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Abstract
In this paper, we provide further illustrations of prolate interpolation and pseudospec-
tral differentiation based on the barycentric perspectives. The convergence rates of
the barycentric prolate interpolation and pseudospectral differentiation are derived.
Furthermore, we propose the new preconditioner, which leads to the well-conditioned
prolate collocation scheme. Numerical examples are included to show the high accu-
racy of the new method. We apply this approach to solve the second-order boundary
value problem and Helmholtz problem.
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1 Introduction

In many cases, we are confronted with wave phenomena, such as wave scattering, sig-
nal processing, and antenna theory, which are characterized by bandlimited functions
(whose Fourier transforms are compactly supported) [3, 14]. It is well known that the
natural tool for effectively representing bandlimited functions on an interval is pro-
late spheroidal wave functions (PSWFs) [7, 28, 32]. Hence, there has been a growing
interest in developing prolate spheroidal wave functions, which also offer an alterna-
tive to Chebyshev and other orthogonal polynomials for pseudospectral/collocation
and spectral-element algorithms [5].

It is well known that a simple way of approximating a function f (x) is to choose
a sequence of points {xj }nj=0 and find the function P(x) from the values of f (x)

at these interpolation nodes, i.e., set P(xj ) = f (xj ), 0 ≤ j ≤ n. The standard
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tool for interpolation and approximation algorithms was investigated in [15, 32]. We
highlight that a very popular alternative nowadays is to use barycentric interpolation
formula, and the favourable numerical aspects of this way are summarized by Berrut
and Trefethen [1, 24]. So, the related issues are worthy of investigation.

The purpose of this paper is to have new insights into prolate interpolation and pseu-
dospectral differentiation based on the Prolate-Gauss-Lobatto points. The inspiration
behind the proposed numerical method is the remarkable advantage of barycentric
interpolation formula [1]. The main contributions reside in the following aspects.

• We give the barycentric prolate interpolation and differentiation formula, which
enjoys a more stable approximability and efficiency than the formulas given early
[32, 34].

• We give the error analysis of the barycentric prolate interpolation and differ-
entiation based on the error analysis of the standard prolate interpolation and
differentiation [22].

• We offer a preconditioning matrix that nearly inverts the second-order prolate
pseudospectral differentiation matrix, leading to a well-conditioned collocation
approach for second-order boundary value problems.

The structure of the paper is as follows. In Section 2, we review some results of
PSWFs and prolate interpolation and pseudospectral differentiation, while Section 3
combines the barycentric form with the prolate interpolation, which yields the
new barycentric prolate interpolation and pseudospectral differentiation scheme.
Furthermore, the convergence analysis of barycentric prolate interpolation and pseu-
dospectral differentiation is given. In Section 4, we introduce the preconditioning
matrix that nearly inverts the second-order barycentric prolate differentiation matrix.
Sections 5 and 6 demonstrate the analysis via several numerical experiments and
apply to the second-order boundary value problem and Helmholtz problem.

2 Prolate interpolation and pseudospectral differentiation

2.1 Preliminaries

The PSWFs were introduced in the 1960s by Slepian et al. in a series of papers [20,
21]. Firstly, we briefly recall some preliminary properties of the PSWFs. All of these
can be found in [2, 6, 13–16, 18, 20, 21, 30, 31, 34].

Prolate spheroidal wave functions of order zero are the eigenfunctions ψj (x) of
the Helmholtz equation in prolate spheroidal coordinates:[

(x2 − 1)
d2

dx2
+ 2x

d

dx
+ c2x2

]
ψj(x) = χj (c)ψj (x), (2.1)

for x ∈ (−1, 1) and c ≥ 0. A series of papers [18, 32, 34] have shown that the ψj (x)

are also the eigenfunctions of the following integral eigenvalue problem:∫ 1

−1
eicxtψj (t)dt = λj (c)ψj (x), (2.2)
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Here, {χj := χj (c)}∞j=0 and {λj := λj (c)}∞j=0 are the associated eigenvalues cor-
responding to the differential operator and integral operator, and the constant c is
known as the “bandwidth parameter.” The eigenvalues {λj }∞j=0 satisfy |λ0| > |λ1| >

|λ2| > . . . > 0, which decay exponentially to nearly 0. Specifically, based on the
work of Wang and Zhang [31], we have:

λn �
√

πe

2n + 3

(
ce

4n + 2

)n

, (2.3)

where the notation A � B means that for B �= 0, the ratio A
B

→ 1 in the sense of
some limiting process.

