10-2

10-1

100

(b) GSA - G16
nf (x105)

E
rr

or

0 1 2 3
10-5

10-4

10-3

10-2

10-1

100

101

102

103

3S
Death
Static
Dynamic
FD

(c) HGSAPSO - G4

nf (x105)

E
rr

or

0 1 2 3
10-5

10-4

10-3

10-2

10-1

100

101

102

103

(d) PSO - G4
nf (x105)

E
rr

or

0 1 2 3
10-2

10-1

100

101

(e) DE -G3
nf (x105)

E
rr

or

0 1 2 3
10-12

10-10

10-8

10-6

10-4

10-2

100

(f) DE - G24

Fig. 2 Convergence history examples

Table 7 Summary of

engineering benchmark

problems

Problem d x1 x2 x3 x4 G

Welded beam 4 h l t b 7

Pressure

vessel

4 Ts Th R L 4

Spring 3 N D d – 4

P

b

t

L

l

h

Fig. 3 Welded beam design
problem

Generic framework for handling constraints… 679

123

R

Th

R

Ts
LFig. 4 Pressure vessel design

geometry

D

dFig. 5 Spring design geometry

Table 8 Results of welded beam design

f ðxÞ nðgk � eÞ

Best Median l r e ¼ 0 10�6 10�3

GSA

3S 1.727402 1.729828 1.730255 0.001801 0 0 1

Death 1.808322 1.993245 2.003017 0.079434 0 0 0

Static 1.973101 2.181876 2.217732 0.129108 0 0 0

Dyn 1.955687 2.214709 2.241077 0.125929 0 0 0

FD 2.475954 3.973515 4.050357 0.660359 0 0 0

PSO

3S 1.724852 1.724852 1.724852 0.000000 4 4 4

Death 1.745077 1.782879 1.786890 0.023621 0 0 0

Static 1.724852 1.724852 1.724852 0.000000 4 4 4

Dyn 1.724852 1.724852 1.724852 0.000000 4 4 4

FD INF INF INF INF – – –

HGSAPSO

3S 1.724852 1.724853 1.724853 0.000000 0 1 2

Death 1.732127 1.749601 1.752745 0.012317 0 0 0

Static 1.724852 1.724852 1.724857 0.000013 0 1 3

Dyn 1.724852 1.724852 1.724854 0.000002 0 1 1

FD INF INF INF INF – – –

DE

3S 1.724852 1.724852 1.724852 0.000000 4 4 4

Death 1.726051 1.748840 1.769899 0.045957 0 0 0

Static 1.725929 1.732104 1.733871 0.007032 0 0 0

Dyn 1.728369 1.734565 1.736856 0.007460 0 0 0

FD 1.863230 2.145507 2.163205 0.150832 0 0 0

680 D. J. Poole et al.

123

Figure 6b shows the convergence history of the five constraint handling methods

tested when used with DE. The full convergence history is shown (up to the

maximum number of allowed function evaluations) to fully compared the constraint

handling methods. As in the welded beam problem, the convergence in the pressure

vessel problem of the 3S framework is very quick, converging within 10,000

function evaluations. Again, this demonstrates that using the 3S framework does not

restrict the good convergence properties of DE, but instead promotes them.

Figure 6b also shows that while other commonly used constraint handling

frameworks (such as the dynamic penalty and feasible directions) produce final

answers that are comparable to the results obtained using 3S, the convergence of

these constraint handling methods is relatively poor.

