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Abstract
This article considers the numerical treatment of piecewise-smooth dynamical sys-
tems. Classical solutions as well as sliding modes up to codimension-2 are treated.
An algorithm is presented that, in the case of non-uniqueness, selects a solution that
is the formal limit solution of a regularized problem. The numerical solution of a reg-
ularized differential equation, which creates stiffness and often also high oscillations,
is avoided.

Keywords Piecewise-smooth systems · Filippov solution · Codimension-2
manifold · Regularization · Hidden dynamics · Scaling invariance
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1 Introduction

Piecewise-smooth dynamical systems arise in many applications and they are an
active field of recent research. Historically, one of the first examples is Coulomb fric-
tion in mechanical systems, where the force of friction is proportional to the sign
of velocity (see [5]). Many interesting applications can be found in the monograph
[6]: relay control systems, where the control variable admits jump discontinu-
ities; converter circuits, where switching devices lead to a non-smooth dynamics;
models in the social and financial sciences, where continuous change can trigger
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discrete actions. Discontinuity points are also created by the activation/deactivation
of inequality constraints in mixed constrained optimization problems. See [24] for a
particular application arising in the modelling of atmospheric particles.

For a mathematical formulation of the problem we consider discontinuity hyper-
surfaces

Σj = {y ∈ R
n | αj (y) = 0}, j = 1, . . . , d, (1.1)

where α : Rn → R
d (with d < n) is assumed to be sufficiently differentiable and

such that these hyper-surfaces intersect transversally. We denote the discontinuity set
by Σ = ⋃d

j=1 Σj . The hyper-surfaces Σj divide the phase space R
d \ Σ into 2d

open regions

Rk = {
y ∈ R

n
∣
∣ kjαj (y) > 0 for j = 1, . . . , d

}
, (1.2)

where k = (k1, . . . , kd) is a multi-index with kj ∈ {−1, 1}. The discontinuous
dynamical system is then given by

ẏ = f k(y) for y ∈ Rk. (1.3)

We assume that the functions f k(y) are defined in a neighbourhood of the clo-
sure of Rk and that they are sufficiently differentiable. In the discontinuity set Σ

the right-hand side of (1.3) is considered to be multi-valued with values from the
neighbouring domains. We are thus concerned with a differential inclusion and we
adopt a restriction of the approach by Filippov [13, 14] for the concept of solutions.
Besides classical solutions, which cross the discontinuity surfaces, there are also
sliding modes evolving in the discontinuity set Σ .

Closely connected to a discontinuous dynamical system is a regularization, where
the jump discontinuities are replaced in an ε-neighbourhood by a continuous tran-
sition. In this way the differential inclusion is transferred to an ordinary differential
equation. It is natural to consider regularizations because, as mentioned in [6, p. 1],
“. . . there is strictly speaking no such thing as a piecewise-smooth dynamical system
and that in reality all physical systems are smooth”. This is precisely what hap-
pens in the analysis of gene regulatory networks [12, 26], where steep sigmoid-type
nonlinearities are approximated by step functions.

Among numerically sound approaches for approximating the solution of (1.3) let
us mention the following two:

– Algorithm based on event detection. One locates accurately the time instants
when the solution enters a new discontinuity surface (or satisfies a criterion for
exiting a surface), one stops the integration and investigates the possible solu-
tions leaving the actual point, and then one continues the integration with a new
vector field. The disadvantage of this approach is that at the actual point the dis-
continuous problem can have more than one solution (sometimes even infinitely
many), and it may be laborious to follow all of them.

– Regularization. One solves numerically the regularized ordinary differential
equation, which provides a unique approximation. Here, the difficulty is the
choice of the regularization parameter ε > 0. To obtain a good approximation
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of the solution of (1.3) a very small ε is required. This implies that the regular-
ized differential equation is stiff and sometimes highly oscillatory, so that the
numerical integration may become expensive.

Early work on solving piecewise-smooth dynamical systems that is based on detect-
ing, locating, and passing the discontinuity is published in [4, 15, 27]. For a survey we
refer to [10]. There are some recent publications (including Matlab codes for solving
piecewise-smooth dynamical systems), like those of [29] and [3], that are reliable and
carefully compute the switching points between classical and Filippov solutions. All
these publications are restricted to classical solutions and to sliding modes in codi-
mension 1. Our main interest is the situation, where codimension-2 sliding modes
can occur.

In the present work we propose an algorithm that combines the advantages of both
approaches. With event detection we solve the discontinuous problem (without any
ε) but, instead of following all solutions in the case of non-uniqueness, we propose to
select the solution which can formally be interpreted as the limit solution (for ε → 0)
of a regularized differential equation. This selection is partly done on the basis of the
classification in [17].

In Section 2 we recall concepts needed for the understanding of the present arti-
cle (relation between sliding modes and differential-algebraic equations of index 2,
regularization, hidden dynamics, and scaling invariance). The structure of the algo-
rithm for solving the discontinuous system (1.3) is given in Section 3. The main part
(Section 4) presents in an algorithmic way the switching between different kinds
of solutions at the discontinuity hyper-surfaces. This part is independent of the reg-
ularization, in contrast to Section 5, where a justification of the algorithm (based
on the hidden dynamics) is given. The article finishes with some comments on the
implementation (Section 6) and a conclusion (Section 7).

2 Solution concept and regularization

The definition of Filippov solutions for a discontinuous dynamical system (1.3)
is ambiguous, because in the intersection of discontinuity hyper-surfaces a convex
combination of the adjacent vector fields has too many degrees of freedom. We
restrict our study to special convex combinations having m parameters in the inter-
section of m hyper-surfaces Σj . Such convex combinations (for m = 2) are called
“blending” in [1] and “bilinear interpolation” in [7, 8], see also [9, 25]. For arbi-
trary m they are called “convex canopy” in [20]. We consider regularizations that
are closely connected to such convex combinations, and we call them “multi-linear
interpolation”.

2.1 Solution concept— classical solutions and slidingmodes

For a fixed multi-index k = (k1, . . . , kd) with kj ∈ {−1, 1} the equation (1.3) is
a regular ordinary differential equation on the open domain Rk, and the standard
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theory on existence, uniqueness, and continuous dependence on parameters and
initial values applies. In this case the solution of (1.3) is called classical.