An important issue related to the PSWFs is the choice of bandlimit parameter c.
For general functions, we do not have a simple optimal c. This is due to the fact that
an arbitrary function has many different modes and each mode has a distinct optimal
c [7]. Regardless of whether the function being represented is bandlimited or not, all
the useful choices of c must satisfy [5]:

0 ≤ c < c∗(N) := π

2

(
N + 1

2

)
. (2.4)

As recommended in [30, 32], in practice, a quite safe choice is c = N
2 . With this

in mind, we choose c = N
2 . Guidelines on the suitable choice of c can be found in

[3]. The practical rule for pairing up (c, N) has been given in [13, 32].
Denoting the zeros of (1 − x2)ψn(x) by the Prolate-Gauss-Lobatto points (PGL

points). For computation, Boyd [6] described Newton’s iteration method with some
care in selecting initial guesses. Generally, [12] gives the efficient algorithm for com-
puting zeros of special functions, such as PSWFs. With the Prolate-Gauss-Lobatto
points at our disposal, we will introduce the prolate interpolation and pseudospectal
differentiation.

2.2 Prolate interpolation and pseudospectal differentiation

In this subsection, firstly, we review some facts about prolate interpolation and
pseudospectal differentiation.

The key idea for interpolation is to search the prolate cardinal functions �i(x) :=
�i(x; c), which are designed to satisfy the interpolation property:

�i(xj ) = δij , 0 ≤ i, j ≤ N . (2.5)

Then, the function f (x) is approximated by

(Inf )(x) =
N∑

j=0

�j (x)f (xj ). (2.6)

The standard route to get the derivatives is by directly differentiating the prolate
cardinal basis �i(x).
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Generally, we define the prolate cardinal functions �i(x) as

�j (x) = sp(x)

s′
p(xj )(x − xj )

, j = 0, . . . , N, (2.7)

where {xk}Nk=0 are the Prolate points, which are zeros of sp(x). It follows that the
standard interpolation is [15, 32]:

PN(x) =
N∑

j=0

sp(x)

s′
p(xj )(x − xj )

f (xj ). (2.8)

The standard differentiation generated from the cardinal basis (2.7) can be
computed by:

�′
j (xi) =

⎧⎪⎨
⎪⎩

s′
p(xi)

s′
p(xj )(xi − xj )

, if i �= j,

s′′
p(xj )

2s′
p(xj )

, if i = j .

(2.9)

Taking derivative of sp(x) = s′
p(xj )(x − xj )�j (x) two times implies for

�′′
j (xi) =

⎧⎪⎪⎨
⎪⎪⎩

s′′
p(xi)

s′
p(xj )(xi − xj )

− 2�′
j (xi)

xi − xj

, if i �= j,

s′′′
p (xj )

3s′
p(xj )

, if i = j,

(2.10)

In the following, let us consider the prolate interpolation and pseudospectal differen-
tiation scheme through the barycentric form.

3 Barycentric prolate interpolation and differentiation

In this section, we start with the barycentric interpolation [1, 9, 11], which are impor-
tant pieces of the puzzle for our new approach, and then give the new insights into
prolate interpolation, which are called the barycentric prolate interpolation. The dif-
ferentiation matrices are derived through the barycentric interpolation formula. Then,
the convergence analysis of barycentric prolate interpolation and differentiation is
given.

