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Abstract
Discrete ill-posed inverse problems arise in various areas of science and engineer-
ing. The presence of noise in the data often makes it difficult to compute an accurate
approximate solution. To reduce the sensitivity of the computed solution to the noise,
one replaces the original problem by a nearby well-posed minimization problem,
whose solution is less sensitive to the noise in the data than the solution of the origi-
nal problem. This replacement is known as regularization. We consider the situation
when the minimization problem consists of a fidelity term, that is defined in terms
of a p-norm, and a regularization term, that is defined in terms of a q-norm. We
allow 0 < p, q ≤ 2. The relative importance of the fidelity and regularization terms
is determined by a regularization parameter. This paper develops an automatic strat-
egy for determining the regularization parameter for these minimization problems.
The proposed approach is based on a new application of generalized cross validation.
Computed examples illustrate the performance of the method proposed.

Keywords �p-�q minimization · Regularization parameter ·
Generalized cross validation · Inverse problem · Iterative method
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1 Introduction

In many areas of science and engineering one is faced with the problem of having to
compute a meaningful approximate solution, defined in an appropriate way, of linear
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systems of equations of the form
Ax ≈ b, (1)

where A ∈ R
m×n is a given matrix, x ∈ R

n is the desired solution, and b ∈ R
m is a

data vector. The symbol ≈ indicates that we would like to determine a vector x such
that Ax approximates b in a suitable way. We consider the case when the singular
values of A decrease to zero quickly without a significant gap. Then the matrix A is
severely ill-conditioned and, moreover, it is not meaningful to define the rank of A.
Approximation problems (1) with a matrix of this kind are commonly referred to as
discrete ill-posed problems; see, e.g., [17, 26, 27] for discussions.

In applications of interest to us, the data vector b is not available; instead a
measured vector bδ ∈ R

m, which is contaminated by noise η ∈ R
m, is known, i.e.,

bδ = [bδ
1, b

δ
2, . . . , b

δ
m]T = b + η

replaces the vector b in (1). Here and throughout this paper the superscript T denotes
transposition. We assume that η is made up of white Gaussian noise, impulse noise
and/or salt and pepper noise. Impulse noise modifies only some entries of b and
leaves the other entries unchanged. In detail, we have for 1 ≤ i ≤ m,

bδ
i =

{
di with probability σ,

bi with probability 1 − σ,

where the di are realizations of a random variable with uniform distribution in the
interval [dmin, dmax], which is the dynamic range of bi . If di ∈ {dmin, dmax}, i.e., if
the di only attain their maximal or minimal achievable values, then impulse noise is
commonly referred to as salt-and-pepper noise. Impulse noise simulates the effect of
broken sensors on a measuring device such as a CCD camera.

Since A is ill-conditioned and bδ is contaminated by noise, the least-squares solu-
tion A†bδ of minimal norm of (1) with b replaced by bδ is meaningless due to
propagation and severe amplification of the error η in bδ into the solution; here
A† denotes the Moore-Penrose pseudo-inverse of A. To reduce the propagated error
in the computed solution, one typically modifies the problem to be solved. This
modification is commonly referred to as regularization.

A regularization method that recently has received considerable attention is the �p-
�q minimization method; see [14, 18, 30, 35]. This method solves the minimization
problem

min
x∈Rn

{
1

p

∥∥Ax − bδ
∥∥p

p
+ μ

q
‖Lx‖q

q

}
, (2)

where L ∈ R
r×n is a regularization matrix, μ > 0 a regularization parameter, and

‖z‖p
p = ∑k

i=1 |zi |p for z = [z1, z2, . . . , zk]T ∈ R
k for k ∈ {m, n}. We are interested

in parameters p and q in the interval (0, 2]. Observe that z �→ ‖z‖p is a norm only if
p ≥ 1; however, for notational convenience, we will refer to the quantity ‖z‖p as an
�p-norm also for 0 < p < 1.

The regularization parameter μ > 0 determines the trade-off between the first and
second terms in (2), and decides how sensitive the solution of (2) is to the error η in
bδ . Moreover, the choice of μ affects how close the solution is to the desired vector
xtrue = A†b. An imprudent choice of μ may result in that the solution of (2) is a poor
approximation of xtrue. It therefore is important to develop methods that are able to
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determine a suitable value of μ. This value will depend on the matrices A and L, the
vectors bδ and η, as well as the parameters p and q. If p = q = 2, then the problem
(2) reduces to Tikhonov regularization in general form; see, e.g., [17, 22, 27, 38] for
discussions on Tikhonov regularization.