We next extend the concept of solution to the discontinuity set Σ . For an index
vector k = (k1, . . . , kd) with kj ∈ {−1, 0, 1} (note that now kj can also be zero) we
consider the set

Rk =
{
y ∈ R

n
∣
∣αj (y) = 0 if kj = 0, kjαj (y) > 0 if kj �= 0

}
, (2.1)

and if at least one component kj = 0, then Rk ⊂ ⋂
{j |kj =0} Σj ⊂ Σ . We assume

that α(y) is such that Rk is a submanifold of Rd of codimension m, where m counts
the number of elements kj being equal to zero. For k = (k1, . . . , kd) we define
Ik = {j | kj = 0}, and we let

N k =
{
� ∈ {−1, 1}d

∣
∣
∣ �j ∈ {−1, 1} if kj = 0, �j = kj if kj �= 0

}

which collects the index vectors � such that R� touches Rk. With this notation we
consider the differential-algebraic equation (DAE)

ẏ =
∑

�∈N k

( ∏

j∈Ik

(1 + �jλj )

2

)

f �(y)

0 = αj (y), j ∈ Ik (2.2)

with algebraic variables λj , j ∈ Ik. In the following we denote the right-hand side
of the differential equation in (2.2) by f k(y, λk), where λk is the vector that collects
λj , j ∈ Ik. Differentiating the algebraic constraint of (2.2) with respect to time
yields

0 = α′
j (y)f k(y, λk), j ∈ Ik, (2.3)

which represents m nonlinear equations in m unknowns λj , j ∈ Ik. We assume that
the Implicit Function Theorem can be applied to guarantee that locally λk can be
expressed as function of y. This implies that the DAE has index 2. The special case
Ik = ∅ includes classical solutions of (1.3), because in this case N k = {k} consists
of only one element and the empty product in (2.2) is interpreted as 1.

For λj ∈ [−1, 1] the vector field in (2.2) is a convex combination of the vector
fields f �(y) (with � ∈ N k) which are defined on the open domains touching Rk.
The solution of (2.2) is therefore a Filippov solution.

Definition 2.1 Consider an index vector k with Ik �= ∅ and let m = |Ik| be the
cardinality of Ik. Then, a solution (y, λk) of the differential-algebraic equation (2.2)
is called a codimension-m sliding mode in the set Rk as long as λj ∈ [−1, 1] for
j ∈ Ik.

For a consistent initial value of (2.2), i.e. y(0) ∈ Rk and λk(0) given by (2.3),
any technique for the numerical solution of DAE’s of index 2 can be applied. Such
techniques are explained in detail in the monographs [2, 19].

Definition 2.2 A piecewise-smooth, continuous function y : [0, T ] → R
n is called a

solution of the discontinuous dynamical system (1.3), if there exists a finite partition
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0 = t0 < t1 < t2 < . . . < tN = T , such that the following is true: for every
subinterval [ti , ti+1] there exists ki ∈ {−1, 0, 1}d with mi = |Iki | such that the
restriction of y(t) to this interval is a codimension-mi sliding mode in the set Rki (a
classical solution if Iki = ∅).

2.2 Regularization

We are interested in solutions of (1.3) in the sense of Definition 2.2 that can be
considered as the formal limit of a regularized differential equation, where jump
discontinuities in the vector field are smoothed out. For this we consider a transition
function π(u), which is assumed to be continuous, piecewise-smooth, and satisfies
π(u) = −1 for u ≤ 1 and π(u) = 1 for u ≥ 1. We also assume that π ′(u) > 0 for
u ∈ (−1, 1), and that π(u) is centrally symmetric. A typical example is π(u) = u

for |u| ≤ 1 (see Fig. 1).
For a discontinuous dynamical system (1.3) we consider the regularization

ẏ =
∑

�∈{−1,1}d

( d∏

j=1

(1 + �jπ(uj ))

2

)

f �(y) (2.4)

where uj = αj (y)/ε. We denote the right-hand side of this regularized differen-
tial equation by f

(
y, π(u1), . . . , π(ud)

)
. The complete phase space (including the

discontinuity set Σ) is the union of 3d sets

Rk
ε =

{
y ∈ R

n
∣
∣ |αj (y)| ≤ ε if kj = 0, kjαj (y) > ε if kj �= 0

}
, (2.5)

where k = (k1, . . . , kd) with kj ∈ {−1, 0, 1}. For the case that all kj �= 0, we have
thatRk

ε ⊂ Rk, and � = k is the only vector for which the product in (2.4) is non-zero.
Therefore, on the set Rk

ε the regularization coincides with the differential equation
ẏ = f k(y) of the un-regularized problem.

For k with Ik �= ∅ the set Rk
ε approximates Rk. On the set Rk

ε only the vectors
� ∈ N k give rise to a non-vanishing product in (2.4). Since �jπ(uj ) = kjπ(uj ) = 1
for � ∈ N k and j �∈ Ik, the regularized differential (2.4) becomes

ẏ =
∑

�∈N k

( ∏

j∈Ik

(1 + �jπ(uj ))

2

)

f �(y) for y ∈ Rk
ε , (2.6)

Fig. 1 Transition function

−1 1

−1

1
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which is in complete analogy to (2.2). If m denotes the cardinality of Ik, then for
m = 1 the sum in (2.6) consists of two terms (linear interpolation), for m = 2 it
consists of four terms (bilinear interpolation), and in general it consists of 2m terms.

2.3 Hidden dynamics

A justification of our algorithm is based on the study of the solution of the regularized
differential equation, when it is close to an intersection of discontinuity surfaces. In
the regionRk

ε it follows from (2.6) that ui = αi(y)/ε satisfies

ε u̇i =
∑

�∈N k

( ∏

j∈Ik

(1 + �jπ(uj ))

2

)

α′
i (y)f �(y), i ∈ Ik, (2.7)

which is a singularly perturbed differential equation. Close to a point y∗ ∈ Rk of
the discontinuity manifold it can be studied by separating a transient part from the
smooth solution. For this we introduce the fast time τ = t/ε, we denote the derivative
with respect to τ by a prime, and we substitute the constant vector y∗ for y. This
yields

u′
i =

∑

�∈N k

( ∏

j∈Ik

(1 + �jπ(uj ))

2

)

α′
i (y

∗)f �(y∗), i ∈ Ik, (2.8)

which is a regular dynamical system for ui, i ∈ Ik. It is called hidden dynamics
(a term coined in [21]). We expect that this system credibly describes the transient
behaviour of the solution of the regularized differential equation.1

Special case of two intersecting surfaces We assume that only two components of
k are zero, say, k1 = k2 = 0. We then have Ik = {1, 2} and N k consists of four
elements. The differential (2.8) of the hidden dynamics is then given by, for i = 1, 2,

u′
i =

1

4

((
1 + π(u1)

)(
1 + π(u2)

)
f
1,1
i + (

1 + π(u1)
)(
1 − π(u2)

)
f
1,−1
i

+(
1−π(u1)

)(
1 + π(u2)

)
f

−1,1
i +(

1−π(u1)
)(
1−π(u2)

)
f

−1,−1
i

)
, (2.9)

where in the notation f
�1,�2
i = α′

i (y
∗)f �(y∗) we have omitted the non relevant

indices of �. It is of interest for (u1, u2) in the unit square [−1, 1] × [−1, 1]. We also
denote de right-hand side of (2.9) by gi

(
π(u1), π(u2)

)
.

