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Abstract
In this paper, we consider the sample average approximation (SAA) approach for a
class of stochastic nonlinear complementarity problems (SNCPs) and study the cor-
responding convergence properties. We first investigate the convergence of the SAA
counterparts of two-stage SNCPs when the first-stage problem is continuously dif-
ferentiable and the second-stage problem is locally Lipschitz continuous. After that,
we extend the convergence results to a class of multistage SNCPs whose decision
variable of each stage is influenced only by the decision variables of adjacent stages.
Finally, some preliminary numerical tests are presented to illustrate the convergence
results.
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1 Introduction

Uncertainty is an important ingredient in modern optimization problems and practical
applications [1, 24, 28]. The stochastic complementarity problem (SCP) is to con-
sider the complementarity problem under uncertainty, which can be derived from the
Karush-Kuhn-Tucker condition for a large class of stochastic programming problems
and/or the equilibrium of stochastic multi-player games.

According to the structure (or levels) of uncertainty, SCPs can be roughly divided
into single-stage SCPs, two-stage SCPs, and multistage SCPs. Single-stage and two-
stage SCPs use random parameters to describe the uncertainty. Multistage SCPs
model the uncertainty by stochastic processes. Since the multistage SCP reveals
uncertainty more elaborately, it is expected to obtain better solutions compared with
the single-stage or two-stage case, especially in a relatively long decision-making
period. Of course, it is also challenging in both theoretical analysis and numerical
algorithms because of the complexity of uncertainty.

Deterministic variational inequalities and complementarity problems have been
extensively discussed; see monographs [11, 12] and the references therein for more
details. In the last decade, stochastic variational inequalities (SVIs) have received
more and more attention [19, 25]. In [2], by rewriting the single-stage stochas-
tic linear complementarity problem through a nonlinear complementarity problem
(NCP) function, the quasi-Monte Carlo method was adopted to solve the reformu-
lated problem. Xu employed in [30] the SAA approach to analyze the discretization
of single-stage SVIs. In [7], Chen et al. adopted the expected residual minimization
(ERM) approach to formulate the single-stage SVI and a smoothing SAA approach
was proposed to solve the ERM formulation. In [3], Chen et al. extended the ERM
procedure to general two-stage nonlinear SVIs. In [23], Rockafellar and Wets first
proposed the formulation of multistage SVIs and lay the foundation for the further
investigation of two-stage or multistage SVIs. Next to [23], Rockafellar and Sun
adopted in [22] the progressive hedging method (PHM) to solve the multistage SVIs
when the support set is discrete. Inspired by [3, 20, 22, 23], Chen et al. investigated in
[6] a discretization scheme for two-stage stochastic linear complementarity problems.
In [4], Chen et al. considered the SAA approach for two-stage stochastic general-
ized equations and its application in two-stage nonlinear SVI-SCP problems. In [17],
Jiang et al. adopted the regularized SAA approach to solve a class of two-stage SVIs
and applied them to the crude oil market. In [5], Chen et al. modeled crude oil market
share under the COVID-19 pandemic using two-stage stochastic equilibrium. In [16],
Jiang et al. discussed the quantitative stability as well as the rate of convergence for
a class of two-stage linear SVI-SCP problems. For a comprehensive review of recent
development in two-stage and multistage SVIs, we refer to [29].

The SAA approach is an important approximation method for single-stage and
two-stage stochastic optimization problems [28, 30]. Compared with the single-stage
or two-stage case, the convergence analysis results of the SAA of multistage cases are
quite limited. The existing results concentrate on multistage stochastic programming
problems; see [21, 26, 27]. To the best of our knowledge, there are few results about
the SAA approach and corresponding convergence analysis for multistage SCPs.
According to these existing results, there are mainly two possible approaches to
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sample from a random process. The first one is to view the random process as a whole
and sample from its (joint) distribution; the other is the conditional sampling. In this
paper, from the viewpoint of practical calculation, we adopt the conditional sampling
method and focus on the SAA convergence analysis of multistage SCPs.

There are mainly two contributions of this paper.

– We establish the strong monotonicity assertion for a class of multistage SNCPs,
which extends existing results from the two-stage case to the multistage case.
Specifically, we weaken the continuously differentiable condition of strong
monotonicity assertion in [4, Theorem 3.9] for two-stage nonlinear SVI-SCP
problems to the locally Lipschitz continuity (Theorem 2), and then extend it to
the multistage case (Theorem 3).

– Under the strong monotonicity assumption, we consider the conditional sampling
method for a three-stage SNCP. The asymptotic convergence assertion is derived
(Theorem 4). The convergence analysis of the SAA approach for T -stage SNCPs
(T > 3) can be derived similarly.

The rest of this paper is organized as follows. In Section 2, we introduce mod-
els and some useful properties of multistage SNCPs. In Section 3, we investigate the
convergence analysis results of the SAA approach to multistage SNCPs. In Section 4,
some preliminary numerical results are given by PHM. Finally, we conclude the
whole paper in Section 5.

2 Models and properties of multistage SNCPs

In this section, we first introduce models of multistage SNCPs. After that, some
useful properties are given for the further discussion.

2.1 Models of multistage SNCPs

To describe a T -stage SNCP model, we need further the following statement. Denote
by ξ1, ξ2, · · · , ξT the discrete stochastic process with time horizon 2 ≤ T ∈ N.
For simplicity of statement and without loss of generality, we assume that ξt , t =
1, 2 · · · , T are all Rs-valued. Furthermore, we assume that ξ1 is deterministic and
random vectors ξt , t = 2 · · · , T are defined on probability space (Ω,F,P), i.e., ξt :
Ω → Ξt with Ξt being the support set of ξt . Denote ξ[t] = (ξ1, · · · , ξt ) supported
on Ξ[t] ⊆ �1 × · · · × Ξt . Then we use Ft to denote the σ -field induced by ξ[t],
i.e., Ft := σ(ξ[t]). Thus, ξ[t] is a random vector on the probability space (Ω,Ft ,P).
Specially, without the confusion, we neglect the subscript when t = T , namely,
ξ = ξ[T ], Ξ = Ξ[T ] and F = FT . Moreover, we have the inclusion that {∅, Ω} =
F1 ⊆ F2 ⊆ · · · ⊆ FT = F , which forms the so-called filtration. Analogously, to
simplify the description, we again assume that decision variables xt , t = 1, 2, · · · , T

are all Rn-valued. Of course, the t th stage decision variable xt is assumed to depend
only on the available information until time t , i.e., ξ[t]. Or, equivalently, xt = xt (ξ[t]).
This is the well-known nonanticipativity condition, which is an essential property in
multistage stochastic optimization.
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With the above notation, the general T -stage SNCP model can be written as:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 ∈ Eξ |ξ1[Φ1(x1, x2(ξ[2]), · · · , xT (ξ[T ]), ξ)] + NR
n+(x1),

0 ∈ Eξ |ξ[2] [Φ2(x1, x2(ξ[2]), · · · , xT (ξ[T ]), ξ)] + NR
n+(x2(ξ[2])), a.e. ξ[2] ∈ Ξ[2],

...

0 ∈ Eξ |ξ[T −1] [ΦT −1(x1, x2(ξ[2]), · · · , xT (ξ[T ]), ξ)] + NR
n+(xT −1(ξ[T −1])),

a.e. ξ[T −1] ∈ Ξ[T −1],
0 ∈ ΦT (x1, x2(ξ[2]), · · · , xT (ξ[T ]), ξ) + NR

n+(xT (ξ[T ])), a.e. ξ[T ] ∈ Ξ[T ],
(1)

where Eξ |ξ[t] [·] means the conditional expectation of ξ for giving ξ[t] for t =
1, · · · , T −1;NR

n+(x1) is the normal cone of Rn+ at x1 and so on in a similar fashion;

Φt : RnT × Ξ → R
n for t = 1, · · · , T . Sometimes, for simplification, we also write

x2 = x2(ξ[2]), · · · , xT = xT (ξ[T ]) in what follows.
Strategies of multistage SNCP (1) are a series of tuples (x1, x2(·), · · · , xT (·)) sat-

isfying (1). Another important concept for two-stage or multistage SNCPs is the
so-called relatively complete recourse condition. We say the multistage SNCP (1)
satisfies the relatively complete recourse condition, if
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

0 ∈ Eξ |ξ[t+1] [Φt+1(x1, x2, · · · , xT , ξ)] + NR
n+(xt+1), a.e. ξ[t+1] ∈ Ξ[t+1],

...

0 ∈ Eξ |ξ[T −1] [ΦT −1(x1, x2, · · · , xT , ξ)] + NR
n+(xT −1), a.e. ξ[T −1] ∈ Ξ[T −1],

0 ∈ ΦT (x1, x2, · · · , xT , ξ) + NR
n+(xT ), a.e. ξ[T ] ∈ Ξ[T ]

has solutions for any given ξ[t+1] ∈ Ξ[t+1] and (x1, x2, · · · , xt ) ∈ R
tn+ .

Note that model (1) is a very general form of multistage SNCPs. However, each
stage may be decided only by the adjoining decision variables, e.g., multistage
stochastic inventory problems. Given this, we will focus on the following specific
multistage SNCP:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 ≤ x1⊥Eξ2 [Φ1(x1, x2(ξ[2]), ξ2)] ≥ 0,

0 ≤ x2(ξ[2])⊥Eξ3|ξ[2]
[
Φ2(x1, x2(ξ[2]), x3(ξ[3]), ξ3)

] ≥ 0, a.e. ξ[2] ∈ Ξ[2],
...