We now briefly discuss different choices for p and q, and first comment on the
choice of q, which affects the second term in (2). This terms is commonly referred to
as the regularization term. In many situations the desired solution xtrue of (1) is sparse
after some transformation. For instance, if we represent xtrue in terms of framelets
or wavelets, then xtrue typically has a sparse representation, i.e., many coefficients
in this representation vanish. Moreover, when L is a discretized gradient operator,
the vector Lxtrue generally has many vanishing entries. To promote sparsity of the
computed solution of (2), we may consider letting L = I and q = 0. Then the
regularization term measures the size of the computed solution by the �0-norm. This
“norm” counts the number of nonzero entries in the vector x in (2). Note that this
norm is not convex. Similarly, to promote sparsity in the vector Lx, we may consider
letting q = 0 in (2). However, the minimization problems so obtained are extremely
difficult to solve. Therefore, it is common to approximate the �0-norm by the �1-
norm. This approximation has the advantage that the �1-norm is convex, which makes
it easier to solve (2) than when using the �0-norm. However, �q -norms with 0 < q <

1 are better approximations of the �0-norm than the �1-norm. In particular, smaller
values of q > 0 yield better approximations of the �0-norm than larger values; see
Fig. 1 for an illustration. For 0 < q < 1 the resulting minimization problem (2) is
not convex and its solution may be difficult to determine; see Lanza et al. [36] for a
recent discussion on the choice of q in the context of image restoration.

The choice of p affects the first term in (2), known as the fidelity term, and should
depend on the type of noise η in the data vector bδ . If the noise η is white Gaussian,

Fig. 1 Comparison of different �q -norms. The solid black graph represents the �0-norm, the dotted black
graph shows the �1-norm, the dark gray solid graph displays the �0.5-norm, and the light gray solid graph
depicts the �0.1-norm
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then p = 2 is appropriate and a method for determining μ for this kind of noise,
based on the discrepancy principle, is described in [7]. This method requires that
a fairly accurate estimate of the norm of η be available and allows 0 < q < 1.
However, for impulse noise, choosing p = 2 usually produces computed solutions
of poor quality. It has been shown, see, e.g., [8, 30, 35], that the choice 0 < p < 1
leads to accurate restorations in the case of salt-and-pepper noise. In [8], the authors
developed two strategies based on cross-validation for determining a suitable value
of μ for any 0 < p ≤ 2 without any knowledge of the noise. This method is further
commented on below.

LetN (M) denote the null space of the matrixM . We will assume that the matrices
A and L are such that

N (A) ∩ N (L) = {0}. (3)

Then the matrix AT A + μLT L is nonsingular for any μ > 0, and the minimization
problem (2) for p = q = 2 has the unique solution

xμ = (AT A + μLT L)−1AT bδ . (4)

We remark that both the selection of L and μ are important for the quality of the
computed solution and have been widely discussed; see, e.g., [15, 19, 31–33, 37].

Generalized cross validation (GCV) introduced by Golub et al. [23] is a popular
approach to choosing the regularization parameter for Tikhonov regularization; more
recent discussions on this method can be found in [19, 20, 24, 29]. The GCV method
is statistically based and chooses a regularization parameter that minimizes the GCV
functional

G(μ) =
∥∥bδ − Axμ

∥∥2
2(

trace
(
I − A

(
AT A + μLT L

)−1
AT

))2 . (5)

Denote the minimizer of G(μ) by μGCV. In rare events, when the minimizer is not
unique, we choose the largest one.

The minimization of G(μ) requires the computation, or at least estimation, of the
trace of the matrix I − A(AT A + μLT L)−1AT that is not explicitly known. This
can make the computation of G(μ) expensive when the matrices A and L are large.
Different ways to speed up the computations by application of a global block Lanczos
method or Golub-Kahan bidiagonalization are described in [19, 20]. However, these
works are limited to the situation when L = I .

In this paper, we combine ideas in [19] with the techniques described in [30] to
derive an algorithm for computing the GCV parameter for (2) for general values of
0 < p, q ≤ 2. Specifically, we consider the AMM-GKS algorithm in [30] for the
solution of (2) (see Section 3.1 for more details), and modify it so that at each iteration
the regularization parameter is chosen adaptively by minimizing a reduced version
of the function (5). The computation of the GCV parameter is fully automatic in the
sense that no information about the noise η is required. The GCV method for deter-
mining the regularization parameter is a so-called heuristic method, see Kindermann
[32], and therefore may fail for certain data vectors b. In our experience, failure is
extremely rare. The GCVmethod is related to cross validation (CV), another heuristic
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method for determining a suitable regularization parameter; see [8, 39]. We will illus-
trate in Section 4 that GCV typically gives about the same value of the regularization
parameter as CV for a much lower computational effort.

This paper is organized as follows: Section 2 reviews how the GCV parameter
for Tikhonov regularization in general form can be computed fairly inexpensively
by projection into a Krylov subspace, and in Section 3 we discuss how to determine
the GCV parameter for large-scale minimization problems (2). A smoothed vari-
ant of GCV that can give better regularization parameter values also is presented.
Section 4 contains numerical examples that illustrate the performance of the proposed
approach. Finally, Section 5 contains some concluding remarks.