This 2-dimensional system has been discussed in detail in [17, Section 5]: how ini-
tial values are determined by the incoming solution, how the behaviour of the solution
for τ → ∞ determines which kind of solution (classical or sliding) will be followed
by the regularized equation, how a geometric study of the flow is possible, etc. We
note that the right-hand side of (2.9) is a quadratic polynomial in π(u1), π(u2), which
vanishes on a hyperbola in the

(
π(u1), π(u2)

)
-space. Throughout the present work

we consider the transition function of Fig. 1.

1In some situations this can be rigorously justified by the study of asymptotic expansions in powers of ε

together with an estimation of the remainder. However, already for the case of two intersecting surfaces,
this is a challenging problem and not much is known in general.
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The study of the hidden dynamics is an essential tool for designing the algorithm
proposed in the present paper. A whole monograph [22] is devoted to this topic. Let
us also mention the work [23], which concentrates on the 2-dimensional system (2.9).
On the basis of singular perturbation theory it discusses stability of sliding, and it
shows that there exists at most one stable sliding vector field.

2.4 Scaling invariance

A substitution αj (y) → κjαj (y) with κj ≥ 1 neither changes the discontinuous
hyper-surfaces and the open regionsRk nor the solution of the discontinuous dynam-
ical system (1.3). However, it changes the regularization (2.4) (uj = αj (y)/ε is
replaced by κjuj ) and therefore also the solution of the regularized differential equa-
tion. Consequently, also in the hidden dynamics the expression π(uj ) is replaced by
π(κjuj ).

One of our aims is to design an algorithm for the numerical solution of (1.3) that
is invariant with respect to such a scaling.

3 Solving piecewise-smooth dynamical systems

Typically, a numerical algorithm for solving piecewise-smooth dynamical sys-
tems (1.3) is composed of three parts:

- Computation. Use any code that permits to solve the index-2 differential-
algebraic equation (2.2) starting at consistent initial values. Techniques and codes
are well documented in text books like [19] and [2]. In the beginning one is usu-
ally concerned with a classical solution, for which Ik = ∅, so that all y ∈ Rk are
consistent. At a transition point ti the initial value is determined by continuity.

- Event location. The code has to be equipped with an event location algorithm
that stops the integration either (i) when the solution enters a new discontinuity
surface or (ii) when one of the Lagrange multipliers λj leaves the interval [−1, 1]
or (iii) when the solution λk of the algebraic system (2.3) ceases to exist in the
unit cube or becomes unstable. Since all λj are functions of y, each of the condi-
tions gives raise to an algebraic relation g

(
y(t)

) = 0. Event detection strategies
are made for finding such points. This defines a new grid point ti . Algorithms
for event location are discussed in [28] (based on the BDF code DASSL) and in
[16, 24] (based on the implicit Runge–Kutta code RADAU5).

- Switching. As soon as a new transition point ti is detected, one can check all
possible multi-indices k which, for the present solution value, give raise to a
meaningful solution in the sense of Definition 2.1. In the case of non-uniqueness
one can follow all possible solutions (which may be laborious and inefficient) or
one can select one of them — but which one? The present article is devoted to
a theoretically founded switching criterion based partially on the classification
of [17]. It provides a solution that can be considered as the formal limit of a
regularized problem.
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The present work focuses on the switching algorithm. It is neither our intention to
give details on the numerical computation of differential-algebraic equations of index
2 nor to discuss techniques for event location.

4 Switching algorithm

The idea is to select a solution that can be considered as the limit solution of a reg-
ularized differential equation. For the case that a solution enters a codimension-2
discontinuity the algorithm is based on the classification of [17]. The treatment of the
more challenging situation of exiting a codimension-2 discontinuity is new. Depend-
ing on whether, on the interval [ti−1, ti], the solution is a classical solution or a sliding
mode, the switching algorithm at ti is discussed in the following subsections:

for a classical solution in Section 4.1;
for a codimension-1 sliding mode in Section 4.2;
for a codimension-2 sliding mode in Section 4.3.
for an accumulation of grid points and spiraling solutions in Section 4.4.

4.1 Classical solution

We consider a classical solution of the differential equation (1.3) for t ≥ ti−1 until
it enters a discontinuity surface at time ti . Without loss of generality we assume that
the discontinuity surface is Σ1 = {y | α1(y) = 0}. Removing irrelevant indices from
the vector k (for notational convenience), we assume the classical solution to be in
R−1 = {y | α1(y) < 0} with vector field f −1(y). On the opposite side of Σ1 the
vector field is f 1(y). We assume that the solution enters transversally the surface Σ1,
so that f −1

1 := α′
1(y)f −1(y) > 0 at the entry point. We then distinguish the cases,

where f 1
1 := α′

1(y)f 1(y) is positive or negative (see Fig. 2). We do not consider the
non generic situation, where this expression vanishes.

If f 1
1 > 0, the only possible solution is classical in the regionR1. If f 1

1 < 0, there
is no classical solution leaving the solution point in Σ1. The solution in R0 = Σ1 is
defined by the DAE (2.2), i.e.

ẏ = (1 + λ)

2
f 1(y) + (1 − λ)

2
f −1(y), α1(y) = 0. (4.1)

Differentiating the constraint with respect to time yields

α′
1(y)

( (1 + λ)

2
f 1(y) + (1 − λ)

2
f −1(y)

)
= 0,

which determines λ as function of y, namely,

λ = α′
1(y)f −1(y) + α′

1(y)f 1(y)

α′
1(y)f −1(y) − α′

1(y)f 1(y)
. (4.2)
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Fig. 2 Flowchart of possible
switchings from a classical
solution

The initial value for (4.1) is defined by continuity for y, and for λ it satisfies −1 <

λ < 1, because f −1
1 > 0 and f 1

1 < 0.

