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Abstract
We address a numerical methodology for the approximation of coarse-grained stable
and unstable manifolds of saddle equilibria/stationary states of multiscale/stochastic
systems for which a macroscopic description does not exist analytically in a closed
form. Thus, the underlying hypothesis is that we have a detailed microscopic simu-
lator (Monte Carlo, molecular dynamics, agent-based model etc.) that describes the
dynamics of the subunits of a complex system (or a black-box large-scale simula-
tor) but we do not have explicitly available a dynamical model in a closed form
that describes the emergent coarse-grained/macroscopic dynamics. Our numerical
scheme is based on the equation-free multiscale framework, and it is a three-tier pro-
cedure including (a) the convergence on the coarse-grained saddle equilibrium, (b)
its coarse-grained stability analysis, and (c) the approximation of the local invariant
stable and unstable manifolds; the later task is achieved by the numerical solution
of a set of homological/functional equations for the coefficients of a polynomial
approximation of the manifolds.
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1 Introduction

The computation of invariant manifolds of dynamical systems is very important for
a series of system-level tasks, particularly for the bifurcation analysis and control.
For example, the detection of stable manifolds of saddle points allows the identifi-
cation of the boundary between different basins of attraction, while the intersection
of stable and unstable manifolds most often leads to complex dynamical behavior
such as chaotic dynamics [10, 49]. Their computation is also central to the control of
nonlinear systems and especially in the control of chaos [11, 33, 39, 49]. However,
their computation is not trivial: even for relatively simple low-dimensional ODEs,
their analytical derivation is most of the times an overwhelming difficult task. Thus,
one has to resort to their numerical approximation. However, this task is not easy;
at the beginning of the 1990s only one-dimensional global invariant manifolds of
vector fields could be computed. Guckenheimer and Worfolk [18] proposed an algo-
rithm for converging on the stable manifold of saddles based on geodesics emanating
from the saddle by iteratively rescaling the radial part of the vector field on the
submanifold. Johnson et al. [20] introduced a numerical scheme to reconstruct two-
dimensional stable and unstable manifolds of saddles. The proposed method starts
with the creation of a ring of points on the local-linear eigenspace and successively
creates circles of points that are then connected by a triangular mesh. The appropri-
ate points are selected through time integration so that the velocity of the vector field
is similar in an arc-length sense for all trajectories. Krauskopf and Osinga [26] devel-
oped a numerical method based on geodesics; the manifold is evolved iteratively by
hyperplanes perpendicular to a previous detected geodesic circle. Krauskopf et al.
[27] addressed a numerical method for the approximation of two-dimensional stable
and unstable manifolds which incorporates the solution of a boundary value prob-
lem; the method performs a continuation of a family of trajectories possessing the
same arc-length. For a survey of methods for the numerical computation of stable and
unstable manifolds see also Krauskopf et al. [27]. In the above methods, the stable
manifold is computed as the unstable manifold of the inverse map, i.e., by follow-
ing the flow of the vector field backward in time [8]. Thus, an explicit knowledge
of the vector field and its inverse is required which however is not always available.
England et al. [8] presented an algorithm for computing one-dimensional stable man-
ifolds for planar maps when an explicit expression for the inverse map is not available
and/or even the map is not invertible. Triandaf et al. [47] proposed a procedure for
approximating stable and unstable manifolds given only experimental data based on
time-delay embeddings of a properly selected data set of initial conditions. Another
approach to compute invariant manifolds, the so-called parametrization method has
been introduced by Cabre et al. [5–7]. This is a numerical-assisted approach based
on functional analysis tools for deriving analytical expressions of the local invariant
manifolds. This involves the expansion of the invariant manifold as series and the
construction of a system of homological equations for the coefficients of the series.
Based on this approach, Haro et al. [19] addressed a numerical approach for the com-
putation of the coefficients of high-order power series expansions of parametrizations
of two-dimensional invariant manifolds. Breden et al. [4] employed the parametriza-
tion method to compute stable and unstable manifolds of vectors fields. For the

1336 Numerical Algorithms (2022) 89:1335–1368



implementation of the method it is assumed that the vector field is explicitly avail-
able in a closed form. Finally, focusing on singularly perturbed systems, Zagaris et al.
[51] and Kristiansen et al. [28] extended the Computational Singular Perturbation
(CSP) algorithm of Lam and Goussis [17, 29] to approximate stable and unstable
fiber directions on the slow manifold.

However, for many complex systems of contemporary interest, the equations that
can describe adequately the dynamics at the macroscopic-continuum scale are not
explicitly available in the form of ODEs or PDEs in a closed form. Take for exam-
ple the case where the laws that govern the dynamics of the interactions between
the subunits that constitute the complex system may be known in the form of, e.g.,
molecular dynamics, Brownian dynamics, agent-based modeling, and Monte Carlo,
but a macroscopic description (ODEs or PDEs) is not available in a closed form.
The lack of such a macroscopic description hinders the systematic numerical anal-
ysis, optimization and control. In general, two paths are traditionally followed for
the numerical analysis of the emergent dynamics. The first one is the simple brute-
force simulation in time. An ensemble of many initial condition configurations would
be set up; then a large enough number of microscopic runs would be performed;
some of the parameters would be modified and finally the statistics of the detailed
simulations would be computed. However, this practice is not appropriate for the
systematic numerical analysis (for example one cannot find saddles with tempo-
ral simulations). The second path follows the statistical-mechanics/assisted approach
where one aims at extracting closures between the moments of the microscopic
distributions. For example, for Monte Carlo Markovian models a Master equation
is usually derived for a few moments of the underlying probability distribution.
However, these equations usually involve higher order moments whose evolution
dynamics are functions of higher order moments. This leads to an infinite hierar-
chy of evolution equations and at some point these higher order moments have to
be expressed as functions of the lower order moments in order to “close” the system
of equations. However, the assumptions that underlie such “closures” may introduce
biases to the analysis of the “actual” dynamics (see for example the discussion in
[36]).

The equation-free approach addressed by Kevrekidis et al. [24, 25, 31, 45], a
multiscale numerical-assisted framework allows the bridging between traditional
continuum numerical analysis methods, and microscopic/stochastic simulation of
complex/multiscale systems bypassing the explicit derivation of moment closures.
The equation-free approach identifies “on-demand” the necessary quantities for the
numerical analysis of the emergent dynamics and has been used for the bifurcation
analysis, control, optimization, rare-events analysis of a wide range of microscopic
models and problems. Regarding the computation of coarse-grained invariant man-
ifolds, Gear and Kevrekidis [14] introduced a method for the convergence on the
coarse-grained slow manifolds of legacy simulators by requiring that the change in
the “fast” variables (i.e., the variables that are quickly “slaved” to the variables that
parametrize the slow manifold) is zero. Gear et al. [13] computed coarse-grained slow
manifolds by restricting the derivatives of the “fast” variables to zero. Zagaris et al.
[50] performed a systematic analysis of the accuracy and convergence of equation-
free projection to the slow manifold. Frewen et al. [12] traced within the equation-free
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framework two-dimensional slow manifolds to get out of potential wells. Finally,
Quinn et al. [34] have exploited the concept of equation-free approach to compute the
one-dimensional stable manifold of a one-dimensional delay differential equation.

Here, building up on a previous work for the computation of coarse-grained cen-
ter manifolds of microscopic simulators [43], we present a new numerical method
based on the equation-free approach for the computation of coarse-grained stable and
unstable manifolds of saddles of microscopic dynamical simulators (and in general
large-scale discrete-time black-box simulators). The approximation of the coarse-
grained stable and unstable manifolds is achieved using a polynomial approximation;
the coefficients of the polynomials are computed iteratively by a Newton-Raphson
scheme applied on a coarse-grained map of the microscopic simulator. Thus, the
proposed numerical method involves a three-step procedure for the equation-free:
(a) detection of the coarse-grained saddle, (b) computation of the coarse-grained
Jacobian on the saddle and the computation of the corresponding eigenmodes,
(c) identification of the coefficients of the polynomials that provide an approxima-
tion of the coarse-grained stable and unstable manifolds; this step involves: (i) the
numerical construction of a back-box coarse-grained map for the coefficients of the
polynomial approximation, and (ii) the iterative estimation of the polynomial coef-
ficients by applying Newton’s method around the constructed coarse-grained map.
The method is illustrated through two examples whose stable and unstable manifolds
are also approximated analytically. The first example is a simple toy discrete-time
map and the second one is a Gillespie-Monte Carlo realization of a simple catalytic
reaction scheme describing the dynamics of CO oxidation on catalytic surfaces. This
is the first work that addresses the equation-free computation of both coarse-grained
stable and unstable manifolds of saddles of microscopic simulators.

2 Computation of stable and unstable manifolds of saddles
for discrete-timemodels

We will first present the basis for approximating the local stable and unstable man-
ifolds of a saddle point of discrete-time systems when the equations are given
explicitly. Then, in Section 3, we will show how this can be exploited within the
equation-free framework for the approximation of coarse-grained stable and unstable
manifolds, when equations are not given explicitly, thus when one has a large-scale
black-box simulator. The later case includes both large-scale black-box simulators of
let’s say systems of ODEs and particularly microscopic/stochastic multiscale models,
which is the focus of this work.

Let us begin by considering a discrete-time model given by:

xk+1 = F (xk, p), (1)

where F : Rn × R
p → R

n is a smooth multivariable, vector-valued time-evolution
operator that takes as initial condition at time tk = (kT ), xk ∈ R

n and after some
time horizon (sampling time) T reports the evolved state xk+1, ∈ R

n at time tk+1 =
(k + 1)T ; p ∈ R

p denotes the vector of parameters.
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Regarding the computation of the local stable and unstable manifolds of a saddle
point of the above system, the following theorem can be easily proven:

Theorem 1 Let us denote by (x∗, p∗) a saddle point of the discrete-time model (1)
which satisfies x∗ = F (x∗, p∗). Let us also assume that the Jacobian ∇F (x∗, p∗)
is diagonalizable/block-diagonalizable. Let V s be the n × l matrix whose l columns
are the l eigevectors of ∇F (x∗, p∗) that correspond to the l eigenvalues lying inside
the unit circle, and V u be the n × n − l matrix whose columns are the eigevectors
of ∇F (x∗, p∗) that correspond to the n − l eigenvalues lying outside the unit circle.
Let us also define zs ∈ R

l and zu ∈ R
n−l by the transformation

x′
k = [

V s V u
] [

zs,k
zu,k

]
, (2)

where x′
k = xk − x∗. Then the fixed point x′∗ = 0 has:

(A1) a Cr l-dimensional local stable manifold W s(0) tangent to the subspace
spanned by the columns of V s at the origin defined by:

W s(0) = {(zs, zu) ∈ R
l × R

n−l |zu = hs(zs)}, (3)

where hs : R
l → R

n−l is a Cr function which satisfies hs(0) = 0 and ∇zshsj ≡(
∂hsj
∂zs1

,
∂hsj
∂zs2

, . . .
∂hsj
∂zsl

)
|zs=0 = 0, ∀hsj, j = 1, 2, . . . n − l; hsj(zs) is the j-th component

of hs(zs).
(A2) a Cr n − l-dimensional local unstable manifold W u(0) tangent to the subspace
spanned by the columns of V u at the origin defined by:

W u(0) = {(zs, zu) ∈ R
l × R

n−l |zs = hu(zu)}, (4)

where hu : R
n−l → R

l is a Cr function which satisfies hu(0) = 0 and

∇zuhuj ≡
(

∂huj
∂zu1

,
∂huj
∂zu2

, . . .
∂huj
∂zu1

)
|zu=0 = 0, ∀huj, j = 1, 2, . . . l; huj(zu) is the j-th

component of hu(zu).