2 GCV for Tikhonov regularization in general form

This section discusses the computation of the GCV parameter for Tikhonov reg-
ularization in general form, i.e., when solving the minimization problem (2) with
p = q = 2. We first describe an approach that requires the generalized singular
value decomposition (GSVD) of the matrix pair {A, L}. This approach is computa-
tionally feasible only for small to medium-sized problems since the computation of
the GSVD for a large matrix pair is very expensive. We then discuss how the compu-
tational burden for large-scale problems can be reduced by projecting the matrix pair
{A, L} into a Krylov subspace of fairly small dimension.

2.1 GCV computation by using the GSVD

This subsection reviews material in [27], where further details can be found. Consider
the Tikhonov regularization problem in general form with μ > 0,

xμ = arg min
x∈Rn

{∥∥Ax − bδ
∥∥2
2 + μ ‖Lx‖22

}
, (6)

and introduce the GSVD of the matrix pair {A, L},{
A = UΣAYT ,

L = V ΣLYT ,
(7)

where ΣA and ΣL are diagonal, possibly rectangular, matrices, the matrices U and V

are orthogonal, and the matrix Y is square and non-singular. Further details of these
matrices, including their sizes, can be found, e.g., in [16, 25, 27]. The evaluation of
the GCV function G(μ), defined by (5), requires the computation of the quantities

rμ = ∥∥Axμ − bδ
∥∥2
2 ,

tμ = trace

(
I − A

(
AT A + μLT L

)−1
AT

)
,

for several values of μ > 0, where the vector xμ is given by (4). These quantities can
be evaluated inexpensively when the factorizations (7) are available as follows. For
notational simplicity, the formulas below assume that all matrices are square. This
restriction easily can be removed; see, e.g., [16, 25, 27] for details.
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The quantity rμ can be expressed as

rμ = ∥∥bδ − Axμ

∥∥2
2

(a)=
∥∥∥bδ − A(AT A + μLT L)−1AT bδ

∥∥∥2
2

(b)=
∥∥∥b̃δ − ΣA(ΣT

AΣA + μΣT
L ΣL)−1ΣT

A b̃δ
∥∥∥2
2
,

where (a) is obtained by using the definition (4) of xμ, and (b) is derived using the
factorizations (7) with b̃δ = UT bδ . Analogously,

tμ = trace

(
I − A

(
AT A + μLT L

)−1
AT

)

= trace
(
I − ΣA(ΣT

AΣA + μΣT
L ΣL)−1ΣT

A

)
,

where we have used the factorizations (7) and the fact that trace is invariant under
similarity transformation. We have

μGCV = argmin
μ

rμ

tμ
,

where we in rare cases of nonunicity let μGCV be the largest of the minimizers.
It is clear from the above expressions for rμ and tμ that the main computational

cost for evaluating (5) is the computation of the GSVD (7) of the matrix pair {A, L}.
Observe that, to determine μGCV we typically have to evaluate G(μ) for many values
of μ. However, it suffices to compute the factorizations (7) only once, since they are
independent of μ.

2.2 GCV computation in a Krylov subspace

When the matricesA andL are large, the computation of the GSVD (7) is unattractive
due to its high cost; for instance, Paige’s algorithm generally requires at least 35.3n3

arithmetic floating point operations when A, L ∈ R
n×n; see [1, Table 5.1] for details.

We therefore now describe a more computational attractive approach that is based
on projecting the problem into a Krylov subspace of fairly small dimension. Our
projection method extends the method used in [19] by allowing the matrix L to be
different from the identity.

Let A ∈ R
m×n and L ∈ R

r×n and let the columns of V ∈ Rn×d form an ortho-
normal basis for the Krylov subspace V of dimension 1 ≤ d 
 min{m, n, r},

V = Kd

(
AT A, AT bδ

)
= span

{
AT bδ, AT AAT bδ, . . . , (AT A)d−1AT bδ

}
.

We assume here that d is small enough so that dim(Kd

(
AT A, AT bδ

)
) = d. This

is the generic situation. It is convenient to compute the columns of V by applying
d steps of Golub-Kahan bidiagonalization to A with initial vector bδ . This gives the
decomposition

AV = [U, ud+1]B(A), (8)
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where the matrices [U, ud+1] ∈ Rm×(d+1) and V ∈ Rn×d have orthonormal columns
and B(A) ∈ R

(d+1)×d is lower bidiagonal; see, e.g., [25]. We assume that d is small
enough so that this decomposition exists.

We would like to compute an approximate solution of the Tikhonov minimization
problem (6) in V . The restriction of the approximate solution to the subspace V of
low dimension d reduces the computational cost of significantly. Thus, we would like
to solve

x = argmin
x∈V

{∥∥Ax − bδ
∥∥2
2 + μ ‖Lx‖22

}
.