0 ≤ xT −1(ξ[T −1])⊥EξT |ξ[T −1]
[
ΦT −1(xT −2(ξ[T −2]), xT −1(ξ[T −1]), xT (ξ[T ]), ξT )

] ≥ 0,

a.e. ξ[T −1] ∈ Ξ[T −1],
0 ≤ xT (ξ[T ])⊥ΦT (xT −1(ξ[T −1]), xT (ξ[T ]), ξT ) ≥ 0, a.e. ξ[T ] ∈ Ξ[T ].

(2)

In general, it is more interesting to consider the behavior of the first-stage solution
x1. Intuitively, we only need to determine x1 at the present stage, and x2, · · · , xT are
scenario-dependent (or wait and see) solutions and new information can be employed
for more accurate estimate in future stages. In view of this, as well as by convention
(see, e.g., [26]), we will focus on the first stage solutions of the multistage SNCP (2).
Throughout this paper, we assume that Φ1(·, ·, ξ2) for a.e. ξ[2] ∈ Ξ[2], Φt(·, ·, ·, ξt+1)
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for a.e. ξ[t+1] ∈ Ξ[t+1] with t = 2, · · · , T − 1 and ΦT (·, ·, ξT ) for a.e. ξ[T ] ∈ Ξ[T ]
are continuous.

Our analysis is based on strong monotonicity properties of multistage SNCPs. To
this end, we first consider strong monotonicity properties of two-stage SNCPs, and
then extend them to multistage SNCPs.

2.2 Strongmonotonicity of two-stage SNCPs

Two-stage SNCP is a special case of T -stage SNCPs (with T = 2) and can be
formulated as:

{
0 ∈ Eξ [Φ(x, y(ξ), ξ)] + NR

n+(x),

0 ∈ Ψ (x, y(ξ), ξ) + NR
m+(y(ξ)), a.e. ξ ∈ Ξ,

(3)

where ξ is a s-dimensional random vector defined on probability space (Ω,F,P),
Eξ [·] denotes the expectation operator with respect to (w.r.t.) random vector ξ , Φ :
R

n × R
m × Ξ → R

n and Ψ : Rn × R
m × Ξ → R

m, Ξ ⊆ R
s denotes the support

set of random vector ξ , and y(ξ) denotes the value of y(·) at ξ . We assume that both
Φ(·, ·, ξ) and Ψ (·, ·, ξ) are continuous for a.e. ξ ∈ Ξ .

We first give the definition of the strong monotonicity.

Definition 1 A mapping f : Rn → R
n is strongly monotone with a positive scalar

γ , if 〈f (x) − f (y), x − y〉 ≥ γ ‖x − y‖2 for any x, y ∈ R
n.

We have from [10, p. 75, Corollary] that the following chain rule property for
Clarke generalized Jacobian, which is useful in the following discussion.

Lemma 1 [10] Let G : Rm → R
k and F : Rn → R

m. Assume that G and F are
locally Lipschitz continuous. Then, for any v ∈ R

n, we have

∂(G � F)(x)v ⊆ conv{∂G(F(x))∂F (x)v},
where ∂(G � F)(x), ∂G(F(x)) and ∂F (x) denote the Clarke generalized Jacobian
of G � F at x, G at F(x) and F at x, respectively.

Proposition 1 Let f : Rn → R
n be locally Lipschitz continuous. Then, f is strongly

monotone with a positive constant γ if and only if, for any x ∈ R
n and J (x) ∈ ∂f (x),

it has that vJ (x)v ≥ γ ‖v‖2 for any v ∈ R
n.

Proposition 1 can be considered as a simple corollary of [9, Corollary 3.10], but
the Jacobian is defined in the sense of Clarke, rather than Mordukhovich.

Lemma 2 Consider the following parametric variational inequality:

0 ∈ Θ(z, p) + NC(z), (4)

where Θ : Rk × R
l → R

k and C ⊆ R
k is a closed convex set. Assume that Θ(·, p)

is strongly monotone and locally Lipschitz continuous for every fixed p. Then, there
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exists a unique solution for problem (4), denoted by ẑ(p), and it is locally Lipschitz
continuous w.r.t. p.

The result follows by Proposition 1, parametrically CD regularity, and [15, Theo-
rem 4] directly. Thus, we neglect the proof.

To proceed, we define the following inner product in R
n × Y , where Y is the

collection of measurable mappings from Ξ to Rm. Let (x, y(·)), (x̃, ỹ(·)) ∈ R
n ×Y .

Define 〈(x, y(·)), (x̃, ỹ(·))〉 = xx̃ + Eξ [y(ξ)ỹ(ξ)].
According to the definition of the inner product above, we can define the strong

monotonicity (see [6]) for problem (3): there exists a positive number κ̄ such that
〈(

Eξ [Φ(x, y(ξ), ξ)] − Eξ [Φ(x̃, ỹ(ξ), ξ)]
Ψ (x, y(·), ·) − Ψ (x̃, ỹ(·), ·)

)

,

(
x − x̃

y(·) − ỹ(·)
)〉

≥ κ̄ 〈(x − x̃, y(·) − ỹ(·)), (x − x̃, y(·) − ỹ(·))〉
= κ̄

(
‖x − x̃‖2 + Eξ [‖y(ξ) − ỹ(ξ)‖2]

)

holds for any (x, y(·)), (x̃, ỹ(·)) ∈ R
n × Y .

We make the following assumption.

Assumption 1 There exists a positive continuous function κ : Ξ → R++ with
Eξ [κ(ξ)] < +∞, such that
〈(

Φ(u, z, ξ)

Ψ (u, z, ξ)

)

−
(

Φ(ū, z̄, ξ)

Ψ (ū, z̄, ξ)

)

,

(
u − ū

z − z̄

)〉

≥ κ(ξ)
(
‖u − ū‖2 + ‖z − z̄‖2

)

holds for any (u, z), (ū, z̄) ∈ R
n×R

m and a.e. ξ ∈ Ξ , whereR++ :={x ∈ R :x > 0}.

For any fixed pair (x, ξ), under Assumption 1 and the continuity of Ψ (x, ·, ξ), the
second-stage problem of (3) has a unique solution because of the strong monotonicity
with constant κ(ξ) [12, Theorem 2.3.3 (b)]. We denote by ŷ(x, ξ) the unique solution.
Then, we take it into the first-stage problem and obtain

0 ∈ Eξ [Φ(x, ŷ(x, ξ), ξ)] + NR
n+(x). (5)

We also use Φ̂(x, ξ) to denote Φ(x, ŷ(x, ξ), ξ), which stresses that the latter one
depends only on x and ξ .

Now we are ready to present the main results of this part.

Theorem 1 Suppose that Ψ (x, ·, ξ) in the second-stage problem of (3) is strongly
monotone for any fixed x and a.e. ξ ∈ Ξ , and Ψ (·, ·, ξ) is locally Lipschitz
continuous for a.e. ξ ∈ Ξ .

(i) For any fixed x and a.e. ξ ∈ �, the second-stage problem of (3) has a unique
solution, denoted by ŷ(x, ξ), and ŷ(x, ξ) is locally Lipschitz continuous w.r.t.
x for a.e. ξ ∈ Ξ .

(ii) Moreover, if ŷ(x, ξ) is differentiable at x, then for any v ∈ R
m,

∇x ŷ(x, ξ)v ∈
⋃

(C,D)∈∂Ψ (x,ŷ(x,ξ),ξ)

−(I − DL + DLD)−1DLCv, (6)
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where ∂Ψ (x, ŷ(x, ξ), ξ) is the Clarke generalized Jacobian w.r.t. (x, y), L is a
subset contained in {1, · · · , m} and DL is a diagonal matrix with its diagonal

elements defining as Dll =
{
1 l ∈ L,

0 otherwise.

Proof The first assertion follows from Lemma 2 straightforwardly. In the following
proof, we concentrate on the second assertion.

Since ŷ(x, ξ) is locally Lipschitz continuous, it is differentiable almost every-
where. For any fixed x with ŷ(·, ξ) being differentiable at x, we consider the
following partition of the index set:

I = {
i : (ŷ(x, ξ))i > (Ψ (x, ŷ(x, ξ), ξ))i

}
,

J = {
j : (ŷ(x, ξ))j = (Ψ (x, ŷ(x, ξ), ξ))j

}
,

K = {
k : (ŷ(x, ξ))k < (Ψ (x, ŷ(x, ξ), ξ))k

}
.

If index j ∈ J , (ŷ(x, ξ))j = (Ψ (x, ŷ(x, ξ), ξ))j = 0. There are two possible
cases.

(a) If there exists a sequence {xk}k∈N with xk �= x and xk → x as k → ∞ such
that (ŷ(xk, ξ))j = 0, based on the definition of differential, we have

∥
∥∇x(ŷ(x, ξ))j

∥
∥ = lim

k→∞

∣
∣(ŷ(xk, ξ))j − (ŷ(x, ξ))j

∣
∣

∥
∥xk − x

∥
∥

= |0 − 0|
∥
∥xk − x

∥
∥

= 0.

(b) If there exists a sequence {xk}k∈N with xk �= x and xk → x as k → ∞ such
that (Ψ (xk, ŷ(xk, ξ), ξ))j = 0, we have

∥
∥∇x(Ψ (x, ŷ(x, ξ), ξ))j

∥
∥ = lim

k→∞

∣
∣(Ψ (xk, ŷ(xk, ξ), ξ))j − (Ψ (x, ŷ(x, ξ), ξ))j

∣
∣

∥
∥xk − x

∥
∥

= 0.

Thus, we use notation J1 and J2 to denote these indexes satisfying (a) and (b),
respectively. Thus, J = J1 ∪ J2. Then, we denote L = I ∪ J2 and M = K ∪ J1.

