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Abstract
We consider the Broyden-like method for a nonlinear mapping F : Rn → R

n that
has some affine component functions, using an initial matrix B0 that agrees with the
Jacobian of F in the rows that correspond to affine components of F . We show that
in this setting, the iterates belong to an affine subspace and can be viewed as outcome
of the Broyden-like method applied to a lower-dimensional mapping G : Rd → R

d ,
where d is the dimension of the affine subspace. We use this subspace property to
make some small contributions to the decades-old question of whether the Broyden-
like matrices converge: First, we observe that the only available result concerning this
question cannot be applied if the iterates belong to a subspace because the required
uniform linear independence does not hold. By generalizing the notion of uniform
linear independence to subspaces, we can extend the available result to this setting.
Second, we infer from the extended result that if at most one component of F is
nonlinear while the others are affine and the associated n − 1 rows of the Jacobian
of F agree with those of B0, then the Broyden-like matrices converge if the iterates
converge; this holds whether the Jacobian at the root is invertible or not. In particu-
lar, this is the first time that convergence of the Broyden-like matrices is proven for
n > 1, albeit for a special case only. Third, under the additional assumption that
the Broyden-like method turns into Broyden’s method after a finite number of itera-
tions, we prove that the convergence order of iterates and matrix updates is bounded

from below by
√

5+1
2 if the Jacobian at the root is invertible. If the nonlinear compo-

nent of F is actually affine, we show finite convergence. We provide high-precision
numerical experiments to confirm the results.

Keywords Broyden-like method · Broyden’s method · Convergence of Broyden-like
matrices · Quasi-Newton methods · Uniform linear independence

Mathematics subject classification (2010) 49M15 · 65H10 · 65K05 · 90C30 · 90C53

� Florian Mannel
florian.mannel@uni-graz.at

1 University of Graz, Graz, Austria

Published online: 1 February 2021

Numerical Algorithms (2021) 88:853–881

http://crossmark.crossref.org/dialog/?doi=10.1007/s11075-020-01060-y&domain=pdf
http://orcid.org/0000-0001-9042-0428
mailto: florian.mannel@uni-graz.at


1 Introduction

This work is devoted to convergence properties of the Broyden-like method for
systems of equations in which some of the equations are linear. Among others, it
provides the first answer to the decades-old question whether the Broyden-like matri-
ces converge under the standard assumptions for q-superlinear convergence of the
iterates, albeit for a special case only.

Given a smooth nonlinear mapping F : Rn → R
n, Broyden’s method [3] aims at

finding ū ∈ R
n with:

F(ū) = 0.

It is a well-established member of the class of quasi-Newton methods and shares
its local q-superlinear convergence, cf. [9, 14, 15, 21, 23]. The Broyden-like method
generalizes Broyden’s method by allowing an additional parameter σk in the matrix
update. It reads as follows.

1 .

For (σk) ≡ 1, we recover Broyden’s method. An appropriate choice of σk ensures
that Bk+1 is invertible if Bk is invertible. In fact, by the Sherman-Morrison formula,
all choices but one maintain invertibility. The Broyden-like method is well known,
cf. [22], [28, Section 6] and [16, Algorithm 1].

In this work, we consider Algorithm 1 for mixed linear-nonlinear systems of equa-
tions. That is, there exists J ⊂ {1, . . . , n} such that Fj (u) = aT

j u + bj , where
aj ∈ R

n and bj ∈ R for all j ∈ J . In addition, we suppose that the initial matrix
B0 agrees with the Jacobian of F in the rows that correspond to (some of) the affine
components of F , i.e., B

j

0 = aT
j for all j ∈ J . For j /∈ J the functions Fj can be

nonlinear and B
j

0 is not restricted. This framework includes many practically rele-
vant systems of equations. Also, it fits two standard suggestions for the choice of B0,
which are to use B0 = F ′(u0) or a finite difference approximation of F ′(u0). In the
following, we speak of exact initialization if B

j

0 = aT
j for all j ∈ J .

This article is divided into four parts. In the first part, we show that exact initializa-
tion ensures that the steps (sk)k≥1 stay in a subspace S and that they can be generated
by applying Algorithm 1 to a lower-dimensional mapping G : Rd → R

d , where d is
the dimension of S. This extends results from [18].
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The second part is concerned with the consequences of the first part for the con-
vergence of the Broyden-like matrices (Bk). We point out that it is still largely open
if (Bk) converges and that several renowned researchers have mentioned this issue
in their works, cf. the survey articles [8, Example 5.3], [21, p. 117], [14, p. 306] and
[2, p. 940]. The convergence of (Bk) is for example of interest because it is closely
related to the rate of convergence of (uk), see, e.g., Lemma 2 and 3. For invert-
ible F ′(ū), there is only one result available: It is established in [22, Theorem 5.7]
and in [17] that if the sequence of steps (sk) is uniformly linearly independent, then
(Bk) converges and limk→∞ Bk = F ′(ū). We include the precise result as Theo-
rem 4. Unfortunately, conditions that imply uniform linear independence of (sk) are
unknown and we are not aware of a single example-be it theoretical or numerical-in
which (sk) is actually uniformly independent. In the setting of this work, anyway,
(sk)k≥1 is confined to the subspace S and thus violates uniform linear independence.
After extending the notion of uniform linear independence to subspaces, we general-
ize the above convergence result for (Bk) to the setting of this work, cf. Theorem 5.
In doing so, we also obtain a formula for the limit of (Bk).

In the third part, we observe that if F has only one nonlinear component function
and B0 is initialized exactly, then the generalized convergence result from the second
part implies that (Bk) converges whenever the iterates (uk) converge, and this holds
for regular and for singular F ′(ū), cf. Corollary 2. Since the assumption of only one
nonlinear component function is very restrictive, we stress that this is the first time
that convergence of (Bk) is shown for n > 1 and invertible F ′(ū). We will also see
that even though each Bk agrees with F ′(ū) in n − 1 of n rows, the limit of (Bk) is
generally not F ′(ū).

We continue the third part by paying special attention to the case that σk = 1 for
all k ≥ k0 and some k0 ≥ 0, i.e., Algorithm 1 turns into Broyden’s method. The
result of the first part implies that in this case, Broyden’s method essentially reduces
to the one-dimensional secant method. This yields a comprehensive characterization
of the convergence of (uk) including a lower bound for its q-order, which in turn
allows us to establish significantly stronger convergence properties of (Bk) than for
the Broyden-like method, cf. Theorem 6. For affine F , we prove finite convergence if
σk = 1 is selected at least once, cf. Theorem 7. The third part concludes with a brief
application of the developed convergence theory to two examples from the literature.

In the last part, we verify the results from the third part in numerical experiments
with high precision. Among others, we find that if F ′(ū) is invertible, then choosing
(σk)k≥k0 ≡ 1 for some k0 ≥ 0 leads to much faster convergence than, e.g., (σk) ≡
0.99, while this is not the case if F ′(ū) is not invertible.

The convergence theory of Broyden’s method and specific versions of the
Broyden-like method are developed in, e.g., [4, 12, 16, 22]. There is only one further
result available on the convergence of the Broyden(-like) matrices besides the one
mentioned above: In [19], it was recently shown for Broyden’s method that if F ′(ū)

is singular with some additional structure, then (‖Bk+1 − Bk‖) converges q-linearly
to zero under appropriate assumptions, so (Bk) converges.

For other quasi-Newton updates, convergence results are available. We are aware
of results for the SR1 update [5, 11, 30], for the Powell-symmetric-Broyden update
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[26], for the DFP and the BFGS update [13], and for the convex Broyden class
excluding the DFP update [29].

This paper is organized as follows. In Section 2, we collect preparatory results
and we present the generalization of uniform linear independence that is useful for
subspaces. In Section 3, we prove the subspace property of (sk)k≥1 and show that
(sk)k≥1 can be obtained by applying Algorithm 1 to a suitable mapping G : Rd →
R

d . Section 4 contains the convergence results for the Broyden-like matrices and the
application to examples from the literature. Section 5 presents numerical experiments
and Section 6 summarizes.