Substituting x = V y for some y ∈ R
d into the above equation gives

y = arg min
y∈Rd

{∥∥AV y − bδ
∥∥2
2 + μ ‖LV y‖22

}
. (9)

Substitute the QR factorization

LV = Q(L)R(L),

where the matrix Q(L) ∈ R
r×d has orthonormal columns and R(L) ∈ R

d×d is upper
triangular, and the decomposition (8) into (9) gives

y = arg min
y∈Rd

{∥∥∥B(A)y − e1‖bδ‖22
∥∥∥2
2
+ μ

∥∥∥R(L)y
∥∥∥2
2

}
, (10)

with e1 = [1, 0, . . . , 0]T denoting the first axis vector. The projected problem (10)
is of quite inexpensive to compute and of fairly small dimension. In particular, it is
feasible to compute the GSVD of the matrix pair {B(A), R(L)} and use it to calculate
an approximation of the GCV function G(μ).

3 GCV for �p-�q regularization

We describe how to combine the computations discussed in Section 2 for determining
the regularization parameter by the GCV method with the algorithms presented in
[30] for minimizing the expression (2).

3.1 Solution of the �p -�q minimization problem for fixedμ > 0

For convenience of the reader, we outline the AMM-GKS method for solving (2)
proposed in [30]. Introduce a smoothed version of the q-norm ‖x‖q

q for 0 < q ≤ 1
as follows. Let Φq : R → R be defined by

Φq(t) = |t |q,

and observe that, if 0 < q ≤ 1, then t �→ Φq(t) is not differentiable at t = 0. We
approximate Φq by the differentiable function

Φq,ε(t) =
(√

t2 + ε2
)q

, (11)
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where ε > 0 is a (small) constant. Similarly, we define for x = [x1, x2, . . . , xn]T ∈
R

n the smoothed version of ‖x‖q
q as

‖x‖q
q ≈

n∑
i=1

Φq,ε(xi).

Finally, introduce the smoothed version of the functional that is minimized in (2),

Jε(x) := 1

p

m∑
i=1

Φp,ε((Ax − bδ)i) + μ

q

r∑
i=1

Φq,ε((Lx)i). (12)

This gives us the smoothed version

x∗ := argmin
x

Jε(x)

of the minimization problem (2).
The AMM-GKS method described in [30] is a majorization-minimization method

for computing a stationary point of the functional (12). This method determines a
sequence of iterates x(k), k = 1, 2, . . . , that converge to a stationary point of (12).
Each iterate is computed in by two steps: first the functional (12) is majorized by a
quadratic tangent majorant x → Q(x, x(k)) for Jε at x(k). Then the unique minimizer
of x → Q(x, x(k)) is calculated. This minimizer is the next iterate x(k+1). We outline
this method in the remainder of this subsection.

Definition 1 ([30]) Consider the differentiable functional Jε(x) : Rn → R. We say
that the functional x �→ Q(x, y) : Rn → R is a quadratic tangent majorant for Jε(x)
at y ∈ R

n if the following conditions are satisfied:

– Q(x, y) is quadratic,
– Q(x, y) ≥ J (x) for all x ∈ R

n,
– Q(y, y) = J (y) and ∇xQ(y, y) = ∇xJ (y),

where ∇x denotes the gradient with respect to the first argument of Q.

Majorization step. The quadratic tangent majorant at the point x(k) constructed by
the AMM-GKS method is determined as follows. Let

v(k) := Ax(k) − bδ,

u(k) := Lx(k),

and compute the vectors

ω
(k)
fid := ((v(k))2 + ε2)p/2−1,

ω
(k)
reg := ((u(k))2 + ε2)q/2−1,

where all the operations, including squaring, are meant element-wise. Define the
diagonal matrices

W
(k)
fid = diag(ω(k)

fid ), W(k)
reg = diag(ω(k)

reg).
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It is shown in [30] that the functional

Q(x, x(k)) = 1

2

∥∥∥(W
(k)
fid )1/2(Ax − bδ)

∥∥∥2
2
+ μ

2

∥∥∥(W(k)
reg )1/2Lx

∥∥∥2
2
+ c, (13)

with c a suitable constant that is independent of x, is a quadratic tangent majorant
for Jε at x(k); see [30] for details on the derivation of ω

(k)
fid , ω

(k)
reg, and c.

Minimization step. We describe the computation of the minimizer x(k+1) of (13).
Since Q is quadratic, x(k+1) can be determined as the zero of the gradient, i.e., by
solving

(AT W
(k)
fid A + μLT W(k)

regL)x = AT W
(k)
fid b

δ . (14)

The system matrix is nonsingular and positive definite for all μ > 0 if and only if

N (AT W
(k)
fid A) ∩ N (LT W(k)

regL) = {0}.
This condition typically is satisfied. Then the solution x(k+1) of (14) is the unique
minimizer of x → Q(x, x(k)).