(B1) On the stable manifold the following system of functional equations hold:

hs(Λszs,k + gs

([
V s V u

] [
zs,k

hs(zs,k)

]
, x∗, p∗)

)

= Λuhs(zs,k) + gu

([
V s V u

] [
zs,k

hs(zs,k)

]
, x∗, p∗

) (5)

(B2) On the unstable manifold the following system of functional equations hold:

hu

(
Λuzu,k + gu

([
V s V u

] [
hu(zu,k)

zu,k

]
, x∗, p∗

))

= Λshu(zu,k) + gs

([
V s V u

] [
hu(zu,k)

zu,k

]
, x∗, p∗

) (6)

In the above, (5) and (6) provide the equations of the invariant manifolds in
diagonalized coordinates. Λs is the l × l (block) diagonal matrix containing the l

eigenvalues with |λi| < 1 and Λu is the (n − l) × (n − l) (block) diagonal matrix
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containing the (n − l) eigenvalues with |λi | > 1; gs and gu are l and (n − l)

vector-valued functions, respectively, obtained by
[

gs
gu

]
(x′

k, x
∗, p∗) = [

V s V u
]−1

g(x′
k, x

∗, p∗), (7)

where g(x′, x∗, p∗) corresponds to the n-vector-valued nonlinear function:

g(x′
k, x

∗, p∗) =

⎡

⎢⎢⎢
⎣

g1(x
′
k, x

∗, p∗)
g2(x

′
k, x

∗, p∗)
...

gn(x
′
k, x

∗, p∗)

⎤

⎥⎥⎥
⎦

(8)

containing all, but the linearization around the saddle, nonlinear terms of F (xk, p),

satisfying:
∥∥g(x′

k, x
∗, p∗)

∥∥ ≤ c(x∗)
∥∥x′

k

∥∥2
.

Proof Equations (5) and (6) are derived by re-writing (1) using the transformation
given by (2) as:

zs,k+1 = Λszs,k + gs

([
V s V u

] [
zs,k
zu,k

]
, x∗, p∗

)
(9)

and

zu,k+1 = Λuzu,k + gu

([
V s V u

] [
zs,k
zu,k

]
, x∗, p∗

)
. (10)

Then, by taking (3), Eq. (10) reads:

hs(zs,k+1) = Λuhs(zs,k) + gu

([
V s V u

] [
zs,k

hs(zs,k)

]
, x∗, p∗

)
(11)

Finally, by (11) and (9) we obtain:

hs

(
Λszs,k + gs

([
V s V u

] [
zs,k

hs(zs,k)

]
, x∗, p∗

))

= Λuhs(zs,k) + gu

([
V s V u

] [
zs,k

hs(zs,k)

]
, x∗, p∗

)
,

(12)

with hs(0) = 0.
In a similar manner, it can be shown that (6) in (B2) holds true on the unstable

manifold.

2.1 Local approximation of the stable and unstable manifolds with truncated
polynomial sequence

As by Theorem 1, the local stable and unstable manifolds are smooth nonlinear func-
tions of zs and zu, respectively, then according to the Stone-Weierstrass theorem
[37] they can be approximated by any accuracy around (x∗, p∗) by a sequence of
polynomial functions of zs and zu, respectively.
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For example, for the stable manifold (and similarly for the unstable manifold),
∀zuj = hsj(zs), j = 1, 2, . . . n − l we can write:

zuj = hsj(zs) =
∞∑

k1=0

∞∑

k2=0

· · ·
∞∑

kl=0

a
(j)
k1,k2,...,kl

Pk1(zs1) · · · Pkl
(zsl ), (13)

where Pki , i = 1, 2, ..l are polynomials (e.g., Chebyshev polynomials) of degree ki.
Truncating at a degree, say, M , we get the following truncated polynomial

approximation:

hsj(zs) ≈
M∑

k1=0

M∑

k2=0

· · ·
M∑

kl=0

a
(j)
k1,k2,...,kl

Pk1(zs1) · · · Pkl
(zsl ). (14)

A simple choice would be to take as polynomials the power series expansion of zs .
For example, if l = 2, M = 2, (14) results to an expression with (M + 1)l = 9 terms
(including the constant term which under the above formulation should be zero):

hsj(zs) = a
(j)
0,0z

0
s1z

0
s2 + a

(j)
0,1z

0
s1z

1
s2 + a

(j)
0,2z

0
s1z

2
s2 + a

(j)
1,0z

1
s1z

0
s2 + a

(j)
1,1z

1
s1z

1
s2

+a
(j)
1,2z

1
s1z

2
s2 + a

(j)
2,0z

2
s1z

0
s2 + a

(j)
2,1z

2
s1z

1
s2 + a

(j)
2,2z

2
s1z

2
s2.

(15)

The existence of a local analytic solution for the form of the nonlinear functional (14)
is guaranteed by the following theorem [46] (see also [21]):

Theorem 2 Consider the following system of nonlinear functional equations:

φ(z) = w(z, φ(f (z)), (16)

where φ : Rn → R
m is an unknown function. Then if:

1. f : Rn → R
n, w : Rn × R

m → R
m are analytic functions such that f (0) = 0

and w(0, 0) = 0.
2. The function φ admits a formal power series solution.
3. The fixed point that satisfies f (0) = 0 is a hyperbolic point, i.e., none of the

eigenvalues of the Jacobian ∇zf (z = 0) is on the unit circle.

Then, the above system admits a unique solution (which satisfies φ(0) = 0).
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Thus, by introducing the polynomial approximation given by (14) into (5), we get
∀k, ∀hsj(zs), j = 1, 2, . . . n− l, the following system for the stable manifold (see also
(10), (12)):

zuj,k+1 = hsj(zs,k+1) =
M∑

k1=0

M∑

k2=0

· · ·
M∑

kl=0

a
(j)
k1,k2,...,kl

Pk1(ẑs1) · · · Pkl
(ẑsl )

= λuj,k

M∑

k1=0

M∑

k2=0

· · ·
M∑

kl=0

a
(j)
k1,k2,...,kl

Pk1(zs1) · · · Pkl
(zsl )

+guj(
[
V s V u

]

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

zs1
zs2
...

zsl

∑M
k1=0

∑M
k2=0 . . .

∑M
kl=0a

(1)
k1,k2,...,kl

Pk1(zs1) · · · Pkl(zsl )

∑M
k1=0

∑M
k2=0 . . .

∑M
kl=0a

(2)
k1,k2,...,kl

Pk1(zs1) · · · Pkl
(zsl )

...
∑M

k1=0
∑M

k2=0 . . .
∑M

kl=0a
(j)
k1,k2,...,kl

Pk1(zs1) · · · Pkl
(zsl )

...
∑M

k1=0
∑M

k2=0 . . .
∑M

kl=0a
(n−l)
k1,k2,...,kl

Pk1(zs1) · · · Pkl
(zsl ),

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

, x∗, p∗)),

(17)

where ẑs = {ẑs1, . . . ẑsl} are nonlinear functions of zs = {zs1, . . . zsl}:

ẑs = Λszs,k + gs

([
V s V u

] [
zs,k

hs(zs,k)

]
, x∗, p∗

)
. (18)

Note that in general, both the left-hand side and the right-hand side of (17) con-
tain higher order terms than M due to (5) and the nonlinearities in guj. By equating
both sides of (17) the terms up to an order r <= M with respect to {zs1, . . . zsl},
we get the following coupled system of nonlinear homological equations with
respect to the (n − l) · (r + 1)l polynomial coefficients a

(j)
k1,k2,...,kl

, {j = 1, 2, . . . n −
l}, {k1, k2, ..., kl = 0, 1, . . . r}:

Ψj,i

(
a

(1)
k1,k2,...,kl

, . . . , a
(n−l)
k1,k2,...,kl

)
= Φj,i

(
a

(j)
k1,k2,...,kl

)

+guj,i

(
a

(1)
k1,k2,...,kl

, . . . , a
(n−l)
k1,k2,...,kl

)
, (19)

with j = 1, 2, . . . (n − l), i = 1, 2, . . . (r + 1)l .
The above system constitutes a nonlinear (in general) system of (n − l) · (r + 1)l

unknowns with (n − l) · (r + 1)l equations that can be solved iteratively, e.g., using
the Newton-Raphson algorithm.
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What is described above, forms the basis for the numerical algorithm presented
in Section 3 for the equation-free computation of coarse-grained stable and unstable
manifolds of saddles of microscopic simulators.

2.2 An illustrative example

Let us consider the following discrete dynamical system:

x1,k+1 = −0.5x1,k

x2,k+1 = −0.5x2,k + x2
1,k

x3,k+1 = 2x3,k + x2
2,k. (20)

The above system can be written as:

⎡

⎣
x1
x2
x3

⎤

⎦

k+1

=
⎡

⎣
−0.5 0 0

0 −0.5 0
0 0 2

⎤

⎦

⎡

⎣
x1
x2
x3

⎤

⎦

k

+
⎡

⎣
0
x2

1
x2

2

⎤

⎦

k

. (21)

It can be shown that the local stable manifold of the saddle (0, 0, 0) is given by
hs(x1, x2) = − 4

7x2
2 + 32

119x2
1x2 + O

(
x2

1x2
2

)
as follows. Let us choose a power series

expansion up to order two (i.e., M = 2) of the stable manifold around the fixed point
x∗

1 = x∗
2 = x∗

3 = 0. Hence, an approximation of the stable manifold is given by:

x3 = hs(x1, x2) ≈ a0,0 + a0,1x2 + a0,2x
2
2 + a1,0x1 + a1,1x1x2

+a1,2x1x
2
2 + a2,0x

2
1 + a2,1x

2
1x2 + a2,2x

2
1x2

2 . (22)

Here, V =
⎡

⎣
1 0 0
0 1 0
0 0 1

⎤

⎦. Hence, from (5) we get:

hs

([ −0.5 0
0 −0.5

] [
x1
x2

]
+ gs

([
x1
x2

hs(x1, x2)

]))

= 2hs(x1, x2) + gu

([
x1
x2

hs(x1, x2)

])