Notation We use N = {1, 2, 3, . . .}. For n ∈ N we set [n] := {1, 2, . . . , n}, [n]0 :=
[n] ∪ {0} and [0] := ∅. The Euclidean norm of v ∈ R

n is ‖v‖, while ‖A‖ is the
spectral norm if A ∈ R

m×n. For A ∈ R
m×n, Aj indicates the j th row of A, regarded

as a row vector, whereas Ai,j ∈ R is the usual notation for entries. The span of
C ⊂ R

n is indicated by 〈C〉. We will use tacitly that Algorithm 1 cannot generate a
step sk satisfying sk = 0. For k ≥ 0, we define:

Ek := Bk − F ′(ū) and ŝk := sk

∥
∥sk

∥
∥
,

where the first definition assumes that Algorithm 1 has generated (Bk) and (uk) with
limk→∞ uk = ū for some ū at which F is differentiable, while the second definition
already makes sense if Algorithm 1 has generated sk . We employ the q-order of
convergence and the r-order of convergence in this work. They are studied in, e.g.,
[25, Section 9].

2 Preliminaries

2.1 Convergence of the Broyden-like method

The main convergence result for Algorithm 1 reads as follows.

Theorem 1 Let F : R
n → R

n be differentiable in a neighborhood of ū with
F(ū) = 0 and let ‖F ′(u) − F ′(ū)‖ ≤ L‖u − ū‖α for all u from this neighborhood
and constants L, α > 0. Let F ′(ū) be invertible. If Algorithm 1 generates a sequence
(uk) that satisfies

∑

k ‖uk − ū‖α
< ∞, then there holds:

∞
∑

k=0

(∥
∥uk+1 − ū

∥
∥

∥
∥uk − ū

∥
∥

)2

< ∞, (1)

implying that (uk) converges q-superlinearly to ū.
Moreover, there are δ, ε > 0 such that for every (u0, B0) with ‖u0 − ū‖ ≤ δ and

‖B0 − F ′(ū)‖ ≤ ε, Algorithm 1 either terminates with output u∗ = ū or it generates
(uk) such that all Bk are invertible and

∑

k ‖uk − ū‖α
< ∞.

Proof This follows from [20, Theorem 1].

856 Numerical Algorithms (2021) 88:853–881



If we restrict attention to Broyden’s method instead of the Broyden-like method,
then a stronger result is available, namely Gay’s theorem on 2n-step q-quadratic
convergence [12, Theorem 3.1]. For mixed linear–nonlinear systems with exact
initialization, this result has recently been improved.

Theorem 2 Let n ∈ N, d ∈ [n]0 and J := [n] \ [d]. Let F : R
n → R

n satisfy
Fj (u) = aT

j u + bj for all j ∈ J , where aj ∈ R
n and bj ∈ R for all j ∈ J . Let F

be differentiable in a neighborhood of ū with F(ū) = 0 and let ‖F ′(u) − F ′(ū)‖ ≤
L‖u − ū‖ for all u from this neighborhood and a constant L > 0. Let F ′(ū) be
invertible. Then there are δ, ε > 0 and C > 0 such that for every (u0, B0) with
‖u0 − ū‖ ≤ δ, ‖B0 − F ′(ū)‖ ≤ ε, and B

j

0 = aT
j for all j ∈ J , Algorithm 1 with

(σk) ≡ 1 either terminates with output u∗ = ū or it generates (uk) that satisfies (1)
and:

∥
∥
∥uk+2d − ū

∥
∥
∥ ≤ C

∥
∥
∥uk − ū

∥
∥
∥

2 ∀k ≥ 1.

In particular, (uk) converges q-superlinearly and with r-order at least 21/(2d) to ū

and all Bk are invertible.

Proof See [18].

2.2 Convergence of the Broyden-like updates

If (uk) and the Broyden-like updates converge, then F(limk→∞ uk) = 0.

Lemma 1 Let F : Rn → R
n be continuous at ū. Let (uk) and (Bk) be generated by

Algorithm 1. Suppose that uk → ū and supk≥0 ‖Bk+1 − Bk‖ < ∞. Then F(ū) = 0.

Proof From supk≥0 ‖Bk+1 − Bk‖ < ∞, we infer supk≥0
‖F(uk+1)‖

‖sk‖ < ∞. The con-

vergence of (uk) yields limk→∞ ‖sk‖ = 0, so limk→∞ ‖F(uk)‖ = 0, whence
F(ū) = 0.

If (uk) and the Broyden-like matrices converge, then the convergence of (uk) is
q-superlinear.

Lemma 2 Let F : Rn → R
n be differentiable at ū with F ′(ū) invertible. Let (uk)

and (Bk) be generated by Algorithm 1. Suppose that uk → ū and ‖Bk+1 − Bk‖ → 0
for k → ∞. Then (uk) converges q-superlinearly to ū.

Proof Due to the invertibility of F ′(ū) and uk → ū, there is C > 0 such that:
∥
∥uk+1 − ū

∥
∥ ≤ C

∥
∥F(uk+1) − F(ū)

∥
∥ = C

σk
‖Bk+1 − Bk‖

∥
∥sk

∥
∥

≤ C
σmin

‖Bk+1 − Bk‖
(∥
∥uk+1 − ū

∥
∥ + ∥

∥uk − ū
∥
∥
)

for all k sufficiently large. Here, we also used that F(ū) = 0 by Lemma 1.
Subtracting C

σmin
‖Bk+1 − Bk‖‖uk+1 − ū‖ and taking the limit yields the claim.
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Next we show that convergence of (uk) with q-order at least γ > 1 implies
convergence of (‖Bk+1 − Bk‖) with r-order at least γ , cf. also [25, 9.1.8&9.2.7].

Lemma 3 Let F : R
n → R

n and let (uk) and (Bk) be generated by Algorithm
1. Suppose that (uk) converges to some ū and that F satisfies ‖F(u) − F(ū)‖ ≤
L‖u − ū‖ for all u in a neighborhood of ū and some constant L > 0. Let γ > 1.

1. If F(ū) = 0 and there is C > 0 such that for all k sufficiently large:

∥
∥
∥uk+1 − ū

∥
∥
∥ ≤ C

∥
∥
∥uk − ū

∥
∥
∥

γ

(2)

is satisfied, then there exists Ĉ > 0 such that:

‖Bk+1 − Bk‖ ≤ Ĉ

∥
∥
∥uk − ū

∥
∥
∥

γ−1
(3)

for all sufficiently large k.
2. If C, Ĉ > 0 exist such that (2) and (3) are satisfied for all sufficiently large k,

then we have F(ū) = 0 and limk→∞‖Bk+1 − Bk‖
1

pk = 0 for all p ∈ [1, γ ). In
particular,

∑

k‖Bk+1 − Bk‖ < ∞ and (Bk) converges.

Proof Proof of 1: Since (2) implies q-superlinear convergence of (uk), we obtain
from a well-known result of Dennis and Moré that ‖uk − ū‖/‖sk‖ →
1 for k → ∞, cf. [7, Lemma 2.1]. The Lipschitz-type property of F

at ū, F(ū) = 0 and (2) hence yield:

‖Bk+1 − Bk‖ = σk

‖F(uk+1) − F(ū)‖
‖sk‖ ≤ Ĉ

∥
∥
∥uk − ū

∥
∥
∥

γ−1

for all sufficiently large k and a constant Ĉ > 0, which proves (3).
Proof of 2: Lemma 1 yields F(ū) = 0 due to (3). To prove the remaining claims

it suffices to establish that

lim
k→∞

(

‖Bk+1 − Bk‖
1

γ−1

) 1
pk = 0 ∀p ∈ [1, γ ). (4)

As (uk) has q-order at least γ by (2), its r-order is also at least γ , cf.

[25, 9.3.2], thus limk→∞ ‖uk − ū‖
1

pk = 0 for all p ∈ [1, γ ), so (4)
follows from (3).

Remark 1 For Broyden’s method, it is unknown whether (2) holds for any γ > 1 if
n > 1, cf. also [18]. For n = 1, it is known that (2) holds with γ equal to the golden
mean [31]. In Theorem 6, we show that this result extends to arbitrary n provided F

has n − 1 affine component functions and B0 is initialized exactly.
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2.3 Uniform linear independence of dimension d

The following definition is the appropriate generalization of uniform linear indepen-
dence for the purposes of this paper.