4.2 Codimension-1 slidingmode

Suppose that we are concerned with a codimension-1 sliding mode along Σ1 for
t ≥ ti−1. The type of solution can change at some ti > ti−1, if either it exits the
discontinuity surface Σ1 or it enters an additional discontinuity surface, say Σ2. Both
situations are discussed in the next two subsections.

4.2.1 ExitingΣ1 from a codimension-1 sliding

During the codimension-1 sliding on Σ1 we have α′
1(y)f −1(y) > 0 and also

α′
1(y)f 1(y) < 0. This implies that λ from (4.2) satisfies λ ∈ (−1, 1). The solution

exits this sliding, if λ leaves the interval [−1, 1]. This can happen at λ = −1 (for
which α′

1(y)f −1(y) changes sign from positive to negative) or at λ = 1 (for which
α′
1(y)f 1(y) changes sign from negative to positive). The solution then continues as

classical solution inR−1 orR1, respectively. The switching is shown in Fig. 3, where
we abbreviate the expressions α′

1(y)f −1(y) and α′
1(y)f 1(y) at the exit point y by

f −1
1 and f 1

1 .

Fig. 3 Flowchart of switchings
from a codimension-1 sliding
mode exiting Σ1

1319Numerical Algorithms (2022) 89:1311–1334



4.2.2 Entering the intersectionΣ1 ∩ Σ2

As before we disregard irrelevant indices from the index vector k, and we keep
only those corresponding to Σ1 and Σ2. We consider a codimension-1 sliding along
R0,−1 = {y | α1(y) = 0, α2(y) < 0}, and we generically assume that

f
−1,−1
1 > 0, f

1,−1
1 < 0, f

−1,−1
2 > 0,

f
−1,−1
1 f

1,−1
2 − f

1,−1
1 f

−1,−1
2 > 0, (4.3)

where we use the notation f k
j = α′

j (y)f k(y) for j ∈ {1, 2} and k = (k1, k2) (all
vector fields are evaluated at the entry point). The first two inequalities of (4.3) mean
that both vector fields, f −1,−1 and f 1,−1, point towards R0,−1. To have a sliding
motion along R0,−1 in direction of the intersection Σ1 ∩ Σ2 at least one among
f

−1,−1
2 and f

1,−1
2 has to be positive. Without loss of generality we assume f

−1,−1
2 >

0. Figure 4 illustrates the situations f
1,−1
2 > 0 (left picture) and f

1,−1
2 < 0 (right

picture). In the second case the last inequality of (4.3) guarantees that the sliding
vector field points upwards.

The switching algorithm of Fig. 5 is based on [17, Theorem 6.1], that of Fig. 6,
which completes Fig. 5, is based on [17, Theorem 6.2] (see Section 5.1 for more
details). The algorithm of Fig. 6, is valid under the additional condition

f
1,−1
2 < 0, (4.4)

which can be assumed without loss of generality, because the case f
1,−1
2 > 0 can be

reduced to that of Fig. 5 by symmetry considerations.
The algorithm presented in the two figures needs some more explanations. In addi-

tion to classical and codimension-1 solutions we have to consider codimension-2
solutions. They are defined by

ẏ = 1

4

(
(1 + λ1)(1 + λ2) f 1,1(y) + (1 + λ1)(1 − λ2) f 1,−1(y)

+(1 − λ1)(1 + λ2) f −1,1(y) + (1 − λ1)(1 − λ2) f −1,−1(y)
)

(4.5)

subject to the algebraic constraints α1(y) = 0 and α2(y) = 0. The right-hand side
of (4.5) is denoted by f 0,0(y, λ1, λ2). Differentiating the algebraic relations with

Fig. 4 Entering the codimension-2 manifold
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Fig. 5 Flowchart of switchings from a codimension-1 entering Σ1 ∩ Σ2. In the case of multiple solutions
of (4.6), λ2 is the value that is closest to −1. Here, and in the following, the term “Filippov solution”
means a solution according to Definition 2.2

Fig. 6 Flowchart of switchings from a codimension-1 enteringΣ1∩Σ2 (cont.). Condition (4.4) is assumed
in addition to the assumption (4.3) of the flowchart of Fig. 5
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respect to time yields (when multiplied by 4)

α′
j (y)

(
(1 + λ1)(1 + λ2) f 1,1(y) + (1 + λ1)(1 − λ2) f 1,−1(y)

+(1 − λ1)(1+λ2) f −1,1(y)+(1−λ1)(1−λ2) f −1,−1(y)
)
=0 (4.6)

for j ∈ {1, 2}. We also use the notation gj (y, λ1, λ2) = 0 for this equation. For the
existence of a locally unique solution (λ1, λ2) of the system (4.6), we assume that
the Implicit Function Theorem can be applied, which means that the 2 × 2 matrix

G(y, λ1, λ2) =
(
α′

j (y)
∂

∂λp

f 0,0(y, λ1, λ2)
)2

j,p=1
(4.7)

is invertible. For a fixed value of y the equation (4.6) represents a hyperbola with
vertical and horizontal asymptotes in the (λ1, λ2)-space. We are only interested in
values (λ1, λ2) lying in the square [−1, 1] × [−1, 1] (which we sometimes call unit
square).

When, in the algorithms of Figs. 5 and 6, we write that a solution (λ1, λ2) of
(4.6) exists (or not) in the unit square, we mean only solutions on the branch of
the first hyperbola (j = 1) that crosses the bottom side of the square. The expres-
sion f

1,0
2 (λ2), appearing in the switching algorithm, is defined by f

1,0
2 (λ2) =

α′
2(y)f 1,0(y, λ2), and f 1,0(y, λ2) is the vector field of (2.2) for k = (1, 0).

Remark 4.1 In the situation, where the algorithm of Figs. 5 and 6 proposes a co-
dimension-2 sliding, the discussion of [17] shows that in the beginning of the sliding
the solution (λ1, λ2) of (4.6) is such that the determinant of G(y, λ1, λ2) is positive
and at least one of its diagonal elements is negative. This is important for the strategy
in Section 4.3.3.