(23)

or

hs

([ −0.5 0
0 −0.5

] [
x1
x2

]
+

[
0
x2

1

])
= 2hs(x1, x2) + x2

2 (24)

or

hs

([ −0.5x1

−0.5x2 + x2
1

])
= 2hs(x1, x2) + x2

2 . (25)
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Thus, from (22) we have:

a0,0 + a0,1

(
−1

2
x2 + x2

1

)
+ a0,2

(
−1

2
x2 + x2

1

)2

− 1

2
a1,0x1

−1

2
a1,1x1

(
−1

2
x2 + x2

1

)
− 1

2
a1,2x1

(
−1

2
x2 + x2

1

)2

+ 1

4
a2,0x

2
1

+1

4
a2,1x

2
1

(
−1

2
x2 + x2

1

)
+ 1

4
a2,2x

2
1

(
−1

2
x2 + x2

1

)2

= 2
(
a0,0 + a0,1x2 + a0,2x

2
2 + a1,0x1 + a1,1x1x2 + a1,2x1x

2
2

+a2,0x
2
1 + a2,1x

2
1x2 + a2,2x

2
1x2

2

)
+ x2

2 (26)

or

−1

2
a0,1x2 + a0,1x

2
1 + 1

4
a0,2x

2
2 + a0,2x

4
1 − a0,2x2x

2
1 − 1

2
a1,0x1

+1

4
a1,1x1x2 − 1

2
a1,1x

3
1 − 1

8
a1,2x1x

2
2

−1

2
a1,2x

5
1 + 1

2
a1,2x2x

3
1 + 1

4
a2,0x

2
1 − 1

8
a2,1x

2
1x2

+1

4
a2,1x

4
1 + 1

16
a2,2x

2
1x2

2 + 1

4
a2,2x

6
1 − 1

4
a2,2x2x

4
1

= 2a0,1x2 + 2a0,2x
2
2 + 2a1,0x1 + 2a1,1x1x2 + 2a1,2x1x

2
2

+2a2,0x
2
1 + 2a2,1x

2
1x2 + 2a2,2x

2
1x2

2 + x2
2 . (27)

By equating the coefficients of the corresponding power series up to order two, we
get the following system of equations:

a0,1 = a2,0 = a1,1 = a1,2 = a2,2 = 0

−a0,2 − 1

8
a2,1 = 2a2,1

1

4
a0,2 = 2a0,2 + 1. (28)

From the above system we get:

a0,2 = −4

7
, a2,1 = 32

119
. (29)

Thus, an approximation of the stable manifold around the saddle point is given by:

hs(x1, x2) ≈ −4

7
x2

2 + 32

119
x2

1x2. (30)

It can be shown, that the unstable manifold is the trivial solution x1 = 0, x2 = 0 as
follows. Let us again choose a power series expansion up to order two (i.e., M = 2)
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of the unstable manifold around the saddle. Hence, an approximation of the stable
manifold is given by:

x1 = h(1)
u (x3) ≈ a

(1)
0,0 + a

(1)
0,1x3 + a

(1)
0,2x

2
3

x2 = h(2)
u (x3) ≈ a

(2)
0,0 + a

(2)
0,1x3 + a

(2)
0,2x

2
3 .

(31)

Hence, from (6) we get:
[

h
(1)
u (2x3 + h

(2)
u (x3)

2
)

h
(2)
u (2x3 + h

(2)
u (x3)

2
)

]

=
[ −0.5 0

0 −0.5

][
h

(1)
u (x3)

h
(2)
u (x3)

]

+
[

0

h
(1)
u (x3)

2

]

. (32)

For the above system, it can be easily verified that the unstable manifold is the one
with x1 = 0, x2 = 0.

3 Numerical approximation of the stable and unstable manifolds
of microscopic-stochastic multiscale and black-box simulators

Let us now assume that explicit model equations (such as the ones given by (1))
for the macroscopic (emergent) dynamics are not available in a closed form. Under
this hypothesis, we cannot follow the procedure for the analytical approximation
of the invariant manifolds as one needs to explicitly know the operator F (i.e., gs

and gu in (7)). Thus, when explicit macroscopic equations are not available in a
closed form, but a microscopic dynamical simulator is available, the approximation
of the invariant stable and unstable manifolds at the macroscopic (the coarse-grained)
level requires: (a) the bridging of the micro and macro scale, and (b) the numerical
approximation of the coarse-grained manifolds. In what follows, we address a new
multiscale numerical method for the approximation of the local stable and unstable
manifolds based on the equation-free framework. Thus, let us assume that we have
a microscopic (such as a Brownian dynamics, Monte Carlo, molecular dynamics,
agent-based) computational model that, given a microscopic/detailed distribution of
states

Uk ≡ U(tk) ∈ R
N, N � 1 (33)

at time tk = kTU , will report the values of the evolved microscopic/detailed
distribution after a time horizon TU :

Uk+1 = ΦTU
(Uk, p), (34)

ΦTU
: RN × R

p → R
N is the time-evolution microscopic operator, p ∈ R

p is the
vector of the parameters.

A key hypothesis for the implementation of the equation-free numerical frame-
work is that after some time t � TU the emergent macroscopic dynamics can be
described by a few observables, say, x ∈ R

n, n 
 N . Usually these “few” observ-
ables are the first moments of the underlying microscopic distribution. This implies
that there is a slow coarse-grained manifold that can be parametrized by x. The
hypothesis of the existence of a slow coarse-grained manifold dictates that the higher
order moments, say, y ∈ R

N−n, of the microscopic distribution U become, rela-
tively fast over the macroscopic time, functions of the n lower order moments. At the
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moments-space, this dependence can be written as a singularly perturbed system of
the form:

xk+1 = X(xk, εyk, p)

yk+1 = Y (xk, εyk, p),
(35)

where ε > 0 is a sufficiently small number. Under the above description and assump-
tions, Fenichels’ theorem for continuous systems [9] can be extended to the following
theorem that guarantees the existence of an invariant low-dimensional “slow” man-
ifold on which evolve the coarse grained dynamics of the discrete system (35)
(see also [3]).

Theorem 3 Let us assume that the functions X : R
n × R

N−n × R
p → R

n, Y :
R

n × R
N−n × R

p → R
N−n ∈ Cr, r < ∞ in an open set around a hyperbolic fixed

point. Then the dynamics of the system given by (35) can be reduced to:

xk+1 = X(xk, χ(xk, p, ε), p) (36)

on a smooth manifold defined by:

Mε = {(x, y) ∈ R
n × R

N−n : yk = χ(xk, p, ε)} (37)

The manifold Mε is diffeomorphic and O(ε) close to the M0 manifold defined for
ε = 0. Moreover, the manifold Mε is locally invariant under the dynamics given
by (35).

Mε defines the “slow” manifold on which the dynamics of the system evolve after
a short (in the macroscopic scale) time horizon.Under this perspective and under the
above theorem assumptions, let us define the coarse-grained map:

xk+1 = F T (xk, p), (38)

where F T : Rn×R
p → R

n is a smooth multivariable, vector-valued function having
xk as initial condition at time tk = kT , where T is a macroscopic reporting time
horizon with T >> TU .

The above coarse-grained map, which describes the system dynamics on the slow
coarse-grained manifold Mε can be obtained by finding χ that relates the higher
order moments of the microscopic distribution Uk to the lower order moments x

that describe the macroscopic observations/dynamics. The equation-free approach,
through the concept of the coarse timestepper, bypasses the need to extract such a
relation analytically which in most of the cases is an “overwhelming” difficult task
and can introduce modeling biases (see the critical discussion in [36]). The equation-
free approach provides such relations in a numerical way: relatively short calls of
the detailed simulator provide this closure (refer to [24, 25, 45] for more detailed
discussions). Briefly, the coarse timestepper consists of the following basic steps:
Given the set of the macroscopic variables at time t0:

(a) Set the coarse-grained initial conditions xk=0 ≡ x0.
(b) Transform the coarse-grained initial conditions to consistent microscopic dis-

tributions U0 = μx0, where μ is a lifting operator.
(c) Run the microscopic/detailed simulator for a short macroscopic interval T to

get the resulting microscopic distributions Uk+1. The choice of T is associated
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with the (estimated) gap of the eigenspectrum of the Jacobian of the unavailable
closed macroscopic equations around the stationary state.

(d) Compute the values of the coarse-grained variables using a restriction operator
M: xk+1 = MUk+1.

The above steps constitute the black box coarse timestepper, which, given an initial
coarse-grained state of the system {xk, p}, at time tk = kT will report the result of
the integration of the microscopic rules after a given time-horizon T (at time tk+1),
i.e., xk+1 = F T (xk, p).

At this point, one can use iterative linear algebra numerical methods such as the
Newton-Raphson method (for low-order systems) to converge to the coarse-grained
fixed points and to perform bifurcation analysis. For large-scale systems, one can
also resort to matrix-free methods such as the Newton-GMRES [23] to find the
coarse-grained fixed points and the Arnoldi method [38] to analyze the stability of
the coarse-grained fixed points of the unavailable macroscopic evolution equations.

The coarse-grained Jacobian ∇F T (x∗, p∗) can be computed by appropriately per-
turbing the coarse-grained initial conditions fed to the coarse timestepper (38). For
low to medium dimensions, the i-th column of the Jacobian matrix can be evaluated
numerically, e.g., using central finite differences as:

∇xiF T (xi, p) ≈ F T (x + εei, p) − F T (x − εei, p)

2ε
, (39)

where ei is the unit vector with one at the i-th component and zero in all other
components.

Then, one can solve the eigenvalue problem

∇F T (x∗, p∗)vj = λjvj (40)

with direct solvers.
The tracing of solution branches of saddles around turning points can be achieved

by standard continuation techniques such as the pseudo-arc-length continuation [22].
For the above procedure to be accurate, one should perform the required computa-

tions when the system lies on the slow manifold. If the gap between the fast and slow
time scales is very big then the time required for trajectories starting off the slow
manifold to reach the slow manifold will be small compared to T ; hence, we expect
that the coarse-grained computations will not be significantly affected for any practi-
cal means. As also discussed in Kevrekidis et al. [25], under the “strong assumption”
of a big separation of time scales, the fast off-the slow manifold dynamics will lead
to quick “healing” of the lifting error. Nevertheless, one can relax the above “strong”
(and “vague” [25]) assumption and enhance the computing accuracy by producing
lifting operators that bring the system on the slow manifold (using for example the
algorithms presented in [13, 14, 32, 44, 50]).

Returning back to the problem of numerical approximation of the stable and
unstable manifolds, as now there are no analytical expressions, due to the nonlinear
dependence of gs and gu on zs and zu, the coefficients a of the polynomial approxi-
mation of the stable zu = h(zs) (and correspondingly of the unstable) manifold can
be determined numerically by solving in an iterative way the system of nonlinear
homological equations given by (19).
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Here, we solve the above task through the concept of the coarse-timestepper as
described in the following steps (in what follows, we present the algorithm for the
computation of the stable manifold; the procedure for the computation of the unstable
manifold is analogous):

1. Construct the coarse-timestepper given by the map (38) using appropriate lifting
μ and restricting M operators of the microscopic evolved distributions.

2. “Wrap” around the coarse-timestepper a continuation technique (e.g., the
pseudo-arc-length continuation) to converge to a saddle fixed point (x∗, p∗).

