
https://doi.org/10.1007/s11075-021-01141-6

ORIGINAL PAPER

Towards a reliable implementation of least-squares
collocation for higher index differential-algebraic
equations—Part 2: the discrete least-squares
problem

Michael Hanke1 ·Roswitha März2

Received: 14 May 2021 / Accepted: 16 May 2021 /
© The Author(s) 2021

Abstract
In the two parts of the present note we discuss questions concerning the imple-
mentation of overdetermined least-squares collocation methods for higher index
differential-algebraic equations (DAEs). Since higher index DAEs lead to ill-posed
problems in natural settings, the discrete counterparts are expected to be very sen-
sitive, which attaches particular importance to their implementation. We provide in
Part 1 a robust selection of basis functions and collocation points to design the dis-
crete problem whereas we analyze the discrete least-squares problem and substantiate
a procedure for its numerical solution in Part 2.

Keywords Least-squares collocation · Higher index differential-algebraic
equations · Ill-posed problem

Mathematics Subject Classification (2010) 65L80 · 65L08 · 65F20 · 34A99

1 Introduction

This is Part 2 of our work entitled Towards a reliable implementation of least-squares
collocation for higher index differential-algebraic equations, which is introduced
and classified in detail in Part 1. We put together here very briefly the necessary
ingredients for fluent reading of the current second part.

� Michael Hanke
hanke@nada.kth.se

Roswitha März
maerz@mathematik.hu-berlin.de

1 Department of Mathematics, KTH Royal Institute of Technology, S-10044 Stockholm, Sweden

2 Institute of Mathematics, Humboldt University of Berlin, D-10099 Berlin, Germany

Published online: 15 June 2021

Numerical Algorithms (2022) 89:965–986

http://crossmark.crossref.org/dialog/?doi=10.1007/s11075-021-01141-6&domain=pdf
http://orcid.org/0000-0003-4950-6646
mailto: hanke@nada.kth.se
mailto: maerz@mathematik.hu-berlin.de

Consider a linear boundary value problem for a DAE with properly involved
derivative,

A(t)(Dx)′(t) + B(t)x(t) = q(t), t ∈ [a, b], (1)

Gax(a) + Gbx(b) = d. (2)

with [a, b] ⊂ R being a compact interval, D = [I 0] ∈ R
k×m, k < m, with the

identity matrix I ∈ R
k×k . Furthermore, A(t) ∈ R

m×k , B(t) ∈ R
m×m, and q(t) ∈ R

m

are assumed to be sufficiently smooth with respect to t ∈ [a, b]. Moreover, Ga, Gb ∈
R

ldyn×m. Thereby, ldyn is the dynamical degree of freedom of the DAE, that is, the
number of free parameters which can be fixed by initial and boundary conditions. We
assume further that ker D ⊆ ker Ga and ker D ⊆ ker Gb.

Unlike regular ordinary differential equations (ODEs) where ldyn = k = m, for
DAEs it holds that 0 ≤ ldyn ≤ k < m, in particular, ldyn = k for index-one DAEs,
ldyn < k for higher index DAEs, and ldyn = 0 can certainly happen.

Let PK denote the set of all polynomials of degree less than or equal to K ≥ 0.
Given the partition π ,

π : a = t0 < t1 < · · · < tn = b, (3)

with the stepsizes hj = tj − tj−1, let Cπ([a, b],Rm) denote the space of piecewise
continuous functions having breakpoints merely at the meshpoints of the partition π .
Let N ≥ 1 be a fixed integer. We are looking for an approximate solution of our
boundary value problem from the ansatz space Xπ ,

Xπ = {x ∈ Cπ([a, b],Rm) : Dx ∈ C([a, b],Rk),

xκ |[tj−1,tj)∈ PN , κ = 1, . . . , k, xκ |[tj−1,tj)∈ PN−1, κ = k + 1, . . . , m, j = 1, . . . , n}. (4)

The continuous version of the least-squares method reads: Find an xπ ∈ Xπ that
minimizes the functional

Φ(x) =
∫ b

a

|A(t)(Dx)′(t) + B(t)x(t) − q(t)|2dt + |Gax(a) + Gbx(b) − d|2. (5)

Hanke and März [11, Theorem 1] provides sufficient conditions ensuring the
existence and uniqueness of the approximate solution from Xπ .

The functional values Φ(x), which are needed when minimizing for x ∈ Xπ ,
cannot be evaluated exactly and the integral must be discretized accordingly. Tak-
ing into account that the boundary value problem is ill-posed in the higher index
case, perturbations of the functional may have a serious influence on the error of the
approximate least-squares solution or even prevent convergence towards the exact
solution. Therefore, careful approximations of the integral in Φ are required. We take
over the options provided in [11], in which M ≥ N + 1 so-called collocation points

0 ≤ τ1 < · · · < τM ≤ 1. (6)

are used, further, on the subintervals of the partition π ,

tj i = tj−1 + τihj , i = 1, . . . , M, j = 1, . . . , n.

966 Numerical Algorithms (2022) 89:965–986

Introducing, for each x ∈ Xπ and w(t) = A(t)(Dx)′(t) + B(t)x(t) − q(t), the
corresponding vector W ∈ R

mMn by

W =
⎡
⎢⎣

W1
...

Wn

⎤
⎥⎦ ∈ R

mMn, Wj = h
1/2
j

⎡
⎢⎣

w(tj1)
...

w(tjM)

⎤
⎥⎦ ∈ R

mM, (7)

we turn to an approximate functional of the form

Φπ,M(x) = WT L W + |Gax(a) + Gbx(b) − d|2, x ∈ Xπ, (8)

with a positive definite symmetric matrix1

L = diag(L ⊗ Im, . . . , L ⊗ Im). (9)

As detailed in [11], we have different options for the positive definite symmetric
matrix L ∈ R

M×M , namely

L = LC = M−1IM, (10)

L = LI = diag(γ1, . . . , γM), (11)

L = LR = (Ṽ −1)T Ṽ , (12)

see [11, Section 3] for details concerning the selection of the quadrature weights
and the construction of the mass matrix. We emphasize that the matrices LC, LI , LR

depend only on M , the node sequence (6), and the quadrature weights, but do not
depend on the partition π and its stepsizes at all.

In the context of the experiments below, we denote each of the different versions
of the functional by ΦC

π,M , ΦI
π,M , and ΦR

π,M , respectively.
It should be underlined that minimizing each version of the functional Φπ,M on

Xπ can be viewed as a special least-squares method to solve the overdetermined
collocation system W = 0, Gax(a) + Gbx(b)) = d, with respect to x ∈ Xπ , that is
in detail, the collocation system

A(tji)(Dx)′(tji) + B(tji)x(tji) = q(tji), i = 1, . . . ,M, j = 1, . . . , n, (13)
Gax(a) + Gbx(b)) = d. (14)

The system (13)–(14) for x ∈ Xπ becomes overdetermined since Xπ has dimen-
sion mnN + k, whereas the system consists of mnM + ldyn > nmN + k + ldyn ≥
mnN + k scalar equations. We refer to [11, Theorem 2] for sufficient conditions
which ensure the existence and uniqueness of the minimizing element

xπ = argmin{Φπ,M(x) : x ∈ Xπ }. (15)

Once the basis of the ansatz space Xπ has been chosen and the collocation nodes
are selected, the discrete problem (15) for a linear boundary value problem (1)–(2)
leads to a constrained linear least-squares problem

ϕ(c) = |A c − r|2
R

nmM+ldyn
→ min! (16)

1⊗ denoting the Kronecker product.