4.3 Codimension-2 slidingmode

Suppose that there is a codimension-2 sliding mode along Σ1 ∩ Σ2 for t ≥ ti−1. It is
characterized by the existence of

(
λ1(t), λ2(t)

) ∈ (−1, 1)2 satisfying the polynomial
system (4.6). The type of solution can change at some ti > ti−1, if either

(a) the pair
(
λ1(t), λ2(t)

)
leaves the unit square (−1, 1)2,

(b) the solution
(
λ1(t), λ2(t)

)
of (4.6) becomes double and ceases to exist,

(c) the matrix (4.7) changes stability (see Remark 4.1),
(d) the sliding mode enters an additional discontinuity surface, say Σ3.

The algorithms for the situations (a), (b), and (c) are presented in the following sub-
sections, their justification is discussed in Section 5. In this paper we do not consider
the situation (d), because we are not aware of results on the limit solution of the
regularized differential equation close to a codimension-3 discontinuity surface.

4.3.1 ExitingΣ1 ∩ Σ2 from a codimension-2 sliding— type (a)

We assume that at t = ti the pair
(
λ1(t), λ2(t)

)
of the system (4.6) leaves the

unit square at one side (generically, we can exclude the corners). Without loss of
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generality we can assume that

λ1(ti) = 1, λ̇1(ti) > 0, −1 < λ2(ti) < 1 (4.8)

hold. The proposed switching, based on [18, Theorems 2 and 3], is shown in Fig. 7.
All vector fields are evaluated at the exit point. According to the decision tree the
solution of the discontinuous problem either continues, beyond the exit point, as a
codimension-1 sliding mode or as a classical solution.

Note that all situations of Fig. 7 admit further solutions (classical or codimension-
1). The proposed algorithm chooses the solution that can be realized as the limit of a
regularized differential equation.

4.3.2 ExitingΣ1 ∩ Σ2 from a codimension-2 sliding— type (b)

We assume that the two (real) solutions of the system (4.6) coalesce in the unit square
and disappear at t = ti . This implies that at this time instant the two hyperbolas in the
(λ1, λ2)-space are tangential at

(
λ1(ti), λ2(ti)

)
. Without loss of generality we assume

that the hyperbolas have positive slope which, expressed in terms of the vector fields,
is (see Lemma 6.3 of [17])

f
−1,1
1 f

1,−1
1 − f

1,1
1 f

−1,−1
1 < 0, f

−1,1
2 f

1,−1
2 − f

1,1
2 f

−1,−1
2 < 0 (4.9)

(otherwise we reflect the picture at the vertical axis, i.e. change the sign of λ1).
Moreover, we assume that

the hyperbola corresponding to α2(y) lies above that of α1(y) (4.10)

(otherwise we exchange α1 and α2). Denoting the left-hand expression in (4.6) by
gj (λ1, λ2) and the derivative with respect to λi by ∂i , we distinguish cases accord-
ing to the signs of ∂igj . Figure 8 gives a complete characterization of all possible
situations (we shall explain later in Section 5.2 that the apparantly missing situation
∂2g1 > 0, ∂1g2 < 0 cannot arise at a vanishing stationary point). As in previous

Fig. 7 Flowchart for exiting a codimension-2 sliding of type (a); c.f., case (A) of [18]
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Fig. 8 Flowchart for exiting a codimension-2 sliding of type (b); for brevity we use the notation f ++
i and

f −−
i for f

1,1
i and f

−1,−1
i , respectively. All functions are evaluated at the collapsing stationary point

figures the boxes in red indicate that more than one Filippov solutions are possible.
There is only one situation (blue box) with a unique solution. In the case of non-
uniqueness our algorithm selects the solution which can be interpreted as the formal
limit of the solution of a regularized problem.

4.3.3 ExitingΣ1 ∩ Σ2 from a codimension-2 sliding— type (c)

A stationary point of the hidden dynamics (2.9) (corresponding to a solution (λ1, λ2)

of (4.6)) is asymptotically stable if both eigenvalues of (4.7) have negative real part.
This is equivalent to

detG(y, λ1, λ2) > 0 and traceG(y, λ1, λ2) < 0. (4.11)

As explained in [17, Section 8] the trace of the matrix G is not scaling invariant. It
is shown that, if at least one of the diagonal elements of G is negative, there exists
a scaling that makes the stationary point asymptotically stable. The condition for a
stationary point to be asymptotically stable after a suitable scaling of the constraints
therefore becomes

detG(y, λ1, λ2) > 0 and min
i=1,2

Gi,i(y, λ1, λ2) < 0, (4.12)

where Gi,j stands for the elements of the matrix G of (4.7); see also Remark 4.1.
Our (scaling invariant) strategy is to exit a codimension-2 sliding, if one of the two
conditions in (4.12) becomes violated.

(1) Assume first that at time t = ti we have detG(y∗, λ∗
1, λ

∗
2) = 0 (i.e.

detG(y, λ1, λ2) changes from positive to negative), while the second condition
of (4.12) still holds. Due to the special structure of (4.6) both of its solutions
coalesce at t = ti and, while detG(y, λ1, λ2) changes from positive to nega-
tive for the actual solution, it changes from negative to positive for the other

1324 Numerical Algorithms (2022) 89:1311–1334



solution. In this situation, we propose to continue with a codimension-2 slid-
ing, and we take for (λ1, λ2) the solution of (4.6) for which the determinant of
G(y, λ1, λ2) is positive.

(2) Assume next that the second condition of (4.12) is violated, but we still have
detG(y, λ1, λ2) > 0. Generically, one among the diagonal elements of G is
then positive and the other equals zero. Without loss of generality we assume
that at the transition point we haveG1,1(y

∗, λ∗
1, λ

∗
2) = 0 andG2,2(y

∗, λ∗
1, λ

∗
2) >

0. The condition G1,1(y
∗, λ∗

1, λ
∗
2) = 0 is only possible, if the hyperbola

g1(y
∗, λ1, λ2) = 0 degenerates (i.e. it is the union of the horizontal asymptote

λ2 = λ∗
2 and of the vertical asymptote). By changing the sign of α1(y) and/or

of α2(y) we can assume that

f
−1,−1
1 < 0, f

−1,1
1 > 0, G1,2(y

∗, λ∗
1, λ

∗
2) > 0. (4.13)

This means that for −1 ≤ λ1 ≤ λ∗
1 the function g1(y

∗, λ1, λ2) takes positive values
above the horizontal asymptote and has the vertical asymptote outside the interval
[−1, λ∗

1]. We now distinguish between two situations according to the sign of f
1,1
1 .