3.1 Barycentric interpolation formula

Let {xj }Nj=0 be a set of distinctive nodes in [−1, 1], which are arranged in ascending
order, together with corresponding numbers f (xj ). We assume that the nodes are real
and they are zeros of the function s(x), i.e., s(xj ) = 0 for 0 ≤ j ≤ N . Thus, the
Lagrange interpolating basis is defined by:

lj (x) = s(x)

s′(xj )(x − xj )
, 0 ≤ j ≤ N . (3.11)
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Accordingly, the interpolation in Lagrange form for the function f (x) is

IL
Nf (x) =

N∑
j=0

lj (x)f (xj ). (3.12)

The barycentric formula is the alternative Lagrange form, and for computations,
it is generally recommended that one should use barycentric interpolation formula
[1, 11], which has stability or robustness property that proves advantageous in some
application. The barycentric interpolation is defined as

IB
Nf (x) =

∑N
j=0

wj

x−xj
f (xj )∑N

k=0
wk

x−xk

, (3.13)

where {wj }Nj=0 are the barycentric weights. To this end, it suffices to note that

the barycentric weights {wj }Nj=0 can be written as different quantity. As with the
polynomial interpolation [1, 24], s(x) can be written as:

s(x) = (x − x0)(x − x1) . . . (x − xN),

such that barycentric weights become

{wj }Nj=0 = 1

s′(xj )
= 1∏

k �=j (xj − xk)
.

For certain special sets of nodes {xj }Nj=0, the explicit expressions of the barycen-
tric weights wj were available in [1, 26, 27]. For general point sets, the barycentric
weights wj can be evaluated by the fast multipole method [23]. These obser-
vations lead to an efficient method for computing prolate interpolants based on
the Prolate-Gauss-Lobatto points through a new definition of non-zero barycentric
weights.

3.2 Barycentric prolate interpolation and pseudospectral differentiation

Using the barycentric form, this subsection give a new definition of barycentric
prolate weights, which leads to remarkably simple and efficient schemes for the con-
struction of rational barycentric interpolation, which is denoted by barycentric prolate
interpolation.

The fist question is how to choose barycentric weights. In the similar manner as
deriving the barycentric formula (3.13) form Lagrange interpolation (3.11), since the
Prolate-Gauss-Lobatto points are the roots of (1 − x2)ψN(x), it is straightforward
to let s(x) := sp(x) = (1 − x2)ψN−1(x). Correspondingly, we define the prolate
barycentric weights to be

wj = 1

s′
p(xj )

= 1

−2xjψN−1(xj ) + (1 − x2
j )ψ ′

N−1(xj )
. (3.14)

According to the foregoing observations, it is desirable to define a new interpo-
lation which is called barycentric prolate interpolation. Moreover, the interpolation
property is stable with respect to the nonzero weights, as noticed in [33].
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Definition 3.1 The barycentric prolate interpolation can be expressed as

GN(x) =
∑N

j=0
wj

x−xj
f (xj )∑N

k=0
wk

x−xk

, (3.15)

where {xj }Nj=0 are the Prolate-Gauss-Lobatto points and wj =
1

−2xj ψN−1(xj )+(1−x2j )ψ ′
N−1(xj )

.

The error analysis will be derived in the next subsection. In fact, from the numer-
ical evidences in Figs. 3 and 4, the barycentric prolate interpolation gives better
approximations.

Remark 1 The barycentric prolate interpolation enjoys several advantages, which
makes it very efficient in practice. (i) The barycentric prolate interpolation are scale-
invariant, thus avoiding any problems of underflow and overflow. (ii) Once wj

are computed, the interpolant at any points x will take only O(N) floating point
operations to compute.

Remark 2 The barycentric formula has natural advantages for applications to fast
multipole method [1], which is an useful and efficient tool to improve the complexity
of centain sums (3.15) from O(N2) to O(N). The idea of using FMM to accelerate
the interpolation and pseudospectral differentiation can be traced back to [4, 8] and
we see from [15] that the FMM was used to accelerate the standard prolate interpola-
tion and differentiation. It is noteworthy to point out that the new scheme (3.15) can
also be accelerated by the FMM through a very similar process in [17].