Definition 1 Let n ∈ N and d ∈ N. The sequence of vectors (sk) ⊂ R
n \{0} is called

uniformly linearly independent of dimension d iff there exist constants m ∈ N and
ρ > 0 such that for every sufficiently large k the set:

{

sk, sk+1, . . . , sk+m
}

contains d vectors sk1 , . . . , skd such that all singular values of the matrix:
(

sk1

‖sk1‖
sk2

‖sk2‖ . . . skd

‖skd ‖
)

∈ R
n×d

are larger than ρ.

Remark 2 The usual notion of uniform linear independence, cf. [5, (AS.4)], is
recovered for d = n. If d is not specified, then it is understood that d = n.

3 Behavior of the Broyden-like method onmixed systems

To conveniently state results for mixed linear–nonlinear systems of equations, we
will use the following assumption.

Assumption 1 Let n ∈ N, d ∈ [n]0 and J := [n] \ [d]. Let F : Rn → R
n satisfy

Fj (u) = aT
j u + bj for all j ∈ J , where aj ∈ R

n and bj ∈ R for all j ∈ J . Let

B0 ∈ R
n×n satisfy B

j

0 = aT
j for all j ∈ J and suppose that B0 is invertible.

Remark 3 Due to B
j

0 = aT
j for all j ∈ J and the invertibility of B0, Assumption 1

implies dim(〈{aj }j∈J 〉) = n − d, hence dim(〈{aj }j∈J 〉⊥) = d.

The first result establishes basic properties of Algorithm 1 under Assumption 1. It
generalizes [18, Lemma 2.1].

Lemma 4 Let Assumption 1 hold and let (uk), (sk) and (Bk) be generated by Algo-
rithm 1. Then we have for each j ∈ J and all k ≥ 1 the identities B

j
k = aT

j ,

Fj (u
k) = 0, aT

j sk = 0 and Bkaj = B1aj .

Proof The proof of [18, Lemma 2.1] applies without changes.

Under the assumptions of Lemma 4, the sequence (sk) necessarily violates
uniform linear independence except if J = ∅.
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Corollary 1 Any selection {sk1, . . . , skd+1} of d+1 vectors from the sequence (sk)k≥1
of Lemma 4 is linearly dependent.

Proof Lemma 4 yields aT
j sk = 0 for all j ∈ J and all k ≥ 1, thus sk ∈ 〈{aj }j∈J 〉⊥

for all k ≥ 1. The claim follows from dim(〈{aj }j∈J 〉⊥) = d.

To conveniently state the next result, we introduce some notation.

Definition 2 Let Assumption 1 hold. We set A := 〈{aj }j∈J 〉 and S := A⊥.
Furthermore, we let {si}i∈[d] be an orthonormal basis of S and we denote S :=
(

s1 . . . sd
) ∈ R

n×d . For any matrix B ∈ R
n×n, we denote:

B̃ :=
⎛

⎜
⎝

B1

...
Bd

⎞

⎟
⎠ ∈ R

d×n and similarly F̃ (u) :=
⎛

⎜
⎝

F1(u)
...

Fd(u)

⎞

⎟
⎠ .

We show that under Assumption 1, the iterates (uk)k≥1 obtained by applying Algo-
rithm 1 to F can also be generated by applying it to a mapping G acting between R

d .
The following result extends [18, Theorem 2.3].

Theorem 3 Let Assumption 1 hold and let (uk), (Bk) and (σk) be generated by
Algorithm 1, where each Bk is assumed to be invertible. Define:

G : Rd → R
d , G(w) := F̃ (u1 + Sw)

as well as:

C0 := B̃1S ∈ R
d×d , w0 := 0 ∈ R

d , and τk := σk+1 ∀k ≥ 0.

Then the application of Algorithm 1 to G with initial guess (w0, C0) and updating
sequence (τk) generates sequences (wk) and (Ck) with the following properties:

1. Each Ck is invertible and for all k ≥ 1, there hold:

uk = u1 + Swk−1, F̃ (uk) = G(wk−1) and Ck−1 = B̃kS. (5)

2. The iterates (uk) converge to ū ∈ R
n if and only if there is w̄ ∈ R

d such that
(wk) converges to w̄. If (uk) and (wk) converge to ū and w̄, respectively, then
we have for all k ≥ 1:

ū = u1 + Sw̄ and
∥
∥
∥uk − ū

∥
∥
∥ =

∥
∥
∥wk−1 − w̄

∥
∥
∥. (6)

3. The matrices (Bk) converge to B ∈ R
n×n if and only if there is C ∈ R

d×d such
that (Ck) converges to C. If (Bk) and (Ck) converge to B and C, respectively,
then we have for all k ≥ 1:

C = B̃S and ‖Ck − C‖ = ‖Bk − B‖.

Proof Proof of 1: The proof of [18, Theorem 2.3], which is for (σk) ≡ 1, can be
used almost verbatim.
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Proof of 2: We will use several times that ‖Sv‖ = ‖v‖ for all v ∈ R
d because the

columns of S are orthonormal.
Let (uk) converge to ū. From (5), it follows that un −um = S(wn−1 −
wm−1) for all n, m ≥ 1, which implies that (wk) is a Cauchy sequence,
hence convergent. Denoting the limit by w̄ we deduce from (5) that
ū = u1 + Sw̄, which in turn yields ‖uk − ū‖ = ‖S(wk−1 − w̄)‖,
hence ‖uk − ū‖ = ‖wk−1 − w̄‖. If (wk) converges to w̄, then we can
argue similarly.

Proof of 3: Let (Bk) converge to B. From (5), it follows that ‖Cn−1 − Cm−1‖ ≤
‖B̃n − B̃m‖ = ‖Bn − Bm‖ for all n, m ≥ 1, where we used that
‖S‖ = 1 and that B

j
n − B

j
m = 0 for all j ∈ J due to Lemma 4. This

implies that (Ck) is a Cauchy sequence, hence convergent. Denoting
the limit by C, we deduce from (5) that C = B̃S. Let now (Ck)

converge to C. We denote by A ∈ R
n×(n−d) the matrix:

A := (

a1 . . . an−d
)

,

where {ai}i∈[n−d] is an orthonormal basis of A. Furthermore, let Ŝ ∈
R

n×n be given by Ŝ := (

S A
)

. Since B
j
k S = aT

j S = 0 and BkA =
B1A for all j ∈ J and all k ≥ 1 by Lemma 4, we infer that:

BkŜ =
(

B̃kS

0

∣
∣
∣
∣

BkA

)

=
(

Ck−1
0

∣
∣
∣
∣

B1A

)

, (7)

where we also used the identity B̃kS = Ck−1 from (5). Since ŜŜT =
I , it follows that:

Bk =
(

Ck−1
0

∣
∣
∣
∣

B1A

)

ŜT

for all k ≥ 1. Since (Ck) converges, we see that (Bk) converges, too.
Denoting the limit of (Bk) by B, we conclude from (5) that C = B̃S

and from (7) that ‖Ck−1 − C‖ = ‖(Bk − B)Ŝ‖ = ‖Bk − B‖, where
we used that Ŝ is orthogonal.

Remark 4 Theorem 3 does not require invertibility of F ′(ū), which allows us to
derive results for singular F ′(ū), too, cf. Theorems 6 and 7.

4 Convergence of the Broyden-like matrices

4.1 The general result

From [22, Theorem 5.7], we recall the following sufficient condition for convergence
of (Bk) to F ′(ū).

Theorem 4 Let F : R
n → R

n be strictly differentiable at ū. Let (uk), (sk) and
(Bk) be generated by Algorithm 1. Let (uk) converge to ū and let (sk) be uniformly
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linearly independent. Then B := limk→∞ Bk exists and satisfies B = F ′(ū). More-
over, we have F(ū) = 0. If, in addition, F ′(ū) is invertible, then (uk) converges
q-superlinearly.

Proof There are three differences to [22, Theorem 5.7]. The first is that we replaced
continuous differentiability of F by strict differentiability. It is easy to verify that the
proof of [22, Theorem 5.7] still holds under this weaker assumption. The second and
third difference are the statements for F(ū) = 0 and the q-superlinear convergence of
(uk), which we added. They follow from Lemma 1 and Lemma 2, respectively.