Table 9 Results of pressure vessel design

f ðxÞ nðgk � eÞ

Best Median l r e ¼ 0 10�6 10�3

GSA

3S 6090.5612 6410.7355 6469.1849 290.7843 0 0 1

Death 25231.964 79484.325 97988.687 55215.75 0 0 0

Static INF INF INF INF – – –

Dyn 7048.1441 8498.6898 9284.6751 2022.200 0 0 0

FD 6607.3304 44975.829 64335.835 53664.30 0 0 0

PSO

3S 6059.7143 6370.7797 6354.62534 301.678 2 2 2

Death 6322.2752 7130.7608 7134.94133 426.187 0 0 0

Static INF INF INF INF – – –

Dyn INF INF INF INF – – –

FD 6094.3048 6708.4793 6742.0074 364.0190 0 0 0

HGSAPSO

3S 6059.7143 6090.5262 6284.8926 303.2683 0 1 1

Death 6086.4761 6766.5941 6826.3615 429.5686 0 0 0

Static INF INF INF INF – – –

Dyn INF INF INF INF – – –

FD 6101.0598 6540.8540 6599.2993 269.6939 0 0 0

DE

3S 6059.7143 6059.7143 6059.7143 0.000000 2 2 2

Death 6059.7143 6059.7143 6061.7982 7.194272 0 0 1

Static INF INF INF INF – – –

Dyn 6085.9670 6166.4935 6183.1322 72.07499 0 0 1

FD 6341.6718 7259.1855 7462.1871 617.9285 0 0 0

Generic framework for handling constraints… 681

123

Table 10 Results of spring design

f ðxÞ nðgk � eÞ

Best Median l r e ¼ 0 10�6 10�3

GSA

3S 0.0126681 0.0127075 0.0127198 0.00004490 0 0 2

Death 0.0131882 0.0139745 0.0141306 0.00068372 0 0 0

Static 0.0131824 0.0151957 0.0152585 0.00091868 0 0 0

Dyn 0.0128781 0.0145724 0.0147026 0.00118987 0 0 0

FD 0.0201481 0.0298590 0.0394138 0.02027066 0 0 0

PSO

3S 0.0126677 0.0127658 0.0128040 0.00011999 0 2 2

Death 0.0128709 0.0132964 0.0132885 0.00021451 0 0 1

Static 0.0126678 0.0127683 0.0128075 0.00012572 2 2 2

Dyn 0.0126683 0.0127873 0.0128325 0.00014446 2 2 2

FD 0.0137871 0.0137871 0.0144568 0.00066971 1 1 2

HGSAPSO

3S 0.0126653 0.0127117 0.0127156 0.00003998 0 2 2

Death 0.0128331 0.0131382 0.0132394 0.00033515 0 0 0

Static 0.0126664 0.0127460 0.0129018 0.00031763 0 2 2

Dyn 0.0126704 0.0128376 0.0129157 0.00024546 0 2 2

FD 0.0127393 0.0136457 0.0141881 0.00132312 0 1 2

DE

3S 0.0126652 0.0126653 0.0126652 0.00000019 2 2 2

Death 0.0127979 0.0132613 0.0133929 0.00030517 0 0 1

Static 0.0127307 0.0129435 0.0129736 0.00015238 0 0 0

Dyn 0.0127561 0.0129803 0.0130677 0.00021482 0 0 1

FD 0.0134464 0.0161174 0.0163794 0.00184867 0 0 0

nf

f(
x)

0 10000 20000
1.5

2

2.5

3

3.5

4

(a) Welded beam
nf x10

5

f(
x)

0 1 2 3
6000

6500

7000

7500

8000

(b) Pressure vessel
nf

f(
x)

0 10000 20000
0.01

0.02

0.03

0.04

0.05

3S
Death
Static
Dynamic
FD

(c) Spring

Fig. 6 Convergence histories of engineering benchmark problems using DE

682 D. J. Poole et al.

123

6.3 Spring design

The final results are shown in Table 10. In this design problem, the 3S framework

produces optimization results that are always lower than every other constraint

handling framework tested with all four of the swarm algorithms used. The median

and mean solution also mirrors this result. Finally, the standard deviation is

consistently small. These results further demonstrate the high performance of 3S

both in terms of ability to find a low optimum solution and ability to robustly find

that solution over multiple runs.

A convergence history for the first 20,000 function evaluations is shown in

Table 6c. This demonstrates, as in the other engineering benchmark cases tested, the

high convergence of a swarm algorithm with 3S used to handle the constraints. A

solution that is close of the optimum is found within as few as 2000 function

evaluations, and a converged solution is obtained within 10,000 function

evaluations. The 3S method allows both a better solution to be obtained, as well

as obtaining it with a quicker convergence rate.