If index i ∈ M, (ŷ(x, ξ))i = 0, which obviously indicates that ∇x(ŷ(x, ξ))M =
0.

If index i ∈ I, we have (Ψ (x, ŷ(x, ξ), ξ))i = 0. Actually, we have that

(Ψ (x, ŷ(x, ξ), ξ))i = 0

in a neighborhood of x due to ŷ(x, ξ) > 0 and the locally Lipschitz continuity of
ŷ(·, ξ) w.r.t. x. This obversion together with (b) indicates

∇x(Ψ (x, ŷ(x, ξ), ξ))L = 0,

where (Ψ (x, ŷ(x, ξ), ξ))L is the subvector of Ψ (x, ŷ(x, ξ), ξ) with entries in L.
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For any vector v ∈ R
m, we have

0 = 0v = ∇x(Ψ (x, ŷ(x, ξ), ξ))Lv

1)∈ conv

{

∂(Ψ (x, ŷ(x, ξ), ξ))L∂x

(
x

ŷ(x, ξ)

)

v

}

= conv
{
∂(Ψ (x, ŷ(x, ξ), ξ))L

}
(

v

∇x ŷ(x, ξ)v

)

2)= ∂(Ψ (x, ŷ(x, ξ), ξ))L

(
v

∇x ŷ(x, ξ)v

)

,

where 1) follows from the chain rule of Clarke generalized Jacobian, i.e., Lemma
1; 2) follows from the convexity and compactness of ∂((x, ŷ(x, ξ), ξ))L by [10,
Proposition 2.6.2, (a)]. Then, we obtain

0 ∈
⋃

(C,D)∈∂Ψ (x,ŷ(x,ξ),ξ)

(CL,DL)

(
v

∇x ŷ(x, ξ)v

)

,

where CL and DL denote sub-matrices of C and D with row indexes included in L,
respectively.

Note that (∇x ŷ(x, ξ))M=0, which implies that

DL(∇x ŷ(x, ξ)v) = DLL(∇x ŷ(x, ξ)v)L,

where DLL denotes the sub-matrix of D with row index and column index contained
in L. Then we have

0 ∈
⋃

(C,D)∈∂Ψ (x,ŷ(x,ξ),ξ)

CLv + DLL(∇x ŷ(x, ξ)v)L.

According to Proposition 1, the strong monotonicity of Ψ (x, ·, ξ) implies the
strongly positive definiteness of DLL. Thus, the inverse of DLL is well-defined.
Finally, we obtain

(∇x ŷ(x, ξ)v)L ∈
⋃

(C,D)∈∂Ψ (x,ŷ(x,ξ),ξ)

D−1
LLCLv.

Combining (∇x ŷ(x, ξ)v)M with (∇x ŷ(x, ξ)v)L together, we have (6) by using the
same reformulation techniques in [6, 8].

Remark 1 In Theorem 1, we weaken the conditions in existing results in [18, Corol-
lary 2.1] from continuous differentiability of Ψ (·, ·, ξ) to locally Lipschitz continuity
of Ψ (·, ·, ξ).

With the above preparation, we now give the strong monotonicity assertion for
the two-stage SNCP where the second-stage problem is only locally Lipschitz
continuous. This will lay the foundation for the multistage case.

Theorem 2 Suppose that: (i) Assumption 1 holds; (ii) Φ(·, ·, ξ) is continuously dif-
ferentiable and Ψ (·, ·, ξ) is locally Lipschitz continuous for a.e. ξ ∈ Ξ . Then Φ̂(·, ξ)
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is strongly monotone for a.e. ξ ∈ Ξ with constant κ(ξ) and thus Eξ [Φ̂(·, ξ)] is
strongly monotone with constant Eξ [κ(ξ)].

Proof According to Lemma 2, ŷ(x, ξ) is locally Lipschitz continuous w.r.t. x

and thus Φ(x, ŷ(x, ξ), ξ) is locally Lipschitz continuous w.r.t. x. Then, its Clarke
generalized Jacobian w.r.t. x is well-defined. We first verify that Φ̂(x, ξ) :=
Φ(x, ŷ(x, ξ), ξ) is strongly monotone w.r.t. x for a.e. ξ ∈ Ξ . Equivalently, we show
that any J (ξ) ∈ ∂xΦ̂(x, ξ) is strongly positive definite (see Proposition 1). Based on
the definition of Clarke generalized Jacobian, we have that, for any v ∈ R

n, that

∂xΦ̂(x, ξ)v = ∂xΦ(x, ŷ(x, ξ), ξ)v

(a)= conv

⎧
⎨

⎩
lim(
x′ → x

x′ ∈ Dŷ(·,ξ)

)

(∇1Φ(x′, ŷ(x′, ξ), ξ) + ∇2Φ(x′, ŷ(x′, ξ), ξ)∇x ŷ(x′, ξ)
)
v

⎫
⎬

⎭

(b)⊆ conv

{

lim(
x′ → x

x′ ∈ Dŷ(·,ξ)

)

( ⋃

(C(x′,ξ),D(x′,ξ))∈∂Ψ (x′,ŷ(x′,ξ),ξ)

A(x′, ξ)

− B(x′, ξ)(I − DL + DLD(x′, ξ))−1DLC(x′, ξ)

)

v

}

,

where Dŷ(·,ξ) denotes the collection of differentiable points of ŷ(·, ξ); A(x′, ξ) :=
∇1Φ(x′, ŷ(x′, ξ), ξ), B(x′, ξ) := ∇2Φ(x′, ŷ(x′, ξ), ξ), ∇1 is the differential at the
first position and ∇2 is the differential at the second position. Note that (a) follows
from the definition of Clarke generalized Jacobian, and (b) follows from (6).

It knows from the strong monotonicity in Assumption 1 and Proposition 1 that any
(
A(x′, ξ) B(x′, ξ)

C(x′, ξ) D(x′, ξ)

)

∈ ∂

(
Φ(x′, ŷ(x′, ξ), ξ)

Ψ (x′, ŷ(x′, ξ), ξ)

)

is strongly positive definite with constant κ(ξ). Then by [6, Lemma 2.1] and
Assumption 1,

z(A(x′, ξ) − B(x′, ξ)(I − DL + DLD(x′, ξ))−1DLC(x′, ξ)
)
z ≥ κ(ξ)‖z‖2

for any z ∈ R
n and x′ ∈ Dŷ(·,ξ). This implies that each element in

conv

{

lim( x′ → x

x′ ∈ Dŷ(·,ξ)

)

(
⋃

(C(x′,ξ),D(x′,ξ))∈∂Ψ (x′,ŷ(x′,ξ),ξ)

A(x′, ξ)

− B(x′, ξ)(I − DL + DLD(x′, ξ))−1DLC(x′, ξ)

)

v

}

is strongly positive definite with constant κ(ξ). Then, the strong monotonicity of
Φ̂(·, ξ) with constant κ(ξ) follows from Proposition 1.

Furthermore, we have Eξ [Φ̂(·, ξ)] is strongly monotone with constant Eξ [κ(ξ)].
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2.3 Strongmonotonicity of multistage SNCPs

In this part, we consider the strong monotonicity of the T -stage SNCP (2). It can
be viewed as an extension of [6] from two-stage to multistage and linear case
to nonlinear case. Analogously, we need to define the following inner product in
R

n × Y2 × · · · × YT , where Yt , t = 2, · · · , T stand for the set of all n-dimensional
measurable mappings on Ξ[t]. For

(x1, x2(·), · · · , xT (·)), (y1, y2(·), · · · , yT (·)) ∈ R
n × Y2 × · · · × YT ,

we define

〈(x1, x2(·), · · · , xT (·)), (y1, y2(·), · · · , yT (·))〉
= x

1 y1 + Eξ[2] [x2(ξ[2])y2(ξ[2])] + · · · + Eξ[T ] [xT (ξ[T ])yT (ξ[T ])].
Then, we have the corresponding norm

‖(x1, x2(·), · · · , xT (·))‖2 = 〈(x1, x2(·), · · · , xT (·)), (x1, x2(·), · · · , xT (·))〉 .
Denote

Λ(x1, · · · , xT , ξ) =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

Φ1(x1, x2, ξ2)

Φ2(x1, x2, x3, ξ3)
...

ΦT −1(xT −2, xT −1, xT , ξT )

ΦT (xT −1, xT , ξT )

⎞

⎟
⎟
⎟
⎟
⎟
⎠

and

Γ (x1, · · · , xT (·), ξ) =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

Eξ2 [Φ1(x1, x2(ξ[2]), ξ2)]
Eξ3|ξ[2] [Φ2(x1, x2(ξ[2]), x3(ξ[3]), ξ3)]

...
EξT |ξ[T −1] [ΦT −1(xT −2(ξ[T −2]), xT −1(ξ[T −1]), xT (ξ[T ]), ξT )]

ΦT (xT −1(ξ[T −1]), xT (ξ[T ]), ξT )

⎞

⎟
⎟
⎟
⎟
⎟
⎠

.

Then, we can give the definition of the strong monotonicity for G : Rn × Y2 ×
· · ·×YT → R

n ×Y2×· · ·×YT as follows: there exists a positive number η̄ such that

〈G(x1, · · · , xT (·)) − G(y1, · · · , yT (·)), (x1 − y1, · · · , xT (·) − yT (·))〉
≥ η̄ ‖(x1 − y1, x2(·) − y2(·), · · · , xT (·) − yT (·))‖2

for any (x1, x2(·), · · · , xT (·)), (y1, y2(·), · · · , yT (·)) ∈ R
n × Y2 × · · · × YT .