Corollary 1 shows that for mixed linear–nonlinear systems with exact initializa-
tion, the uniform linear independence required in Theorem 4 does not hold. The
following result extends Theorem 4 to mixed systems. We recall that the matrix S is
introduced in Definition 2.

Theorem 5 Let F : Rn → R
n. Let Assumption 1 hold and let (uk), (sk) and (Bk)

be generated by Algorithm 1, where each Bk is assumed to be invertible. Let (uk)

converge to ū and suppose that w �→ F̃ (ū + Sw) is strictly differentiable at w = 0.
Let (sk) be uniformly linearly independent of dimension d. Then B := limk→∞ Bk

exists and satisfies B̃S = F̃ ′(ū)S, Baj = B1aj and Bj = aT
j = F ′

j (ū) for all

j ∈ J . Moreover, we have F(ū) = 0. If F̃ ′(ū)S is invertible, then (uk) converges
q-superlinearly. If F is strictly differentiable at ū, then E := limk→∞ Ek exists and
satisfies E = E1(I − SST ).

Proof For d = n, we have J = ∅, Ẽ = E and S ∈ R
n×n is orthogonal, so the

result is equivalent to Theorem 4 and there is nothing to prove. For d < n, we begin
by noting that Lemma 4 yields B

j
k = aT

j and Bkaj = B1aj for all j ∈ J and all
k ≥ 1, which carries over to limk→∞ Bk if it exists. Next we show the existence of
limk→∞ Bk . By applying Theorem 3, we obtain sequences (Ck) and (wk) and a point
w̄ as stated in that theorem. Part 3 of that theorem shows that for convergence of
(Bk), it suffices to demonstrate the convergence of (Ck). Denoting sk

w := wk+1 −wk

we now prove that (sk
w) ⊂ R

d \ {0} is uniformly linearly independent (of dimension
d). Indeed, using (5), we have:

ŝk = Ssk−1
w

‖sk‖ = S(wk − wk−1)

‖S(wk − wk−1)‖ = S(wk − wk−1)

‖wk − wk−1‖ .

This implies that the matrix Ŝk appearing in the definition of uniform linear indepen-
dence of dimension d of (sk) and the matrix appearing in the definition of uniform
linear independence of (sk

w) have identical singular values, so the uniform linear inde-
pendence of dimension d of (sk) implies the uniform linear independence of (sk

w).
The uniform linear independence of (sk

w) and the results of Theorem 3 allow us to
apply Theorem 4 to G, (wk), (sk

w), and (Ck). This yields convergence of (Ck) to
G′(w̄) = F̃ ′(ū)S, which by means of Theorem 3 3 implies B̃S = F̃ ′(ū)S. Since
(Bk) converges, Lemma 1 supplies F(ū) = 0 and Theorem 4 implies q-superlinear
convergence of (wk), from which the q-superlinear convergence of (uk) follows by
use of (6). If F is strictly differentiable at ū, then the claims for B imply that E exists
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and satisfies ẼS = 0 as well as Ej = 0 and Eaj = E1aj for all j ∈ J . It is easy to
see that these conditions are equivalent to E = E1(I − SST ).

Remark 5
1. If F is strictly differentiable at ū, then F̃ (ū + Sw) is strictly differentiable at

w = 0. If F ′(ū) is invertible, then F̃ ′(ū)S is invertible.
2 To illustrate the conditions obtained for B let us consider the case that S =

{(s1, s2, . . . , sn)
T ∈ R

n : sj = 0 ∀j > d}. In this case, we can use for S the
first d columns of the n × n identity matrix. Thus, B̃S consists of the entries
Bi,j , i, j ∈ [d], and B̃S = F̃ ′(ū)S states that the first d × d block of B agrees
with the respective block of F ′(ū). From Baj = B1aj for all j ∈ J , we obtain
in addition that the entries Bi,j , i ∈ [d], j ∈ [n] \ [d], are the same as in B1. If
F is strictly differentiable at ū, then this implies that Bi,j , i ∈ [d], j ∈ [n] \ [d],
cannot equal the respective entries of F ′(ū) if the rank of (E

i,j

0 )i∈[d],j∈[n]\[d] is
larger than one.

4.2 The special case d = 1

Sufficient conditions for uniform linear independence of (sk) ⊂ R
n are unknown for

Broyden’s method if n > 1 (hence also for the more general Algorithm 1). However,
any sequence (sk) ⊂ R

n \ {0} is uniformly linearly independent of dimension 1,
hence Theorem 5 implies the following result.

Corollary 2 Let F : Rn → R
n. Let Assumption 1 hold for d = 1 and let (uk), (sk)

and (Bk) be generated by Algorithm 1, where each Bk is assumed to be invertible.
Let (uk) converge to ū and suppose that t �→ F1(ū + t s̄) is strictly differentiable at
t = 0, where s̄ := S. Then B := limk→∞ Bk exists and satisfies B1s̄ = F ′

1(ū)(s̄),
B1aj = B1

1aj and Bj = aT
j = F ′

j (ū) for all j > 1. Moreover, we have F(ū) = 0. If

F ′
1(ū)(s̄) �= 0, then (uk) converges q-superlinearly. If F1 is strictly differentiable at

ū, then E := limk→∞ Ek exists and satisfies E1 = E1
1(I − s̄ s̄T ) and Ej = 0 for all

j > 1; in particular, (Bk) converges to F ′(ū) iff E1
1aj = 0 for all j > 1.

Remark 6 Under the assumptions of Corollary 2, each Bk agrees with F ′(ū) in all
rows except the first and B := limk→∞ Bk exists, yet B will usually be different from
F ′(ū) (provided F ′(ū) exists). If, say, s̄ is the first canonical unit vector, then E1 =
(

0 E
1,2
1 . . . E

1,n
1

)

; hence, E = 0 holds iff B
1,j

1 = [

F ′
1(ū)

]

j
for all j > 1, where

[F ′
1(ū)]j indicates the j th component of the vector F ′

1(ū). This also shows that if
‖E0‖ is large, then ‖E‖ will usually be large, too. The numerical results in Section 5
and our numerical experience from other work confirm that (Bk) will frequently not
converge to F ′(ū) and indicate that this also holds in more nonlinear settings.

We now focus on Broyden’s method, where (σk) ≡ 1. In fact, it is enough if
σk = 1 for all k sufficiently large. For this case, we can strengthen the findings of
Corollary 2 in several ways, for instance by providing orders of convergence for (uk)
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and (‖Bk+1 − Bk‖). These results are derived by exploiting the fact that if σk = 1
for a k ∈ N, then sk+1 and thus uk+2 can also be generated by the one-dimensional
secant method, cf. the proof of Theorem 6 1. Correspondingly, let us first argue for
the one-dimensional case.

Lemma 5 Let G : R → R. Let (wk), (sk
w) and (Ck) be generated by Algorithm 1

applied to G, using an update sequence (τk) that satisfies:

lim
k→∞

τk+1

τk

= 1.

Let (wk) converge to w̄ with G(w̄) = 0. For k ≥ 0, respectively, k ≥ 1 define:

qG
k := |wk+1 − w̄|

|wk − w̄| and QG
k := |Ck+1 − Ck|

|Ck − Ck−1| .

Then the following statements hold:

1. Let G be differentiable at w̄ with G′(w̄) �= 0. Let ϕ := 1+√
5

2 and suppose that:

lim
k→∞

|wk+1 − w̄|
|wk − w̄|ϕ (8)

exists. Then we have:

lim
k→∞

QG
k

qG
k−2

= 1.

If, in addition, limk→∞ τk = 1 is satisfied, then there holds:

lim
k→∞

|Ck+1 − Ck|
|Ck − Ck−1|ϕ = |G′(w̄)|1−ϕ .

2. Let m0 ∈ N, κ ∈ (0, 1) and κ̂ > 0. Let G be m0 + 1 times differentiable at w̄.
Let G(m)(w̄) = 0 for all m ∈ [m0] and G(m0+1)(w̄) �= 0. Suppose that:

lim
k→∞ qG

k = κ and lim
k→∞

|sk
w|

|wk − w̄| = κ̂

are satisfied. Then we have:

lim
k→∞ QG

k = κm0 .