6.4 Comparison to previously published results

To obtain a comparison of how the 3S method is working, as well as comparing to

the other constraint handling methods outlined in this paper, previously published

results are also given. The previously published results all represent good

optimization results, with low optimum solutions. It should be noted that, unlike

the CEC2006 functions, the optimum location of these engineering design problems

is not known exactly. It therefore makes sense to compare to other results previously

published. The results compared to are (1) Coello Coello (2000); (2) Mezura-

Table 11 Comparison of statistical results in previous publications with 3S-DE

Ref. Welded Beam Pressure Vessel Spring

Best Mean Best Mean Best Mean

1 1.748309 – 6288.7445 – 0.0127047 –

2 1.724852 1.777692 6059.7016 6379.9380 0.012689 0.013165

3 1.92199 2.83721 6544.27 9032.55 0.0131200 0.0229478

4 1.724852 1.749040 6059.7143 6099.9323 0.0126652 0.0127072

5 1.724852 1.724852 6059.7143 6059.7277 0.0126652 0.0126652

6 1.724852 1.741913 6059.7147 6245.3081 0.012665 0.012709

7 1.724852 1.724852 6059.7143 6192.1162 0.012665 0.012683

8 1.724853 1.724853 – – 0.012665 0.012713

9 – – 6059.714 6410.087 0.012665 0.013165

10 1.724852 1.724852 6059.7143 6064.3360 0.0126653 0.0126770

11 1.724852 1.724852 6059.7143 6059.7143 0.0126652 0.0126652

Current 1.724852 1.724852 6059.7143 6059.7143 0.0126652 0.0126652

Generic framework for handling constraints… 683

123

Montes and Coello Coello (2005); (3) Parsopoulos and Vrahatis (2005); (4) He and

Wang (2007); (5) Kim et al. (2010); (6) Akay and Karaboga (2012); (7) Brajevic

and Tuba (2013); (8) Sadollah et al. (2013); (9) Gandomi (2014); (10) Baykasoglu

and Ozsoydan (2015); (11) Salimi (2015). These represent a spread in the most

competitive results obtained for these benchmarks using both historically successful

algorithms and more recent state-of-the-art algorithms. For all of the engineering

benchmark problems tested, the 3S framework combined with the differential

evolution swarm optimizer produces the best solution with the lowest objective

function (compared to using GSA, PSO or HGSAPSO). Hence, the solutions found

using the this combination are compared to the previously published results, and this

is outlined in Table 11.

The comparison to the previously published results demonstrate, and emphasise

the good performance of the 3S framework for handling constraints. The results

compare well, and often outperform other results previously published. A

particularly encouraging result is that the mean value of the runs performed using

the 3S-DE algorithm is lower than all other results highlighted in all of the

benchmark functions tested. The best solution found is always either lower or at

least as good as all of the results highlighted; an important result.

7 Aerodynamic design example

The performance of the new constrained optimization framework has been

successfully demonstrated for a suite of analytical test functions and engineering

benchmark functions. The final aspect of the work presented in this paper is

demonstration of the framework within a typical ASO process, which is presented in

this section.

ASO is the process of numerically solving the optimum design problem for

aerodynamic bodies at specific flow conditions. Due to the high cost of the objective

function evaluation, which is a CFD solution, the choice of optimization algorithm

becomes important, and often, performing a low number of full CFD solutions is the

primary driver for choosing a specific class of algorithm. Hence, agent-based

algorithms tend not to be chosen, and instead gradient-based methods are employed.

However, in a number of independent studies, multiple local optimum solutions for

ASO problems have been demonstrated (Namgoong et al. 2002; Khurana et al.

(a) Mode 1 (b) Mode 2 (c) Mode 3

(d) Mode 4 (e) Mode 5 (f) Mode 6

Fig. 7 First six aerofoil modes

684 D. J. Poole et al.

123

2010; Leung and Zingg 2012), so the use of agent-based algorithms is important for

performing aerodynamic design. As such, ASO is a suitable application area to

consider the 3S constraint handling framework.

7.1 Geometry and mesh control

The shape parameterization and mesh deformation module must be flexible enough

to allow sufficient design space investigation, robust enough to be applicable to any

geometry, and efficient enough to maximise design space coverage with a minimum

number of design parameters. The integration of global search algorithms into the

aerodynamic shape optimization process necessitates the requirement for a

minimum number of design variables to reduce computational burden as much as

possible. An efficient aerodynamic optimization process is obtained by using a

singular value decomposition (SVD) approach (Poole et al. 2015b) to derive an

efficient, orthogonal set of design parameters. These are obtained by decomposing a

set of 100 training aerofoils which all have high transonic performance to find the

aerofoil mode shapes. The mode shapes are then used to deform the aerofoil surface

during the optimization.

Using the SVD modes, a new shape is constructed by deforming a current

aerofoil shape using a combination of the modes, as given by Eq. 17 where Xnew and

Xinitial are the deformed surface and initial (undeformed) surface respectively. The

mth modal deformation is given by the mth column of the modal matrix, U, shown
in Fig. 7. The first D columns of the modal matrix are used, and the design variables

are the magnitude of the deformations, b.