Assumption 2 For any (u1, u2, · · · , uT ), (z1, z2, · · · , zT ) ∈ R
T n, there exists η :

Ξ → R++ satisfying Eξ [η(ξ)] < +∞, such that

〈Λ(u1, u2, · · · , uT , ξ) − Λ(z1, z2, · · · , zT , ξ), (u1 − z1, u2 − z2, · · · , uT − zT )〉
≥ η(ξ)

(
‖u1 − z1‖2 + ‖u2 − z2‖2 + · · · + ‖uT − zT ‖2

)

(7)
holds for a.e. ξ ∈ Ξ .

176 Numerical Algorithms (2022) 89:167–194



It is easy to know from (7) that

〈Φt(ut−1, ut , ut+1, ξt+1) − Φt(ut−1, zt , ut+1, ξt+1), (ut − zt )〉 ≥ η(ξ) ‖ut − zt‖2
(8)

for t = 1, 2, · · · , T . Then,

〈Γ (x1, · · · , xT (·), ξ) − Γ (y1, · · · , yT (·), ξ), (x1 − y1, · · · , xT (·) − yT (·))〉
≥ Eξ [η(ξ)]

(
‖x1 − y1‖2 + · · · + ‖xT (·) − yT (·)‖2

)
,

which implies Γ (x1, x2, · · · , xT , ξ) is strongly monotone.

Proposition 2 Let Assumption 2 hold. For any given x[t] ∈ R
tn and a.e. ξ[t+1] ∈

Ξ[t+1], the last (T − t)-stage problem

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

0 ≤ xt+1⊥Eξt+2|ξ[t+1]
[
Φt+1(xt , xt+1, xt+2, ξt+2)

] ≥ 0,

0 ≤ xt+2⊥Eξt+3|ξ[t+2]
[
Φt+2(xt+1, xt+2, xt+3, ξt+3)

] ≥ 0, a.e. ξ[t+2] ∈ Ξ[t+2],
...

0 ≤ xT ⊥ΦT (xT −1, xT , ξT ) ≥ 0, a.e. ξ[T ] ∈ Ξ[T ]
(9)

has a unique solution (x̂t+1, · · · , x̂T ).

Similar to the previous discussion, we know from [14, Theorem 12.2 and Lemma
12.2] that (9) has a unique solution. Specifically, when t = 0, problem (2) has a
unique solution under Assumption 2.

Theorem 3 Suppose that: (i) Assumption 2 holds; (ii) Φ1(·, ·, ξ2), Φt(·, ·, ·, ξt+1) for
t = 2, · · · , T −1 andΦT (·, ·, ξT ) are continuously differentiable almost surely. Then

0 ≤ x1⊥Eξ2[Φ1(x1, x̂2(x1, ξ[2]), ξ2)] ≥ 0 (10)

and the following problem

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

0 ≤ x1⊥Eξ2[Φ1(x1, x2(ξ[2]), ξ2)] ≥ 0,

0 ≤ x2⊥Eξ3|ξ[2]
[
Φ2(x1, x2(ξ[2]), x3(ξ[3]), ξ3)

] ≥ 0, a.e. ξ[2] ∈ Ξ[2],
...

0 ≤ xt⊥Eξt+1|ξ[t]
[
Φt(xt−1(ξ[t−1]), xt (ξt ), x̂t+1(x[t], ξ[t+1]), ξt+1)

] ≥ 0,

a.e. ξ[t] ∈ Ξ[t]

(11)

for t = 2, · · · , T − 1 are strongly monotone with constant Eξ [η(ξ)], where
x̂t+1(xt , ξ[t+1]) is the unique solution of the (t + 1)th stage for given x[t] and ξ[t+1]
in Proposition 2.
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Proof We give the proof recursively. Denote

Λ̃t (x1, · · · , xt , ξ[t+1]) =

⎛

⎜
⎜
⎜
⎝

Φ1(x1, x2, ξ2)

Φ2(x1, x2, x3, ξ3)
...

Φt(xt−1, xt , x̂t+1(xt , ξ), ξt+1)

⎞

⎟
⎟
⎟
⎠

and

Γ̃t (x1, · · · , xt , ξ[t]) =

⎛

⎜
⎜
⎜
⎝

Eξ2[Φ1(x1, x2, ξ2)]
Eξ3|ξ[2] [Φ2(x1, x2, x3, ξ3)]

...
Eξt+1|ξ[t] [Φt(xt−1, xt , x̂t+1(xt , ξ[t+1]), ξt+1)]

⎞

⎟
⎟
⎟
⎠

for t = 2, · · · , T − 1, where x̂t+1(xt , ξ[t+1]) is the unique (t + 1)th stage solution in
Proposition 2.

Then, we first verify t = T − 1 for problem (11). According to Proposition 2, we
have for given xT −1 and a.e. ξ ∈ � that the last-stage problem

0 ≤ xT ⊥ΦT (xT −1, xT , ξT ) ≥ 0

has a unique solution, denoted by x̂T (xT −1, ξ). Moreover, by Lemma 2, we know
that x̂T (xT −1, ξ) is locally Lipschitz continuous w.r.t. xT −1. By viewing

⎛

⎜
⎜
⎜
⎝

⎛

⎜
⎝

Φ1(x1, x2, ξ2)
...

ΦT −1(xT −2, xT −1, xT , ξT )

⎞

⎟
⎠

ΦT (xT −1, xT , ξT )

⎞

⎟
⎟
⎟
⎠

=
(

Λ̃T −1(x1, · · · , xT −1, ξ[T ])
ΦT (xT −1, xT , ξT )

)

as two parts, we can obtain from Theorem 2 that Λ̃T −1(x1, · · · , xT −1, ξ[T ]) satisfies
Assumption 2 in R

(T −1)n with constant η(ξ). Moreover, by a similar procedure, we
can obtain
〈
Γ̃T −1(x1, x2(·), · · · , xT −1(·), ξ[T −1]) − Γ̃T −1(y1, y2(·), · · · , yT −1(·), ξ[T −1]),

(x1 − y1, x2(·) − y2(·), · · · , xT −1(·) − yT −1(·))
〉

≥ Eξ [η(ξ)]
(
‖x1 − y1‖2 + ‖x2(·) − y2(·)‖2 + · · · + ‖xT −1(·) − yT −1(·)‖2

)

for any (x1, x2(·), · · · , xT −1(·)), (y1, y2(·), · · · , yT −1(·)) ∈ R
n × Y2 × · · · × YT −1.

Thus, problem (11) is strongly monotone with constant Eξ [η(ξ)] for t = T − 1.
Now, we assume that for T − 1, T − 2, · · · , t + 1 (t ≥ 2) that problem (11) is

strongly monotone with constant Eξ [η(ξ)] and x̂t+1(xt , ξ[t+1]) is locally Lipschitz
continuous w.r.t. xt . Analogously, we view �̃t (x1, · · · , xt , ξ[t+1]) as the following
two parts:
⎛

⎜
⎜
⎜
⎝

⎛

⎜
⎝

Φ1(x1, x2, ξ2)
...

Φt−1(xt−2, xt−1, xt , ξt )

⎞

⎟
⎠

Φt(xt−1, xt , x̂t+1(xt , ξ[t]), ξt+1)

⎞

⎟
⎟
⎟
⎠

=
(

Λ̃t−1(x1, · · · , xt−1, ξ[t])
Φt (xt−1, xt , x̂t+1(xt , ξ[t]), ξt+1)

)

.
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Then, by Lemma 2 and Theorem 2, we have that x̂t (xt−1, ξ[t]) is locally Lipschitz
continuous w.r.t. xt−1 and Γ̃t (x1, · · · , xt , ξ[t]) is strongly monotone with constant
Eξ [η(ξ)].

Finally, we obtain

{
0 ≤ x1⊥Eξ2[Φ1(x1, x2(ξ[2]), ξ2)] ≥ 0;
0 ≤ x2⊥Eξ3|ξ[2]

[
Φ2(x1, x2(ξ[2]), x̂3(x2, ξ[3]), ξ3)

] ≥ 0, a.e. ξ[2] ∈ Ξ[2]

is strongly monotone with constant Eξ [η(ξ)], and x̂3(·, ξ[3]) is locally Lipschitz
continuous. By directly using Theorem 2, we verify (10). Then we complete the
proof.

Theorem 3 can be viewed as a multistage extension of Theorem 2. The following
corollary directly follows from the proof of Theorem 3.

Corollary 1 Let assumptions in Theorem 3 hold. For t = 2, · · · , T , x̂t (xt−1, ξ[t]),
which is the t th stage solution in Proposition 2, is locally Lipschitz continuous w.r.t.
xt−1 for a.e. ξ[t] ∈ Ξ[t].

3 Conditional sampling for multistage SNCPs

To simplify the presentation as well as by convention [26, 27], we only discuss the
case of the SAA approach to solve problem (2) when T = 3. That is

⎧
⎪⎨

⎪⎩

0 ≤ x1⊥Eξ2[Φ1(x1, x2(ξ[2]), ξ2)] ≥ 0,

0 ≤ x2(ξ[2])⊥Eξ3|ξ[2]
[
Φ2(x1, x2(ξ[2]), x3(ξ[3]), ξ3)

] ≥ 0, a.e. ξ[2] ∈ Ξ[2],
0 ≤ x3(ξ[3])⊥Φ3(x2(ξ[2]), x3(ξ[3]), ξ3) ≥ 0, a.e. ξ[3] ∈ Ξ[3]

(12)

or equivalently

{
0 ≤ x1⊥Eξ2[Φ1(x1, x2(ξ[2]), ξ2)] ≥ 0,

0 ≤ x2(ξ[2])⊥Eξ3|ξ[2]
[
Φ2(x1, x2(ξ[2]), x̂3(x2(ξ[2]), ξ[3]), ξ3)

]≥0, a.e. ξ[2] ∈ Ξ[2],
(13)

where x̂3(x2(ξ[2]), ξ[3]) is the unique solution of the third-stage problem for given
x2(ξ[2]) and ξ[3].