Proof Proof of 1: Using G(w̄) = 0, we find:

τk−1
τk

· |Ck+1−Ck |
|Ck−Ck−1| = |G(wk+1)||sk−1

w |
|sk

w ||G(wk)|
= |G′(w̄)(wk+1−w̄)+o(|wk+1−w̄|)||sk−1

w |
|sk

w ||G′(w̄)(wk−w̄)+o(|wk−w̄|)|
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for all k ≥ 1. As (8) implies that (wk) converges q-superlinearly, a
well-known lemma of Dennis and Moré, cf. [7, Lemma 2.1], yields

limk→∞ |sk
w |

|wk−w̄| = 1. Therefore, we have:

limk→∞
QG

k

qG
k−2

= limk→∞ |Ck+1−Ck |
|Ck−Ck−1|

|wk−2−w̄|
|wk−1−w̄|

= limk→∞ |G′(w̄)||wk+1−w̄||wk−1−w̄|
|wk−w̄||G′(w̄)||wk−w̄|

|wk−2−w̄|
|wk−1−w̄|

= limk→∞ |wk+1−w̄||wk−2−w̄|
|wk−w̄|2 ,

provided the latter limit exists. By applying (8) multiple times, we
obtain:

lim
k→∞

|wk+1−w̄||wk−2−w̄|
|wk − w̄|2

= lim
k→∞ μ

ϕ−1− 1
ϕ |wk−1−w̄|ϕ2−2ϕ+ 1

ϕ =1,

where μ ∈ [0, ∞) denotes the limit from (8) and where we used the
identities ϕ2 − 2ϕ + 1

ϕ
= −ϕ + 1 + 1

ϕ
= ϕ − 1 − 1

ϕ
= 0 that follow

from ϕ2 − ϕ − 1 = 0. Similar considerations show that:

lim
k→∞

|Ck+1 − Ck|
|Ck − Ck−1|ϕ = μ̄ lim

k→∞
|wk+1 − w̄|
|wk − w̄| · |wk−1 − w̄|ϕ

|wk − w̄|ϕ = μ̄

for μ̄ := |G′(w̄)|1−ϕ , where we used (8) to obtain the final equality.
Proof of 2: Let us prove the claim for m0 = 1; it is readily generalized to arbitrary

m0 ≥ 1. Taylor expansion around w̄ together with G(w̄) = 0 implies

limk→∞ |G(wk+1)|
|G(wk)|

= limk→∞
|G′(w̄)(wk+1−w̄)+ 1

2 G′′(w̄)(wk+1−w̄)2+o(|wk+1−w̄|2)|
|G′(w̄)(wk−w̄)+ 1

2 G′′(w̄)(wk−w̄)2+o(|wk−w̄|2)|
= limk→∞ |G′′(w̄)|

|G′′(w̄)| · |wk+1−w̄|2
|wk−w̄|2 = κ2 = κm0+1.

By assumption, we have κ̂ = limk→∞ |sk
w |

|wk−w̄| > 0, hence:

lim
k→∞

|sk−1
w |
|sk

w| = lim
k→∞

κ̂|wk−1 − w̄|
κ̂|wk − w̄| = 1

κ
.

By definition, there holds for all k ≥ 1:

τk−1

τk

· QG
k = |G(wk+1)|

|G(wk)| · |sk−1
w |
|sk

w| .

Taking the limit for k → ∞ yields the claim.

We now provide a detailed description of the convergence behavior of Algorithm 1
with σk = 1 for all large k and d = 1, where F has n− 1 affine component functions
F2, . . . , Fn. We first present a result for nonlinear F1 and then deal with affine F1.
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Theorem 6 Let Assumption 1 hold for d = 1 and let (uk), (sk) and (Bk) be generated
by Algorithm 1, with each Bk invertible. Suppose that σk = 1 for all k large enough
and that (uk) converges to some ū. Set s̄ := S and define:

qk :=
∥
∥uk+1 − ū

∥
∥

∥
∥uk − ū

∥
∥

and Qk := ‖Bk+1 − Bk‖
‖Bk − Bk−1‖

for all k ≥ 0, respectively, k ≥ 1. Then the following statements hold:

1. Let t �→ F1(ū+ t s̄) be twice differentiable near t = 0 with t �→ F ′′
1 (ū+ t s̄)(s̄, s̄)

continuous at t = 0 and F ′
1(ū)(s̄) �= 0. Then we have:

lim sup
k→∞

∥
∥uk+1 − ū

∥
∥

∥
∥uk − ū

∥
∥ϕ ≤

∣
∣
∣
∣

F ′′
1 (ū)(s̄, s̄)

2F ′
1(ū)(s̄)

∣
∣
∣
∣

1
ϕ

, (9)

where ϕ := 1+√
5

2 . For all p ∈ [1, ϕ), there holds:

lim
k→∞ ‖Bk+1 − Bk‖

1
pk = 0. (10)

If, in addition, F ′′
1 (ū)(s̄, s̄) �= 0, then (9) holds with equality and lim sup

replaced by lim, and we have:

lim
k→∞

‖Bk+1 − Bk‖
‖Bk − Bk−1‖ϕ = ∣

∣F ′
1(ū)(s̄)

∣
∣1−ϕ

and lim
k→∞

Qk

qk−2
= 1. (11)

2. Let m0 ∈ N and denote by κ ∈ (0, 1) the unique root of the polynomial xm0+1 +
xm0 − 1 in (0, 1). Let t �→ F1(ū + t s̄) be m0 + 1 times differentiable near t = 0
with its (m0 + 1)th derivative continuous at t = 0. If F (m)

1 (ū)(s̄, . . . , s̄) = 0 for

all m ∈ [m0] and F
(m0+1)
1 (ū)(s̄, . . . , s̄) �= 0, then:

lim
k→∞ qk = κ and lim

k→∞ Qk = κm0 .

Proof Proof of 1: From Theorem 3, we obtain G : R → R, (wk), (Ck), and
w̄ as stated in that theorem. We let sk

w := wk+1 − wk for all k ≥
0. Due to Cks

k
w(sk

w)T /|sk
w|2 = Ck , we have Ck+1 = (G(wk+1) −

G(wk))/sk
w if σk = 1 and thus Algorithm 1 for G agrees with the one-

dimensional secant method for all sufficiently large k. As (G(wk+1)−
G(wk))/sk

w → G′(w̄) for k → ∞, we obtain the convergence of
(Ck), thus G(w̄) = 0 by Lemma 1. Furthermore, there holds G′(w̄) =
F̃ ′(ū)S = F ′

1(ū)(s̄) �= 0. Since (wk) converges to w̄ with G(w̄) = 0
and G′(w̄) �= 0, classical results for the secant method, cf. [31, (6)],
yield that if G′′(w̄) �= 0, then:

lim
k→∞

|wk − w̄|
|wk−1 − w̄|ϕ =

∣
∣
∣
∣

G′′(w̄)

2G′(w̄)

∣
∣
∣
∣

1
ϕ

,

which by use of (5) is readily transformed into (9) with equality and
lim sup replaced by lim. Similarly for (9). The r-order (10) follows
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from Lemma 3 using that F(ū) = 0 due to Corollary 2. Since QG
k =

Qk+1 and qG
k−2 = qk−1 by (5) and (6), Lemma 5 1 yields (11).

Proof of 2: We argue only for m0 = 1. It follows from Corollary 2 that F(ū) =
0. It is a standard result for the one-dimensional secant method, cf.
[10, Section 2.2.2], that limk→∞ qG

k = κ , hence limk→∞ qk = κ , too.
The claim on (Qk) follows via (QG

k ) from Lemma 5 2 if we can show
that there is κ̂ > 0 such that:

lim
k→∞

|sk
w|

|wk − w̄| = κ̂ .

Using G′(w̄) = 0, G′′(w̄) �= 0, and limk→∞ qG
k = κ , elementary

considerations show that there is an index k0 such that (wk − w̄)k≥k0

converges to zero without changing signs. For sufficiently large k, we
thus have:

∣
∣
∣s

k
w

∣
∣
∣ =

∣
∣
∣(w

k+1 − w̄) − (wk − w̄)

∣
∣
∣ = (1 − qG

k )

∣
∣
∣w

k − w̄

∣
∣
∣ ,

hence, the desired limit exists with κ̂ = 1 − κ > 0.