967Numerical Algorithms (2022) 89:965–986

under the linear constraint
C c = 0. (17)

The equality constraints consists of the k(n − 1) continuity conditions for the
elements of Xπ while the functional ϕ(c) represents a reformulation of the functional
(8). Here, c ∈ R

n(mN+k) is the vector of coefficients of the basis functions for Xπ

disregarding the continuity conditions. Furthermore, it holds r ∈ R
nmM+l , A ∈

R
(nmM+l)×n(mN+k), and C ∈ R

(n−1)k×n(mN+k). The matrices A and C are very
sparse. Owing to the construction, C has full row rank.

We specify the structure of A and C in detail in Section 2 below. Different
approaches to solve the constraint optimization problem (16)–(17) have been tested.
We report on related experiments in Section 4. The examples which are used on
different places are collected in the particular Section 3. The performance of the lin-
ear solver is discussed in Section 5. Section 6 shows some additional experiments
concerning the boundary conditions weighting. Section 7 contains final remarks.

2 The structure of the discrete problem (16), (17)

Based on the analysis in [11, Section 4] we provide a basis of the ansatz space Xπ to
begin with. Assume that {p0, . . . , pN−1} is a basis of PN−1 defined on the reference
interval [0, 1]. Then, {p̄0, . . . , p̄N } given by

p̄i(ρ) =
{

1, i = 0,∫ ρ

0 pi−1(σ)dσ, i = 1, . . . , N, ρ ∈ [0, 1], (18)

forms a basis of PN . The transformation to the interval (tj−1, tj) of the partition π

(3) yields

pji(t) = pi((t − tj−1)/hj), p̄ji(t) = hj p̄i((t − tj−1)/hj). (19)

and in particular

p̄j i(tj−1) = hj p̄i(0) = hj

{
1, i = 0,

0, i = 1, . . . , N,

p̄ji(tj) = hj p̄i(1) = hj

{
1, i = 0,∫ 1

0 pi−1(σ)dσ, i = 1, . . . , N .

Next we form the matrix functions

P̄j =[
p̄j0 . . . p̄jN

] : Ij → R
1×(N+1), Pj =[

pj0 . . . pj,N−1
] : Ij → R

1×N,

such that

P̄j (tj−1) = hj

[
1 0 . . . 0

]
, j = 1, . . . , n, (20)

P̄j (tj) = hj

[
1

∫ 1
0 p0(σ)dσ . . .

∫ 1
0 pN−1(σ)dσ

]
, j = 1, . . . , n. (21)

Observe that choosing {p0, . . . , pN−1} to be Legendre polynomials simplifies the
latter matrix to

P̄j (tj) = hj

[
1 1 0 . . . 0

]
, j = 1, . . . , n,

968 Numerical Algorithms (2022) 89:965–986

which will prove important.
For x ∈ Xπ we set the denotations

x(t) = xj (t) =
⎡
⎢⎣

xj1(t)
...

xjm(t)

⎤
⎥⎦ ∈ R

m, Dx(t) = Dxj (t) =
⎡
⎢⎣

xj1(t)
...

xjk(t)

⎤
⎥⎦ ∈ R

k, t ∈ Ij .

Then, we develop each xj componentwise

xjκ(t) =
N∑

l=0

cjκlp̄j l(t) = P̄j (t)cjκ , κ = 1, . . . , k,

xjκ(t) =
N−1∑
l=0

cjκlpjl(t) = Pj (t)cjκ , κ = k + 1, . . . , m.

with

cjκ =
⎡
⎢⎣

cjκ0
...

cjκN

⎤
⎥⎦ ∈ R

N+1, κ = 1, . . . , k, cjκ =
⎡
⎢⎣

cjκ0
...

cjκ,N−1

⎤
⎥⎦ ∈ R

N, κ = k + 1, . . . , m.

Introducing still

Ωj(t) =
[

Ik ⊗ P̄j (t) 0
0 Im−k ⊗ Pj (t)

]
∈ R

m×(mN+k), cj =
⎡
⎢⎣

cj1
...

cjm

⎤
⎥⎦ ∈ R

mN+k,

we represent

xj (t) = Ωj(t)cj , (22)

Dxj (t) = DΩj(t)cj = [
Ik ⊗ P̄j (t) 0

]
cj , t ∈ Ij , j = 1, . . . , n. (23)

Now we collect all coefficients cjκ l in the vector c,

c =
⎡
⎢⎣

c1
...
cn

⎤
⎥⎦ ∈ R

nmN+nk .

It follows that the matrix C ∈ R
k(n−1)×n(mN+k) in (17) corresponding to the

continuity requirement for Dx has the precise form

C =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Ik ⊗ P̄1(t1) −Ik ⊗ P̄2(t1)

Ik ⊗ P̄2(t2) −Ik ⊗ P̄3(t2)

. . .
. . .

. . .
. . .

Ik ⊗ P̄n−1(tn−1) −Ik ⊗ P̄n(tn−1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (24)

By construction the segments Dxj , j = 1, . . . , n, all together form a continuous
function Dx on [a, b] exactly when C c = 0.

969Numerical Algorithms (2022) 89:965–986

Regarding the structure of C ∈ R
k(n−1)×n(mN+k) we know that

rankC = k(n − 1), dim ker C = nmN + k = dim Xπ,

and formula (22) provides an one-to-one relation between Xπ and ker C ⊂ R.
Now we turn to the detailed description of the functional value (16). For this aim

we factorize L = L̃T L̃ and L = L̃ T L̃ such that

L̃ = diag(L̃ ⊗ Im, · · · , L̃ ⊗ Im)

and (8) rewrites as

Φπ,M(x) = |L̃ W |2
RnmM + |Gax(a) + Gbx(b) − d|2

R
ddyn

, x ∈ Xπ .

We derive applying (22), (23)

Gax(a) + Gbx(b) = GaD
+DΩ1(t0)c1 + GbD

+DΩn(tn)cn =: Γac1 + Γbcn

with matrices Γa, Γb ∈ R
ldyn×(mN+k), and

w(tji) = [
A(tji)(DΩj)

′(tji) + B(tji)Ωj (tji)
]

︸ ︷︷ ︸
=Aji

cj − q(tji) = Ajicj − q(tji),

with Aji ∈ R
m×(mN+k). According to (7) we set

Wj = h
1/2
j

⎡
⎢⎣

w(tj1)
...

w(tjM)

⎤
⎥⎦ = h

1/2
j

⎡
⎢⎣

Aj1
...

AjM

⎤
⎥⎦ cj − h

1/2
j

⎡
⎢⎣

q(tj1)
...

q(tjM)

⎤
⎥⎦

and

(L̃ ⊗ Im)Wj = h
1/2
j (L̃ ⊗ Im)

⎡
⎢⎣

Aj1
...

AjM

⎤
⎥⎦

︸ ︷︷ ︸
=:Aj

cj − (L̃ ⊗ Im) h
1/2
j

⎡
⎢⎣

q(tj1)

...
q(tjM)

⎤
⎥⎦

︸ ︷︷ ︸
=:W [q]

j

= Aj cj − (L̃ ⊗ Im)W
[q]
j .

Introducing still the sparse matrix A ∈ R
(nmM+ldyn)×(nmN+nk) and the vector

r ∈ R
nmM+ldyn ,

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A1 0 · · · 0

0
. . .

...
...