Let {ξ12 , ξ22 , · · · , ξ
N1
2 } be N1 i.i.d. random samples according to random vector ξ2.

Further, we have according to ξ i
2 for 1 ≤ i ≤ N1 the following conditional N2 i.i.d.
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random samples {ξ i1
3 , ξ i2

3 , · · · , ξ
iN2
3 } of ξ3. Thus, we have totalN := N1N2 scenarios

or sample paths. Then, we obtain the conditional sampling SAA problem of (13):

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 ≤ x1⊥ 1

N1

N1∑

i=1

Φ1(x1, x2(ξ
i
2), ξ

i
2) ≥ 0,

0 ≤ x2(ξ
j

2 )⊥ 1

N2

N2∑

k=1

Φ2(x1, x2(ξ
j

2 ), x̂3(x2(ξ
j

2 ), ξ
jk

[3]), ξ
jk

3 ) ≥ 0,

j = 1, 2, · · · , N1 and k = 1, 2, · · · , N2,

(14)

where ξ
jk

[3] := (ξ1, ξ
j

2 , ξ
jk

3 ) for j = 1, 2, · · · , N1 and k = 1, 2, · · · , N2. Since ξ1

is deterministic, we also neglect ξ1 and write ξ
j

[2] as ξ
j

2 . Similar to the notation in
the preceding context, we use x̂2(x1, ξ2) and x∗

1 to denote the optimal solution of
the second-stage problem of (13) for given x1 and ξ2 and the optimal solution of the
first-stage problem of (13), respectively. Moreover, according to Theorem 3, we have
that the SAA problem (14) has the unique solution by viewing that the underlying
probability distributions are discrete. We use x̃

N1,N2
1 to denote the first-stage solution

of problem (14) and x̃
N2
2 (x1, ξ

j

2 ) to denote the second-stage solution of problem (14)

for given x1 and ξ
j

2 .
It should be mentioned that the convergence analysis of SAA of three-stage SNCPs

(between problems (13) and (14)) is not a trivial extension from SAA of two-stage
SNCPs. The main reason is that the second-stage problem in (13) changes when the
SAA procedure is conducted (see (14)), which makes the SAA convergence of the
first-stage problem of (14) to that of (13) harsh. To derive the convergence result, we
need the following standard assumption.

Assumption 3 Let the following assertions hold:
(A1) There exist two compact and convex sets X1, X2 ⊆ R

n such that x∗
1 ∪

x̃
N1,N2
1 ⊆ X1 for any N1, N2 ∈ N and x̂2(x1, ξ2) ∪ {x̃N2

2 (x1, ξ
j

2 )}N1
j=1 ⊆ X2 for any

x1 ∈ X1, ξ2, ξ
j

2 ∈ Ξ2 and N1, N2 ∈ N, j = 1, 2, · · · , N1;
(A2) For each ξ2 ∈ Ξ2, the following conditional expectation

sup
x1∈X1,x2∈X2

Eξ3|ξ2
[∥
∥Φ2(x1, x2, x̂3(x2, ξ[3]), ξ3)

∥
∥
]

is finite.

The following lemma is a uniform convergence result.

Lemma 3 Let f : X ⊆ R
n → R

m be a continuous mapping with X being a compact
set and fk : Rn × Ω → R

m for k ∈ N. Suppose that: (i) ‖fk(x, ω) − fk(y, ω)‖ ≤
Lk(ω) ‖x − y‖ for any x, y ∈ X and k ∈ N with Lk(ω) → L with probability
1 (w.p.1) as k → ∞, where L is a positive constant; (ii) for any fixed x ∈ X,
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fk(x, ω) → f (x) w.p.1 as k → ∞. Then fk(x, ω) → f (x) w.p.1 uniformly w.r.t. x
over X as k → ∞, i.e.,

lim
k→∞ sup

x∈X

|fk(x, ω) − f (x)| = 0 w.p.1.

Proof Choose now a point x̄ ∈ X. For any ε > 0, due to assumption (i), there exists
a neighborhood W of x̄ such that w.p.1 for sufficiently large k,

sup
x∈W∩X

‖fk(x, ω) − fk(x̄, ω)‖ ≤ Lk(ω) · diam(W) ≤ ε, (15)

where diam(W) := supw1,w2∈W ‖w1 − w2‖ is the diameter of W .
Due to the compactness of X, by finite covering theorem, we can select finite

points x1, · · · , xq and corresponding neighborhoods W1, · · · , Wq covering X such
that w.p.1 for large enough k, we have

sup
x∈Wj ∩X

∥
∥fk(x, ω) − fk(xj , ω)

∥
∥ ≤ Lk(ω) · diam(Wj ) ≤ ε, j = 1, · · · , q. (16)

Since f is continuous, neighborhoods of xj , j = 1, · · · , q can be chosen in such
a way that

sup
x∈Wj ∩X

∥
∥f (x) − f (xj )

∥
∥ ≤ ε, j = 1, · · · , q. (17)

We also know from assumption (ii) that w.p.1 for sufficiently large k,

max
1≤j≤q

∥
∥fk(xj , ω) − f (xj )

∥
∥ ≤ ε, j = 1, · · · , q. (18)

For any x ∈ X, denote by j (x) ∈ {1, · · · , q} the index such that x ∈ Wj(x). Then
we have from (16) to (18) that w.p.1 for sufficiently large k,

‖fk(x, ω) − f (x)‖
= ∥∥fk(x, ω) − f (x) + fk(xj (x), ω) − fk(xj (x), ω) + f (xj (x)) − f (xj (x))

∥
∥

≤ ∥∥fk(x, ω) − fk(xj (x), ω)
∥
∥+ ∥∥f (x) − f (xj (x))

∥
∥+ ∥∥fk(xj (x), ω) − f (xj (x))

∥
∥

≤ 3ε.

Due to the arbitrariness of x and ε, we complete the proof.

Proposition 3 Suppose that: (i) Assumptions 2 and 3 hold; (ii) Φ2(·, ·, ·, ξ3) and
�3(·, ·, ξ3) are continuously differentiable and Lipschitz continuous with Lipschitz
moduli L2(ξ3) and L3(ξ3) respectively for a.e. ξ3 ∈ �3.

(a) For each ξ
j

2 ∈ Ξ2,

sup
x1∈X1,x2∈X2

(
1

N2

N2∑

k=1

Φ2(x1, x2, x̂3(x2, ξ
jk

[3]), ξ
jk

3 )

− E
ξ3|ξj

2

[
Φ2(x1, x2, x̂3(x2, ξ[3]), ξ3)

]
)

→ 0

w.p.1 as N2 → ∞,
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(b) If, in addition, (iii) for every ξ
j

2 ∈ Ξ2,

E
ξ3|ξj

2
[L2(ξ3)] < ∞, E

ξ3|ξj
2
[η(ξ[3])] < ∞ and E

ξ3|ξj
2

[
L2(ξ3)L3(ξ3)

η(ξ[3])

]

< ∞,

then for every ξ
j

2 ∈ Ξ2, we have

sup
x1∈X1

∥
∥
∥x̃

N2
2 (x1, ξ

j

2 ) − x̂2(x1, ξ
j

2 )

∥
∥
∥→ 0

w.p.1 as N2 → ∞.

Proof We know from Corollary 1 that x̂3(·, ξ3) is locally Lipschitz continuous. This
together with the locally Lipschitz continuity of Φ2(·, ·, ·, ξ3) and the compactness
of X1 and X2 result in (a) by directly using [28, Theorem 7.53].

In the rest of the proof, we focus on part (b). We prove it based on Lemma 3. Thus,
we first verify the pointwise convergence. Let {x̃N2

2 (x1, ξ
j

2 )} be the solution sequence
of the second-stage problem of (14) with given x1, ξ

j

2 and samples {ξjk

3 }N2
k=1 and x̄2

be any accumulation point of {x̃N2
2 (x1, ξ

j

2 )} due to (A1) of Assumption 3. According

to part (a), we have, for fixed x1 ∈ X1 and ξ
j

2 ∈ Ξ2, that

sup
x2∈X2

(
1

N2

N2∑

k=1

Φ2(x1, x2, x̂3(x2, ξ
jk

[3]), ξ
jk

3 ) − E
ξ3|ξj

2

[
Φ2(x1, x2, x̂3(x2, ξ[3]), ξ3)

]
)

→ 0

w.p.1 as N2 → ∞. This implies, for fixed x1 ∈ X1 and ξ
j

2 ∈ Ξ2, that x̃
N2
2 (x1, ξ

j

2 ) →
x̂2(x1, ξ

j

2 ) w.p.1 as N2 → ∞ (see, e.g., [30, Proposition 2.1]). Next, we verify this
pointwise convergence is uniform w.r.t. x1 over X1.

To this end, we first consider the Lipschitz modulus of x̂3(·, ξ jk

3 ), which

is the upper bound of the Clarke generalized Jacobian ∂x2 x̂3(x2, ξ
jk

3 ).
By directly using (6) in Theorem 1, we have

∂x2 x̂3(x2, ξ
jk

3 )v ⊆
⋃

(C,D)∈∂Φ3(x2,x̂3(x2,ξ
jk
3 ),ξ

jk
3 )

−(I − DL + DLD)−1DLCv

for any v ∈ R
n. It means that

sup
Δ∈∂x2 x̂3(x2,ξ

jk
3 )

‖Δ‖ ≤ sup
(C,D)∈∂Φ3(x2,x̂3(x2,ξ

jk
3 ),ξ

jk
3 )

∥
∥(I − DL + DLD)−1DLC

∥
∥

≤ sup
(C,D)∈∂Φ3(x2,x̂3(x2,ξ

jk
3 ),ξ

jk
3 )

∥
∥(I − DL + DLD)−1DL

∥
∥ ‖C‖ .