3. Compute the coarse-grained Jacobian ∇F T (x∗, p∗) and solve the eigenvalue
problem ∇F T (x∗, p∗)V = ΛV . Find the l stable and n−l unstable eigenmodes.
Rearrange V as V = [

V s V u
]

with V s being the n × l matrix whose columns
are the eigevectors of the Jacobian that correspond to the l eigenvalues lying
inside the unit circle, V u is a n×n− l matrix whose columns are the eigevectors
of the Jacobian that correspond to the n − l eigenvalues lying outside the unit
circle.

4. Choose a certain set of polynomials as well as their maximum order M for the
numerical approximation of the j-th element, say hjs of the stable manifold in the
form of:

zju = hjs(zs) =
M∑

k1=0

M∑

k2=0

· · ·
M∑

kl=0

a
(j)

k1,k2,...,kl
Pk1(z1s) · · · Pkl

(zls),

j = 1, 2, . . . n − l,

(41)

where, the variables zs, zu are defined by the transformation (2).
5. Let us denote with q(j), j = 1, 2, . . . n− l, the column vector of dimension ((M+

1)l − 1) × 1 containing the unknown polynomial coefficients a
(j)
k1,k2,...,kl

of the
j-th element (hjs) of the stable manifold as approximated by (41). Set an initial
guess at time t = 0, for each one of the unknown coefficients of the (expansion)
contained in q(j), say q

(j)
0 . Form Q0 = [q(1)

0 , q
(2)
0 , . . . q

(j)
0 , . . . q

(n−l)
0 ]′, i.e., the

column vector of dimension ((M + 1)l − 1) · (n − l) containing all the unknown
coefficients.

6. Create a grid of np initial conditions zs,0 within a certain distance B around
(zs = 0, p∗) where an approximation of the stable manifold is sought, and at a
certain distance from it, i.e., εd <

∥∥zs,0
∥∥ < B.

7. Set convergence tolerance, say, tol, for the approximation of the polynomial
coefficients. Set the number of time steps kmax for calling the timestepper (38)
and define ‖dQ‖ = ∥∥Qkmax

− Q0

∥∥
L2

.
8. Do until convergence (‖dQ‖ > tol):

• Use the coarse-timestepper (38) to construct the map:

Qkmax
= Ξ(Q0) (42)

1348 Numerical Algorithms (2022) 89:1335–1368



over the kmax time steps. The map Ξ : R
((M+1)l−1)·(n−l) −→

R
((M+1)l−1)·(n−l) is constructed using the coarse-timestepper as follows:
For i = 1, 2, . . . , np initial conditions z

(i)
s,0 :

– Use (41) to find z
(i)
uj,0, (j = 1, 2, . . . , n − l).

– Use Q0 with the aid of (2) to find x
(i)
0 .

– For k = 0, 1, . . . kmax − 1 time steps

Run the coarse-timestepper (38) to find x
(i)
k+1.

Use (2) to find z
(i)
s,k+1, z

(i)
uj,k+1, (j = 1, 2, . . . , n − l).

– End For

End For
Based on all np simulations construct the matrix A that contains all the

values of each one of the polynomials Pk1(z1s) · · · Pkl
(zls), k1, k2, . . . kl =

0, 1, . . .M . Thus, the above procedure will result to a matrix A of dimension
(np · (kmax + 1))× ((M + 1)l − 1) (the constant terms are set equal to zero).

Find q
(j)
kmax

, (j = 1, 2, . . . , n − l) , by solving the linear least squares
problem:

min
q

(j)
kmax

∥∥∥Aq
(j)
kmax

− b(j)
∥∥∥

L2
, (43)

where, b(j) =
[

z
(1)
uj,0 z

(1)
uj,1 . . . z

(1)
uj,kmax

. . . z
(np)

uj,0 z
(np)

uj,1 . . . z
(np)

uj,kmax

]′
is a col-

umn vector of dimension np · (kmax + 1) × 1.
The optimal solution of the above linear least squares problem is given

by the solution of

A′Aq
(j)
kmax

= A′b(j). (44)

If the matrix A′A is of full rank, then the above system has a unique solution
given by:

q
(j)
kmax

= (A′A)−1A′b(j). (45)

Note that if the initial points x
(i)
0 are chosen close enough to the fixed point

x∗ and/or the number of time-steps kmax are relatively large then as zs →
0, the matrix A′A will not be of full rank. In that case one could use the
Moore-Penrose pseudo-inverse of A′A to solve (44) and the solution reads:

q
(j)
kmax

= A+b(j), (46)

where, the pseudo-inverse matrix A+ that is obtain by the Singular Value
Decomposition (SVD) of the matrix A:

A+ = V Σ+U ′, (47)

where, Σ+ is the inverse of sub-block diagonal matrix containing the non-
zero singular values of the SVD decomposition of A.

Form Qkmax
=

[
q

(1)
kmax

, q
(2)
kmax

, . . . q
(j)
kmax

, . . . q
(n−l)
kmax

]′
.
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Thus the above procedure creates the map:

Qkmax
= Ξ(Q0) (48)

• Update the values of the polynomials coefficients by using, e.g., the Newton-
Raphson scheme around the map given by (42):

– Set f = Q0 − Ξ(Q0)

– Compute the Jacobian ∇Ξ(Q0) by perturbing appropriately Q0 (thus,
repeating the pipeline described in step 8 above, ((M + 1)l − 1) ·
(n − l) times, thus starting simulations using Q0 ± εei (where ei , i =
1, 2, . . . , ((M+1)l−1)·(n−l) is the unit vector with one at the i-th com-
ponent and zero in all other components of Q0) for an approximation of
the Jacobian Ξ(Q0) with central differences).

– Solve the linear system

[
I − ∇Ξ(Q0)

] · dQ = −f (49)

to get dQ.
– Update the estimates for the polynomial coefficients:

Q0 = Q0 + dQ. (50)

End Do }.
Note, that the above scheme can be seen as a Gauss-Newton-like scheme for the esti-
mation of the unknown coefficients of the series expansion by the aid of the coarse-
timestepper. While the existence of a unique solution is on the one hand guaranteed
by Theorems 1 and 2, on the other hand, the convergence of the scheme depends on
the choice of the distance B around the saddle point, where the approximation of the
invariant manifolds in sought, the initial guesses for the polynomial coefficients, the
level of noise due to the microscopic (stochastic) simulations, as well as the “qual-
ity” of the lifting operator (see the discussion for equation-free computations, e.g., in
[13, 14, 25, 31, 32, 42, 44, 50, 51]). An initial guess for the polynomial coefficients
could be the values of the coefficients of the linear terms of the polynomial expansion
that reconstruct the subspace spanned by the columns of V s or V u. The convergence
properties of the above scheme with respect to the above factors will be studied more
thoroughly in a future work.

4 The illustrative examples: numerical results

The proposed approach is illustrated through two examples: (a) the toy model (20)
and (b) a Monte Carlo simulation of a catalytic reaction on a lattice presented in
[31], for which we have also derived analytically an approximation of the stable and
unstable manifolds based on the mean field model.
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4.1 The toymodel

We have shown that the stable manifold of the discrete time model given by (20) is
given by

hs(x1, x2) ≈ −4

7
x2

2 + 32

119
x2

1x2. (51)

Here, we will derive a numerical approximation of the stable manifold by assum-
ing that the equations of the model are not explicitly known. Our assumption is that
we have a black-box model that given initial conditions (x1,0, x2,0, x3,0) it outputs
(x1,k, x2,k, x3,k), k = 1, 2, . . . . The saddle point is the (x∗

1, x
∗
2, x

∗
3) = (0, 0, 0). The

Jacobian on the saddle is approximated by central finite differences with ε = 0.01 as
perturbation on the initial conditions and running the simulator for one step. By doing
so, the numerical approximation of the Jacobian actually coincides for any practical
means with the analytical one. The eigenvalues are λ1 = −0.5, λ2 = −0.5, λ3 = 2
and the eigenvectors are given by ei, i.e., the unit vectors with one at the i-th com-
ponent and zero in all other components. From the above, it is clear that z1s = x1,
z2s = x2, z1u = x3. Thus, we chose a power series expansion of the manifold around
the saddle as

x3 = hs(x1, x2) ≈ a0,1x2 + a0,2x
2
2 + a1,0x1 + a1,1x1x2 + a1,2x1x

2
2

+a2,0x
2
1 + a2,1x

2
1x2 + a2,2x

2
1x2

2 . (52)

For the construction of the map (see (42)) we have used the following parameters:
kmax = 3, np = 4, zs1,0 = (−0.1, 0.1), zs2,0 = (−0.1, 0.1), and central finite
differences with ε = 0.01, for the numerical approximation of the Jacobian ∇Q

that is required for the Newton-Raphson iterations; the tolerance was set to tol =
1E-04, and the initial guess of the power expansion coefficients was set as q0 ≡
(a0,1, a0,2, a1,0, a1,1, a1,2, a2,0, a2,1, a2,2)=(0,0,0,0,0,0,0,0).

The algorithm converged in two Newton iterations to the following expression for
the stable manifold:

hs(x1, x2) ≈ −0.5708x2
2 + 0.2687x2

1x2 − 0.2598x2
1x2

2 . (53)

The numerical scheme outputs also a non-zero coefficient for a2,2 which is not
present in the analytical approximation. This is due to the truncation of the power
expansion to second-order terms: when equating the terms on both sides of (27),
higher order powers than three are set to zero. One can confirm the contribution of
this extra term found by the numerical scheme by simple simulations. For exam-
ple, by setting as initial conditions x1,0 = 0.2, x2,0 = 0.2 and x3,0 = − 4

7x2
2,0 +

32
119x2

1,0x2,0, we get the results shown in Table 1.
Note that x3,k goes to zero and then after k = 3 it diverges due to the (truncated)

approximation of the manifold. This is what should be expected: the lower order
model results in a trajectory that is a little bit off the stable manifold; thus at the
beginning, the system approaches the saddle (see the first two time steps) and then
diverges away from it as expected. In fact, if we add the extra term found with the
numerical scheme, and start with the same initial conditions for x1,0 and x2,0, but with
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Table 1 Numerical simulation of the model given by (20) setting as initial conditions on the man-
ifold approximated by x3,0 = − 4

7 x2
2,0 + 32

119 x2
1,0x2,0; the other initial conditions were set as

x1,0 = 0.2, x2,0 = 0.2

k 0 1 2 3 4 5

x1(k) 0.2 −0.1 0.05 −0.025 0.0125 −0.00625

x2(k) 0.2 −0.06 0.04 −0.0175 0.00938 −0.00453

x3(k) −0.020705 −0.00141 −7.76E−04 0.003152 0.006612 0.01331

x3,0 = − 4
7x2

2,0 + 32
119x2

1,0x2,0 − 0.2598x2
1,0x

2
2,0, we get the results shown in Table 2,

that is after k = 3 the system converges to the saddle.