Remark 7
1. If F ′(ū) is invertible, then F ′

1(ū)(s̄) �= 0. Indeed, since s̄ ∈ S and since F ′
j (ū) =

aT
j ∈ A = S⊥ for all j > 1, we have F ′

j (ū)(s̄) = 0 for all j > 1; hence,
F ′

1(ū)(s̄) = 0 would imply F ′(ū)(s̄) = 0.
2. (9) and (10) show that (uk), respectively, (‖Bk+1 − Bk‖) have q-order, respec-

tively, r-order no less than ϕ. If F ′′
1 (ū)(s̄, s̄) �= 0, then the additional part of

1 implies that both (uk) and (‖Bk+1 − Bk‖) have q-order and r-order ϕ, cf.
[25, 9.3.3]. For (uk), the q-order ϕ improves the best available result, which is
the 2-step q-quadratic convergence ensured by Theorem 2 for d = 1. Moreover,
the example in Section 4.3.2 shows that if F ′′

1 (ū)(s̄, s̄) = 0, then it is possible to
have a higher q-order than ϕ.

3. For m0 = 1, Theorem 6 2 is related to the results in [6, 19].
4. Corollary 2 is valid under the assumptions of Theorem 6, so in 1 and 2, we also

have F(ū) = 0 and B satisfies the conditions from that corollary.

In the affine setting, Algorithm 1 terminates after finitely many steps, provided a
root exists and σk = 1 for at least one k (if the Jacobian is regular). More precisely,
we have the following result.

Theorem 7 Let F : R
n → R

n be affine. Let Assumption 1 hold for d = 1 and
let (uk), (sk) and (Bk) be generated by Algorithm 1, with each Bk invertible. Let
F(u0) �= 0. Then the following statements hold:

1. Let F ′ be invertible. Then F has a unique root ū. If there is an index k ≥ 1 with
σk = 1, then uk+1 = ū or uk+2 = ū, hence the algorithm terminates in iteration
k + 1 or k + 2 with output u∗ = ū. If the algorithm does not terminate with
output u∗ = ū, then (uk) converges to ū and satisfies (1).
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2. Let F ′ be singular. If F has a root, then F(u1) = 0. If F does not have a
root, then the algorithm generates a diverging sequence (uk) such that F(uk) =
(ω, 0, . . . , 0)T for all k ≥ 1 and some ω �= 0.

Proof Proof of 1: From [22, Theorem 3.2], we know that for affine F with invert-
ible F ′, Algorithm 1 converges q-superlinearly for any u0 if all Bk are
invertible and the algorithm does not terminate with output u∗ = ū.
(Since d = 1, it is also not difficult to establish this directly.) Theo-
rem 1 now yields (1). Corollary 2 yields the convergence of (Bk). It
remains to prove that if σk = 1 and F(uk+1) �= 0, then F(uk+2) = 0.
Since Fj (u

k) = 0 for all j > 1 and all k ≥ 1 by Lemma 4, we have to
show that F1(u

k+2) = 0. Similar as in the proof of Theorem 6, we use
Theorem 3 to obtain {wj }k+1

j=0 and {Cj }k+1
j=0 by applying Algorithm 1 to

the affine function G : R → R, G(w) := F1(u
1 +ws̄), where s̄ := S.

In view of (5), we have to show that G(wk+1) = 0. From τk−1 =
σk = 1, it follows that Ck = (G(wk)−G(wk−1))/(wk −wk−1) = G′.
Using Ck(w

k+1 −wk) = −G(wk), we find G(wk+1) = G(wk)+G′ ·
(wk+1 − wk) = G(wk) − G(wk) = 0, hence F(uk+2) = 0.

Proof of 2: Defining A := F ′, we note that A has rank n − 1 since As̄ = 0
and since n − 1 rows of A agree with the invertible B0. Thus, A1

can be expressed as a linear combination of {Aj }nj=2. Since F has a

root and since Fj (u
1) = 0 for all j > 1 by Lemma 4, it readily

follows that F1(u
1) = 0, whence F(u1) = 0. Now suppose that F

does not have a root. By applying Theorem 3 again, we obtain that
G′ = As̄ = 0; hence, G is constant, say G ≡ ω for some ω ∈ R. Since
F has no root, we must have ω �= 0. Since G is constant, there holds
F1(u

k) = G(wk−1) = ω for all k ≥ 1. The sequence (uk) cannot be
convergent because Corollary 2 would entail that the limit point is a
root of F .

Remark 8
1. The starting point u0 is arbitrary in Theorem 7.
2. The finite convergence in Theorem 7 1 is related to the 2n-step convergence of

Broyden’s method for regular linear systems [12, 24]. Indeed, in the proof of
Thm. 7 1, we can replace the computation for showing G(wk+1) = 0 by an
application of the 2n-step convergence to G using that due to τk−1 = 1, sk−1

w

and sk
w are the Broyden steps for initial (wk−1, Ck−1).

3. If in Theorem 7 1, Algorithm 1 does not terminate with u∗ = ū, then limk→∞ Ek

exists and satisfies the conditions from Corollary 2.

4.3 Application to two examples from the literature

We illustrate some of our findings on two examples from the literature. The second
example also hints at two extensions.
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4.3.1 An example by Dennis and Schnabel

In [9, Example 8.1.3] and [9, Lemma 8.2.7], it is shown that for:

F : R2 → R
2, F (u) =

(

u1 + u2 − 3
u2

1 + u2
2 − 9

)

with root ū = (0, 3)T , the initial data:

u0 =
(

1
5

)

and B0 = F ′(u0) =
(

1 1
2 10

)

yields sequences (uk) and (Bk) with uk → ū for k → ∞ and:

B1 =
(

1 1
0.375 8.625

)

, B := lim
k→∞ Bk =

(

1 1
1.5 7.5

)

, F ′(ū) =
(

1 1
0 6

)

.

The affine component F1 has coefficient vector a1 = (1, 1)T , so S = 〈{a1}〉⊥ =
{t s̄ : t ∈ R} with s̄ := 1√

2
(1, −1)T . Theorem 3 yields that (sk)k≥1 ⊂ S and

(F1(u
k))k≥1 ≡ 0. Of course, this can also be verified directly, cf. also [9, Exam-

ple 8.1.3 and Lemma 8.2.7]. In agreement with Theorem 5 and Corollary 2, there
holds B̃S = B2s̄ = −3

√
2 = F̃ ′(ū)S, B1 = B1

0 and B(1, 1)T = B1(1, 1)T . (From
B1, F ′(ū) and s̄, we can actually determine the limit B.) Because of F ′

2(ū)s̄ �= 0 �=
F ′′

2 (ū)(s̄, s̄), Theorem 6 1 yields q-order ϕ for (uk) and (‖Bk+1 − Bk‖) as well as the
validity of (11).

4.3.2 An example by Dennis and Moré

In [8, Example 5.3], Dennis and Moré consider Broyden’s method for:

F : R2 → R
2, F (u) =

(
u1

u2 + u3
2

)

with root ū = (0, 0)T and note that for any δ, ε ∈ R the initial data:

u0 =
(

0
ε

)

and B0 =
(

1 + δ 0
0 1

)

(12)

yields a sequence (Bk) with B
1,1
k = 1 + δ for all k ≥ 0. Hence, the incorrect entry

1 + δ is never corrected (assuming δ �= 0), preventing convergence of (Bk) to F ′(ū).
According to [8], “The above example points out that one of the disadvantages of
Broyden’s method is that it is not self-correcting. In particular, Bk depends upon
each Bj with j < k and thus it may retain information which is irrelevant or even
harmful.”. It is well known that the BFGS method is self-correcting, cf., e.g., [1, 27].