Remark 3 We have to calculate sp(x) = (1 − x2)ψN−1(x) in standard interpola-
tion formula (2.8). Since ψN(x) = ∑

k αN
k P k(x), where the P k(x) is normalized

Legendre polynomial and αk is the eigenvector of a matrix, which is complex and
time-consuming. However, it is obvious that the factor sp(x) has dropped out in the
(3.15), and this feature has practical consequences.

Furthermore, defining the cardinal basis function of the barycentric prolate
interpolation (3.15) as

hj (x) =
wj

x−xj∑N
k=0

wk

x−xk

. (3.16)

It leads to the differentiation matrices

D(m) = (h
(m)
j (xi))0≤i,j≤N, m = 1, 2, (3.17)

which have the explicit formulas [23]:

D(1)
ij = wj/wi

xi − xj

, i �= j, D(1)
ii = −

N∑
j=0,j �=i

wj /wi

xi − xj

, (3.18)
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D(2)
ij = − 2

wj/wi

xi − xj

⎛
⎝∑

k �=i

wk/wi

xi − xk

+ 1

xi − xj

⎞
⎠ , i �= j,

D(2)
ii = −

N∑
j=0,j �=i

⎛
⎝−2

wj/wi

xi − xj

⎛
⎝∑

k �=i

wk/wi

xi − xk

+ 1

xi − xj

⎞
⎠

⎞
⎠ ,

(3.19)

where {xj }Nj=0 are the Prolate-Gauss-Lobatto points and wj =
1

−2xj ψN−1(xj )+(1−x2j )ψ ′
N−1(xj )

.

Remark 4 It is obvious that the standard differentiation method (2.10) involves
the first-order differentiation value �′

j (xi) (2.9), which causes error propaganda for
large number N. The barycentric prolate differentiation only involves the barycentric
weights value. Hence, the barycentric prolate differentiation form is stable even for
large N, which has been shown in Fig. 6.

3.3 Convergence properties of barycentric prolate interpolation and
differentiation

Results can also be obtained for the convergence properties of barycentric prolate
interpolation and differentiation.

Lemma 3.1 [22] Let f be the entire function, 	R be the boundary of the square
[−RK, RK ] × [−i · RK, i · RK ], RK > π

2c + 8(c+1)
c·λn

, ψn(RK) �= 0, C1 =
maxz∈	R

|f (z)|. Suppose Pn(x) is the interpolant of f (x) at the Prolate-Gauss-
Lobatto points (2.8), then it follows for χn > c2 and −1 < x < 1 that

|f (x) − Pn(x)| <
2 · C1 · |λn|

R2
K − 1

(
1 + 4 · c · RK · e−c·RK

)
, (3.20)

|f ′(x)−P ′
n(x)| <

(
2 + C̃ · √

2 · n3 + 1

RK

)
2 · C1 · |λn|

R2
K − 1

(
1 + 4 · c · RK · e−cRK

)
,

(3.21)
where C̃ is a constant.

Remark 5 We remark that the condition “Let f be the entire function” in Lemma 3.1
can be refined as “Let f be analytic in a region bounded by the square [−Rk, Rk] ×
[−i · Rk, i · Rk]” [18, 35].

Theorem 3.1 Let f be analytic in a region bounded by the square [−Rk, Rk] ×
[−i · Rk, i · Rk], 	R be the boundary of the square [−RK, RK ] × [−i · RK, i · RK ],
RK > π

2c + 8(c+1)
c·λn

, ψn(RK) �= 0. Suppose Pn(x) and Gn(x) is the interpolant of
f (x) at the Prolate-Gauss-Lobatto points by fomula (2.8) and (3.15), then it follows
for χn > c2 and −1 < x < 1 that

|f (x) − Gn(x)| ≤ εn

1 + εn

‖f ‖∞ + 1

1 − εn

‖f − Pn‖∞, (3.22)
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|f ′(x) − G′
n(x)| ≤ (‖f ′‖∞εn + ‖f ‖∞ε′

n + ‖f ′ − P ′
n‖∞)(1 + εn) + ‖f ‖∞εnε

′
n + ‖f − Pn‖∞ε′

n

(1 − εn)2
;

(3.23)

where εn := 2·|λn|
R2

K−1

(
1 + 4 · c · RK · e−c·RK

)
and ε′

n =(
2 + C̃ · √

2 · n3 + 1
RK

)
2·|λn|
R2

K−1

(
1 + 4 · c · RK · e−cRK

)
.