4.2 Kinetic monte carlo simulation of CO oxidation on a catalyst

The proposed numerical approach is illustrated through a kMC microscopic model
describing the dynamics of CO oxidation on a catalyst [31]. The species react
adsorbed or desorbed on a finite lattice with periodic boundary conditions. At each
time instant, the sites of the lattice are considered to be either vacant or occupied by
the reaction species. The system dynamics are described by the following chemical
master equation:

dP (x, t)

dt
=

∑

y �=x

Q(y, x)P (y, t) −
∑

y �=x

Q(x, y)P (x, t), (54)

where, P(x, t) is the probability that the system will be in state x at time t and
Q(y, x) is the probability for the transition from state y to x (and vice versa) per unit
time. The summation runs over all possible transitions (reactions). Here, the numeri-
cal simulation of the above stochastic equation was realized using the Gillespie kMC
algorithm [15, 16, 31]. The reaction mechanism can be schematically described by
the following elementary steps (for more details see in [30]):

(1) COgas + ∗i ↔ COads,i

(2) O2,gas + ∗i + ∗j ↔ Oads,i + Oads,j

(3) COads,i + Oads,j → CO2,gas + ∗i + ∗j

Table 2 Numerical simulation of the model given by (20) setting as initial conditions on the manifold
approximated by x3,0 = − 4

7 x2
2,0 + 32

119 x2
1,0x2,0 − 0.2598x2

1,0x
2
2,0; the other initial conditions were set to

x1,0 = 0.2, x2,0 = 0.2

k 0 1 2 3 4 5

x1(k) 0.2 −0.1 0.05 −0.025 0.0125 −0.00625

x2(k) 0.2 −0.06 0.04 −0.0175 0.00937 −0.00453

x3(k) −0.02112 −2.243E−03 −8.86E−04 −1.72E−04 −3.87E−05 1.0395E−05
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where i, j are neighbor sites on the square lattice, ∗ denotes a site with a vacant
adsorption site, while “ads” denotes adsorbed particles. By adding an inert site-
blocking adsorbate with a reversible adsorption step the mean field approximation
can be derived by the master (54) and is given by the following system of ordinary
differential equations [31]:

dθA

dt
= α(1 − θA − θB − θC) − γ θA − 4krθAθB

dθB

dt
= 2β(1 − θA − θB − θC)2 − 4krθAθB

dθC

dt
= μ(1 − θA − θB − θC) − ηθC, (55)

where, θi represent the coverages of species (i = A, B, C, resp. CO, O and inert
species C) on the catalytic surface; μ denotes C adsorption and η C desorption rate.
For α = 1.6, γ = 0.04, kr = 1 , η = 0.016, μ = 0.36 and treating β as the bifur-
cation parameter the mean field model (22) exhibits two Andronov-Hopf points at
β ≈ 20.3 and β ≈ 21.2 and (θ∗

A, θ∗
B, θ∗

C, β∗)2 ≈ (0.1895, 0.0575, 0.7207, 21.2779).
Between the two Andronov-Hopf points, the equilibria are saddles.

For the time integration of the mean field model (55), we used the Matlab ode suite
function “ode15s” [40], a variable-step, variable-order solver with absolute and rela-
tive tolerances set to 1E-03. For the kMC simulations the number of the sites (system
size) and the number of runs—consistent to the mean values of the distribution on the
lattice realizations—were chosen to be Nsize = 2000×2000 and Nr = 2000, respec-
tively. The value of the time horizon was selected as T = 0.05 (for a discussion on
the appropriate choice of the reporting horizon T and as well as the system size and
time realization please refer to [31]). The coarse-grained bifurcation diagram was
obtained by applying the equation-free approach upon convergence of the Newton-
Raphson to a residual of O(10−3) for ε ≈ 10−2. We have chosen this model as for
big enough lattice realizations and runs, the coarse-grained bifurcation diagram and
stability practically coincides with the one obtained from the mean filed model [31];
thus one can perform a direct comparison of the numerical approximation of the sta-
ble manifold obtained with the kMC simulator and the one derived analytically from
the mean field model.

Here, we have chosen to find the stable and unstable manifolds at β = 20.7. For
this value of the bifurcation parameter and the choice of the values of T , Nr and N ,
the coarse-grained fixed point is found to be (θ∗

A, θ∗
B, θ∗

C) ≈ (0.294, 0.029, 0.648)

and the corresponding coarse-grained Jacobian is

⎡

⎣
0.924 −0.121 −0.068
−0.108 0.845 −0.104
−0.016 −0.015 −0.597

⎤

⎦

(compare this with the one that is obtained from the T-map of the mean field
model: (θ∗

A, θ∗
B, θ∗

C) ≈ (0.2924, 0.0294, 0.6492) and the corresponding Jacobian:
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⎡

⎣
0.9244 −0.1202 −0.0684

−0.1088 0.8466 −0.1038
−0.0161 −0.0151 −0.597830

⎤

⎦). The coarse-grained eigenvalues and corre-

sponding eigenvectors are:

λ1 ≈ 0.752, v1 =
⎛

⎝
−0.597
−0.796
−0.094

⎞

⎠, λ2,3 ≈ 1 ± 0.0013i , v2,3 =
⎛

⎝
−0.796

0.181 ± 0.064i

0.565 ∓ 0.098i

⎞

⎠.

4.2.1 Numerical approximation of the stable manifold

For our illustrations, we have chosen to provide a third-order approximation of the
stable manifold for the mean-field model (55) and its corresponding kMC simulation.
Thus we sought for an approximation of the stable manifold as:

hs(zs) ≈
[

a
(1)
1 zs + a

(1)
2 z2

s + a
(1)
3 z3

s

a
(2)
1 zs + a

(2)
2 z2

s + a
(2)
3 z3

s

]

. (56)

Following the approach described in Section 2, one obtains a nonlinear system of
six algebraic equations (see Appendix) which was solved for the unknown coeffi-
cients with Newton-Raphson. Here, the convergence tolerance was of the order of
10−6, while the perturbation for computing the Jacobian matrix with finite differ-
ences was of the order of 10−3. The initial guess of the coefficients was set as
q0 = (0, 0, 0, 0, 0, 0)′. In this case, the expression for the approximation of the stable
manifold is given by:

hs(zs) ≈
[ −4.67z2

s + 43.20z3
s

−29.07z2
s + 270.88z3

s

]
. (57)

Next, we applied the proposed numerical method, treating the mean-field
timestepper-resulting from the integration of the system of ODEs (55) with ode15s-as
a black-box with a reporting time horizon T = 0.05. We have set np = 6 and a grid of
initial conditions zs,0 : {−0.02,−0.01,−0.005, 0.005, 0.01, 0.02} around the saddle
and kmax = 6. Again, the convergence tolerance was set to 10−6, while the pertur-
bation for computing the Jacobian matrix with finite differences was of the order of
10−2. Starting the algorithm with zeros as initial guesses for all the unknown coeffi-
cients (i.e., by setting q0 = {0, 0, 0, 0, 0, 0}), the algorithm results to the following
expression:

hs(zs) ≈
[ −4.92z2

s + 47.96z3
s

−30.62z2
s + 301.09z3

s

]
. (58)

The scheme converged within 3 iterations (the sequence of the convergence criterion∥∥∥dq(j)
∥∥∥ ∼ was (after the first iteration) ∼ O(0.1), ∼ O(10−7)).

By selecting a grid closer to the equilibrium as zs,0 : {−0.005, −0.003, −0.001,

0.001, 0.003, 0.005}, the algorithm results to the following expression:

hs(zs) ≈
[ −4.67z2

s + 43.33z3
s

−29.06z2
s + 271.56z3

s

]
. (59)
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By comparing (57) and (59), we see that the numerical approximation of the
coarse-grained manifold as obtained by “wrapping” the proposed algorithm around
the black-box ODEs timestepper is almost identical with the one computed using
Newton-Raphson for the solution of the analytically derived nonlinear homological
equations (given in Appendix A.2). A relatively small deviation in the coefficients of
the 3rd-order terms in (58) which was computed with the “wider” grid is due to the
larger truncation error.

Finally, we applied the proposed numerical approach to the kMC timestepper
with Nsize = 2000 × 2000 , Nr = 2000 and a reporting time horizon T = 0.05.
In this case, the convergence tolerance for the kMC simulations was set 10−3,
while the perturbation for computing the Jacobian matrix with finite differences
was of the order of 10−2. We have set np = 6 and a grid of initial conditions
zs,0 : {−0.02,−0.01,−0.005, 0.005, 0.01, 0.02} around the coarse-grained saddle,
and kmax = 6. Starting again the algorithm with zeros as initial guesses for all the
unknown coefficients (i.e., by setting q(0) = {0, 0, 0, 0, 0, 0}, the algorithm results to
the following expression for the coarse-grained stable manifold:

hs(zs) ≈
[ −4.89z2

s + 44.93z3
s

−27.45z2
s + 255.10z3

s

]
. (60)

In this case, the scheme converged within 4 iterations (the sequence of the con-

vergence criterion
∥∥∥dq(j)

∥∥∥ was (after the first iteration) ∼ O(0.1), ∼ O(0.01), ∼
O(0.001)). The computation time for one Newton iteration was of the order of 50 min
on a INTEL Xeon CPU E5-2630, 2.2GHz with 64GB RAM.

Taking Nsize = 4000 × 4000 , Nr = 2000, and leaving everything else the same,
the algorithm results to:

hs(zs) ≈
[ −4.90z2

s + 44.78z3
s

−30.38z2
s + 282.25z3

s

]
. (61)

In this case, the scheme converged again within 4 iterations (the sequence of the

convergence criterion
∥∥∥dq(j)

∥∥∥ was (after the first iteration) ∼ O(0.1), ∼ O(0.01), ∼
O(0.001)). At this point we should note that by taking larger lattice sizes Nsize and
more runs Nr , the convergence to the mean-field results will increase. On the con-
trary, for small sizes and number of runs, the algorithm fails to converge. For example
if one takes, Nsize = 200 × 200, Nr = 2000, the algorithm does not converge.