The computation of the solution of (14) can be demanding when the matrices
A and L are large. An approximate solution can be computed efficiently by pro-
jecting the problem into a low-dimensional subspace Vd of dimension 1 ≤ d 

min{m, n, r}. Let the columns of the matrix Vd ∈ R

n×d form an orthonormal basis
for Vd and calculate the skinny QR factorizations

(W
(k)
fid )1/2AVd = QARA with QA ∈ R

m×d, RA ∈ R
d×d ,

(W
(k)
reg )1/2LVd = QLRL with QL ∈ R

r×d , RL ∈ R
d×d ,

where the matrices QA and QL have orthonormal columns and the matrices RA and
RL are upper triangular. Using these factorizations, we obtain the reduced analogue
of (14),

(RT
ARA + μRT

LRL)y = RT
AQT

A(W
(k)
fid )1/2bδ . (15)

The solution y(k+1) of this equation gives, with a slight abuse of notation, the
approximate solution

x(k+1) = Vdy(k+1)

of (14). Substituting this expression into (14) gives the residual vector

r(k+1) := AT W
(k)
fid (AVdy(k+1) − bδ) + μLT W(k)

regLVdy(k+1).

Observe that this vector in general is nonvanishing, since we are solving (14) in the
subspace Vd of Rn. We enlarge at each step the solution subspace by adding the
scaled residual vector vnew = r(k+1)/‖r(k+1)‖ to the solution subspace. This vector is
orthogonal to the columns of the matrix Vd . Define the matrix Vd+1 = [Vd, vnew] ∈
R

n×(d+1). Its columns form an orthonormal basis for the new solution subspace Vd+1.
The so determined solution subspace is referred to as a Generalized Krylov subspace
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(GKS); see, e.g., [34] for another application of this kind of subspaces. The com-
putations are initialized by choosing a d0-dimensional solution subspace of Rn and
letting the columns of the matrix Vd0 form an orthonormal basis for this subspace.
Typically, setting d0 = 1 and V0 = AT bδ/

∥∥AT bδ
∥∥
2 is appropriate. An algorithm

that describes these computations and determines the regularization parameter μ by
the GCV method is described in the following subsection.

3.2 GCV andMM-GKS

In the computations outlined in the previous subsection, the regularization parameter
is kept fixed. We now describe how a value μk of the regularization parameter can be
determined in a fairly simple manner before computing the next approximate solution
x(k+1) of (2).

Equation (15) is the normal equation associated with the minimization problem

y(k+1) = arg min
y∈Rd

{∥∥∥RAy − QT
AW

(k)
fid b

δ
∥∥∥2
2
+ μ ‖RLy‖22

}
.

This minimization problem is analogous to (10). Since it stems from projecting
a large problem into a generalized Krylov subspace of modest dimension d, the
matrices RA and RL are small enough to allow the computation of the GSVD
of the matrix pair {RA, RL} at moderate expense. We therefore can use the tech-
nique described in Section 2.1 to determine a suitable value of the regularization
parameter by GCV. In detail, let the GSVD of the matrix pair {RA, RL} be given
by

RA = UΣAYT ,

RL = V ΣLYT .

Similarly as in Section 2.1, we define, for any μ > 0, the quantities

r
(k)
μ =

∥∥∥UT QT
Ab

δ − Σ2
A(Σ2

A + μΣ2
L)−1UT QT

AW
(k)
fid b

δ
∥∥∥2
2
,

t
(k)
μ = trace

(
I − Σ2

A(Σ2
A + μΣ2

L)−1
)
.

(16)

This derivation uses that both matrices RA and RL are square. We compute the GCV
parameter μ(k) as the solution of

μ(k) = argmin
μ

r
(k)
μ

t
(k)
μ

.

If the minimum is not unique, then we choose the largest one. Typically, the minimum
is unique. This is assumed in Algorithm 1, which describes the computations. The
parameter μ(k) is updated in each iteration.
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Algorithm 1 requires the computation of the GSVD of the matrix pair {RA, RL}
in each iteration. Since the matrices RA and RL are not very large, this is not very
expensive.