. . .
. . . 0

0 An

Γa 0 · · · 0 Γb

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, r =
⎡
⎢⎣

(L̃ ⊗ Im)W
[q]
1

...
(L̃ ⊗ Im)W

[q]
n

⎤
⎥⎦

970 Numerical Algorithms (2022) 89:965–986

we arrive at the representation

ϕ(c) = |A c − r|2
R

nmM+ldyn
=

n∑
j=1

|Aj cj − (L̃ ⊗ Im)W
[q]
j |2

RmM + |Γac1 + Γbcn − d|2
R

ldyn

=
n∑

j=1

|(L̃ ⊗ Im)Wj |2RmM + |Γac1 + Γbcn − d|2
R

ldyn
=|L̃ W |2

RnmM +|Γac1 + Γbcn − d|2
R

ldyn

= Φπ,M(x),

as desired. Eventually, each minimizer xπ ∈ argmin{Φπ,M(x) : x ∈ Xπ } corresponds
to a minimizer cmin ∈ argmin{ϕ(c) : c ∈ R

nmN+nk, C c = 0}, and vice versa. Recall
that [11, Theorem 2] provides sufficient condition for xπ to be unique.

Proposition 1 Let the functional Φπ,M have the only minimizer xπ on Xπ . Then the
following assertions are valid:

(1) There is exactly one minimizer cmin of the functional ϕ on ker C .
(2) If B ∈ R

(nmN+nk)×(nmN+k) is a basis of ker C then A := A B has full column
rank nmN + k.

Proof (1) follows directly from the above representations of the related functionals.
(2): z ∈ kerA implies Bz ∈ ker A and cmin+Bz ∈ ker C , ϕ(cmin+Bz) = ϕ(cmin).
Owing to the uniqueness of the minimizer it follows that Bz = 0, and in turn z = 0,
since B has full column rank being a basis.

3 Test examples

The first test problem is often used in the literature to show that standard integration
methods fail if applied to higher index DAEs, e.g., [13, 14].

Example 1 The DAE

x′
2(t) + x1(t) = q1(t),

tηx′
2(t) + x′

3(t) + (η + 1)x2(t) = q2(t),

tηx2(t) + x3(t) = q3(t), t ∈ [0, 1].
has index-3 and dynamical degree of freedom ldyn = 0 such that no additional bound-
ary or initial conditions are necessary for unique solvability. We choose the exact
solution

x∗,1(t) = e−t sin t,

x∗,2(t) = e−2t sin t,

x∗,3(t) = e−t cos t

and adapt the right-hand side q accordingly. For the exact solution, it holds
‖x∗‖L2((0,1),R3) ≈ 0.673, ‖x∗‖L∞((0,1),R3) = 1, and ‖x∗‖H 1

D((0,1),R3) ≈ 1.11.

971Numerical Algorithms (2022) 89:965–986

The next example is the linearized version of a test problem presented [6] that has
also been discussed, e.g., in [12].

Example 2 We consider the DAE

A(Dx)′(t) + B(t)x(t) = q(t), t ∈ [0, 5],
where

A =

⎡
⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎦

,D =

⎡
⎢⎢⎢⎢⎣

1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0

⎤
⎥⎥⎥⎥⎦ ,

B(t) =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 −1 0 0 0
0 0 0 0 −1 0 0
0 0 0 0 0 −1 0
0 0 sin t 0 1 − cos t −2ρ cos2 t
0 0 − cos t −1 0 − sin t −2ρ sin t cos t
0 0 1 0 0 0 2ρ sin t

2ρ cos2 t 2ρ sin t cos t −2ρ sin t 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

, ρ = 5,

subject to the initial conditions

x2(0) = 1, x3(0) = 2, x5(0) = 0, x6(0) = 0.

This problem has index 3 and dynamical degree of freedom ldyn = 4. The right-
hand side q has been chosen in such a way that the exact solution becomes

x∗,1 = sin t, x∗,4 = cos t,

x∗,2 = cos t, x∗,5 = − sin t,

x∗,3 = 2 cos2 t, x∗,6 = −2 sin 2t,

x∗,7 = −ρ−1 sin t .

For the exact solution, it holds ‖x∗‖L2((0,5),R7) ≈ 5.2, ‖x∗‖L∞((0,5),R7) = 2, and
‖x∗‖H 1

D((0,5),R7) ≈ 9.4.

The following example is a boundary value problem in contrast to Example 2
which is an initial value problem.

Example 3 On the interval [0, 1], consider the DAE⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎦

d

dt

⎡
⎢⎢⎢⎢⎢⎢⎣

x1
x2
y1
y2
y3
y4

⎤
⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎣

0 −λ 0 0 0 0
−λ 0 0 0 0 0
−1 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

x1
x2
y1
y2
y3
y4

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎦

, λ > 0,

subject to the boundary conditions

x1(0) = x1(1) = 1.

972 Numerical Algorithms (2022) 89:965–986

This DAE can be brought into the proper form (1) by setting

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

, D =

⎡
⎢⎢⎢⎢⎣

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0

⎤
⎥⎥⎥⎥⎦ , B =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 −λ 0 0 0 0
−λ 0 0 0 0 0
−1 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

.

This DAE has the tractability index μ = 4 and dynamical degree of freedom l = 2.
The solution reads

x∗,1(t) = e−λt (eλ + e2λt)

1 + eλ

x∗,2(t) = e−λt (−eλ + e2λt)

1 + eλ

y∗,1(t) = e−λt (eλ + e2λt)

1 + eλ

y∗,2(t) = λ
e−λt (−eλ + e2λt)

1 + eλ

y∗,3(t) = λ2 e−λt (eλ + e2λt)

1 + eλ

y∗,4(t) = λ3 e−λt (−eλ + e2λt)

1 + eλ

4 Approaches to solve the constraint optimization problem (16)–(17)

Different approaches to solve the constraint optimization problem (16)–(17) have
been tested, namely the direct elimination method, the weighting of the constraints,
and a special deferred correction procedure as specified in the following three
subsections.

4.1 Direct eliminationmethod

The matrix C has full row rank (n − 1)k.
The solution manifold of (17), that is ker C , forms an (nmN + k)-dimensional

subspace of RnmN+nk which can be characterized by

C c = 0 if and only if c = Bz for some z ∈ R
nmN+k .

Here, B ∈ R
n(mN+k)×(nmN+k) is an orthogonal basis of ker C . With this repre-

sentation, the constrained minimization problem can be reduced to the unconstrained
one

ϕ̃(z) = |A Bz − r|2
R

nmN+ldyn
→ min!

Owing to Proposition 1, the matrix product A B has full column rank nmN + k.

973Numerical Algorithms (2022) 89:965–986

The implemented algorithm is that of [5] (see also [4, Section 5.1.2]) which is
sometimes called the direct elimination method. In our tests below the direct method
seems to be the most robust one.

4.2 Weighting of the constraints to solve the optimization problem (16)–(17).

In this approach, a sufficiently large parameter ω > 0 is chosen and the problem
(16)–(17) is replaced by the free minimization problem

ϕω(c) = |A c − r|2
R

nmN+ldyn
+ ω|C c|2

Rk(n−1) → min!
It is known that2 the minimizer cω of ϕω converges towards the solution of (16)–

(17) for ω → ∞ (cf. [9, Section 12.1.5]). Two different orderings of the equations
have been implemented. One is

G =
[

ωC
A

]
, r̄ =

[
0
r

]

while the other uses a block-bidiagonal structure as it is common for collocation
methods for ODEs, cf [1]. It is known that the order of the equations in the weighting
method may have a large impact on the accuracy of the solutions [16]. In our test
examples, however, we did not observe a difference in the behavior of both orderings.