We show that the iterates (uk) converge rapidly despite the incorrect entry 1 + δ

in all Bk . The affine component F1 has coefficient vector a1 = (1, 0)T , thus S =
〈{a1}〉⊥ = {(0, t)T : t ∈ R}. We set s̄ := (0, 1)T and observe (sk)k≥0 ⊂ S as well as
(F1(u

k))k≥0 ≡ 0. It is not difficult to see that Theorem 3 and, in turn, Theorem 6 1
apply, even though Assumption 1 is not satisfied in this example. Theorem 6 1 implies
that if (uk) converges to ū, then it has a q-order no smaller than ϕ and (‖Bk+1 − Bk‖)
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goes to zero with r-order no smaller than ϕ. The fast convergence is enabled by the
fact that Broyden’s method effectively reduces to the one-dimensional secant method.
It should also be noted that (Bk) converges to F ′(ū) in S, i.e., (Bk −F ′(ū))S → 0, cf.
Corollary 2. Furthermore, since B0S = 1 correctly approximates the affine part of F2
and since F2 does not contain a quadratic part, it can be shown that (‖Bk+1 − Bk‖)
has q-order 2, which implies that (uk) has q-order 2, too. The numerical experiments
confirm the q-order 2, cf. Section 5.2.2.

5 Numerical experiments

We use numerical examples to verify Corollary 2 and Theorems 6 and 7. We first
present the design of the experiments and then provide the examples and results.

5.1 Design of the experiments

5.1.1 Implementation and accuracy

We use the variable precision arithmetic (vpa) of MATLAB 2020B. Unless stated
otherwise, we work with a precision of 10000 digits and replace the termination
criterion F(uk) = 0 in Algorithm 1 by ‖F(uk)‖ ≤ 10−5000. By k̄, we denote the
final value of k.

5.1.2 Known solution and random initialization

All examples have root ū = 0 and the experiments are set up in such a way that
convergence to ū takes place in all runs except possibly a handful that are discarded.
Except in the second example, the initial guess (u0, B0) is randomly generated using
MATLAB’S function rand to satisfy u0 ∈ [−α, α]n and B0 = F ′(u0)+α̂‖F ′(u0)‖R.
Here, R ∈ R

n×n is a matrix with Rj = 0 for all j > 1 and the entries in R1 randomly
drawn from [−1, 1]. The values of α ∈ [10−3, 1000] and α̂ ∈ [0, 1000] will be
specified within each example.

5.1.3 Quantities of interest

To display the course of Algorithm 1, we use the norm of Fk := F(uk), the error
‖Ek‖, the quotients qk and Qk introduced in Theorem 6, and furthermore:

βk := ‖Bk − Bk−1‖, Cu
k := ‖uk − ū‖

∥
∥uk−1 − ū

∥
∥

ϕ , CB
k := ‖Bk − Bk−1‖

‖Bk−1 − Bk−2‖ϕ ,

as well as:

RB
k := log

(‖Bk − Bk−1‖−1)
1
k

and:

Qu
k := log(‖uk − ū‖)

log(‖uk−1 − ū‖) , QB
k := log(‖Bk − Bk−1‖)

log(‖Bk−1 − Bk−2‖) .
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We note that Qu
k and QB

k approximate the q-order of convergence while RB
k approx-

imates the r-order. Whenever any of these quantities is undefined, we set it to −1,
e.g., β0 := −1. We will use these quantities to confirm that (Bk) converges, cf.
Corollary 2, and to assess the convergence order of (uk) and (‖Bk+1 − Bk‖), cf. The-
orem 6. We are also interested in whether ‖Ek‖ → 0, i.e., whether (Bk) converges to
the true Jacobian F ′(ū), cf. for instance Remark 6.

5.1.4 Single runs and cumulative runs

We use single runs and cumulative runs. For single runs, we display the quantities of
interest during the course of the algorithm. A cumulative run consists of 1000 single
runs with initial data varying according to Section 5.1.2, unless stated otherwise. Let
us briefly describe the aggregated quantities that we use to assess cumulative runs.
For instance, to gauge the q-order of (‖Bk+1 − Bk‖), we compute for each single run
of a cumulative run the number:

Qj := min
k0(j)≤k≤k̄(j)

QB
k ,

where j ∈ [1000] indicates the respective single run and we consistently use k0(j) :=
min{100, �0.75k̄(j)�}. As outcome of the cumulative run, we display:

Q−
B := min

j∈[1000]Qj and Q+
B := max

j∈[1000]
Qj .

If the stronger conditions in Theorem 6 1 hold, then Q−
B and Q+

B should both be close
to the golden mean ϕ. If the convergence is of lower order in any of the 1000 single
runs, then we expect Q−

B to be smaller than ϕ.
In the same way as just presented for Q−

B and Q+
B , we derive ‖E‖−, ‖E‖+, q−,

q+, Q−
u , Q+

u , β−, β+, Q−, Q+, R−
u , and R+

u from the respective quantities used in
single runs. In addition, we use:

‖F‖− := min
j∈[1000]

‖F
(

uk̄(j)
)

‖ and ‖F‖+ := max
j∈[1000]

‖F
(

uk̄(j)
)

‖.

To keep the tables for cumulative runs of a reasonable size, we will omit some of
these quantities, but what is omitted varies from example to example.

5.2 Numerical examples

5.2.1 Example 1

To verify the results of Theorem 6 1, we consider F : R10 → R
10 given by:

F(u) =
(

u1 ·
[
∏10

j=2

(

uj + (−1)j
)]

Au

)

,

where A ∈ R
9×10 is a random matrix with entries in [−1, 1] that is changed after

each of the 1000 single runs of the cumulative run. The randomly generated A is
only accepted if the resulting F ′(ū) is invertible. We use α = 0.001 in this example.
A single and a cumulative run with (σk) ≡ 1 and α̂ = 0 are displayed in Tables 1
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and 2. The results agree with Theorem 6 1. For instance, it is apparent that (uk) and
(‖Bk+1 − Bk‖) converge with q-order ϕ ≈ 1.618 and that limk→∞ Qk

qk−2
= 1 (since

A is random, we expect F ′′
1 (ū)(s̄, s̄) �= 0). Table 2 also shows results for a cumulative

run with (σk) ≡ 1 and α̂ = 0.1. In accordance with Theorem 6 1, deviating from
the choice B0 = F ′(u0) does not affect the q-order of convergence. Next we keep
α̂ = 0.1 and let σk = 0.5 for k ≤ 3 and (σk)k≥4 ≡ 1. Theorem 6 1 predicts that this
choice of (σk) maintains q-order ϕ for (uk) and (‖Bk+1 − Bk‖), and Table 2 confirms
this.

In contrast, if we choose α̂ = 0 and (σk) ≡ 0.99, then the order of convergence
drops significantly and the same holds for (σk) ≡ 1 − (k + 2)−4, cf. Table 2. In
fact, except for some special cases it can be shown that (uk) can only converge with
q-order greater than one if σk → 1 fast enough. In particular, for (σk) ≡ 0.99 and
(σk) ≡ 1 − (k + 2)−4, both (uk) and (‖Bk+1 − Bk‖) have q-order 1. To confirm
this for (σk) ≡ 1 − (k + 2)−4, we repeat the cumulative run with a higher precision
of 100000 digits, using ‖F(uk)‖ ≤ 10−50000 as termination criterion and only 100
single runs instead of 1000. We view the results in Table 2 as being in line with q-
order 1. In any case, it is apparent that for (σk) ≡ 0.99 and (σk) ≡ 1 − (k + 2)−4

the q-order of convergence is not ϕ anymore and that (‖Bk+1 − Bk‖) converges to
zero at least q-linearly for all choices of (σk); hence, (Bk) converges, which validates
Corollary 2. The values of ‖E‖− show that (Bk) never converges to F ′(ū).

5.2.2 Example 2

We provide results for the example by Dennis and Moré discussed in Section 4.3.2,
which concerns Broyden’s method, so (σk) ≡ 1. A single run is displayed in Table 3
and four cumulative runs in Table 4. For the single run and the first cumulative run,
we use (u0, B0) that satisfy (12) with randomly generated δ, ε ∈ [−0.5, 0.5]. The
results confirm that, as argued in Section 4.3.2; both (uk) and (‖Bk+1 − Bk‖) have
q-order 2. Because of F ′′

2 (ū) = 0, this does not contradict Theorem 6 1.
In the second cumulative run, we let u0 = (ε1, ε2)

T for random numbers ε1, ε2 ∈
[−0.5, 0.5], while keeping B0 as in (12) with δ ∈ [−0.5, 0.5]. Due to ε1 �= 0, we can-
not expect (sk) to belong to a one-dimensional subspace; hence, Theorem 6 does not
apply anymore. Correspondingly, the second row in Table 4 shows that (uk) does not
attain the q-order ϕ but suggests that the q-order may still have a lower bound larger
than 1. This view is further encouraged by the fact that the r-order of (‖Bk+1 − Bk‖2)

seems to admit such a lower bound, too, which is a necessary condition for (uk) to
have a q-order, cf. Lemma 3. To investigate the potential q-order of (uk) further, we
repeat the cumulative run at a higher precision using ‖F(uk)‖ ≤ 10−100000 as termi-
nation criterion and 400 single runs. The results are contained in Table 4 and support
the existence of a q-order larger than one for (uk).