For the particular problem of kMC simulations, a more thorough discussion on
the interplay between the level of noise, the selection of the amplitude of the pertur-
bation for the estimation of the coarse-grained Jacobian, the “healing” assumption of
the equation-free approach due to the lifting operation and the choice of the report-
ing horizon T can be found in [30, 31] where the equation-free approach has been
addressed to construct the coarse-grained bifurcation diagram of the same model. For
example, if the time reporting horizon T is too short, the errors that are introduced
due to the lifting do not have the time to “heal” down to the slow manifold. If on the
other hand, one selects a reporting horizon T too long, then the quantification of the
Jacobian is inaccurate, thus introducing biases in the computations model.
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4.2.2 Numerical approximation of the unstable manifold

Here, we seek for the following approximation of the unstable manifold

hu(zu) ≈ a1,0zu1 + a2,0z
2
u1 + a0,1zu2 + a0,2z

2
u2 + a1,1zu1zu2 + a1,2zu1z

2
u2

+a2,1z
2
u1zu2. (62)

Following the approach described in the Appendix, we obtained analytically
seven algebraic equations, which were solved for the unknown coefficients with
Newton-Raphson; the convergence tolerance was set 10−6 while the perturbation
for computing the Jacobian matrices was of the order of 10−2. In this case, the
approximation of the unstable manifold is given by:

hu(zu) ≈ −0.1521z2
u1 − 0.0079z2

u2 − 0.0747zu1zu2 + 0.0595zu1z
2
u2 + 0.1419z2

u1zu2.
(63)

Again, we first applied the proposed numerical method to the mean-field timestepper-
resulting from the integration of the system of ODEs (55) with ode15s-as a
black-box- with a reporting time horizon T = 0.05. We have set np = 4 and a grid
of initial conditions zu1,0, zu2,0: {−0.02, −0.01, 0.01, 0.02} around the saddle setting
kmax = 6. Again, the convergence tolerance was set 10−6, while the perturbation for
computing the Jacobian matrix with finite differences was of the order of 10−3. Start-
ing the algorithm with zeros as initial guesses for all the unknown coefficients (i.e.,
by setting q0 = {0, 0, 0, 0, 0, 0, 0}), the algorithm results to the following expression
for the unstable manifold:

hu(zu) ≈ 0.0062zu1 − 0.1532z2
u1 − 0.0081z2

u2 − 0.076zu1zu2 + 0.0627zu1z
2
u2

+0.1489z2
u1zu2. (64)

The scheme converged within 3 iterations (the sequence of the convergence

criterion
∥∥∥dq(j)

∥∥∥ was ∼ O(10−1), ∼ O(10−2), ∼ O(10−6)).

By selecting a grid closer to the equilibrium as zu1,0, zu2,0: {−0.005, −0.003,

0.003, 0.005}, the algorithm results to the following expression for the unstable
manifold:

hu(zu) ≈ −0.152z2
u1 −0.0083z2

u2 −0.075zu1zu2 +0.060zu1z
2
u2 +0.143z2

u1zu2. (65)

By comparing (64) and (65) with (63), we see that the numerical approximation of the
coarse-grained manifold as obtained by “wrapping” the proposed algorithm around
the black-box ODEs timestepper is almost identical with the one computed using
Newton-Raphson for the solution of the analytically derived nonlinear homological
equations (given in Appendix A.2).

Finally, we applied the proposed numerical approach to the kMC timestepper with
Nsize = 2000 × 2000 , Nr = 200 and a reporting time horizon T = 0.05. In this
case, the convergence tolerance for the kMC simulations was of the order of 10−3,
while the perturbation for computing the Jacobian matrix with finite differences was
of the order of 10−2. We have set np = 4 and a grid of initial conditions zu1,0, zu2,0:
{−0.02, −0.01, 0.01, 0.02} around the coarse-grained saddle setting kmax = 6. Start-
ing again the algorithm with zeros as initial guesses for all the unknown coefficients
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(i.e., by setting q(0) = {0, 0, 0, 0, 0, 0, 0}, the algorithm results to the following
expression for the coarse-grained unstable manifold:

hu(zu) ≈ −0.150z2
u1 − 0.009z2

u2 − 0.088zu1zu2 + 0.134zu1z
2
u2 + 0.191z2

u1zu2. (66)

In this case, the scheme converged within 3 iterations (the sequence of the conver-

gence criterion
∥∥∥dq(j)

∥∥∥ was ∼ O(0.1), ∼ O(0.01), ∼ O(0.001)). The computation

time for one Newton iteration was of the order of 3.5 h on a INTEL Xeon CPU
E5-2630, 2.2GHz with 64GB RAM.

Taking Nsize = 4000 × 4000 , Nr = 2000, and leaving everything else the same,
the algorithm results to:

hu(zu) ≈ −0.151z2
u1 − 0.008z2

u2 − 0.067zu1zu2 + 0.045zu1z
2
u2 + 0.203z2

u1zu2. (67)

In this case, the scheme converged again within 3 iterations (the sequence of the
convergence criterion ‖dq(j)‖ was ∼ O(0.1), ∼ O(0.01), ∼ O(0.001)).

By comparing the expressions (66) and (67) with (63), we see that the numeri-
cal approximation of the coarse-grained manifold of the kMC simulator is in a fair
agreement with the one obtained by the mean field model.

5 Conclusions

We propose a numerical method for the approximation of the local coarse-grained
stable and unstable manifolds of saddle points of microscopic simulators when
macroscopic models in a closed form in the form of ODEs are not explicitly available.
The methodology is based on the equation-free multiscale framework. The proposed
numerical algorithm consists of three steps: (a) detection of the coarse-grained saddle
by constructing the coarse-timestepper of the microscopic dynamics, (b) estimation
of the coarse-grained Jacobian and evaluation of its eigenvalues and eigenvectors,
and (c) estimation of the coefficients of the polynomial approximation of the invari-
ant manifolds. The later step involves the construction of a map for the coefficients of
the polynomial expansion of the manifolds. The key hypothesis is that a macroscopic
model in the form of ODEs can in principle describe the emerging macroscopic
dynamics but it is not available in a closed form. The proposed numerical approach
was illustrated through two examples, a toy model treated as a black-box time-stepper
and a kinetic Monte Carlo simulator of a simple catalytic reaction. For the kMC sim-
ulator a mean field model in the form of ODEs was also given. For both models, we
have also derived analytically the parametrization of the invariant manifolds for com-
parison purposes. As we show, the proposed numerical method approximates fairly
well the analytical approximation when considering the vector fields as known.

The proposed numerical method provides a polynomial approximation of the local
stable and unstable manifolds in a neighborhood of the coarse-grained saddle, based
on appropriately initialized temporal simulations of the microscopic simulator. It
should be noted that the task of finding even linear stable manifolds from brute-force
simulations (and thus physical experiments) is itself a non-trivial task [1, 47]. In
physical experiments the additional difficulty is that most often one cannot set the
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initial conditions at will; towards this aim, one could resort to control-based con-
tinuation methods [1, 41, 45]. In a future work, we aim at extending the proposed
numerical method to perform a piece-wise approximation of the global manifold.
This could be done for example by coupling the proposed algorithm with parameter-
continuation of the polynomial coefficients as we move far from the equilibrium.
Of course the computation of global manifolds, especially of two-dimensional stable
and unstable manifolds constitutes a much more difficult task. Towards this direc-
tion, Quinn et al. [34] have exploited the equation-free approach to compute the
one-dimensional stable manifold of an one-dimensional delay differential equation.
Other points that require further investigation are the analysis of the convergence
properties of the algorithm, the numerical convergence properties of the scheme with
respect to the amplitude of the noise to stochasticity, the sensitivity of the approx-
imation with respect to the discretization of the domain around the saddle as well
as the issue of finding confidence intervals for the coefficients of the polynomial
expansion. Another extremely interesting problem is that of equation-free uncertainty
quantification (UQ) [2, 35, 48, 52], an approach that can be exploited to deal with the
inherent stochasticity of the microscopic simulations and to provide “on demand” the
appropriate coefficients of generalized polynomial chaos expansions.

Appendix. Extraction of the stable and unstable manifolds
for themean fieldmodel of ODEs

Let us assume a continuous model in the following form of ODEs:

dx

dt
= f (x, p),f : Rn × R

m → R
n, (A.1)

where f is considered to be sufficiently smooth.
To determine the local stable and unstable manifold of a saddle fixed point

(x∗, p∗), the following linear transformation is introduced:

x̂ ≡ (x − x∗) = V z, (A.2)

where V is the matrix with columns the eigenvectors vj of the Jacobian ∇xf (x, p)

computed at (x∗, p∗). As in Section 2 expanding the right-hand side of (A.1) around
(x∗, p∗) and introducing (A.2) we get:

dz

dt
= V −1∇xf (x, p)V z + V −1g(V z, p) (A.3)

g(V z, p) contains the higher order terms with respect to x.
By rearranging appropriately the columns of V , the Jacobian J ≡

V −1∇xf (x, p)V can be written in a block form as J =
(

Λs 0
0 Λu

)
, where Λs is

the l × l (diagonal/block diagonal) matrix whose eigenvalues are the l eigenvalues
with negative real parts and Λu is the n − l × n − l (diagonal/block diagonal) matrix
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whose eigenvalues are the n − l eigenvalues with positive real parts.Thus, the system
given by (A.3) can be written as:

dzs

dt
= Λszs + gs(V z, p)

dzu

dt
= Λuzu + gu(V z, p),

(A.4)

where, [
gs

gu

]
= [

V s V u

]−1
g(V z, p), (A.5)

V s and V u are the sub-matrices of dimensions n× l and n×n− l, whose columns
contain the eigenvectors corresponding to the eigenvalues with negative and positive
real parts, respectively.

A stable manifold is given by the following equation:

zu = hs(zs), (A.6)

while an unstable manifold is given by the following equation:

zs = hu(zu). (A.7)

The dynamics on the stable manifold can be computed by differentiating (A.6) with
respect to time to get:

dzu

dt
= ∇zs hs(zs)

dzs

dt
. (A.8)

Given (A.4), (A.8) becomes:

Λuhs(zs) + gu(zs , hs(zs),p) = ∇zs hs(zs)[Λszs + gs(zs , hs(zs),p)]. (A.9)

Accordingly, the dynamics on the unstable manifold can can be computed by
differentiating (A.7) with respect to time to get:

dzs

dt
= ∇zuhu(zu)

dzu

dt
. (A.10)

Given ( A.4), (A.10) becomes:

Λshu(zu) + gs(hu(zu), zu, p) = ∇zuhu(zu)[Λuzu + gu(hu(zu), zu, p)]. (A.11)

As described in Section 2, the stable and unstable manifolds can be approximated
by polynomials, and the coefficients of the terms of the same order in both sides
in (A.11) are equated. This leads to a system of (nonlinear) algebraic equations
(homological equations) to be solved for the unknown polynomial coefficients.

As described in Section 4.2 we aim at computing the stable and unstable manifolds
of the mean field model of CO oxidation given by (55) at β = 20.7. The fixed point
is (θ∗

A, θ∗
B, θ∗

C) ≈ (0.2924, 0.0294, 0.6492) and the corresponding Jacobian of the
right-hand side of (55) is

J (θ∗
A, θ∗

B, θ∗
C) =

⎡

⎣
−1.7578 −2.7698 −1.60
−2.5069 −3.5589 −2.3891
−0.360 −0.360 −0.376

⎤

⎦). (A.12)
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The eigenvalues and corresponding eigenvectors of J (θ∗
A, θ∗

B, θ∗
C) are:

λ1 ≈ −5.7148, v1 =
⎛

⎝
−0.5961
−0.7973
−0.0939

⎞

⎠, λ2,3 ≈ 0.0110 ± 0.0300i, v2,3 =
⎛

⎝
−0.7964

0.1851 ± 0.0729i

0.5600 ∓ 0.1112i

⎞

⎠.