3.3 Smoothed GCV for impulse noise

We describe a modified version of the GCV that, as we will see in Section 4, is well
suited for impulse noise. The Euclidean norm of impulse noise is infinite. There-
fore, the numerator in G(μ), see (5), may be infinite. It therefore may be difficult
to compute the minimum of G(μ). In computations in finite precision arithmetic,
the Euclidean norm of impulse noise is extremely large and this leads to that it may
be difficult to determine the minimum of G(μ). To remedy this issue, we smooth
the data vector bδ by convolving it with a Gaussian filter with small variance. Let
kν2 ∈ R

m represent a sampling of a Gaussian function with mean zero and variance
ν2, and define the smoothed vector

bδ
smooth = kν2 ∗ bδ,
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where ∗ denotes the convolution operator. It is well known that if we assume periodic
boundary conditions, then convolution can be carried out easily with the aid of the
Fourier transform F. We have

F(bδ
smooth) = F(kν2)  F(bδ),

where  denotes element-wise multiplication. Moreover, if bδ represents the vector-
ization of a multi-dimensional array, e.g., an image, it is beneficial to let kν2 be the
vectorization of a discretized multi-dimensional Gaussian function.

Using bδ
smooth we can define the smoothed version of the GCV functional by

Gsmooth(μ) =
∥∥bδ

smooth − Axμ

∥∥2
2(

trace
(
I − A

(
AT A + μLT L

)−1
AT

))2 .

This functional is the standard GCV functional (5) with the data vector bδ replaced by
the smoothed data vector bδ

smooth. The MM-GKS-GCV-Smooth algorithm is obtained
by minimizing Gsmooth at each iteration in Algorithm 1 instead of G.

4 Numerical examples

This section shows some numerical examples that illustrate the performance of the
proposed methods. The examples are concerned with the restoration of images that
have been contaminated by noise and space-invariant blur, as well as with computer-
ized tomography; see [28] for details on image restoration and [9] for a description
of computerized tomography.

We set q = 0.1 in all examples, while the value of p depends on the type of noise
the data vector bδ is corrupted by. For white Gaussian noise, we set p = 2; for other
kinds of noise, we let p = 0.8.

We would like to compute a sparse solution in the framelet domain and therefore
use a two-level framelet analysis operator as regularization operator L. Framelets are
extensions of wavelets. They are defined as follows:

Definition 2 Let W ∈ R
r×n with n ≤ r . The set of the rows of W is a framelet

system for Rn if ∀x ∈ R
n it holds

‖x‖22 =
r∑

j=1

yT
j x,

where yj ∈ R
n is the j th row of W (written as a column vector), i.e., W =

[y1, . . . , yr ]T . The matrix W is referred to as an analysis operator and WT as a
synthesis operator. The matrixW defines a tight frame if and only if WT W = I .

We remark that in general WWT �= I , unless r = n and the framelets are
orthonormal. Note that N (W) = {0}. Therefore, property (3) holds. Tight frames
have been used in many image restoration applications including inpainting and
deblurring; see, e.g., [2–6, 10–13].
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We use framelets determined by linear B-splines. In one space-dimension they are
made up of a low-pass filter W0 and two high-pass filters W1 and W2, whose masks
are

w(0) = 1

2
[1, 2, 1] , w(1) =

√
2

4
[1, 0, −1] , w(2) = 1

4
[−1, 2, −1] ,

respectively. We can derive the synthesis operator W starting from these masks
by imposing reflexive boundary conditions. These boundary conditions secure that
WT W = I . Defining

W0 = 1

4

⎡
⎢⎢⎢⎢⎢⎣

3 1 0 . . . 0
1 2 1
. . .

. . .
. . .

1 2 1
0 . . . 0 1 3

⎤
⎥⎥⎥⎥⎥⎦

, W1 =
√
2

4

⎡
⎢⎢⎢⎢⎢⎣

−1 1 0 . . . 0
−1 0 1

. . .
. . .

. . .
−1 0 1

0 . . . 0 −1 1

⎤
⎥⎥⎥⎥⎥⎦

,

and

W2 = 1

4

⎡
⎢⎢⎢⎢⎢⎣

1 −1 0 . . . 0
−1 2 −1

. . .
. . .

. . .
−1 2 −1

0 . . . 0 1 1

⎤
⎥⎥⎥⎥⎥⎦
.

The synthesis operator is obtained by stacking the three matrices above

W =
⎡
⎣ W0

W1
W2

⎤
⎦ .

We can extend the operator above to two space-dimension by means of tensor
products

Wij = Wi ⊗ Wj, i, j = 0, 1, 2.

This yields the analysis operator

W =

⎡
⎢⎢⎢⎣

W00
W01
...

W22

⎤
⎥⎥⎥⎦ .

The matrix W00 is a low-pass filter. All the other matrices Wij contain at least one
high-pass filter in some direction. In our examples, we set L = W .