We know from Proposition 1 and Assumption 2 thatD is strongly monotone (positive
definite) w.r.t. η(ξ

jk

[3]). Then we obtain from [6, Lemma 2.1] that

∥
∥
∥(I − DL + DLD)−1DL

∥
∥
∥ ≤ 1

η(ξ
jk

[3])
.
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Note also that ‖C‖ is bounded from above by the Lipschitz modulus of Φ3(·, ·, ξ jk

3 )

based on the definition of Clarke generalized Jacobian. Then x̂3(·, ξ jk

3 ) is Lips-

chitz continuous with modulus
L3(ξ

jk
3 )

η(ξ
jk
[3])

. Since X2 is convex and compact, we have

x̂3(x2, ξ
jk

3 ) is Lipschitz continuous over X2 with modulus
L3(ξ

jk
3 )

η(ξ
jk
[3])

.

According to the Lipschitz continuity of Φ2(·, ·, ·, ξ jk

[3]), a Lipschitz modulus of
term

1

N2

N2∑

k=1

Φ2(·, ·, x̂3(·, ξ jk

[3]), ξ
jk

3 )

is 1
N2

∑N2
k=1 L2(ξ

jk

3 )

(

1 + L3(ξ
jk
3 )

η(ξ
jk
[3])

)

.

Moreover, by Assumption 2, 1
N2

∑N2
k=1 Φ2(x1, x2, x̂3(x2, ξ

jk

3 ), ξ
jk

3 ) is strongly

monotone with positive constant 1
N2

∑N2
k=1 η(ξ

jk

[3]). Finally, by the same procedure as

above, we obtain a Lipschitz modulus of x̃
N2
2 (·, ξ j

2 ) is

1
N2

∑N2
k=1 L2(ξ

jk

3 )

(

1 + L3(ξ
jk
3 )

η(ξ
jk
[3])

)

1
N2

∑N2
k=1 η(ξ

jk

[3])
,

which can be bounded from above by

E
ξ3|ξj

2

[
L2(ξ3)

(
1 + L3(ξ3)

η(ξ[3])

)]
+ 1

E
ξ3|ξj

2
[η(ξ[3])]

w.p.1 as N2 → ∞. Then by directly using Lemma 3, we conclude (b).

Proposition 4 Suppose that: (i) Assumptions 2 and 3 hold; (ii) Φ1(·, ·, ξ2),
Φ2(·, ·, ·, ξ3) and Φ3(·, ·, ξ3) are continuously differentiable and Lipschitz continu-
ous for a.e. ξ2 ∈ Ξ3 and ξ3 ∈ Ξ3 with Lipschitz moduli L1(ξ2), L2(ξ3) and L3(ξ3)

respectively, and

Eξ2

⎡

⎣L1(ξ2)Eξ3|ξ2

⎡

⎣
L2(ξ3)

(
1 + L3(ξ3)

η(ξ[3])

)

η(ξ ik
[3])

+ 1

⎤

⎦

⎤

⎦ < ∞.

Then we have

sup
x1∈X1

∥
∥
∥
∥
∥

1

N1

N1∑

i=1

Φ1(x1, x̃
N2
2 (x1, ξ

i
2), ξ

i
2) − Eξ2[Φ1(x1, x̂2(x1, ξ[2]), ξ2)]

∥
∥
∥
∥
∥

→ 0 (19)

w.p.1 as N2 → ∞ and N1 → ∞.
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Proof We prove pointwise convergence firstly. For any fixed x1 ∈ X1,
∥
∥
∥
∥
∥

1

N1

N1∑

i=1

Φ1(x1, x̃
N2
2 (x1, ξ

i
2), ξ

i
2) − Eξ2[Φ1(x1, x̂2(x1, ξ[2]), ξ2)]

∥
∥
∥
∥
∥

≤
∥
∥
∥
∥
∥

1

N1

N1∑

i=1

(
Φ1(x1, x̃

N2
2 (x1, ξ

i
2), ξ

i
2) − Φ1(x1, x̂2(x1, ξ

i
2), ξ

i
2)
)
∥
∥
∥
∥
∥

+
∥
∥
∥
∥
∥

1

N1

N1∑

i=1

Φ1(x1, x̂2(x1, ξ
i
2), ξ

i
2) − Eξ2[Φ1(x1, x̂2(x1, ξ[2]), ξ2)]

∥
∥
∥
∥
∥
.

(20)

For the first term of the right-hand side of (20), we have
∥
∥
∥
∥
∥

1

N1

N1∑

i=1

(
Φ1(x1, x̃

N2
2 (x1, ξ

i
2), ξ

i
2) − Φ1(x1, x̂2(x1, ξ

i
2), ξ

i
2)
)
∥
∥
∥
∥
∥

≤ 1

N1

N1∑

i=1

L1(ξ
i
2)

∥
∥
∥x̃

N2
2 (x1, ξ

i
2) − x̂2(x1, ξ

i
2)

∥
∥
∥ .

It knows from Proposition 3 that

L1(ξ
i
2)

∥
∥
∥x̃

N2
2 (x1, ξ

i
2) − x̂2(x1, ξ

i
2)

∥
∥
∥→ 0

w.p.1 as N2 → ∞, and

L1(ξ
i
2)

∥
∥
∥x̃

N2
2 (x1, ξ

i
2) − x̂2(x1, ξ

i
2)

∥
∥
∥ ≤ L1(ξ

i
2) · diam(X2),

where diam(X2) denotes the diameter of X2. Then, by Lebesgue’s dominated
convergence theorem, we have

lim
N2→∞Eξ i

2

[
L1(ξ

i
2)

∥
∥
∥x̃

N2
2 (x1, ξ

i
2) − x̂2(x1, ξ

i
2)

∥
∥
∥

]
= 0.

Thus, by law of large numbers (LLN), as N1 → ∞ and N2 → ∞, it holds
pointwisely that

1

N1

N1∑

i=1

L1(ξ
i
2)

∥
∥
∥x̃

N2
2 (x1, ξ

i
2) − x̂2(x1, ξ

i
2)

∥
∥
∥→ 0.

Analogously, by LLN,
∥
∥
∥
∥
∥

1

N1

N1∑

i=1

Φ1(x1, x̂2(x1, ξ
i
2), ξ

i
2) − Eξ2[Φ1(x1, x̂2(x1, ξ[2]), ξ2)]

∥
∥
∥
∥
∥

→ 0

as N1 → ∞ pointwisely. Then for any fixed x1 ∈ X1,
∥
∥
∥
∥
∥

1

N1

N1∑

i=1

Φ1(x1, x̃
N2
2 (x1, ξ

i
2), ξ

i
2) − Eξ2[Φ1(x1, x̂2(x1, ξ[2]), ξ2)]

∥
∥
∥
∥
∥

→ 0

as N1 → ∞ and N2 → ∞.
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Note that 1
N1

∑N1
i=1 Φ1(·, x̃N2

2 (·, ξ i
2), ξ

i
2) is Lipschitz continuous with Lipschitz

modulus being

1

N1

N1∑

i=1

L1(ξ
i
2)

⎛

⎜
⎜
⎝

1

N2

N2∑

k=1

L2(ξ
ik
3 )

(

1 + L3(ξ
ik
3 )

η(ξ ik[3])

)

η(ξ ik
[3])

+ 1

⎞

⎟
⎟
⎠ ,

which converges to a finite number w.p.1 due to LLN. Then we complete the proof
by quoting Lemma 3.

Immediately, we can derive the following asymptotic convergence result by using
Proposition 4 (see, e.g., [30, Proposition 2.1]).

Theorem 4 Under the same conditions of Proposition 4, we have

x̃
N1,N2
1 → x∗

1

w.p.1 as N1 → ∞ and N2 → ∞.

We make the following remarks.

Remark 2 From the above discussion, it can be observed that the extension of con-
vergence analysis of two-stage SNCPs to that of three-stage SNCPs is not trivial. The
key reason is that the second-stage problem in (13) changes when the conditional
SAA procedure is conducted (see (14)), which makes the SAA convergence of the
first-stage problem of (14) to that of (13) unusual.

We consider the convergence analysis of the SAA approach of three-stage SNCP
for the following reasons: (1) Similar to multistage stochastic optimization [26], the
extension of the convergence analysis from two-stage SNCPs to three-stage SNCPs
already demonstrates the main difficulties of extending the convergence analysis
from two-stage SNCPs to multistage SNCPs. It is not difficult to extend our results
to the general T -stage SNCPs for T > 3 by a similar procedure. (2) The discussion
of three-stage SNCPs simplifies the notation.

Remark 3 In this section, we concentrate on convergence properties of the SAA
approach for a class of multistage SNCPs (three-stage SNCPs whose decision vari-
able of each stage is influenced only by the decision variables of adjoining stages).
This is mainly motivated by some practical problems, like inventory problems, and
multistage stochastic optimization problems (see, e.g., [28, Chapter 3]). It should be
pointed out that there are some challenges to extend our results to the case of the
general multistage SNCPs (1).