A.1. Approximation of the stablemanifold of themean fieldmodel of co oxidation
on catalytic surfaces

For the mean field model of CO oxidation given by (55), we used a third-order
approximation of the stable manifold around (θ∗

A, θ∗
B, θ∗

C) given by:

hs(zs) ≈
[

a
(1)
1 zs + a

(1)
2 z2

s + a
(1)
3 z3

s

a
(2)
1 zs + a

(2)
2 z2

s + a
(2)
3 z3

s

]

. (A.13)

Introducing (A.13) into (A.11) and equating the terms up to third order of both sides,
we get the following set of six nonlinear equations:

0.011005a
(1)
1 + 0.030017a

(2)
1 = −5.7148a

(1)
1 (A.14)

(
2a

(1)
2 (−5.7148) − a

(1)
1 (0.8705a

(1)
1

2 + 0.43711a
(1)
1 a

(2)
1 + 2.1719a

(1)
1

+0.047872a
(2)
1

2 + 3.9445a
(2)
1 + 69.473

)

=
(
−0.088879a

(1)
1

2 + 0.0356a
(1)
1 a

(2)
1 + 4.2609a

(1)
1

+0.035831a
(2)
1

2 + 2.7342a
(2)
1 + 0.011005a

(1)
2

+0.030017a
(2)
2 + 54.386

)
(A.15)

(
4.2609a

(1)
2 + 0.011005a

(2)
1 + 2.7342a

(2)
2 + 0.030017a

(2)
3 − 0.17776a

(1)
1 a

(1)
2

+0.0356a
(1)
1 a

(2)
2 + 0.0356a

(1)
2 a

(2)
1 + 0.071662a

(2)
1 a

(2)
2

)
=

(
3a

(1)
3 (−5.7148)

−2a
(1)
2

(
0.8705a

(1)
1

2 + 0.43711a
(1)
1 a

(2)
1 + 2.1719a

(1)
1 + 0.047872a

(2)
1

2

+3.9445a
(2)
1 + 69.473

)
− a

(1)
1

(
2.1719a

(1)
2 + 3.9445a

(2)
2 + 1.741a

(1)
1 a

(1)
2

+0.43711a
(1)
1 a

(2)
2 + 0.43711a

(1)
2 a

(2)
1 + 0.095744a

(2)
1 a

(2)
2

))
(A.16)

− 5.7148a
(2)
1 =

(
0.011005a

(2)
1 − 0.030017a

(1)
1

)
(A.17)
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(
0.28781a

(1)
1

2 + 0.54843a
(1)
1 a

(2)
1 + 23.286a

(1)
1 + 0.22083a

(2)
1

2 + 17.097a
(2)
1

−0.030017a
(1)
2 + 0.011005a

(2)
2 + 332.49

)
=

(
2a

(2)
2 (−5.7148)

−a
(2)
1

(
0.8705a

(1)
1

2 + 0.43711a
(1)
1 a

(2)
1 + 2.1719a

(1)
1 + 0.047872a

(2)
1

2

+3.9445a
(2)
1 + 69.473

))
(A.18)

(
3a

(2)
3 (−5.7148) − 2a

(2)
2

(
0.8705a

(1)
1

2 + 0.43711a
(1)
1 a

(2)
1 + 2.1719a

(1)
1

+0.047872a
(2)
1

2 + 3.9445a
(2)
1 + 69.473

)
− a

(2)
1

(
2.1719a

(1)
2 + 3.9445a

(2)
2

+1.741a
(1)
1 a

(1)
2 + 0.43711a

(1)
1 a

(2)
2 + 0.43711a

(1)
2 a

(2)
1 + 0.095744a

(2)
1 a

(2)
2

))

=
(

23.286a
(1)
2 − 0.030017a

(1)
3 + 17.097a

(2)
2 +0.011005a

(2)
3 + 0.57562a

(1)
1 a

(1)
2

+0.54843a
(1)
1 a

(2)
2 + 0.54843a

(1)
2 a

(2)
1 + 0.44166a

(2)
1 a

(2)
2

)
. (A.19)

The above system of nonlinear algebraic equations is solved using Newton-
Raphson. Below, we provide the Matlab code.
a0=[0;0;0;0;0;0];

eps=0.01;

tol=1E-06;

error1=10;

kiter=0;

while error1>tol

F0= model3coefsnewtonanalytical(a0);

for i=1:6

a=a0;

a(i)=a0(i)+eps;

Fplus = model3coefsnewtonanalytical(a);

a(i)=a0(i)-eps;

Fminus = model3coefsnewtonanalytical(a);

FJac(:,i)=(Fplus-Fminus)/(2*eps);

end

dx=-FJac\F0;

a0=a0+dx;

error1=norm(dx);

kiter=kiter+1;

[kiter error1]

end

function [F] = model3coefsnewtonanalytical(a)

a1=a(1);a2=a(2);a3=a(3);a4=a(4);a5=a(5);a6=a(6);

F=[(0.011005*a1 + 0.030017*a4 + 2.0464e-12)-(a1*(9.6634e-13*a1

+ 4.4054e-13*a4 - 5.7148) - 9.5641e-8*a2);

(2*a2*(9.6634e-13*a1 + 4.4054e-13*a4 - 5.7148) -
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a1*(0.8705*a1ˆ2 + 0.43711*a1*a4 + 2.1719*a1 + 0.047872*a4ˆ2 +

3.9445*a4 -9.6634e-13*a2 - 4.4054e-13*a5 + 69.473) - 1.4346e-7

*a3)-... (- 0.088879*a1ˆ2 + 0.0356*a1*a4 + 4.2609*a1 + 0.035831

*a4ˆ2 + 2.7342*a4 + 0.011005*a2 + 0.030017*a5 +54.386);

(4.2609*a2 + 0.011005*a3 + 2.7342*a5 + 0.030017*a6 - 0.17776*
a1*a2 + 0.0356*a1*a5 + 0.0356*a2*a4 + 0.071662*a4*a5)-...

(3*a3*(9.6634e-13*a1 + 4.4054e-13*a4 - 5.7148) - 2*a2*(0.8705

*a1ˆ2 + 0.43711*a1*a4 + 2.1719*a1 + 0.047872*a4ˆ2 + 3.9445*a4

- 9.6634e-13*a2 - 4.4054e-13*a5 + 69.473) - a1*(2.1719*a2 -

9.6634e-13*a3 + 3.9445*a5 - ... 4.4054e-13*a6 + 1.741*a1*a2

+ 0.43711*a1*a5 + 0.43711*a2*a4 + 0.095744*a4*a5));

(a4*(9.6634e-13*a1 + 4.4054e-13*a4- 5.7148) - 9.5641e-8*a5)-

(0.011005*a4 - 0.030017*a1 - 1.8879e-11);

(0.28781*a1ˆ2 + 0.54843*a1*a4 + 23.286*a1 + 0.22083*a4ˆ2

+ 17.097*a4 - 0.030017*a2 + 0.011005*a5 + 332.49)-...

(2*a5*(9.6634e-13*a1 + 4.4054e-13*a4 - 5.7148) -

a4*(0.8705*a1ˆ2 + 0.43711*a1*a4 + 2.1719*a1 + 0.047872*a4ˆ2

+ 3.9445*a4 - 9.6634e-13*a2... - 4.4054e-13*a5 + 69.473) -

1.4346e-7*a6); (3*a6*(9.6634e-13*a1 + 4.4054e-13*a4 - 5.7148)

- 2*a5*(0.8705*a1ˆ2 + 0.43711*a1*a4 +

2.1719*a1 + 0.047872*a4ˆ2 + 3.9445*a4 - 9.6634e-13*a2 - 4.4054e

-13*a5 + 69.473) - a4*(2.1719*a2 - 9.6634e-13*a3 + 3.9445*a5 -

4.4054e-13*a6 + 1.741*a1*a2 + 0.43711*a1*a5 + 0.43711*a2*a4

+ 0.095744*a4*a5))-... (23.286*a2 - 0.030017*a3 + 17.097*a5

+ 0.011005*a6 + 0.57562*a1*a2 +

0.54843*a1*a5 + 0.54843*a2*a4 + 0.44166*a4*a5)];

end

A.2 Approximation of the unstable manifold of themean fieldmodel
of CO oxidation on catalytic surfaces

We approximate the unstable manifold of the mean field model (55) around
(θ∗

A, θ∗
B, θ∗

C) using the following series expansion:

hu(zu) ≈ a1,0zu1+a2,0z
2
u1+a0,1zu2+a0,2z

2
u2+a1,1zu1zu2+a1,2zu1z

2
u2+a2,1z

2
u1zu2.
(A.20)

Introducing (A.20) into (A.13) and equating the terms up to second order of both
sides we get the following set of seven nonlinear equations:

0.011005a1,0 − 0.030017a0,1 = −5.7148a1,0 (A.21)

0.030017a1,0 + 0.011005a0,1 = −5.7148a0,1 (A.22)
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(
a0,1

(
332.49a2

1,0 + 23.286a1,0 + 0.28781
)

+a1,0

(
54.386a2

1,0 + 4.2609a1,0 − 0.088879
)

+0.02201a2,0 − 0.030017a1,1

)

=
(
−69.473a2

1,0 − 2.1719a1,0 − 5.7148a2,0 − 0.8705
)

(A.23)

(
a1,0

(
54.386a2

0,1 + 2.7342a0,1 + 0.035831
)

+a0,1

(
332.49a2

0,1 + 17.097a0,1 + 0.22083
)

+ 0.02201a0,2 + 0.030017a1,1

)

=
(
−69.473a2

0,1 − 3.9445a0,1 − 5.7148a0,2 − 0.047872
)

(A.24)

(a0,1(23.286a0,1 + 17.097a1,0 + 664.98a0,1a1,0 + 0.54843)

+a1,0(4.2609a0,1 + 2.7342a1,0 + 108.77a0,1a1,0 + 0.0356)

+0.02201a1,1 + 0.060034a2,0 − 0.060034a0,2)

= (−2.1719a0,1 − 3.9445a1,0 − 5.7148a1,1 − 138.95a0,1a1,0 − 0.43711)

(A.25)

(2a0,2(23.286a0,1 + 17.097a1,0 + 664.98a0,1a1,0 + 0.54843)

+2a2,0

(
54.386a2

0,1 + 2.7342a0,1 + 0.035831
)

+a1,1(4.2609a0,1 + 2.7342a1,0 + 108.77a0,1a1,0 + 0.0356)

+a1,1

(
332.49a2

0,1 + 17.097a0,1 + 0.22083
)

+a0,1(23.286a0,2 + 17.097a1,1 + 664.98a0,1a1,1 + 664.98a0,2a1,0)

+a1,0(4.2609a0,2 + 2.7342a1,1 + 108.77a0,1a1,1 + 108.77a0,2a1,0)

+0.011005a1,2 + 0.02201 ∗ a1,2 + 0.060034a2,1)

= (−2.1719a0,2−3.9445a1,1−5.7148a1,2 − 138.95a0,1a1,1 − 138.95a0,2 ∗ a1,0)

(A.26)

(
2a0,2

(
332.49a2

1,0 + 23.286a1,0 − 1.8879e − 11 ∗ a2,0 + 0.28781
)