We compare generalized cross validation with two other approaches to selecting
the regularization parameter in (2), including cross validation as described in [8] and
the discrepancy principle as discussed in [7]. We also compare the quality of the
computed solutions determined by these method with the solution obtained with the
optimal choice of the regularization parameter. The latter choice of the regularization
parameter is not practical, because it requires that the desired solution xtrue be known;
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the regularization parameter is then determined to yield a computed solution that
minimizes the restoration error

RRE(x) = ‖x − xtrue‖2
‖xtrue‖2 , (17)

where xtrue denotes the desired solution.
The method described in [7] determines a sequence of regularization parameters,

in a similar fashion as in this work, by requiring that the computed approximate
solution in each iteration satisfies the discrepancy principle (DP). To perform well,
this method requires that a fairly accurate estimate of the norm of the error ‖η‖2 in the
data vector bδ be known. This norm is not meaningful for impulse noise. Therefore,
the discrepancy principle cannot be used when bδ is contaminated by impulse noise.

Two methods for determining the regularization parameter by cross-validation
are described in [8]. The first method determines the regularization parameter so
that missing data is well predicted. This classical approach of carrying out cross-
validation is referred to as CV in the tables. The other method, which we refer to as
modified cross-validation (MCV), seeks to determine the regularization parameter so
that missing entries of the computed solution are well predicted. The MCV method
typically gives approximations of the desired solution xtrue of somewhat higher qual-
ity than the CV method; see [8] for illustrations. This paper compares different
parameter choice rules for the minimization problem (2). A comparison with other
methods for solving the minimization problem (2), that require the regularization
parameter to be hand-tuned, can be found in [30, 35].

The restoration error (17) and the structural and similarity index (SSIM) are com-
pared in our tests. The definition of the latter is somewhat involved; here we just note
that the SSIM measures how well the overall structure of an image is recovered, and
that the larger the index the better the reconstruction. In particular, the highest value
achievable is 1; see [40] for details.

For all examples we set ε = 1 in (11); see [7] for a discussion on the choice of ε.
We terminate the iterations either after 100 iterations or when∥∥x(k+1) − x(k)

∥∥
2∥∥x(k)

∥∥
2

< 10−4.

Finally, for the computations of bδ
smooth, we set ν

2 = 1 in all examples.
All the computations were performed usingMatlab R2018b running on aWindows

10 laptop computer with a i7-8750H @2.20 GHz CPU and 16 GB of RAM.

Tomography The first example considers a tomography problem. The example is
constructed with the aid of the IR Tools Matlab package [21]. The phantom has 256×
256 pixels, and we consider 90 equispaced angles in the interval [0, π(, and 362 rays
per angle. This results in a matrix A ∈ R

32580×65536. We added 1% of white Gaussian
noise to the sinogram, i.e., ‖η‖2 = 0.01 ‖b‖2. Since the noise is Gaussian, we set
p = 2 and, like in all considered examples, q = 0.1. We show the true phantom and
the sinogram in Fig. 2.

Table 1 reports the RRE and SSIM for the computed solutions determined by all
the parameter choice rules considered in Table 1. All the rules can be seen to perform

1608 Numerical Algorithms (2021) 88:1595–1616



Fig. 2 Tomography test case: a True phantom (256 × 256 pixels), b sinogram (90 equispaced angles in
[0, π(, 362 measurements per angle, and 1% white Gaussian noise)

very similarly. Obviously, the optimal parameter provides the best reconstruction in
terms of RRE. This parameter choice rule requires knowledge of the exact solution
xtrue and therefore cannot be used in real application. The DP provides the second

Table 1 RRE, SSIM, and CPU time in seconds obtained with the different choice rule for the regulariza-
tion parameter considered

Test case Choice rule RRE SSIM CPU time (sec.)

Tomograpy Optimal 0.19614 0.58851 5.975

DP 0.19897 0.62124 7.345

CV 0.20239 0.53228 1.012 × 103

MCV 0.19687 0.57299 2.072 × 103

GCV 0.19945 0.55018 8.605 × 101

GCV-Smooth 0.28796 0.32062 1.036 × 102

Peppers Optimal 0.10166 0.76351 1.164 × 101

CV 0.18149 0.58044 9.570 × 102

MCV 0.15015 0.64031 1.847 × 103

GCV 0.099600 0.74446 9.375 × 101

GCV-Smooth 0.077343 0.81442 8.915 × 101

Cameraman Optimal 0.092446 0.84164 1.121 × 101

CV 0.16119 0.64255 1.050 × 103

MCV 0.12752 0.75052 2.020 × 103

GCV 0.098815 0.73118 1.182 × 102

GCV-Smooth 0.047421 0.93320 9.317 × 101
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best approximation of xtrue, however, it demands knowledge of the norm of the noise
η. The CV, MCV, and GCV methods do not require any knowledge of the noise. We
can observe, that although the MCV method slightly outperforms the GCV method
in terms of the RRE (but not in terms of the SSIM), the GCV method demands much
less CPU time than the CV and MCV methods. This is due to the fact that both the
CV and MCV methods require several runs of the MM-GKS algorithm, while the
GCV method only carries out a single run. Finally, we note that the GCV-Smooth
method does not perform well. This is due to the fact that the noise in the data bδ

is purely Gaussian. The smoothing of bδ leads to an underestimation of the amount
of noise in bδ , which results in a too small value of the regularization parameter; the
computed solution is under-regularized. These considerations are confirmed by the
visual comparison of the reconstructions shown in Fig. 3.