We use the following general three-stage SNCP (by letting T = 3 in (1)) to explain
these challenges:
⎧
⎪⎨

⎪⎩

0 ∈ Eξ |ξ1 [Φ1(x1, x2(ξ[2]), x3(ξ[3]), ξ[3])] + NR
n+(x1),

0 ∈ Eξ |ξ[2] [Φ2(x1, x2(ξ[2]), x3(ξ[3]), ξ[3])] + NR
n+(x2(ξ[2])), a.e. ξ[2] ∈ Ξ[2],

0 ∈ Φ3(x1, x2(ξ[2]), x3(ξ[3]), ξ[3]) + NR
n+(x3(ξ[3])), a.e. ξ[3] ∈ Ξ[3].

(21)
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Under certain conditions (see, e.g., Lemma 2), we have the third-stage problem of
(21) with given (x1, x2, ξ[3]) has a unique and locally Lipschitz continuous solution
x̂3(x1, x2, ξ[3]). Taking it into the first and second stages, we rewrite problem (21) as

⎧
⎪⎨

⎪⎩

0 ∈ Eξ |ξ1[Φ1(x1, x2(ξ[2]), x̂3(x1, x2(ξ[2]), ξ[3]), ξ[3])] + NR
n+(x1),

0 ∈ Eξ |ξ[2] [Φ2(x1, x2(ξ[2]), x̂3(x1, x2(ξ[2]), ξ[3]), ξ[3])] + NR
n+(x2(ξ[2])),

a.e. ξ[2] ∈ Ξ[2].
(22)

By a similar procedure as that in Theorem 1, the second-stage problem of (22) can
have a unique and locally Lipschitz continuous solution x̂2(x1, ξ[2]). Submitting it
into the first sage of (22), we obtain

0 ∈ Eξ |ξ1[Φ1(x1, x̂2(x1, ξ[2]), x̂3(x1, x̂2(x1, ξ[2]), ξ[3]), ξ[3])] + NR
n+(x1). (23)

It can observe from problem (23) that the mapping in problem (23) is highly com-
posite w.r.t. x1. Moreover, our analysis can not apply to this problem directly, and it
will become more complicated as the number of stages increases.

4 Numerical results

In this section, we extend the two-stage stochastic non-cooperative game problem [6,
16, 20, 31] to a three-stage case, and apply PHM to solve it. The numerical results
are used to illustrate the theoretical results.

Let ξ2 : Ω2 → Ξ2 ⊆ R
2 and ξ3 : Ω3 → Ξ3 ⊆ R

2 be two independent random
vectors. For i = 1, 2, xi ∈ R

ni , yi : Ξ2 → R
mi and zi : Ξ2 × Ξ3 → R

li be the
decision variables of the ith player at the first, second, and third stages, respectively,
with ni = mi = li = 3. Denote n = n1 + n2, m = m1 + m2 and l = l1 + l2. By
convention, we also use x−i , y−i and z−i to denote the rival’s decisions for i = 1, 2.
In this game, the ith (i = 1, 2) player solves the following optimization problem:

min
xi≥0

θi(xi, x−i ) + Eξ2[ψi(xi, y−i (ξ2), ξ2)], (24)

where θi : Rni × R
n−i → R, ψi : Rni × R

m−i × Ξ2 → R is defined as

ψi(xi, y−i (ξ2), ξ2) :=min
yi≥0

φi(yi, xi, y−i (ξ2), ξ2)

+ Eξ3|ξ2[ϕi(yi, z−i (ξ2, ξ3), ξ2, ξ3)],
(25)

here φi : Rmi ×R
ni ×R

m−i × Ξ2 → R and ϕi : Rmi ×R
l−i × Ξ2 × Ξ3 → R is the

optimal value function of the third-stage problem, that is

ϕi(yi(ξ2), z−i (ξ2, ξ3), ξ2, ξ3) := min
zi≥0

ςi(zi, yi(ξ2), z−i (ξ2, ξ3), ξ2, ξ3), (26)

with ςi : Rli × R
mi × R

l−i × Ξ2 × Ξ3 → R.

186 Numerical Algorithms (2022) 89:167–194



To proceed, we consider the strongly convex quadratic game (see also [4, 31]),
that is

θi(xi , x−i ) = 1

2
x
i Hixi + q

i xi + x
i Pix−i ,

φi(yi , xi , y−i (ξ2), ξ2) = 1

2
y
i Q1

i (ξ2)yi + c1i (ξ2)
yi

+
2∑

j=1

y
i S1

ij (ξ2)xj + y
i O1

i (ξ2)y−i (ξ2),

ςi(zi , yi(ξ2), z−i (ξ2, ξ3), ξ2, ξ3) = 1

2
z
i Q2

i (ξ2, ξ3)zi + c2i (ξ2, ξ3)
zi

+
2∑

j=1

z
i S2

ij (ξ2, ξ3)yj (ξ2) + z
i O2

i (ξ2, ξ3)z−i (ξ2, ξ3),

where Hi ∈ R
ni×ni , Q1

i (ξ2) ∈ R
mi×mi and Q2

i (ξ2, ξ3) ∈ R
li×li are symmetric pos-

itive definite matrices, qi ∈ R
ni , Pi ∈ R

ni×n−i , c1i (ξ2) ∈ R
mi , S1

ij (ξ2) ∈ R
mi×nj ,

O1
i (ξ2) ∈ R

mi×m−i , c2i (ξ2, ξ3) ∈ R
li , S2

ij ∈ R
li×mj , S2

ij ∈ R
li×mj and O2

i (ξ2, ξ3) ∈
R

li×l−i .
Denote x = (x1, x2), y(·) = (y1(·), y2(·)) and z(·, ·) = (z1(·, ·), z2(·, ·)). Due

to the strong convexity, problems (25) and (26) have unique solutions, denoted by
ȳi (ξ2) and z̄i (ξ2, ξ3) respectively.

By [13, Theorem 5.3 and Corollary 5.4],

ψi(xi, y−i (ξ2), ξ2) and ϕi(yi, z−i (ξ2, ξ3), ξ2, ξ3)

are continuously differentiable w.r.t. xi and yi , respectively, and their gradients are

∇xi
ψi(xi, y−i (ξ2), ξ2) = (S1

ii (ξ2))
ȳi (ξ2)

and
∇yi

ϕi(yi(ξ2), z−i (ξ2, ξ3), ξ2, ξ3) = (S2
ii (ξ2, ξ3))

z̄i (ξ2, ξ3).
Hence, the three-stage stochastic game problem can be reformulated as a three-stage
SVI (it can be rewritten as a three-stage stochastic linear complementarity problem):
for i = 1, 2,

0 ∈ A1x + Eξ2[B1(ξ2)y(ξ2)] + h1 + NR
n+(x),

0 ∈ A2(ξ2)y(ξ2) + L2(ξ2)x + Eξ3[B2(ξ3)z(ξ2, ξ3)] + h2(ξ2) + NR
m+(y(ξ2))

for a.e. ξ2 ∈ Ξ2,

0 ∈ A3(ξ2, ξ3)z(ξ2, ξ3) + L3(ξ2, ξ3)y(ξ2) + h3(ξ2, ξ3) + N
R

l+(z(ξ2, ξ3))

for a.e. (ξ2, ξ3) ∈ Ξ2 × Ξ3,

(27)

where

A1 =
(

H1 P1
P2 H2

)

, B1(ξ) =
(

(S1
11)

(ξ2) 0
0 (S1

22)
(ξ2)

)

, h1 =
(

q1
q2

)

,

A2(ξ2) =
(

Q1
1(ξ2) O1

1 (ξ2)

O1
2 (ξ2) Q1

2(ξ2)

)

, L2(ξ2)=
(

S1
11(ξ2) S1

12(ξ2)

S1
21(ξ2) S1

22(ξ2)

)

, h3(ξ2, ξ3)=
(

c21(ξ2, ξ3)

c22(ξ2, ξ3)

)

,
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B2(ξ2, ξ3) =
(

(S2
11)

(ξ2, ξ3) 0
0 (S2

22)
(ξ2, ξ3)

)

, h2(ξ1) =
(

c11(ξ2)

c12(ξ2)

)

,

A3(ξ2, ξ3) =
(

Q2
1(ξ2, ξ3) O2

1 (ξ2, ξ3)

O2
2 (ξ2, ξ3) Q2

2(ξ2, ξ3)

)

and L3(ξ2, ξ3) =
(

S2
11(ξ2, ξ3) S2

12(ξ2, ξ3)

S2
21(ξ2, ξ3) S2

22(ξ2, ξ3)

)

.

Moreover, if there exists a positive continuous function κ(ξ2, ξ3) such that
E[κ(ξ2, ξ3)] < ∞ and for a.e.(ξ2, ξ3) ∈ Ξ2 × Ξ3,

(
τ, u, k )

⎛

⎝
A1 B1(ξ2)

L2(ξ2) A2(ξ2) B2(ξ2)

L3(ξ2, ξ3) A3(ξ2, ξ3)

⎞

⎠

⎛

⎝
τ

u

k

⎞

⎠ ≥ κ(ξ2, ξ3)(‖τ‖2 + ‖u‖2 + ‖k‖2),

(28)
then for each (τ, u, k) ∈ R

m+n+l , the three-stage SVI (27) satisfies Assump-
tion 2. Moreover, if Ξ2×Ξ3 is compact, by Assumption 2, the conditions in Theorem
4 hold.