Xnew ¼ Xinitial þ
XD

m¼1

bmUm ð17Þ

Deformations of the surface are propagated through the full CFD volume mesh

using a set of 24 control points that are on the surface. These are linked to the CFD

volume mesh using radial basis functions (RBF), wherein global interpolation is

Fig. 8 257� 97 O-mesh for RAE2822 aerofoil

Generic framework for handling constraints… 685

123

used to provide direct control of the design surface and the CFD mesh, which is

deformed in a high-quality fashion (Rendall and Allen 2008).

7.2 Flow-solver

The flow-solver used for objective function evaluation is a structured multiblock

finite-volume, inviscid upwind code using the flux vector splitting of van Leer

(1982). Convergence acceleration is achieved through multigrid (Allen 2002). A

high-quality single block O-mesh was generated using a conformal mapping

approach, and Fig. 8 shows two views of the 257� 97 point mesh used for the test

case, which extends to 100 chords at farfield. All surface cells have an aspect ratio

of one.

7.3 Design problem

The case tested is the drag reduction of the RAE2822 aerofoil at M ¼ 0:73,
a ¼ 2:67�. This is a highly loaded case with Cl ¼ 1:02. The flow is governed by the

Euler equations, hence is an inviscid optimization and the primary drag component

is the wave drag. The problem is constrained by the lift, moment and internal

volume of the aerofoil. Hence, the problem can be written as:

Table 12 Aerodynamic

optimization results (Cd in

counts)

Design variables Cl Cd DCd(%) Cm V

Initial 1.02 199.8 – -0.145 0.0779

6 modes ? pitch 1.02 42.6 -78.7 -0.145 0.113

8 modes ? pitch 1.02 38.4 -80.7 -0.139 0.0832

10 modes ? pitch 1.02 37.9 -81.0 -0.128 0.116

t

C
d

0 500 1000 1500
0

0.01

0.02

0.03

(a) Objective
t

N
f/N

 (
%

)

0 500 1000 1500
0

20

40

60

80

100

(b) Feasible agents

Fig. 9 Convergence history of objective and percentage of feasible agents through optimization

686 D. J. Poole et al.

123

Objective : Minimize dragðCDÞ
with respect tomodal deformationmagnitude

Constraint 1 ðliftÞ : Cl 	 Cinitial
l

Constraint 2 ðpitchingmomentÞ : Cmj j � Cinitial
m

�� ��
Constraint 3 ðinternal volumeÞ : V 	 Vinitial

A similar optimization problem, albeit for viscous flow, is currently being studied

for the AIAA Aerodynamic Design Optimization Discussion Group1; see Telidetzki

et al. (2014), Bisson et al. (2014), LeDoux et al. (2015), Poole et al. (2015a) for

example results. While the cost of the objective function evaluation for viscous flow

x/c

-C
p

0 0.2 0.4 0.6 0.8 1
-1

-0.5

0

0.5

1

1.5

2

Initial
Optimum

Fig. 10 Surface pressure
coefficients

1/nc2

C
d

(c
ou

nt
s)

0 5E-06 1E-05 1.5E-05
30

32

34

36

38Fig. 11 Mesh convergence

1 https://info.aiaa.org/tac/ASG/APATC/AeroDesignOpt-DG/default.aspx.

Generic framework for handling constraints… 687

123

https://info.aiaa.org/tac/ASG/APATC/AeroDesignOpt-DG/default.aspx

is greater than inviscid flow, shocks in equivalent inviscid flows tend to be stronger

and less smeared, making it a difficult optimization problem.

The design variables used were the first 6, 8 and 10 modes from the SVD method.

A pitch design variable was also included to allow load balancing.