The results of the weighting method depend substantially on the choice of the
parameter ω. In order to have an accurate approximation of the exact solution c∗ of
the problem (16)–(17), a large value of ω should be used (in the absence of rounding
errors). However, if ω becomes too large, the algorithm may lack numerical stability.
A discussion of this topic has been given in [16]. In particular, it turns out that the
algorithm used for the QR decomposition and the pivoting strategies have a strong
influence on the success of this method. In our implementation, we use the sparse QR
implementation of [8]. On the other hand, an accuracy of the solution being much
lower than the approximation error of xπ is not necessary.3 Therefore, a number of
experiments have been done in order to obtain some insight into what reasonable
choices might be.

Experiment 1 Influence of the choice of the weighting parameter ω

We use Example 2. Two sets of parameters are selected: (i) N = 5, n = 160 and
(ii) N = 20, n = 20. The choice (i) corresponds to low degree polynomials with a
corresponding large number of subintervals while (ii) uses higher degree polynomials
with a corresponding small number of subintervals. Both cases have been selected
according to [11, Table 20] in such a way that a high accuracy can be obtained while
at the same time having only a small influence of the problem conditioning. The other
parameters chosen in this experiment are: M = N + 1, Gauss-Legendre collocation
nodes and Legendre polynomials as basis functions. The error in dependence of ω

2Assuming a fullrank condition on A !
3The Eigen library has its own implementation of a sparse QR factorization. The latter turned out to be
very slow compared to SPQR.

974 Numerical Algorithms (2022) 89:965–986

is measured both with respect to the exact solution and with respect to a reference
solution obtained by the direct solution method. The results are provided in Tables 1
and 2. The results for Example 3 below are quite similar. The results indicate that an
optimal ω may vary considerably depending on the problem parameters. However,
the accuracy against the exact solution is rather insensitive of ω.

4.3 Deferred correction procedure

The direct solution method by eliminating the constraints has often the deficiency of
generating a lot of fill-in in the intermediate matrices. An approach to overcome this
situation has been proposed in [16]. The solutions of the weighting approach are iter-
atively enhanced by a defect correction process. This method is implemented in the
form presented in [2, 3]. This form is called the deferred correction procedure for

Table 1 Influence of parameter ω for the constraints in Example 2 using N = 5 and n = 160

(A) (B)

ω L∞(0, 5) L2(0, 5) H 1
D(0, 5) L∞(0, 5) L2(0, 5) H 1

D(0, 5)

1e-09 2.25e+00 4.54e+00 9.37e+00 2.25e+00 4.54e+00 8.04e+00

1e-08 2.00e+00 4.59e+00 9.04e+00 2.00e+00 4.59e+00 9.04e+00

1e-07 3.55e-01 5.83e-01 1.05e+00 3.55e-01 5.83e-01 1.05e+00

1e-06 1.06e-05 1.66e-05 2.84e-05 1.06e-05 1.66e-05 2.84e-05

1e-05 1.02e-07 1.60e-07 3.07e-07 1.02e-07 1.60e-07 2.75e-07

1e-04 2.26e-08 1.49e-08 1.41e-07 5.51e-09 6.27e-09 3.51e-08

1e-03 2.26e-08 1.53e-08 1.41e-07 5.51e-09 7.09e-09 3.54e-08

1e-02 2.15e-08 1.39e-08 1.40e-07 4.44e-09 3.36e-09 3.31e-08

1e-01 2.13e-08 1.39e-08 1.40e-07 4.28e-09 3.28e-09 3.29e-08

1e+00 2.00e-08 1.31e-08 1.31e-07 2.99e-09 2.99e-09 2.29e-08

1e+01 1.73e-08 1.12e-08 1.13e-07 1.27e-10 7.51e-11 7.53e-10

1e+02 1.73e-08 1.12e-08 1.12e-07 3.64e-10 3.84e-11 3.85e-10

1e+03 1.73e-08 1.12e-08 1.12e-07 2.36e-09 3.05e-10 3.06e-09

1e+04 2.15e-08 1.15e-08 1.16e-07 1.82e-08 2.91e-09 2.92e-08

1e+05 1.18e-07 3.27e-08 3.28e-07 1.26e-07 3.18e-08 3.20e-07

1e+06 6.69e-06 5.08e-07 5.08e-06 6.68e-06 5.08e-07 5.09e-06

1e+07 6.28e-05 5.09e-06 5.09e-05 6.28e-05 5.09e-06 5.09e-05

1e+08 9.94e-05 2.82e-05 2.83e-04 9.94e-05 2.82e-05 2.83e-04

1e+09 3.33e+01 7.87e+00 7.91e+01 3.33e+01 7.87e+00 7.91e+01

1e+10 8.61e+01 5.91e+01 5.93e+02 8.61e+01 5.91e+01 5.93e+02

The error of the solution with respect to the exact solution (A) and with respect to a discrete reference
solution obtained by a direct method (B) is given in the norms of L2((0, 5),R7), L∞((0, 5),R7) and
H 1

D((0, 5),R7)

975Numerical Algorithms (2022) 89:965–986

Table 2 Influence of parameter ω for the constraints in Example 2 using N = 20 and n = 20.

(A) (B)

ω L∞(0, 5) L2(0, 5) H 1
D(0, 5) L∞(0, 5) L2(0, 5) H 1

D(0, 5)

1e-09 2.44e+00 4.91e+00 7.59e+00 2.44e+00 4.91e+00 7.59e+00

1e-08 4.40e-02 7.51e-02 1.31e-01 4.40e-02 7.51e-02 1.31e-01

1e-07 6.38e-08 9.91e-08 1.85e-07 6.38e-08 9.91e-08 1.85e-07

1e-06 1.35e-08 2.38e-08 3.80e-08 1.35e-08 2.38e-08 3.80e-08

1e-05 2.76e-09 3.68e-09 6.77e-09 2.76e-09 3.68e-09 6.77e-09

1e-04 1.86e-10 2.77e-10 5.11e-10 1.86e-10 2.77e-10 5.13e-10

1e-03 5.12e-11 1.59e-11 5.68e-11 4.59e-11 1.60e-11 6.23e-11

1e-02 2.49e-11 4.53e-12 4.29e-11 4.25e-11 5.62e-12 5.43e-11

1e-01 3.63e-11 4.57e-12 4.59e-11 5.97e-11 6.32e-12 6.35e-11

1e+00 6.01e-11 5.37e-12 5.40e-11 8.58e-11 7.61e-12 7.64e-11

1e+01 1.51e-10 1.64e-11 1.64e-10 1.53e-10 1.60e-11 1.61e-10

1e+02 4.67e-10 4.35e-11 4.37e-10 4.39e-10 4.14e-11 4.16e-10

1e+03 1.29e-08 8.11e-10 8.15e-09 1.29e-08 8.13e-10 8.17e-09

1e+04 1.50e-07 8.22e-09 8.26e-08 1.50e-07 8.22e-09 8.26e-08

1e+05 6.26e-07 4.26e-08 4.28e-07 6.26e-07 4.26e-08 4.28e-07

1e+06 1.10e-05 7.53e-07 7.57e-06 1.10e-05 7.53e-07 7.57e-06

1e+07 3.43e-05 3.17e-06 3.19e-05 3.43e-05 3.17e-06 3.19e-05

1e+08 1.85e-04 1.22e-05 1.23e-04 1.85e-04 1.22e-05 1.23e-04

1e+09 1.77e-05 3.69e-06 3.22e-05 1.77e-05 3.69e-06 3.22e-05

1e+10 6.74e+00 2.38e+00 1.47e+01 6.74e+00 2.38e+00 1.47e+01

The error of the solution with respect to the exact solution (A) and with respect to a discrete reference
solution obtained by a direct method (B) is given in the norms of L2((0, 5),R7), L∞((0, 5),R7) and
H 1

D((0, 5),R7)

constrained least-squares problems by the authors. As a stopping criterion, the esti-
mate (i) in [3, p. 254] has been implemented. Additionally, a bound for the maximal
number of iterations can be provided. Under reasonable conditions, at most 2 itera-
tions should be sufficient for obtaining maximal (with respect to the sensitivity of the
problem) accuracy for the discrete solution.