Proof Due to Lemma 3.1, when Pn[1](x) interpolates the constant function f (x) =
1, let Pn[1](x) = 1 + En(x), we provide the error that

|En(x)| ≤ 2 · |λn|
R2

K − 1

(
1 + 4 · c · RK · e−c·RK

)
:= εn,

|E′
n(x)| ≤

(
2 + C̃ · √

2 · n3 + 1

RK

)
2 · |λn|
R2

K − 1

(
1 + 4 · c · RK · e−cRK

)
:= ε′

n.

(3.24)
It follows that

− εn ≤ En(x) ≤ εn, −ε′
n ≤ E′

n(x) ≤ ε′
n. (3.25)

Then, we have:

|f (x) − Gn(x)| =
∣∣∣∣f (x) − Pn(x)

1 + En(x)

∣∣∣∣ =
∣∣∣∣f (x)En(x) + (f (x) − Pn(x))

1 + En(x)

∣∣∣∣
and

|f ′(x) − G′
n(x)|

=
∣∣∣∣ [f

′(x)En(x) + f (x)E′
n(x) + (f ′(x) − P ′

n(x))](1 + En(x)) − (f (x)En(x) + (f (x) − Pn(x)))E′
n(x)

(1 + En(x))2

∣∣∣∣ .

Combining with (3.25), we obtain:

|f (x) − Gn(x)| ≤ εn

1 − εn

‖f ‖∞ + 1

1 − εn

‖f − Pn‖∞,

and

|f ′(x) − G′
n(x)| ≤ (‖f ′‖∞ε + ‖f ‖∞ε′

n + ‖f ′ − P ′‖∞)(1 + εn) + ‖f ‖∞εnε
′
n + ‖f − P ‖∞ε′

n

(1 − εn)2
.

where εn and ε′
n are defined in (3.24). The proof is completed.

Remark 6 Theorem 3.1 shows a close connection between the barycentric prolate
interpolation (3.15) and standard prolate interpolation (2.8). Roughly speaking, for
λn satisfying (2.3), so |f (x) − Gn(x)| should decay exponentially with respect to n
when c satisfies (2.4).

Remark 7 A function f may be less smooth than the case we have considered;
numerical results illustrate that it might be also suited to this fast convergence. How-
ever, it appears open to know about exactly how the convergence rates of barycentric
prolate interpolation depend on the degree of smoothness of f .
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4 Awell-conditioned prolate-collocationmethod

As everyone knows, the second-order prolate differentiation matrix is apparently
unstable even for slightly large N [19]. Fortunately, Wang et al. [32] offered a new
basis leading to well-conditioned collocation linear systems. In this subsection, we
give a different way to evaluate the Birkhoff interpolation basis, which generates
the preconditioner Pin, such that the eigenvalues of PinD

(2)
in are nearly concentrated

around one.
Consider the second-order BVPs with Dirichlet boundary conditions:

f ′′(x) + r(x)f ′(x) + s(x)f (x) = g(x), x ∈ [−1, 1], f (±1) = f±1. (4.26)

Following the work of Wang [32], the Birkhoff interpolation p(x) of f (x) can be
uniquely determined by:

p(x) = f (−1)B0(x) +
N−1∑
j=1

f ′′(xj )Bj (x) + f (1)BN(x), x ∈ [−1, 1], (4.27)

where {Bj }Nj=0 are the Birkhoff interpolation basis and satisfy:

B0(−1) = 1, B0(1) = 0, B ′′
0 (xi) = 0, 1 ≤ i ≤ N − 1; (4.28)

Bj (−1) = 0, Bj (1) = 0, B ′′
j (xi) = δij , 1 ≤ i ≤ N − 1; (4.29)

BN(−1) = 0, BN(1) = 1, B ′′
N(xi) = 0, 1 ≤ i ≤ N − 1. (4.30)