7.4 Results

The final drag results obtained for each number of design variables are given in

Table 12. The convergence of the objective function and the percentage of feasible

agents through the optimization is shown in Fig. 9; these are for the 10 mode case. It

can be seen that due to using orthogonal design variables, the design space of N

design variables is always contained within N þ n design variables, hence the ideal

results for optimization mean that:

JðN þ nÞ� JðNÞ

This is the trend that is seen. The monotonically decreasing final optimized drag

results with increasing design variables indicates the success at finding a global

optimum for this highly loaded aerodynamic problem. Furthermore, it is clear that

for all three of the design variables tested, the final result lies on the lift constraint,

as expected. It is interesting to note, however, that the lift constraint is often the only

active constraint, and that the volume of the optimized aerofoils is always greater

than the initial aerofoil. The moment constraint is only active on the six design

variable case. The fact that the constraints are active indicates that it is likely that

even towards the end of the optimization, a good number of agents will be

infeasible, and this is shown in Fig. 9. This also shows that the agents spend a good

amount of time at the start of the optimization searching through the infeasible

space for good solutions, indicating the exploration ability of the approach. Towards

the end of the optimization, exploitation becomes key and the number of feasible

agent increases.

The surface pressure coefficient distributions of the initial and best optimized

solution (10 design variable case) are shown in Fig. 10. These show that the

constrained global search framework has successfully eliminated the shock, and

therefore shows the largest drag reduction. Finally, a mesh convergence study has

been performed with the deformed mesh from the 10 mode optimization results used

as the basis and presented in Fig. 11. This mesh has been doubled in each direction

twice, and indicates that the final mesh converged solution is slightly less than 31

drag counts.

8 Concluding remarks

A new, generic framework for handling constraints when performing constrained

optimization using agent-based search algorithms has been presented. The

constraint handling framework is called separation-sub-swarm (3S) and has the

advantage of being a high performance framework that is independent of the type of

688 D. J. Poole et al.

123

swarm algorithm used for an optimization, so can be added to the general swarm

algorithm system. The new method works by considering the whole population of

agents as two independent sub-swarms. All feasible agents optimize the objective

function value, where the user selected swarm algorithm acts on this, the infeasible

agents then minimise the constraint violation. This independence of the infeasible

swarm from the feasible swarm allows the 3S framework to be added on any

existing swarm algorithm, including those algorithms where the fitness function

value is used within the agent update scheme.

Constrained analytical tests on the CEC2006 suite of analytical benchmark

functions and on three standard engineering design problems have been presented

using the 3S framework coupled to a particle swarm optimization (PSO),

gravitational search algorithm (GSA), hybrid-GSA-PSO and differential evolution

(DE). The 3S framework was compared to a death penalty, a static penalty, a self

adaptive dynamic penalty and a feasible directions approach. Results showed that

overall, the 3S framework produced solutions that were much more likely to be

feasible, returning average feasibility rates of over 90% for all swarm algorithms

tested. Results were, in general, closer to the theoretical best solution available

compared to the other frameworks tested. For the engineering benchmarks, the

framework produced final optimum solutions that are at least as good (and often

better) than the results published previously. This demonstrates the high

performance of the 3S framework within the umbrella of constraint handling

frameworks.

Finally, the constraint handling framework was applied to an aerodynamic shape

optimization problem for transonic drag minimization of an aerofoil. The design

variables used were obtained using a modal extraction technique the produces

orthogonal design variables. Results demonstrate that the new framework is capable

of producing shock-free optimization results in inviscid flow. Furthermore, the use

of orthogonal design variables should result in improved optimization performance

for an increasing number of design variables, and this is demonstrated indicating

that the constrained global method has successfully located the global optimum

solution.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0

International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, dis-

tribution, and reproduction in any medium, provided you give appropriate credit to the original

author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were

made.

References

Akay B, Karaboga D (2012) Artificial bee colony algorithm for large-scale problems and engineering

design optimization. J Intell Manuf 23(4):1001–1014

Allen CB (2002) Multigrid convergence of inviscid fixed- and rotary-wing flows. Int J Numer Meth

Fluids 39(2):121–140

Allen CB, Rendall TCS (2013) Computational-fluid-dynamics-based optimisation of hovering rotors

using radial basis functions for shape parameterisation and mesh deformation. Optim Eng

14:97–118

Generic framework for handling constraints… 689

123

http://creativecommons.org/licenses/by/4.0/

Baykasoglu A, Ozsoydan FB (2015) Adaptive firefly algorithm with chaos for mechanical design

optimization problems. Appl Soft Comput 36:152–164

Belegundu AD, Arora JS (1985) A study of mathematical programming methods for structural

optimization. Part II: numerical results. Int J Numer Methods Eng 21(9):1601–1623

Bisson F, Nadarajah SK, Shi-Dong D (2014) Adjoint-based aerodynamic optimization framework. In:

52nd AIAA aerospace sciences meeting. National Harbor, Maryland, AIAA paper 2014-0412

Brajevic I, Tuba M (2013) An upgraded artificial bee colony (ABC) algorithm for constrained

optimization problems. J Intell Manuf 24(4):729–740

Clerc M (2013) Particle swarm optimization. Wiley-ISTE, Hoboken

Coello Coello CA (2000) Use of a self-adaptive penalty approach for engineering optimization problems.