The iterative solver using defect corrections may overcome the difficulties con-
nected with a suitable choice of the parameter ω in the weighting method. According
to Experiment 1, we would expect the optimal ω to be in the order of magnitude
10−3 . . . 10+2 with an optimum around 10−2. This is in contrast to the recommen-
dations given in [3] where a choice of ω ≈ ε

−1/3
mach is recommended for the deferred

correction algorithm. We test the performance of the deferred correction solver in the
next experiment. Here, the tolerance in the convergence check is set to 10−15. The
iterations are considered not to converge if the convergence check has failed after two
iterations.

976 Numerical Algorithms (2022) 89:965–986

Experiment 2 We check the performance of the deferred correction solver in depen-
dence of the weight parameter ω. Both Examples 2 and 3 are used. The results are
presented in Tables 3, 4, 5 and 6. The results indicate that a larger value for ω seems
to be preferable.

5 Performance of the linear solvers

In this section, we intend to provide some insight into the behavior of the linear
solvers. This concerns both the accuracy as well as the computational resources
(computation time, memory consumption). All these data are highly implementation
dependent. Also the hardware architecture plays an important role.

The linear solvers have been implemented using the standard strategy of subdi-
viding them into a factorization step and a solve step. The price to pay is a larger
memory consumption. However, their use in the context of, e.g., a modified Newton
method may decrease the computation time considerably.

The tests have been run on a Linux laptop Dell Latitude E5550. While the program
is a pure sequential one, the MKL library may use shared memory parallel versions of
their BLAS and LAPACK routines. The CPU of the machine is an Intel(R) Core(TM)
i7-5600U CPU @ 2.60GHz providing two cores, each of them capable of hyper-
threading. For the test runs, cpu throttling has been disabled such that all cores ran at
roughly 3.2 GHz.

The parameter for the weighting solver is ω = 1 while the corresponding param-
eter for the deferred correction solver is ω = ε

−1/3
mach ≈ 1.65 × 105. These parameters

have been chosen since they seem to be best suited for the examples. The test cases
(combination of N and n) have been selected by choosing the best combinations in
[11, Tables 20 and 21], respectively.

Experiment 3 First, we consider Example 2. For all values of N , M = N + 1 Gauss-
Legendre nodes have been used. The characteristics of the test cases using Legendre
basis functions are provided in Table 7. For the special properties of the Legendre

Table 3 Influence of the parameter ω on the accuracy of the discrete solution for Example 2 using N = 5
and n = 160. The error of the solution with respect to the exact solution (A) and with respect to a discrete
reference solution obtained by a direct method (B) is given in the norms of L2((0, 5),R7), L∞((0, 5),R7)

and H 1
D((0, 5),R7). 2 iterations are applied

(A) (B)

ω L∞(0, 5) L2(0, 5) H 1
D(0, 5) L∞(0, 5) L2(0, 5) H 1

D(0, 5)

0.01a 2.13e-08 1.39e-08 1.40e-07 4.30e-09 3.30e-09 3.31e-08

10 1.73e-08 1.12e-08 1.12e-07 5.43e-11 1.62e-11 1.63e-10

ε
−1/3
mach 1.73e-08 1.12e-08 1.12e-07 5.42e-11 1.62e-11 1.63e-10

aIteration did not converge

977Numerical Algorithms (2022) 89:965–986

Table 4 Influence of the parameter ω on the accuracy of the discrete solution for Example 2 using N = 20
and n = 20

(A) (B)

ω L∞(0, 5) L2(0, 5) H 1
D(0, 5) L∞(0, 5) L2(0, 5) H 1

D(0, 5)

0.01a 2.20e-11 3.35e-12 3.37e-11 6.25e-11 6.67e-12 6.70e-11

10 1.79e-11 1.98e-12 1.99e-11 6.26e-11 6.91e-12 6.95e-11

ε
−1/3
mach 1.11e-11 1.71e-12 1.72e-11 6.26e-11 6.94e-12 6.97e-11

aIteration did not converge

The error of the solution with respect to the exact solution (A) and with respect to a discrete reference
solution obtained by a direct method (B) is given in the norms of L2((0, 5),R7), L∞((0, 5),R7) and
H 1

D((0, 5),R7). 2 iterations are applied

Table 5 Influence of the parameter ω on the accuracy of the discrete solution for Example 3 using N = 20
and n = 5.

(A) (B)

ω L∞(0, 5) L2(0, 5) H 1
D(0, 5) L∞(0, 5) L2(0, 5) H 1

D(0, 5)

0.01 8.25e-08 6.17e-09 8.72e-09 2.52e-06 1.55e-07 2.20e-07

10 2.73e-07 1.41e-08 2.00e-08 2.63e-06 1.61e-07 2.27e-07

ε
−1/3
mach 3.84e-09 3.61e-10 5.11e-10 2.45e-06 1.56e-07 2.20e-07

The error of the solution with respect to the exact solution (A) and with respect to a discrete reference
solution obtained by a direct method (B) is given in the norms of L2((0, 5),R6), L∞((0, 5),R6) and
H 1

D((0, 5),R6). 2 iterations are applied

Table 6 Influence of the parameter ω on the accuracy of the discrete solution for Example 3 using N = 5
and n = 20.

(A) (B)

ω L∞(0, 5) L2(0, 5) H 1
D(0, 5) L∞(0, 5) L2(0, 5) H 1

D(0, 5)

0.01a 1.41e-06 4.59e-07 6.49e-07 3.75e-08 4.23e-09 5.98e-09

10 1.39e-06 4.59e-07 6.49e-07 1.42e-08 2.63e-09 3.71e-09

ε
−1/3
mach 1.39e-06 4.59e-07 6.49e-07 1.71e-08 2.83e-09 4.00e-09

aIteration did not converge

The error of the solution with respect to the exact solution (A) and with respect to a discrete reference
solution obtained by a direct method (B) is given in the norms of L2((0, 5),R6), L∞((0, 5),R6) and
H 1

D((0, 5),R6). 2 iterations are applied

978 Numerical Algorithms (2022) 89:965–986

Table 7 Case characteristics for Experiment 3 using the Legendre basis.

ΦR
π,M ΦC

π,M

Case N n dimA dimC nun nnzC nnzA nnzA

1 3 320 8964 1914 8640 5742 101124 101124

2 5 80 3364 474 3280 1422 58964 59044

3 10 5 389 24 380 72 12749 12334

4 20 5 739 24 730 72 47509 46534

The number of nonzero elements in the matrices A and C are provided as reported by the functions of the
Eigen library. The columns denote: the number of rows of A (dimA), the number of rows of C (dimC),
the number of unknowns (nun), the number of nonzero elements of C (nnzC), the number of nonzero
elements of A (nnzA) for the functional ΦR

π,M and ΦC
π,M , respectively

polynomials, the matrix C representing the constraints is extremely sparse featuring
only three nonzero elements per row. The computational results are shown in Table 8.
In the next computations, the Chebyshev basis has been used which leads to a slightly
more occupied matrix C . The results are provided in Tables 9 and 10.