+a1,1(23.286a0,1 + 17.097a1,0 + 664.98a0,1a1,0 + 0.54843)

+a1,1(54.386a2
1,0 + 4.2609a1,0 − 0.088879)

+2a2,0(4.2609a0,1 + 2.7342a1,0 + 108.77a0,1a1,0 + 0.0356)

+a0,1(23.286a1,1 + 17.097a2,0 + 664.98a0,1a2,0 + 664.98a1,0a1,1)

+a1,0(4.2609 ∗ a1,1 + 2.7342a2,0 + 108.77a0,1a2,0 + 108.77a1,0a1,1)

+0.02201a2,1 + 0.011005a2,1 − 0.060034a1,2

)

= (−2.1719a1,1 − 3.9445a2,0 − 5.7148a2,1 − 138.95a0,1a2,0 − 138.95a1,0a1,1)

(A.27)
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The above system of nonlinear algebraic equations is solved with Newton-
Raphson. Below, we provide the Matlab code.

a0=[0;0;0;0;0;0;0];

eps=0.001;

tol=1E-06;

error1=10;

kiter=0;

while error1>tol

F0= model3unstablecoefsnewtonanalytical(a0);

for i=1:7

a=a0;

a(i)=a0(i)+eps;

Fplus = model3unstablecoefsnewtonanalytical(a);

a(i)=a0(i)-eps;

Fminus = model3unstablecoefsnewtonanalytical(a);

FJac(:,i)=(Fplus-Fminus)/(2*eps);

end

dx=-FJac\F0;

a0=a0+dx;

error1=norm(dx);

kiter=kiter+1;

[kiter error1]

end

function [F] = model3unstablecoefsnewtonanalytical(a)

a110=a(1);

a120=a(2);

a101=a(3);

a102=a(4);

a111=a(5);

a112=a(6);

a121=a(7);

%

F=[(a110*(2.0464e-12*a110 + 0.011005) - 1.9143e-9*a120

- 1.6761e-10*a111 - a101*(1.8879e-11*a110 + 0.030017))-...

(9.6634e-13 - 5.7148*a110);

(a110*(2.0464e-12*a101 + 0.030017) - 9.5717e-10*a111

- a101*(1.8879e-11*a101 - 0.011005) - 3.3523e-10*a102)-...

(4.4054e-13 - 5.7148*a101);

(a101*(332.49*a110ˆ2 + 23.286*a110 - 1.8879e-11*a120 + 0.28781)

- 1.6761e-10*a121+ a110*(54.386*a110ˆ2 + 4.2609*a110 +

2.0464e-12*a120 - 0.088879) + 2*a120*(2.0464e-12*a110 +

0.011005) - a111*(1.8879e-11*a110

+ 0.030017))-... (- 69.473*a110ˆ2 - 2.1719*a110 - 5.7148*a120
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- 0.8705); (a110*(54.386*a101ˆ2 + 2.7342*a101 +

2.0464e-12*a102 + 0.035831) - 9.5717e-10*a112 + a101*(332.49

*a101ˆ2 + 17.097*a101 - 1.8879e-11*a102 + 0.22083) -

2*a102*(1.8879e-11*a101 - 0.011005) + a111*(2.0464e-12*a101

+ 0.030017))-... (- 69.473*a101ˆ2 - 3.9445*a101 - 5.7148*a102

- 0.047872); (a101*(23.286*a101 + 17.097*a110 - 1.8879e-11*a111

+ 664.98*a101*a110 + 0.54843) - 1.9143e-9*a121 -

3.3523e-10*a112+ a110*(4.2609*a101 + 2.7342*a110 + 2.0464e-12

*a111 + 108.77*a101*a110 + 0.0356)+

a111*(2.0464e-12*a110 + 0.011005) -

a111*(1.8879e-11*a101 - 0.011005) +

2*a120*(2.0464e-12*a101 + 0.030017) -

2*a102*(1.8879e-11*a110 + 0.030017))-...

(- 2.1719*a101 - 3.9445*a110 - 5.7148*a111 - 138.95*a101*a110

- 0.43711); (2*a102*(23.286*a101 + 17.097*a110 - 1.8879e-11

*a111 + 664.98*a101*a110 + 0.54843) + 2*a120*(54.386*a101ˆ2 +

2.7342*a101 + 2.0464e-12*a102 + 0.035831) +

a111*(4.2609*a101 + 2.7342*a110 + 2.0464e-12*a111 + 108.77*a101

*a110 + 0.0356) + a111*(332.49*a101ˆ2 + 17.097*a101 - 1.8879e

-11*a102 + 0.22083) + a101*(23.286*a102 + 17.097*a111 -

1.8879e-11*a112 + 664.98*a101*a111 + 664.98*a102*a110)

+ a110*(4.2609*a102 +2.7342*a111 + 2.0464e-12*a112 + 108.77

*a101*a111 + 108.77*a102*a110) + a112*(2.0464e-12*a110

+ 0.011005) - 2*a112*(1.8879e-11*a101 - 0.011005) +

2*a121*(2.0464e-12*a101 + 0.030017))-...

(- 2.1719*a102 - 3.9445*a111 - 5.7148*a112 - 138.95*a101*a111

- 138.95*a102*a110); (2*a102*(332.49*a110ˆ2 + 23.286*a110

- 1.8879e-11*a120 + 0.28781) + a111*(23.286*a101 + 17.097*a110

- 1.8879e-11*a111 + 664.98*a101*a110 +

0.54843) + a111*(54.386*a110ˆ2 + 4.2609*a110 + 2.0464e-12*a120

- 0.088879) + 2*a120*(4.2609*a101 + 2.7342*a110 + 2.0464e-12

*a111 + 108.77*a101*a110 + 0.0356)+

a101*(23.286*a111 + 17.097*a120 -

1.8879e-11*a121 + 664.98*a101*a120 +

664.98*a110*a111) + a110*(4.2609*a111 + 2.7342*a120 + 2.0464e

-12*a121 + 108.77*a101*a120 + 108.77*a110*a111) +

2*a121*(2.0464e-12*a110 + 0.011005) -

a121*(1.8879e-11*a101 - 0.011005) - 2*a112*(1.8879e-11*a110

+ 0.030017))-... (- 2.1719*a111 - 3.9445*a120 - 5.7148*a121

- 138.95*a101*a120 - 138.95*a110*a111)];

end

the matlab code that implements the identification of the stable manifold of the toy discrete time model
is available at: https://github.com/csiettos/equation-free-stable-unstable-manifolds
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19. Haro, À., Mondelo, J.M.: Seminumerical Algorithms for Computing Invariant Manifolds of
Vector Fields at Fixed Points, pp. 29–73. Springer International Publishing, Cham (2016).
https://doi.org/10.1007/978-3-319-29662-3-2

20. Johnson, M.E., Jolly, M.S., Kevrekidis, I.G.: Two-dimensional invariant manifolds and global bifurca-
tions: some approximation and visualization studies. Numerical Algorithms 14(1/3), 125–140 (1997).
https://doi.org/10.1023/a:1019104828180

21. Kazantzis, N.: On the existence and uniqueness of locally analytic invertible solutions of a
system of nonlinear functional equations. J. Comput. Appl. Math. 146(2), 301–308 (2002).
https://doi.org/10.1016/s0377-0427(02)00362-x

22. Keller, H.B.: Numerical solution of bifurcation and nonlinear eigenvalue problems. Appl. Bifurcation
Theory 359–384 (1977)

23. Kelley, C.T.: Iterative methods for linear and nonlinear equations. Society for Industrial and Applied
Mathematics. https://doi.org/10.1137/1.9781611970944 (1995)

24. Kevrekidis, I.G., Gear, C.W., Hummer, G.: Equation-free: The computer-aided analysis of complex
multiscale systems. AIChE J 50(7), 1346–1355 (2004). https://doi.org/10.1002/aic.10106

25. Kevrekidis, I.G., Gear, C.W., Hyman, J.M., Kevrekidis, P.G., Runborg, O., Theodoropoulos, C.:
Equation-free, coarse-grained multiscale computation: Enabling mocroscopic simulators to per-
form system-level analysis. Commun. Math. Sci. 1(4), 715–762 (2003). https://doi.org/10.4310/cms.
2003.v1.n4.a5

26. Krauskopf, B., Osinga, H.: Two-dimensional global manifolds of vector fields. Chaos: An Interdisci-
plinary J Nonlinear Sci 9(3), 768–774 (1999). https://doi.org/10.1063/1.166450

27. Krauskopf, B., Osinga, H.M., Doedel, E.J., Henderson, M.E., Guckenheimer, J., Vladimirsky, A.,
Dellnitz, M., Junge, O.: A survey of methods for computing (un)stable manifolds of vector fields. Int
J Bifurc Chaos 15(03), 763–791 (2005). https://doi.org/10.1142/s0218127405012533

28. Kristiansen, K.U., Brøns, M., Starke, J.: An iterative method for the approximation of fibers in slow-
fast systems. SIAM J. Appl. Dyn. Syst. 13(2), 861–900 (2014). https://doi.org/10.1137/120889666

29. Lam, S.H., Goussis, D.A.: The CSP method for simplifying kinetics. Int. J. Chem. Kinetics 26(4),
461–486 (1994). https://doi.org/10.1002/kin.550260408

30. Makeev, A.G., Kevrekidis, I.G.: Coarse-graining the computations of surface reactions: Nonlinear
dynamics from atomistic simulators. Surface Sci. 603(10-12), 1696–1705 (2009)

31. Makeev, A.G., Maroudas, D., Kevrekidis, I.G.: “coarse” stability and bifurcation analysis using
stochastic simulators: Kinetic monte carlo examples. J. Chem. Phys. 116(23), 10083–10091 (2002).
https://doi.org/10.1063/1.1476929

32. Marschler, C., Sieber, J., Berkemer, R., Kawamoto, A., Starke, J.: Implicit methods for equation-free
analysis: Convergence results and analysis of emergent waves in microscopic traffic models. SIAM J.
Appl. Dyn. Syst. 13(3), 1202–1238 (2014)

33. Ott, E., Grebogi, C., Yorke, J.A.: Controlling chaos. Phys. Rev. Lett. 64(11), 1196–1199 (1990).
https://doi.org/10.1103/physrevlett.64.1196

34. Quinn, C., Sieber, J., von der Heydt, A.S.: Effects of periodic forcing on a paleoclimate delay model.
SIAM J. Appl. Dyn. Syst. 18(2), 1060–1077 (2019)

35. Rajendran, K., Tsoumanis, A.C., Siettos, C.I., Laing, C.R., Kevrekidis, I.G.: Modeling heterogeneity
in networks using polynomial chaos. Int. J. Multiscale Comput. Eng. 14(3) (2016)

36. Reppas, A.I., Decker, Y.D., Siettos, C.I.: On the efficiency of the equation-free closure of statistical
moments: dynamical properties of a stochastic epidemic model on erdös-rényi networks. J. Stat.Mech.
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