For f
1,1
1 > 0 the vertical asymptote of g1(y

∗, λ1, λ2) = 0 is outside the unit square,

and for f
1,1
1 < 0 it lies between λ∗

1 and +1. The type of solutions beyond the switch-

ing point ti are shown in Fig. 9 for the case f
1,1
1 > 0, and in Fig. 10 for the case

f
1,1
1 < 0. In this figure we use the abbreviation f

a,1
2 = g2(λ

a
1, 1), where λa

1 denotes
the abscissa of the vertical asymptote corresponding to g1(y

∗, λ1, λ2) = 0.

Fig. 9 Flowchart of possible exits from a codimension-2 sliding under the assumption that
∂1g1(y

∗, λ∗
1, λ

∗
2) = 0 and ∂2g2(y

∗, λ∗
1, λ

∗
2) > 0. The vertical asymptote of g1 = 0 is outside the unit

square
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Fig. 10 Flowchart of possible exits from a codimension-2 sliding under the assumption that
∂1g1(y

∗, λ∗
1, λ

∗
2) = 0 and ∂2g2(y

∗, λ∗
1, λ

∗
2) > 0. The vertical asymptote of g1 = 0 is inside the unit square

to the right of λ∗
1

4.4 Accumulation of grid points, enteringΣ1 ∩ Σ2 through spiraling

We consider the situation, where a solution of (1.3) enters the intersection at y ∈
Σ1∩Σ2 by spiraling inwards. This can be clockwise or counterclockwise. Assuming
the second, this is the case, if the vector fields, evaluated at y, satisfy

f
−1,−1
1 > 0, f

1,−1
1 > 0, f

1,1
1 < 0, f

−1,1
1 < 0

f
−1,−1
2 < 0, f

1,−1
2 > 0, f

1,1
2 > 0, f

−1,1
2 < 0,

(4.14)

and if the contractivity condition

0 < γ < 1 with γ = f
−1,−1
2

f
−1,−1
1

· f
1,−1
1

f
1,−1
2

· f
1,1
2

f
1,1
1

· f
−1,1
1

f
−1,1
2

(4.15)

holds. Under these two assumptions the solution of the discontinuous system (1.3)
converges toΣ1∩Σ2 in finite time. It spirals aroundΣ1∩Σ2 and produces an infinity
of grid points that converge geometrically to the entry point. From there on we have
a codimension-2 sliding.

5 Justification of the algorithm

In the situation of Sections 4.1, 4.2.1, and 4.4, we have uniqueness of the solu-
tion (classical and sliding modes) beyond the new grid point ti , and nothing has
to be justified for the algorithm. This is not necessarily the case for the situa-
tion of Sections 4.2.2 and 4.3, where the solution enters or exits a codimension-2
hyper-surface.
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The philosophy of the presented algorithm is that in the situation of non-
uniqueness we choose a solution that can be interpreted as the limit for ε → 0
of the solution of a regularization. The combined system (2.6)–(2.7) is a singularly
perturbed differential equation which is typically studied by asymptotic expansions
in powers of ε and by separating slow and fast dynamics. This, however, is not
always possible in the present context. The experiment of [18, Section 4.2] even
demonstrates the lack of an expansion in integer powers of ε.

On the other hand, close to a value y∗ in the discontinuity manifold, it is expected
that the hidden dynamics (2.8) reproduces well the bahaviour of the solution of the
discontinuous equation. For the case that αj (y) is an affine function of y and that the
vector fields are constant in a neighbourhood of y∗, the solution of (2.8) describes
the functions ui = αi(y)/ε without any error.

We thus trust the hidden dynamics and we propose to select the solution after a
switching point according to the behaviour the hidden dynamics. This implies that
we have a transition to (c.f. [17, Section 5.2])

– a classical solution, if both solution components of (2.9) are unbounded,

– a codimension-1 sliding, if one solution component is unbounded and the other
converges for τ → ∞ to a value in (−1, 1),

– a codimension-2 sliding, if the pair
(
u1(τ ), u2(τ )

)
converges to a point in the

unit square.

5.1 Justification of the algorithms of Sections 4.2.2 and 4.3.1

The algorithms of Figs. 5 and 6 are just a transcription of Theorems 6.1 and 6.2 of
[17], where the conditions are written in terms of the four vector fields rather than in
terms of the vector field of the hidden dynamics.

The assumption (4.3) is equivalent to (6.1) of [17]. By Lemma 6.3 of [17]
the condition ∂2g1(u1,0, −1) < 0 (left turning situation) in [17] is equivalent to
f

−1,1
1 f

1,−1
1 − f

1,1
1 f

−1,−1
1 > 0 (top left formula in Fig. 5). Item (a) of Theorem 6.1

in [17] corresponds to the existence of a solution of (4.6) in the unit square. In the
notation of the present work the expression gβ(1, u∗) of [17, Theorem 6.1] is equal
to g2(1, λ2) = f

1,0
2 (λ2), which appears in Fig. 5. The situation in [17, Theorem 6.1],

where the solution of the hidden dynamics approaches a limit cycle around a station-
ary point, corresponds to high oscillations of amplitude O(ε) in the solution of the
regularized differential equation, and to a codimension-2 sliding in the discontinu-
ous system. Items (b) and (c) of Theorem 6.1 in [17] correspond to the part in Fig. 6,
where the system (4.6) does not have a solution in the unit square that lies on the
branch of the hyperbola crossing the bottom line of the square.

The algorithm of Fig. 7 is a transcription of the statements in Theorems 2 and 3
of [18]. We note that the expressions β ′(y∗

0 )∂uf (y∗
0 , 1, v

∗
0) and β ′(y∗

0 )∂vf (y∗
0 , 1, v

∗
0)

correspond to ∂1g2(1, λ2) and ∂2g2(1, λ2) in the notation of the present work. Since
g2(λ1, λ2) is an affine function in each of its variables, the sign of ∂2g2(1, λ2) is
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the same as that of f
1,1
1 − f

1,−1
2 , and the sign of ∂1g2(1, λ2) is the same as that of

f
−1,1
2 f

1,−1
2 − f

1,1
2 f

−1,−1
2 .