Table 8 Computing times, permanent workspace needed, and error for the cases described in Table 7. The
computing times are provided in milliseconds

ΦR
π,M ΦC

π,M

Case Solver nWork tass tfact tslv Error nWork tass tfact tslv Error

1 direct 221829 16 23 4 6.74e-04 221829 14 14 4 6.44e-04

weighted 309438 16 17 6 6.74e-04 309438 16 17 6 6.44e-04

deferred 309438 17 17 17 6.74e-04 309438 17 17 17 6.44e-04

2 direct 115932 14 21 4 9.02e-07 116168 6 10 2 8.50e-07

weighted 155334 16 16 5 9.19e-07 155370 8 8 3 1.65e-06

deferred 155334 17 16 14 9.02e-07 155370 8 8 7 8.50e-07

3 direct 24233 2 4 1 8.80e-08 24967 1 2 0 6.59e-08

weighted 26810 3 3 1 8.63e-08 27028 1 1 0 7.95e-08

deferred 26810 3 3 2 8.80e-08 27028 1 1 1 6.59e-08

4 direct 90277 11 14 2 4.47e-12 90052 9 14 2 5.17e-12

weighted 96544 13 10 3 1.80e-07 97857 11 10 2 4.86e-08

deferred 96544 13 10 6 2.12e-12 97857 11 10 6 2.08e-12

They are the average of 100 runs of each case. The error is measured in the norm of H 1
D((0, 5),R7).

The column headings denote: The upper bound on the number of nonzero elements of the QR factors
as reported by SPQR (nWork), the time for the matrix assembly (tass), the time for the factorization
(afact), and the time for the solution (tslv) for both functionals ΦR

π,M and ΦC
π,M

979Numerical Algorithms (2022) 89:965–986

Table 9 Case characteristics for Experiment 3 using the Chebyshev basis

ΦR
π,M ΦC

π,M

Case N n dimA dimC nun nnzC nnzA nnzA

1 3 320 8964 1914 8640 7656 100164 101124

2 5 80 3364 474 3280 2370 58884 59044

3 10 5 389 24 380 168 12794 12594

4 20 5 739 24 730 288 47509 47119

The number of nonzero elements in the matrices A and C are provided as reported by the functions of the
Eigen library. The columns denote: the number of rows of A (dimA), the number of rows of C (dimC),
the number of unknowns (nun), the number of nonzero elements of C (nnzC), the number of nonzero
elements of A (nnzA) for the functional ΦR

π,M and ΦC
π,M , respectively

The previous example is an initial value problem. This structure may have conse-
quences on the performance of the linear solvers. Therefore, in the next experiment,
we consider a boundary value problem.

Experiment 4 We repeat Experiment 3 with Example 3. The problem characteristics
and computational results are provided in Tables 11, 12, 13, and 14. It should be noted

Table 10 Computing times, permanent workspace needed, and error for the cases described in Table 9

ΦR
π,M ΦC

π,M

Case Solver nWork tass tfact tslv Error nWork tass tfact tslv Error

1 direct 236741 14 21 5 6.74e-04 227571 14 23 5 6.44e-04

weighted 324429 17 19 6 1.15e-03 325351 17 19 6 6.93e-04

deferred 324429 18 20 19 6.74e-04 325351 17 19 19 6.44e-04

2 direct 119389 14 22 4 9.02e-07 119012 6 11 2 8.50e-07

weighted 149444 17 17 6 1.05e-06 149470 8 8 3 8.95e-07

deferred 149444 18 18 16 9.02e-07 149470 8 8 8 8.50e-07

3 direct 24499 2 4 1 8.80e-08 25415 1 2 0 6.59e-08

weighted 25806 3 3 1 9.62e-08 26076 1 2 0 8.00e-08

deferred 25806 3 4 3 8.80e-08 26076 1 2 1 6.59e-08

4 direct 90965 10 15 2 4.41e-12 92081 9 15 2 3.71e-12

weighted 87839 13 11 2 3.51e-12 100022 11 11 2 2.86e-12

deferred 87839 14 12 6 2.80e-12 100022 12 11 6 1.96-12

The computing times are provided in milliseconds. They are the average of 100 runs of each case. The
error is measured in the norm of H 1

D((0, 5),R7). The column headings denote: The upper bound on the
number of nonzero elements of the QR factors as reported by SPQR (nWork), the time for the matrix
assembly (tass), the time for the factorization (afact), and the time for the solution (tslv) for both
functionals ΦR

π,M and ΦC
π,M

980 Numerical Algorithms (2022) 89:965–986

Table 11 Case characteristics for Experiment 4 using the Legendre basis

ΦR
π,M ΦC

π,M

Case N n dimA dimC nun nnzC nnzA nnzA

1 4 320 9602 1595 9280 4785 86403 80643

2 5 160 5762 795 5600 1422 63363 63363

3 10 5 332 20 325 60 6933 6663

4 20 5 632 20 625 60 25793 25263

The number of nonzero elements in the matrices A and C are provided as reported by the functions of the
Eigen library. The columns denote: the number of rows of A (dimA), the number of rows of C (dimC),
the number of unknowns (nun), the number of nonzero elements of C (nnzC), the number of nonzero
elements of A (nnzA) for the functional ΦR

π,M and ΦC
π,M , respectively

that the deferred correction solver returned normally (tolerance as before 10−15) after
at most two iterations in all cases. However, in some cases, the results are completely
off. This happens, for example, in Tables 12 and 14, cases 1 and 2, for ΦC

π,M .

Table 12 Computing times, permanent workspace needed, and error for the cases described in Table 11

ΦR
π,M ΦC

π,M

Case Solver nWork tass tfact tslv Error nWork tass tfact tslv Error

1 direct 437085 15 28 8 1.53e-04 397127 15 28 8 1.16e-04

weighted 235746 17 15 5 8.22e-05 341713 17 21 7 2.07e-05

deferred 235746 18 15 14 5.53e-02 341713 17 22 26 9.09e+02

2 direct 348742 21 42 12 2.59e-05 348742 19 42 13 1.55e-05

weighted 153062 12 9 3 9.29e-07 153062 11 9 3 7.75e-06

deferred 153062 12 9 8 1.38e-01 153062 11 9 10 1.47e-01

3 direct 11617 1 2 0 8.84e-10 12155 1 2 0 1.31e-09

weighted 12400 2 2 1 1.25e-09 12141 1 1 0 4.99e-09

deferred 12400 2 2 1 4.18e-11 12141 1 1 1 5.08e-09

4 direct 46847 7 8 2 2.84e-07 46883 3 4 1 3.57e-07

weighted 42947 8 5 2 1.17e-07 42859 3 3 1 2.27e-07

deferred 42947 8 5 4 5.27e-09 42859 3 3 2 1.51e-07

The computing times are provided in milliseconds. They are the average of 100 runs of each case. The
error is measured in the norm of H 1

D((0, 1),R6). The column headings denote: The upper bound on the
number of nonzero elements of the QR factors as reported by SPQR (nWork), the time for the matrix
assembly (tass), the time for the factorization (afact), and the time for the solution (tslv) for both
functionals ΦR

π,M and ΦC
π,M . Data in bold indicate results where the solver terminated normally but with

a result being completely off

981Numerical Algorithms (2022) 89:965–986

Table 13 Case characteristics for Experiment 4 using the Chebyshev basis

ΦR
π,M ΦC

π,M

case N n dimA dimC nun nnzC nnzA nnzA

1 4 320 9602 1595 9280 6380 86404 82564

2 5 160 5762 795 5600 3975 63365 63365

3 10 5 332 20 325 140 6937 6787

4 20 5 632 20 625 240 25812 25542

The number of nonzero elements in the matrices A and C are provided as reported by the functions of the
Eigen library. The columns denote: the number of rows of A (dimA), the number of rows of C (dimC),
the number of unknowns (nun), the number of nonzero elements of C (nnzC), the number of nonzero
elements of A (nnzA) for the functional ΦR

π,M and ΦC
π,M , respectively

It should be noted that a considerable amount of memory for the QR factorizations
is consumed by the internal representation of the Q-factor in SPQR. This can be
avoided if the factorization and solution steps are intervowen.