Fig. 3 Tomography test case reconstructions: a Optimal, b DP, c GCV, d GCV-Smooth
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Peppers Our second example considers an image deblurring problem. We blur the
image in Fig. 4a with the PSF shown in Fig. 4b, and add 25% of impulse noise. This
yields the blurred and noisy image displayed in Fig. 4c.When we construct this exam-
ple, we cut the boundaries of the blurred image to simulate realistic data; see [28] for
more details. Since the image is generic, we impose reflexive boundary conditions.
Moreover, since the blurred image is corrupted by impulse noise, we set p = 0.8.

We report the results obtained in Table 1. Since the noise is not Gaussian, we
cannot apply the discrepancy principle to determine the regularization parameter.
However, the CV, MCV, and GCV methods can be applied. We also report the RRE
and SSIM for the optimal choice of the regularization parameter. We can see that the
GCV and GCV-Smooth methods provide the best reconstructions. In particular, the
reconstruction obtained with GCV is slightly better than the optimal one, and the one
obtained with GCV-Smooth is significantly better. While this may appear strange, it
is due to the construction of the generalized Krylov subspace. In particular, since the
solution subspace depends on the approximate solutions generated during the com-
putations, the solution subspaces determined by the various methods differ, and this
may lead to different results. We remark that, while we for stationary methods (with
μ fixed) can show converge of the computed iterates, we have no such result for the
iterates determined by the CV and GCV methods. Finally, we observe that the use of
the smoothed GCV function yields a very accurate reconstruction which, in partic-
ular, is more accurate than the one obtained with the standard GCV method. These
observations are confirmed by visual inspection of the reconstructions displayed in
Fig. 5.

Cameraman The last example describes another image deblurring problem. We con-
sider the exact image in Fig. 6a and blur it with the PSF in Fig. 6b. Adding 20%
of salt-and-pepper noise produces the blurred and noisy image in Fig. 6c. As in the
previous example, we cut the boundary of the blurred image to simulate realistic
data. In view of that the image is generic, we impose reflexive boundary conditions.
Since the PSF is quadrantically symmetric, the matrix A obtained can be diagonal-
ized by the discrete cosine transform. Because LT L = I , we therefore could avoid

Fig. 4 Peppers test case: a True image (246×246 pixels), b PSF (9×9 pixels), c Blurred and noisy image
(25% of impulse noise)
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Fig. 5 Peppers test case reconstructions: a Optimal, b MCV, c GCV, d GCV-Smooth

Fig. 6 Cameraman test case: a True image (252×252 pixels), b PSF (12×12 pixels), c Blurred and noisy
image (20% of salt and pepper noise)
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the application of generalized Krylov subspaces in the MM-GKS method. However,
for consistency we use the same approach as in the previous examples. Since the
noise is not Gaussian, we set p = 0.8, similarly as in the example above.

Table 1 shows the RRE and SSIM values obtained with the different parameter
choice rules. We observe that the GCV and GCV-smooth methods provide more accu-
rate approximations of xtrue in terms of RRE, than both the CV and MCV, for a much
lower computational cost. Moreover, the RRE obtained with the GCVmethod is close
to the optimal one, and the RRE for the restoration determined by the GCV-Smooth
method is significantly smaller. Figure 7 displays the obtained reconstructions. Visual
inspection shows that the reconstruction obtained with the GCV-Smooth method is

Fig. 7 Cameraman test case reconstructions: a Optimal, b MCV, c GCV, d GCV-Smooth

1613Numerical Algorithms (2021) 88:1595–1616



Fig. 8 Cameraman test case reconstruction obtained using the MM-GKS-GCV-Smoothed method and
projecting the approximation into the cube [0, 255]n

very detailed, but “grayish”. The latter is due to the presence of some pixels, whose
values are significantly larger than 255 (which is the value corresponding to white,
the value 0 corresponds to black), which causes a rescaling before plotting. Project-
ing the reconstruction orthogonally into the cube [0, 255]n gives the image in Fig. 8.
We can observe that the gray-scale level is now correct and the reconstruction is very
close to the original image.

5 Conclusions

We propose the GCV method for choosing the regularization parameter for the �p-
�q regularization method. This method is easy to implement and computationally
fairly inexpensive thanks to that the original minimization problem (2) is projected
into a generalized Krylov subspace of small to moderate size. A comparison with
some other available methods shows that the proposed approach is competitive and
provides accurate approximations of the desired solution. Moreover, the proposed
approach is completely automatic and does not need hand-tuning of any parameter.
Thus, it can be considered for real world applications.
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