5.2 Justification of the algorithm of Section 4.3.2

The first seven pictures of Fig. 11 show the vector fields corresponding to the seven
situations of Fig. 8. The hyperbolas g1 = 0 and g2 = 0 are drawn in blue. By (4.9)
both hyperbolas have positive slope and by (4.10) the hyperbola for g2 = 0 lies
above that for g1 = 0. We mark the hyperbolas with an arrow which make them to
an oriented path. To the left of the hyperbola g1 = 0 we have by convention g1 > 0
so that the vector field points to the right, and on the other side the vector field
points to the left. Similarly, to the left of g2 = 0 the vector field points upwards, and
downwards on the other side.

We start with the assumption ∂2g1 > 0, ∂1g2 > 0. The branches of the hyperbolas
passing through the vanishing stationary point are directed upwards. This can be
observed in the pictures (a1) and (a2). In the picture (a1), where f −−

1 > 0, the
solution starting at the vanishing stationary point leaves the unit square at the bottom
side. This gives rise to a codimension-1 sliding in R0,−1. In this situation (again
picture (a1)) there is also a classical solution leaving the intersection into the region
R−1,1, which however cannot be realized as the limit of a regularization. If f −−

1 <

0 (picture (a2)), the solution leaves the unit square at the lower left corner, which
gives rise to a classical solution in R−1,−1. If the branch of the hyperbola g2 = 0
would leave the unit square at the right side, there would be another classical solution
in R1,1, which however is irrelevant.

All other situations, namely (b1), (b2), (b3), (c1), (c2), can be explained simi-
larly by looking at the vector fields in Fig. 11. All of them, with the exception of
(b2), admit a second (non relevant) solution by slightly modifying the hyperbolas.
For example, in the situation (b1) one can change the hyperbola g1 = 0 such that it

Fig. 11 Vector field of the hidden dynamics in the situation where both stationary points coalesce. The
first seven pictures correspond to the colored boxes of Fig. 8 in the same order. Red arrows represent the
solution after the switching
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enters at the left side and such that its second branch surrounds the lower right cor-
ner. Consequently, there is also a classical solution in R1,−1. Slight modifications of
the hyperbolas permit to produce a classical solution in R−1,1 for (b3), a classical
solution in R1,1 for (c1), and a classical solution in R1,−1 for (c2).

The last two pictures of Fig. 11 treat the situation ∂2g1 > 0, ∂1g2 < 0. The
picture (d1) gives the impression that more than one solution, starting at the vanishing
stationary point, are possible. However, when looking at the situation just before
the stationary points vanish (picture (d2)), one sees that both stationary points are
unstable and that there is no bounded limit cycle in the unit square. Therefore, this
situation cannot occur at the end of a codimension-2 sliding.

5.3 Justification of the algorithm of Section 4.3.3

In the situation of the first three pictures of Figs. 9 and 10 there is exactly one solu-
tion exiting the codimension-2 hyper-surface. Let us nevertheless briefly discuss the
hidden dynamics in these situations. The condition G1,1(y

∗, λ∗
1, λ

∗
2) = 0, which in

terms of (2.9) reads ∂1g1(u
∗
1, u

∗
2) = 0, implies that the hyperbola g1(u1, u2) = 0 is

degenerate. It is the union of the horizontal and vertical asymptote. The assumption
(4.13) implies that at the left side of the unit square and in a neighbourhood of the
stationary point (u∗

1, u
∗
2) the hyperbola g1(u1, u2) = 0 is oriented to the right. The

positivity of detG and of G2,2 imply that the hyperbola g2(u1, u2) = 0 crosses the
stationary point (u∗

1, u
∗
2) from bottom left to top right.

The additional assumption f
1,1
1 > 0 in Fig. 9 implies that the vertical asymptote of

g1(u1, u2) = 0 is outside the unit square. The upper pictures of Fig. 12 illustrate the
four situations of Fig. 9. The vector field of the hidden dynamics is shown on the unit
square and on a neighbourhood of it. The oriented hyperbolas are indicated in blue,
and 20 solutions with randomly chosen initial values 10−6-close to the stationary

Fig. 12 Vector field of the hidden dynamics for the situations discussed in Fig. 9 (upper pictures) and in
Fig. 10 (lower pictures). Twenty solutions corresponding to initial values that are random perturbations of
the equilibrium (u∗

1, u
∗
2) are plotted in red
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point are plotted in red. An inspection of the vector field shows that the solutions
spiral outwards in the first picture. Apparently, there is an infinity of solutions starting
at t = ti at the point y∗. In the second and third situations the solutions all tend to a
classical solution in R1,1 and R−1,−1, respectively.

The fourth picture indicates the existence of two classical solutions, one in R1,1

and the other inR−1,−1. Figure 13 shows the basin of attraction of the two solutions.
For any initial value in the grey region the solution converges to the classical solution
inR−1,−1, and for initial values in the white region it converges toR1,1. This clearly
shows that there is non-uniqueness of the solution of the discontinuous problem.

The assumption f
1,1
1 < 0 in Fig. 10 implies that the vertical asymptote of

g1(u1, u2) = 0 is inside the unit square. The lower pictures of Fig. 12 illustrate the
four situations of Fig. 10. The second, third, and fourth pictures are similar as before
with the exception that the classical solution in R1,1 is now a codimension-1 slid-
ing alongR0,1. This is because the solution of the hidden dynamics cannot cross the
vertical asymptote.

An explanation for the first picture of the lower row in Fig. 12 is more tricky.
The solution spirals outwards around the stationary point, but remains to the left
of the asymptote. On the other hand, the only stable solution leaving the square is
classical in the region R1,−1, which is to the right of the asymptote. How can we
reach this solution? The reason is that G1,1(y, λ1, λ2) is negative before t = ti , but
positive after it. Hence, immediately after t = ti the hyperbola g1(u1, u2) = 0 is
not degenerate and the vertical asymptote is no longer a separation of solutions of
the hidden dynamics. After a few spirals around the stationary point, the solution can
escape to the right and follow the classical solution inR1,−1.

6 Some details for an implementation

Every code for solving ordinary differential equations having an option for event
location is suitable for using the algorithm of the present work.

Fig. 13 Basin of attraction for
the two classical solutions
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Solving the algebraic system. The most convenient way of computing the sliding
modes is to solve the algebraic system (2.3) with respect to the λj , and to insert the
result into (2.2), which then gives an ordinary differential equation. For codimension-
1 an explicit formula for λ1 is given by (4.2). For codimension-2 the system (4.6)
presents two quadratic equations for λ1 and λ2. A suitable linear combination permits
to eliminate the product λ1λ2 and gives a linear relation between λ1 and λ2. Inserted
into the original equation this yields a quadratic equation in one variable. We thus get
two solutions of the system. One has to choose the solution for which the determinant
of the matrix (4.7) is positive.