Table 14 Computing times, permanent workspace needed, and error for the cases described in Table 13

ΦR
π,M ΦC

π,M

case solver nWork tass tfact tslv error nWork tass tfact tslv error

1 direct 441870 15 29 8 1.41e-04 417313 15 28 8 9.90e-05

weighted 223697 18 15 5 8.22e-05 409624 17 24 10 1.29e-05

deferred 223697 18 15 13 5.53e-02 409624 17 24 33 9.09e+02

2 direct 353512 21 43 13 3.26e-05 353512 19 43 13 1.90e-05

weighted 150781 12 9 3 7.43e-07 150781 11 9 3 6.01e-06

deferred 150781 12 9 9 1.38e-01 150781 11 9 9 1.47e-01

3 direct 11857 1 2 0 2.71e-09 12397 1 2 0 2.99e-09

weighted 12226 2 2 1 1.62e-09 11977 1 1 0 5.31e-09

deferred 12226 2 2 2 7.85e-11 11977 1 1 1 5.20e-10

4 direct 47405 7 8 2 4.06e-08 45915 3 4 1 1.43e-07

weighted 42901 8 5 2 6.43e-08 42817 4 3 1 2.06e-07

deferred 42901 8 5 4 1.26e-10 42817 4 3 2 2.69e-09

The computing times are provided in milliseconds. They are the average of 100 runs of each case. The
error is measured in the norm of H 1

D((0, 1),R6). The column headings denote: The upper bound on the
number of nonzero elements of the QR factors as reported by SPQR (nWork), the time for the matrix
assembly (tass), the time for the factorization (afact), and the time for the solution (tslv) for both
functionals ΦR

π,M and ΦC
π,M . Data in bold indicate results where the solver terminated normally but with

a result being completely off

982 Numerical Algorithms (2022) 89:965–986

6 Sensitivity of boundary condition weighting

As already known for boundary value problems for ODEs and index-1 DAEs, a spe-
cial problem is the scaling of the boundary condition, and hence, here the inclusion
of the boundary conditions (2). Their scaling is independent of the scaling of the
DAE (1). Therefore, it seems to be reasonable to provide an additional possibility for
the scaling of the boundary conditions. We decided to enable this by introducing an
additional parameter α to be chosen by the user. So, Φ from (5) is replaced by the
functional

Φ̃(x) =
∫ b

a

|A(t)(Dx)′(t) + B(t)x(t) − q(t)|2dt + α|Gax(a) + Gbx(b) − d|2.

Analogously, the discretized versions ΦR
π,M , ΦI

π,M and ΦC
π,M are replaced by

their counterparts Φ̃
R

π,M , Φ̃
I

π,M and Φ̃
C

π,M with weighted boundary conditions. The
convergence theorems will hold true for these modifications of the functional, too.

Experiment 5 Influence of α on the accuracy
We use the example and settings of Experiment 1. The results are provided in

Table 15.

Experiment 6 Influence of α on the accuracy
We repeat the previous experiment with Example 3. The discretization parameters

are (i) N = 5, n = 20 and (ii) N = 20, n = 5. All other settings correspond to those
of Experiment 5. The results are presented in Table 16.

The results of Experiments 5 and 6 indicate that the final accuracy is rather insen-
sitive to the choice of α. It should be noted that the coefficient matrices in Examples
2 and 3 are well-scaled.

7 Final remarks

In summary, we investigated questions related to an efficient and reliable realiza-
tion of a least-squares collocation method. These questions are particularly important
since a higher index DAE is an essentially ill-posed problem in naturally given
spaces, which is why we must be prepared for highly sensitive discrete problems.
In Part 1, in order to obtain an overall procedure that is as robust as possible, we
provided criteria which led to a robust selection of the collocation points and of the
basis functions, whereby the latter is also useful for the shape of the resulting discrete
problem. We refer to the corresponding Final remarks and conclusions in [11].

A critical ingredient for the implementation of the method is the algorithm used
for the solution of the discrete linear least-squares problem. Given the expected bad
conditioning of the least-squares problem, a QR factorization with column pivoting

983Numerical Algorithms (2022) 89:965–986

Table 15 Influence of weight parameter α for the boundary conditions in Example 2

N = 5, n = 160 N = 20, n = 20

α L∞(0, 5) L2(0, 5) H 1
D(0, 5) L∞(0, 5) L2(0, 5) H 1

D(0, 5)

1e-10 3.18e+00 7.03e+00 1.21e+01 1.60e+00 3.10e+00 5.09e+00

1e-09 9.33e-07 2.33e-06 3.84e-06 1.60e+00 3.10e+00 5.09e+00

1e-08 1.58e-07 3.52e-07 6.16e-07 1.05e-07 1.94e-07 3.54e-07

1e-07 1.27e-07 1.39e-08 3.26e-08 5.06e-09 1.10e-08 2.00e-08

1e-06 7.17e-08 2.20e-09 1.68e-08 9.60e-10 2.29e-09 4.10e-09

1e-05 9.60e-08 1.59e-09 1.58e-08 7.64e-11 2.07e-10 3.80e-10

1e-04 6.99e-08 1.59e-09 1.60e-08 5.00e-11 4.07e-11 9.26e-11

1e-03 9.83e-08 1.82e-09 1.83e-08 3.91e-11 6.41e-12 5.46e-11

1e-02 1.15e-07 2.28e-09 2.29e-08 6.37e-11 6.26e-12 6.25e-11

1e-01 6.43e-08 1.27e-09 1.27e-08 5.11e-11 6.61e-12 6.64e-1

1e+00 6.04e-08 1.13e-09 1.13e-08 6.66e-11 7.50e-12 7.54e-11

1e+01 2.15e-07 3.40e-09 3.42e-08 7.97e-11 9.85e-12 9.89e-11

1e+02 4.12e-07 5.66e-09 5.68e-08 6.78e-11 8.10e-12 8.14e-11

1e+03 4.51e-06 5.74e-08 5.76e-07 9.60e-11 9.81e-12 9.85e-11

1e+04 2.31e-05 2.93e-07 2.95e-06 2.24e-09 1.52e-10 1.52e-09

1e+05 4.68e-04 5.94e-06 5.97e-05 2.91e-08 1.35e-09 1.36e-08

1e+06 2.12e+03 5.16e+01 5.19e+02 2.34e-07 1.68e-08 1.68e-07

1e+07 6.53e+03 1.03e+02 1.04e+03 2.97e-06 1.77e-07 1.77e-06

1e+08 4.60e+02 1.78e+01 1.79e+02 4.76e-06 3.72e-07 3.73e-06

1e+09 2.05e+01 3.27e+00 3.24e+01 4.56e+01 4.90e+00 4.91e+01

The error of the solution is given in the norms of L2((0, 5),R7), L∞((0, 5),R7) and H 1
D((0, 5),R7)

must lie at the heart of the algorithm. At the same time, the sparsity structure must be
used as best as possible. In our tests, the direct solver seems to be the most robust one.
With respect to efficiency and accuracy, the deferred correction solver is preferable.
However, it failed in certain tests.

The results for M = N +1 are not much different from those obtained for a larger
M , for which we do not yet have an explanation.