Comput Ind 41(2):113–127

Das S, Suganthan PN (2011) Differential evolution: a survey of the state-of-the-art. IEEE Trans Evol

Comput 15(1):4–31

Deb K (2000) An efficient constraint handling method for genetic algorithms. Comput Methods Appl

Mech Eng 186:311–338

Engelbrecht AP (2005) Fundamentals of computational swarm intelligence. Wiley, Hoboken

Gandomi AH (2014) Interior search algorithm (ISA): a novel approach for global optimization. ISA Trans

53:1168–1183

He Q, Wang L (2007) A hybrid particle swarm optimization with a feasibility-based rule for constrained

optimization. Appl Math Comput 186(2):1407–1422

Hicken JE, Zingg DW (2010) Aerodynamic optimization algorithm with integrated geometry

parameterization and mesh movement. AIAA J 48(2):400–413

Hu X, Eberhart R (2002) Solving constrained nonlinear optimization problems with particle swarm

optimization. In: 6th world multiconference on systemics, cybernetics and informatics (SCI 2002),

Orlando, Florida

Jameson A, Pierce NA, Martinelli L (1998) Optimum aerodynamic design using the Navier–Stokes

equations. Theor Comput Fluid Dyn 10(1):213–237

Kannan BK, Kramer SN (1994) An augmented lagrange multiplier based method for mixed integer

discrete continuous optimization and its applications to mechanical design. J Mech Des

116(2):405–411

Kennedy J, Eberhart R (1995) Particle swarm optimization. In: 1995 IEEE international conference on

neural networks, Perth, Australia

Khurana MS, Winarto H, Sinha AK (2010) Airfoil optimisation by swarm algorithm with mutation and

artificial neural networks. In: 47th AIAA aerospace sciences meeting including the new horizons

forum and aerospace exposition, Orlando, Florida, AIAA paper 2009-1278

Kim TH, Maruta I, Sugie T (2010) A simple and efficient constrained particle swarm optimization and its

application to engineering design problems. Proc Inst Mech Eng C J Mech Eng Sci 224(2):389–400

LeDoux ST, Vassberg JC, Young DP, Fugal S, Kamenetskiy D, Huffman WP, Melvin RG, Smith MF

(2015) Study based on the AIAA aerodynamic design optimization discussion group test cases.

AIAA J 53(7):1910–1935

Leung TM, Zingg DW (2012) Aerodynamic shape optimization of wings using a parallel newton-krylov

approach. AIAA J 50(3):540–550

Liang JJ, Suganthan PN (2006) Dynamic multi-swarm particle swarm optimizer with a novel constraint-

handling mechanism. In: 2006 IEEE congress on evolutionary computation, Vancouver, Canada

Liang JJ, Runarsson TP, Mezura-Montes E, Clerc M, Suganthan PN, Coello Coello CA, Deb K (2013)

Problem definitions and evaluation criteria for the CEC 2006 special session on constrained real-

parameter optimization. Technical report, Nanyang Technological University, Singapore

Lu H, Chen W (2006) Dynamic-objective particle swarm optimization for constrained optimization

problems. J Comb Optim 12(4):409–419

Lu H, Chen W (2008) Self-adaptive velocity particle swarm optimization for solving constrained

optimization problems. J Glob Optim 41(3):427–445

Martins JRRA, Alonso JJ, Reuther JJ (2004) High-fidelity aerostructural design optimization of a

supersonic business jet. J Aircr 41(3):523–530

Mezura-Montes E, Coello Coello CA (2005) Useful infeasible solutions in engineering optimization with

evolutionary algorithms. In: 4th Mexican international conference on artificial intelligence,

published in MICAI 2005: advances in artificial intelligence

Mezura-Montes E, Coello Coello CA (2011) Constraint handling in nature-inspired numerical

optimization: past, present and future. Swarm Evol Comput 1:173–194

690 D. J. Poole et al.

123

Mirjalili S, Hashim SZM, Sardroudi HM (2012) Training feedforward neural networks using hybrid

particle swarm optimization and gravitational search algorithm. Appl Math Comput

218(22):11,125–11,137

Namgoong H, Crossley W, Lyrintzis AS (2002) Global optimization issues for transonic airfoil design. In:

9th AIAA/ISSMO symposium on multidisciplinary analysis and optimization, Atlanta, Georgia,

AIAA Paper 2002-5641

Parsopoulos KE, Vrahatis MN (2002) Particle swarm optimization method for constrained optimization

problems. Euro Int Symp Comput Intell 2002:214–220

Parsopoulos KE, Vrahatis MN (2005) Advances in natural computation. In: Wang L, Chen K, Ong YS

(eds) Unified particle swarm optimization for solving constrained engineering optimization

problems. Springer, Berlin, pp 582–591

Poli R, Kennedy J, Blackwell T (2007) Particle swarm optimization: an overview. Swarm Intell

1(1):33–57

Poole DJ, Allen CB, Rendall TCS (2015a) Control point-based aerodynamic shape optimization applied

to AIAA ADODG test cases. In: 53rd AIAA aerospace sciences meeting, Kissimmee, Florida, AIAA

Paper 2015-1947

Poole DJ, Allen CB, Rendall TCS (2015b) Metric-based mathematical derivation of efficient airfoil

design variables. AIAA J 53(5):1349–1361

Rao SS (2013) Engineering optimization: theory and practice, 3rd edn. New Age International Publishers,

New Delhi

Rashedi E, Nezamabadi-pour H, Saryazdi S (2009) GSA: a gravitational search algorithm. Inf Sci

179:2232–2248

Rendall TCS, Allen CB (2008) Unified fluid–structure interpolation and mesh motion using radial basis

functions. Int J Numer Methods Eng 74(10):1519–1559

Sadollah A, Bahreininejad A, Eskandar H, Hamdi M (2013) Mine blast algorithm: a new population

based algorithm for solving constrained engineering optimization problems. Appl Soft Comput

13(5):2592–2612

Salimi H (2015) Stochastic fractal search: a powerful metaheuristic algorithm. Knowl Based Syst 75:1–18

Storn R, Price K (1995) Differential evolution—a simple and efficient adaptive scheme for global

optimization over continuous spaces. Technical report, ICSI, UC Berkeley, tR-95-012

Sun CL, Zeng JC, Pan JS (2011) An improved vector particle swarm optimization for constrained

optimization problems. Inf Sci 181:1153–1163

Takahama T, Sakai S (2005a) Constrained optimization by the alpha constrained particle swarm

optimizer. J Adv Comput Intell Intell Inf 9(3):282–289

Takahama T, Sakai S (2005b) Constrained optimization by the epsilon constrained particle swarm

optimizer with epsilon-level control. Adv Soft Comput 29:1019–1029

Telidetzki K, Osusky L, Zingg DW (2014) Application of jetstream to a suite of aerodynamic shape

optimization problems. In: 52nd AIAA aerospace sciences meeting, National Harbor, Maryland,

AIAA paper 2014-0571

Tsai HC, Tyan YY, Wu YW, Lin YH (2013) Gravitational particle swarm. Appl Math Comput

219(17):9106–9117

Vanderplaats GN (1999) Numerical optimization techniques for engineering design, 3rd edn.

Vanderplaats Research and Development Inc, Monterey

van Leer B (1982) Flux-vector splitting for the Euler equations. In: Eighth international conference on

numerical methods in fluid dynamics. Lecture notes in physics, pp 507–512

Venter G, Sobieszczanski-Sobieski J (2003) Particle swarm optimization. AIAA J 41(8):1583–1589

Generic framework for handling constraints… 691

123

	A generic framework for handling constraints with agent-based optimization algorithms and application to aerodynamic design
	Abstract
	Introduction
	Agent-based search algorithms
	Particle swarm optimization (PSO)
	Gravitational search algorithm (GSA)
	Hybrid gravitational search particle swarm (HGSAPSO)
	Differential evolution

	Constraint handling in agent-based search algorithms
	Proposed constraint handling framework
	Development points for new framework
	Separation-sub-swarm (3S) framework

	Constrained analytical optimization
	Methods used for comparison
	Run details
	Results

	Engineering benchmark problems
	Welded beam design
	Pressure vessel design
	Spring design
	Comparison to previously published results

	Aerodynamic design example
	Geometry and mesh control
	Flow-solver
	Results

	Concluding remarks
	Open Access
	References