In the third cumulative run, whose results are depicted in the last row of Table 4,
we keep the choice u0 = (ε1, ε2)

T from the second cumulative run, but use B0 =
F ′(u0) as initial, so that B1

0 = F ′
1(u

0) and hence Assumption 1 holds. In turn, The-
orem 6 1 applies, which ensures a q-order, respectively, r-order no smaller than ϕ

for (uk) and (‖Bk+1 − Bk‖), respectively. It can be argued in the same way as in
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Section 4.3.2 that both sequences actually converge with q-order 2. Table 4 confirms
this q-order.

The values of ‖E‖− in Table 4 show that (Bk) never converges to F ′(ū). Yet, since
(‖Bk+1 − Bk‖) declines quickly, the convergence of (uk) is still rapid.

5.2.3 Example 3 a

We turn to Theorem 6 2, where F ′(ū) is singular. Let:

F : R3 → R
3, F (u) =

⎛

⎝

u2
2 − 2u3

3
u1 + u2 + u3

5u1

⎞

⎠ .

Because of A⊥ = 〈{(0, 1, −1)T }〉, we have s̄ = 1√
2
(0, 1, −1)T , hence F ′

1(0) = 0

and F ′′
1 (0)(s̄, s̄) = 2 �= 0, which implies limk→∞ qk = limk→∞ Qk =

√
5−1
2 ≈

0.618 for the choice (σk) ≡ 1 that we consider first. We use α = α̂ = 0.01 in this
example. The results of a cumulative run with (σk) ≡ 1 are displayed in Table 5 and
are in perfect agreement with Theorem 6 2. Table 5 also provides results for (σk) ≡
0.99, which are similar to those for (σk) ≡ 1. Moreover, it features ι− and ι+, which
denote the minimal, respectively, maximal number of iterations of all single runs
within a cumulative run. As in the previous examples, we consistently find Bk �→
F ′(ū).

5.2.4 Example 3 b

We change F1 in example 3 a, using F1(u) = u3
2 − 2u3

3 instead. This results in
F ′

1(0) = 0, F ′′
1 (0)(s̄, s̄) = 0 and F ′′′

1 (0)(s̄, s̄, s̄) �= 0, so Theorem 6 2 implies
limk→∞ qk ≈ 0.755 and limk→∞ Qk ≈ 0.570. Table 5 confirms this for (σk) ≡ 1
and shows that the choice (σk) ≡ 0.99 induces only marginal changes. Overall,
example 3 exhibits a remarkably uniform convergence behavior of iterates and matrix
updates, as evidenced, for instance, by the fact that q− = q+ and Q− = Q+.
Table 6 exemplifies this for example 3 b in a single run with (σk) ≡ 1. Since this
uniformity is characteristic for singular F ′(ū) of rank n − 1, cf. also [19], we used
‖F(uk)‖ ≤ 10−500 as termination criterion in example 3 and the cumulative runs
consisted of 100 single runs.

Table 5 Example 3 a and b: Two cumulative runs in a with (σk) ≡ 1 (top) and (σk) ≡ 0.99 (below top)
and in b with (σk) ≡ 1 (above bottom) and (σk) ≡ 0.99 (bottom)

||F ||− ||F ||+ q− q+ β− β+ Q− Q+ ||E||− ||E||+ ι− ι+

4e−501 1e−500 0.618 0.618 6e−230 9e−230 0.618 0.618 0.02 0.09 1180 1200

4e−501 1e−500 0.620 0.620 4e−230 7e−230 0.620 0.620 0.02 0.09 1180 1200

4e−501 9e−501 0.755 0.755 2e−309 4e−309 0.570 0.570 0.03 0.08 1340 1360

4e−501 1e−500 0.756 0.756 2e−309 3e−309 0.572 0.572 0.03 0.08 1350 1370
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Table 6 Example 3 b: Single
run with (σk) ≡ 1 k ||Fk || qk βk Qk ||Ek ||

0 0.023 −1 −1 −1 0.0704

1 6.1e−7 0.815 7.0e−5 −1 0.0704

2 6.2e−7 1.0 0.03 424 0.0639

3 1.8e−7 0.666 6.5e−5 0.002 0.0639

4 9.0e−8 0.79 7.7e−5 1.18 0.0639

5 3.7e−8 0.742 3.2e−5 0.42 0.0639

6 1.6e−8 0.76 2.1e−5 0.638 0.0639

7 6.8e−9 0.753 1.1e−5 0.545 0.0639

8 3.0e−9 0.756 6.5e−6 0.579 0.0639

9 1.3e−9 0.755 3.7e−6 0.566 0.0639

10 5.5e−10 0.755 2.1e−6 0.571 0.0639
...

...
...

...
...

...

500 1.6e−189 0.755 4.4e−126 0.57 0.0639

501 7.1e−190 0.755 2.5e−126 0.57 0.0639

502 3.0e−190 0.755 1.4e−126 0.57 0.0639

503 1.3e−190 0.755 8.1e−127 0.57 0.0639
...

...
...

...
...

...

1000 1.1e−372 0.755 3.3e−248 0.57 0.0639

1001 4.6e−373 0.755 1.9e−248 0.57 0.0639

1002 2.0e−373 0.755 1.1e−248 0.57 0.0639
...

...
...

...
...

...

1348 3.4e−500 0.755 3.3e−333 0.57 0.0639

1349 1.5e−500 0.755 1.9e−333 0.57 0.0639

1350 6.3e−501 0.755 1.1e−333 0.57 0.0639

5.2.5 Example 4

To verify Theorem 7 1 we consider F(u) = Au, where A ∈ R
10×10 is an invertible

random matrix with entries in [−1000, 1000] that is changed after each single run
of the cumulative run. We choose α = α̂ = 1000. In the first cumulative run, we
use σ4 = 1, σk = 0.1 otherwise. Theorem 7 1 guarantees F(u6) = 0 if F(uk) �= 0
for 0 ≤ k ≤ 5. Table 7 shows that ι− = ι+ = 6, so all runs use exactly 6 steps.
On a side note, we remark that Q− = Q+ = 9 can easily be proven. The second
experiment displayed in Table 7 uses (σk) ≡ 1 − (k + 2)−4. The outcome is in
line with Theorem 7 1 that asserts global q-superlinear, but not finite convergence
for this choice of (σk), as well as convergence of (Bk). As in example 1, it can be
shown that the q-order of (uk) and (‖Bk+1 − Bk‖) is 1. To verify this, we repeat the
cumulative run with (σk) ≡ 1 − (k + 2)−4, using a precision of 100000 digits and
‖F(uk)‖ ≤ 10−50000 as termination criterion, but only 100 single runs. The result in
Table 7 is in line with q-orders of 1. Despite the fact that all Bk agree with A on n−1
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of n rows, the difference between Bk and A in the last 25% of iterations is large in
norm, which, however, does not prevent finite convergence if σk = 1 for at least one
k ≥ 1; cf. Theorem 7 and Remark 6.

6 Summary

We have shown that, up to a translation, the iterates of the Broyden-like method
for mixed linear–nonlinear systems of equations can be obtained by applying the
Broyden-like method to a lower-dimensional mapping, provided that the rows of the
initial matrix agree with the rows of the Jacobian for (some of) the linear equations.
We have used this subspace property to extend a sufficient condition for convergence
of the Broyden-like matrices. For the special case that at most one equation is nonlin-
ear, we have concluded that the Broyden-like matrices converge whenever the iterates
converge. For Broyden’s method, we could, in addition, quantify how fast iterates
and updates converge, respectively, prove finite convergence if the system is linear.
We verified the results in high-precision numerical experiments.
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