In conclusion, we note that earlier implementations, among others the one from
the very first paper in this matter [13] which started from proven ingredients for ODE
codes, are from today’s point of view and experience a rather bad version for the least-
squares collocation. Nevertheless, the test results calculated with it were already very
impressive. This strengthens our belief that a careful implementation of the method
gives rise to a very efficient solver for higher index DAEs.

The algorithms have been implemented in C++11. All computations have been
performed on a laptop running OpenSuSE Linux, release Leap 15.1, the GNU
g++ compiler (version 7.5.0) [15], the Eigen matrix library (version 3.3.7) [10],
SuiteSparse (version 5.6.0) [7], in particular its sparse QR factorization [8], Intel®

984 Numerical Algorithms (2022) 89:965–986

Table 16 Influence of weight parameter α for the boundary conditions in Example 3

N = 5, n = 20 N = 20, n = 5

α L∞(0, 1) L2(0, 1) H 1
D(0, 1) L∞(0, 1) L2(0, 1) H 1

D(0, 1)

1e-10 4.21e-02 7.02e-02 9.13e-02 1.03e-06 8.55e-08 1.21e-07

1e-09 4.46e-04 7.38e-04 9.60e-04 1.00e-06 6.11e-08 8.64e-08

1e-08 4.40e-06 6.71e-06 8.80e-06 1.14e-06 6.48e-08 9.16e-08

1e-07 1.47e-06 4.87e-07 6.88e-07 9.84e-07 6.02e-08 8.51e-08

1e-06 1.39e-06 4.59e-07 6.49e-07 1.67e-06 1.10e-07 1.56e-07

1e-05 1.40e-06 4.59e-07 6.49e-07 1.19e-06 8.21e-08 1.16e-07

1e-04 1.40e-06 4.59e-07 6.49e-07 8.55e-07 6.48e-08 9.17e-08

1e-03 1.40e-06 4.59e-07 6.49e-07 1.44e-06 1.04e-07 1.47e-07

1e-02 1.40e-06 4.59e-07 6.49e-07 5.14e-07 4.77e-08 6.75e-08

1e-01 1.40e-06 4.59e-07 6.49e-07 1.69e-06 8.49e-08 1.20e-07

1e+00 1.40e-06 4.59e-07 6.49e-07 2.45e-06 1.56e-07 2.20e-07

1e+01 1.40e-06 4.59e-07 6.49e-07 1.83e-06 1.09e-07 1.54e-07

1e+02 1.40e-06 4.59e-07 6.49e-07 1.91e-05 8.14e-07 1.15e-06

1e+03 1.40e-06 4.59e-07 6.49e-07 1.40e-04 1.10e-06 1.55e-06

1e+04 1.41e-06 4.59e-07 6.49e-07 1.27e-03 5.34e-05 7.56e-05

1e+05 1.39e-06 4.59e-07 6.49e-07 3.69e-04 1.94e-05 2.75e-05

1e+06 1.63e-06 4.66e-07 6.59e-07 3.98e-04 3.42e-05 4.83e-05

1e+07 1.99e+02 5.07e+01 7.18e+01 2.11e-03 3.53e-04 4.99e-04

1e+08 1.99e+02 5.07e+01 7.18e+01 1.22e-01 2.83e-02 4.01e-02

1e+09 1.99e+02 5.07e+01 7.18e+01 4.86e-01 2.05e-01 2.90e-01

The error of the solution is given in the norms of L2((0, 1),R6), L∞((0, 1),R6) and H 1
D((0, 1),R6)

MKL (version 2019.5-281), all in double precision with a rounding unit of εmach ≈
2.22 × 10−16.4 The code is optimized using the level -O3.5

Funding Open access funding provided by Royal Institute of Technology.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons
licence, and indicate if changes were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

4Intel is a registered trademark of Intel Corporation.
5The interested reader can get access to the code by writing to the corresponding author. However, it
should be noted that the code has been written with the aim of a thorough testing of the ingredients of the
proposed methods. So it does not yet have production quality.

985Numerical Algorithms (2022) 89:965–986

http://creativecommons.org/licenses/by/4.0/

References

1. Ascher, U., Bader, G.: A new basis implementation for a mixed order boundary-value ode solver.
SIAM J. Sci Statist. Comput. 8, 483–500 (1987)

2. Barlow, J.L.: Solution of sparse weighted and equality constrained least squares problems. In: Page,
C., LePage, R. (eds.) Computing Science and Statistics, pp. 53–62. Springer, New York (1992)

3. Barlow, J.L., Vemulapati, U.B.: A note on deferred correction for equality constrained least squares
problems. SIAM J. Numer Anal. 29(1), 249–256 (1992)

4. Björck, Å.: Numerical Methods for Least Squares Problems. SIAM, Philadelphia (1996)
5. Björck, Å., Golub, G.H.: Iterative refinement of linear least squares solutions by Householder

transformations. BIT 7, 322–337 (1967)
6. Campbell, S.L., Moore, E.: Constraint preserving integrators for general nonlinear higher index DAEs.

Num. Math. 69, 383–399 (1995)
7. Davis, T.A.: Direct Methods for Sparse Linear Systems. Fundamentals of Algorithms. SIAM,

Philadelphia (2006)
8. Davis, T.A.: Algorithm 915, SuiteSparseQR: Multifrontal multithreaded rank-revealing sparse QR

factorization. ACM Trans. Math. Softw. 38(1), 8:1–8:22 (2011)
9. Golub, G.H., van Loan, C.h. Matrix Computations, 2nd edn. The Johns Hopkins University Press,

Baltimore and London (1989)
10. Guennebaud, G., Jacob, B., et al.: Eigen v3. http://eigen.tuxfamily.org (2010)
11. Hanke, M., März, R.: Towards a reliable implementation of least-squares collocation for higher-

index linear differential-algebaic equations. Part 1: Basics and ansatz choices. Numerical Algorithms.
submitted

12. Hanke, M., März, R., Tischendorf, C.: Least-squares collocation for higher-index linear differential-
algebaic equations Estimating the stability threshold. Math. Comp. 88(318), 1647–1683 (2019).
https://doi.org/10.1090/mcom/3393

13. Hanke, M., März, R., Tischendorf, C., Weinmüller, E., Wurm, S.: Least-squares collocation for
linear higher-index differential-algebraic equations. J. Comput. Appl Math. 317, 403–431 (2017).
https://doi.org/10.1016/j.cam.2016.12.017

14. Lamour, R., März, R., Tischendorf, C. In: Ilchmann, A., Reis, T. (eds.): Differential-Algebraic Equa-
tions: A Projector Based Analysis. Differential-Algebraic Equations Forum. Springer-Verlag, Berlin
Heidelberg New York Dordrecht London (2013)

15. Stallman, R.M., GCC Developers Community, et al: Using the Gnu Compiler collection. CreateSpace
Scotts Valley (2009)

16. van Loan, C.h.: On the method of weighting for equality-constrained least-squares problems. SIAM
J. Numer. Anal. 22(5), 851–864 (1985)

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

986 Numerical Algorithms (2022) 89:965–986

http://eigen.tuxfamily.org
https://doi.org/10.1090/mcom/3393
https://doi.org/10.1016/j.cam.2016.12.017

	Towards a reliable implementation of least-squares collocation for higher index differential-algebraic equations—Part 2: the discrete least-squares problem
	Abstract
	Introduction
	The structure of the discrete problem (16), (17)
	Test examples
	Approaches to solve the constraint optimization problem (16)–(17)
	Direct elimination method
	Weighting of the constraints to solve the optimization problem (16)–(17).
	Deferred correction procedure

	Performance of the linear solvers
	Sensitivity of boundary condition weighting
	Final remarks
	References