In this example, we consider a stage-wise independent case, that is ξ2 and ξ3 are
independent. Let {ξ i

2}N1
i=1 be an i.i.d sample of the second-stage random variable ξ2

and {ξj

3 }N2
j=1 be an i.i.d sample of the third stage of ξ3 when given the value ξ i

2. Then
the SAA problem of problem (27) is

0 ∈ A1x + 1

N1

N1∑

i=1

B1(ξ i
2)y(ξ i

2) + h1 + NR
n+(x),

0 ∈ A2(ξ i
2)y(ξ i

2) + L2(ξ i
2)x + 1

N2

N2∑

j=1

B2(ξ
j

3 )z(ξ i
2, ξ

j

3 ) + h2(ξ
i
2) + NR

m+(y(ξ i
2)),

for i = 1 · · · N1

0 ∈ A3(ξ i
2, ξ

j

3 )z(ξ i
2, ξ

j

3 ) + L3(ξ i
2, ξ

j

3 )y(ξ i
2) + h3(ξ

i
2, ξ

j

3 ) + N
R

l+(z(ξ i
2, ξ

j

3 ))

for i = 1 · · · N1, j = 1 · · · N2.
(29)

4.1 Generation of matrices satisfying condition (28)

We first generate i.i.d. samples {ξ i
2}N1

i=1 ⊂ [0, 1]2 of random variable ξ2 ∈ R
2 and

{ξj

3 }N2
j=1 ⊂ [0, 1]2 of random variable ξ3 ∈ R

2 from uniform distributions over Ξ2 =
[0, 1]2 and Ξ3 = [0, 1]2, respectively.

Note that PHM converges to a solution of (29) if condition (28) holds. To this
end, for any given (ξ2, ξ3), we generate matrices A1, B1(ξ2), L2(ξ2), A2(ξ2), B2(ξ2),
L3(ξ2, ξ3), A3(ξ2, ξ3) by the following procedure. To simplify notation, we use
A1, B1, L2, A2, B2, L3, A3 to denote them. Let

E :=
⎛

⎝
I 0 0
0 0 I

−(B1 + (L2))(A1 + (A1))−1 I −((B2) + L3)(A3 + (A3))−1

⎞

⎠
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and

U1 := A2 + (A2) − ((B2) + L3)(A3 + (A3))−1((B2) + L3)
−((B1) + L2)(A1 + (A1))−1((B1) + L2).

Then

K :=
⎛

⎝
A1 + (A1) 0 0

0 A3 + (A3) 0
0 0 U1

⎞

⎠

= E

⎛

⎝
A1 + (A1) B1 + (L2)
(B1) + L2 A2 + (A2) B2 + (L3)

(B2) + L3 A3 + (A3)

⎞

⎠E.

Since E is nonsingular when K is positive definite, condition (28) holds.
Let U2 := 2H2 − (P2 + P 

1 ) 1
2H

−1
1 (P2 + P 

1 ). Then

(A1 + (A1)) =
(

2H1 P1 + P 
2

P2 + P 
1 2H2

)

=
(

I 0
(P2+ P 

1 ) 1
2H

−1
1 I

)(
2H1 0
0 U2

)(
I 0

(P2+P 
1 ) 1

2H
−1
1 I

)
.

We first randomly generate a symmetric positive definite matrix H1 ∈ R
n1×n1

and matrices P1 ∈ R
n1×n2 , P2 ∈ R

n2×n1 with entries within [−1, 1]. Set H2 =
1
4H1(P


1 + P2)H

−1
1 (P1 + P 

2 ) + αIn2 , where α is a positive number (we set α = 1

in the numerical tests). Then

(
2H1 0
0 U2

)

is positive definite and then A1 + (A1) is

positive definite.
We then randomly generate two matrices O2

1 ∈ R
l1×l2 and O2

2 ∈ R
l2×l1 with

entries within [−1, 1] and a symmetric matrix Q̄2
1 ∈ R

m2×m2 with diagonal entries
greater than max(m−1+α, l −1+α) and off-diagonal entries belonging to [−1, 1].
Let

Q2
1 = ξ

i(1)
2 ξ

j (1)
3 Q̄2

1 + αIl1 , Q2
2 = 1

4
((O2

1 )
 + O2

2 )(Q
2
1)

−1(O2
1 + (O2

2 )
) + αIl1

and

U3 = 2Q2
2 − ((O2

1 )
 + O2

2 )
1

2
(Q2

1)
−1(O2

1 + (O2
2 )

) = 2αIl1 ,

where ξ
i(k)
2 and ξ

j (k)

3 denote the kth component of vector ξ i
2 and vector ξ

j

3 ,
respectively. Then

(A3 + (A3))

=
(

2Q2
1 O2

1 + (Q2
2)


O2

2 + (O2
1 )

 2Q2
2

)

=
(

I 0
(O2

2 + (O2
1 )

) 1
2 (Q

2
1)

−1 I

)(
2Q2

1 0
0 U3

)(
I 0

(O2
2 + (O2

1 )
) 1

2 (Q
2
1)

−1 I

)

is positive definite.
Finally, we generate a positive definite U1. We randomly generate matrices

O1
1 ∈ R

m1×m2 , O1
2 ∈ R

m2×m1 , S1
11 ∈ R

m1×n1 , S1
12 ∈ R

m1×n2 , S1
21 ∈ R

m2×n1 ,
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S1
22 ∈ R

m2×n2 , S2
11 ∈ R

l1×m1 , S2
12 ∈ R

l1×m2 , S2
21 ∈ R

l2×m1 , S2
22 ∈ R

l2×m2

with entries belonging to [−1, 1], and two symmetric matrices Q̄1
1 ∈ R

m1×m1 and
Q̄1

2 ∈ R
m2×m2 with diagonal entries greater than max(m − 1 + α, l − 1 + α) and

off-diagonal entries belonging to [−1, 1], respectively. Set

Q1
1 = Q̄1

1 +
(

ξ
i(1)
2 + (n + m)2

λmin(A1 + (A1))
+ (m + l)2

λmin(A3 + (A3))

)

Im1

and

Q1
2 = Q̄1

2 +
(

ξ
i(2)
2 + (n + m)2

λmin(A1 + (A1))
+ (m + l)2

λmin(A3 + (A3))

)

Im2 .

Then

A2 + (A2) =
(

2Q̄1
1 O1

1 + (O1
2 )


O1

2 + (O1
1 )

 2Q̄1
2

)

+
(
2(Q1

1 − Q̄1
1) 0

0 2(Q1
2 − Q̄1

2)

)

and

(
2Q̄1

1 O1
1 + (O1

2 )


O1
2 + (O1

1 )
 2Q̄1

2

)

is diagonally dominant and positive definite.

Moreover, for any y ∈ R
m1+m2 ,

y(A2 + (A2))y ≥
(

2α + (n + m)2

λmin(A1 + (A1))
+ (m + l)2

λmin(A3 + (A3))

)

‖y‖2.

Let U4 = A2 + (A2) − U1. Note that

‖(B2) + L3‖22 ≤ ‖(B2) + L3‖1‖(B2) + L3‖∞ ≤ (m + n)2

and

‖(B1) + L2‖2 ≤ ‖(B1) + L2‖1‖(B1) + L2‖∞ ≤ (m + l)2.

We have
U4 = ((B2) + L3)(A3 + (A3))−1((B2) + L3)

+(B1 + (L2))(A1 + (A1))−1(B1 + (L2))

and

yU4y ≤
( ‖(B2) + L3‖2

λmin(A3 + (A3))
+ ‖(B1) + L2‖2

λmin(A1 + (A1))

)

‖y‖2

≤
(

(n + m)2

λmin(A1 + (A1))
+ (m + l)2

λmin(A3 + (A3))

)

‖y‖2,

which implies

yU1y = y(A2 + (A2) − U4)y ≥ 2α‖y‖22.
Thus, U1 is positive definite. Combining the above analysis, K is positive definite
and condition (28) holds.

We also set h1 = (−1, −1, −1, −3, −3, −3), h2(ξ
2) = (−1, −1, −1, −1,

−1, −1) and h3(ξ
2, ξ3) = (−1, −1, −1, −1, −1, −1) for all ξ2 ∈ Ξ2 and

ξ3 ∈ Ξ3.
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4.2 Numerical results

For each sample size (N1, N2) = (25, 25), (35, 35), (50, 50), (100, 100), (200, 200),
we randomly generate 30 test problems and solve problem (29) by PHM as follows
(see [22] for more details).

We set the parameter r = 4 in Algorithm 1, run the algorithm using Matlab 2018b
on a desktop computer with two Intel Core i7 3.40GHz CPUs and 8GB RAM, and
stop the iteration when the residual

res =
∥
∥
∥
∥
∥
x − min

(

x − A1x − 1

N1

N1∑

i=1

B1(ξ i
2)y(x, ξ i

2), 0

)∥
∥
∥
∥
∥

≤ 10−3,

where y(x, ξ i
2) is the solution of the second-stage problem. Figure 1 shows the

convergence tendency of x1, x2, x3, x4, x5 and x6, respectively.

5 Concluding remarks

In this paper, the strong monotonicity of two-stage and multistage SNCPs has been
investigated under weaker conditions compared with the existing works, such as [4,
6]. Moreover, the conditional sampling approach has been adopted to discretize the
multistage SNCPs and the asymptotic convergence results have been established.
Finally, some numerical tests have been presented through PHM to illustrate our
theoretical results.
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Fig. 1 The box plots from x1 to x6

There are still several questions that need to be addressed. We just analyze the
asymptotic convergence of the conditional sampling approach for multistage SNCPs.
What is the rate of convergence of the conditional sampling approach for multistage
SNCPs? We leave this as our further research. Moreover, based on our numerical
experience, the cost of solving three-stage SNCPs in PHM is relatively expensive
with large sample sizes.
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However, large sample size and multistage T ≥ 3 may be necessary for some real
applications. How to improve the performance of PHM or propose more effective
algorithms is our another further research direction.
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