Spiraling solutions When the solution spirals inwards to (or outwards from) a
codimension-2 discontinuity hyper-surface we are concerned with an infinity of
accumulating transition points. In practice this can be treated as follows (see
[17, Section 7]).

Assume that we have detected a point y0 for which α2(y0) = 0 and α1(y0) = −δ

with 0 < δ  1 very small. Assume further that, close to Σ1 ∩ Σ2, the four vector
fields are constant and satisfy (4.14) and (4.15). After a lap around Σ1 ∩ Σ2 the
solution is, up to first order in δ,

y1 = y0 + t01 f −1,−1 + t02 f 1,−1 + t03 f 1,1 + t04 f −1,1 (6.1)

where

y1
0 = y0 + t01 f −1,−1, t01 = δ/f

−1,−1
1 , α1(y

1
0) = 0, α2(y

1
0) = t01f

−1,−1
2

y2
0 = y1

0 + t02 f 1,−1, t02 = −t01f
−1,−1
2 /f

1,−1
2 , α1(y

2
0) = t02f

1,−1
1 , α2(y

2
0) = 0

y3
0 = y2

0 + t03 f 1,1, t03 = −t02f
1,−1
1 /f

1,1
1 , α1(y

3
0) = 0, α2(y

3
0) = t03f

−1,−1
2

y4
0 = y3

0 + t04 f −1,1, t04 = −t03f
1,1
2 /f

−1,1
2 , α1(y

4
0) = t04f

−1,1
1 , α2(y

4
0) = 0

and y1 = y4
0 . We note that α2(y1) = 0,

α1(y1) = −γ δ, γ = f
−1,1
1

f
−1,1
2

· f
1,1
2

f
1,1
1

· f
1,−1
1

f
1,−1
2

· f
−1,−1
2

f
−1,−1
1

(6.2)

and the advanced time t0 = t01 + t02 + t03 + t04 satisfies

t0 = κ δ, κ = 1

f
−1,−1
1

(

1 − f
−1,−1
2

f
1,−1
2

(

1 − f
1,−1
1

f
1,1
1

(

1 − f
1,1
2

f
1,−1
2

)))

. (6.3)

We are now in exactly the same situation as before with the exception that δ is
replaced by γ δ (note that γ < 1). We denote by y2, y3, . . . the solution approx-
imations after the next rounds and by t1, t2, . . . the time needed to advance the
round. In every round we get an additional factor γ . This shows a geometric decay
for α1(yj ) → 0, and the total time until convergence is t0 + t1 + t2 + . . . =
κδ(1 + γ + γ 2 + . . .) = κδ/(1 − γ ).

Based on this analysis we propose the following algorithm: as soon as we detect
the situation of Section 4.4 we stop the integration at a point y0, where α1(y0) = −δ

with 0 < δ  1, and α2(y0) = 0. We then advance the current time by κδ/(1 − γ )
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to get t∗, and we take as solution approximation the vector

y∗ = y0 + t∗1 f −1,−1 + t∗2 f 1,−1 + t∗3 f 1,1 + t∗4 f −1,1, (6.4)

where t∗j = t0j /(1 − γ ). A projection of y∗ onto Σ1 ∩ Σ2 is recommended. With

this first order analysis we get an error proportional to δ2. It is therefore reasonable
to choose δ = √

tol , where tol is the accuracy required in the integration of the
differential equations.

The situation where the solution spirals outwards from a codimension-2 sliding
(Fig. 9) can be treated similarly. Here, we have α1(y0) = 0 and α2(y0) = 0, and
without loss of generality we assume (4.14), but this time we have γ > 1. We
consider

y∗ = y0 + t01 f −1,−1 + t02 f 1,−1 + t03 f 1,1 + t04 f −1,1, (6.5)

which is formally the same as (6.4), but now y0 ∈ Σ1 ∩ Σ2, y∗ is the solution
approximation after time κδ, and the vector field spirals outwards. Up to first order
in δ (assuming α1(y) and α2(y) to be affine functions) this approximation satisfies
α2(y

∗) = 0 and α1(y
∗) = −δ(γ − 1), and can be interpreted as a solution with

negative time starting at y∗ and ending up (after infinitely many rounds) at y0. With
the value y∗ from (6.5) we can then continue the integration of the outwards spiraling
solution. Since δ > 0 is a free parameter, we get in this way a one-parameter family
of solution approximations.

Remark 6.1 The switching between codimension-2 sliding and (outwards) spiraling
solution is related to the bilinear interpolation (2.2) through the condition (4.12). A
similar switching has been studied in [11], where instead of bilinear interpolation the
author considers moments sliding vector fields, which constitutes of a different kind
of Filippov vector fields.

7 Conclusion

We have presented an algorithm for the numerical treatment of discontinuous dynam-
ical systems. It considers all generic situations up to codimension two. The main
focus is on the switching between different types of solutions (classical and sliding
in codimension 1 and 2).

In the case of non-uniqueness of Filippov solutions the algorithm selects the
solution that can be interpreted as the limit solution of a regularized differen-
tial equation. When exiting a codimension-2 discontinuity hyper-surface, we use a
scaling-invariant criterion, which makes the exit point from a codimension-2 slid-
ing unique. In most situations this provides a unique switching. There are three
exceptions.

– Entering the intersection Σ1 ∩ Σ2. In the left two situations of Fig. 6 we have
non-uniqueness and the limit solution of a regularization depends on the scaling
(see Example 3 of [17]). Putting more weight to one of the constraints permits to
select a specific solution.
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– Exiting the intersection Σ1 ∩ Σ2. In the right pictures of Fig. 12 we also have
non-uniqueness. This is independent of the scaling, because in any case the basin
of attraction of both solutions are non empty (Fig. 13).

– ExitingΣ1∩Σ2 through spiraling. In the upper left picture of Fig. 12 the solution
exits a codimension-2 sliding through spiraling. As a consequence of our scaling-
invariant criterion (4.12) we have a one-parameter family of exiting solutions.
With the usual criterion (4.11), we would have a two-parameter family of exiting
solution, because the exit point is not unique.
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