Proposition 4.1 Let {xj }Nj=0 be a set of Prolate-Gauss-Lobatto points. The Birkhoff

interpolation basis {Bj }Nj=0 defined in (4.28)–(4.30) is given by:

B0(x) = 1 − x

2
, BN(x) = 1 + x

2
; (4.31)

Bj (x) = 1 + x

2

∫ 1

−1
(t − 1)̃hj (t)dt +

∫ x

−1
(x − t )̃hj (t)dt, 1 ≤ j ≤ N − 1, (4.32)

where {̃hj }N−1
j=1 are the prolate barycentric interpolation basis at {xj }N−1

j=1

h̃j (x) =
λj

x−xj

N−1∑
k=1

λk

x−xk

, (4.33)

and λj = { 1
ψ ′

N−1(xj )
}N−1
j=1 . What’s more,

B
(1)
0 (x) = −B

(1)
N (x) = −1

2
,

B
(1)
j (x) = 1

2

∫ 1

−1
(t − 1)̃hj (t)dt +

∫ x

−1
h̃j (t)dt, 1 ≤ j ≤ N − 1.
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We omit the proof, since it is very similar to that in [29]. In order to avoid the
instability and low-efficiency of the Lagrange interpolation, the barycentric form is
used which is recommended by [1].

To construct the Birkhoff interpolation basis, we give the numerical scheme for
integral (4.32) at xi

Bj (xi) = 1 + xi

2

∫ 1

−1
(t−1)̃hj (t)dt+

∫ xi

−1
(xi −t )̃hj (t)dt, 1 ≤ j ≤ N−1, (4.34)

Introducing the change of variable

t = xi + 1

2
y + xi − 1

2
, (4.35)

allows us to rewrite the definite integrals (4.34) further as

Bj (xi) = 1 + xi

2

∫ 1

−1
(t − 1)̃hj (t)dt + 1 + xi

2

∫ 1

−1

(
xi − xi + 1

2
y − xi − 1

2

)

h̃j

(
xi + 1

2
y + xi − 1

2

)
dy, 1 ≤ j ≤ N − 1. (4.36)

Since the integrands in (4.36) can be computed exactly using an Gauss quadrature
at Legendre points. Based on fast O(N) operations for the computation of Gaussian
quadrature due to Hale and Townsend [10], we get the fast scheme for the Birkhoff
interpolation basis {Bj }Nj=0 and {B(1)

j }Nj=0 .

Let b(k)
ij := B

(k)
j (xi), and define the matrices

B(k) = (b
(k)
ij )0≤i,j≤N, B(k)

in = (b
(k)
ij )1≤i,j≤N−1. (4.37)

Due to (4.27), hk(x) in (3.16) can be approximated by

hk(x) ≈
n−1∑
j=1

h′′
k(xj )Bj (x), 1 ≤ k ≤ n − 1. (4.38)

According to the fact that hk(x) satisfying hj (xi) = δij , it follows that

BinD
(2)
in ≈ IN−1, (4.39)

where IM is an M × M identity matrix, and the matrix D(2)
in is the same as in (3.17).

We depict in Fig. 1 the distribution of the largest and smallest eigenvalues of BinD
(2)
in

at the Prolate-Gauss-Lobatto points. This agrees with (4.39).
As we know, the usual collocation scheme is find f = (f (x1), . . . , f (xN−1)) by

solving

(D(2)
in + �rD

(1)
in + �s)f = g − fb, (4.40)

where g = (g(x1), . . . , g(xN−1))
t , �r = diag(r(x1), . . . , r(xN−1)), �s =

diag(s(x1), . . . , s(xN−1)),

fb = f−(h
(2)
0 (xj )+r(xj )h

(1)
0 (xj ))+f+(h

(2)
N (xj )+r(xj )h

(1)
N (xj )), 1 ≤ j ≤ N−1.
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Fig. 1 Distribution of the largest and smallest eigenvalues of BinD
(2)
in for various N = 10:6:210 (c = N /2)

It is well known that the coefficient matrix of the usual collocation method has a
high condition number. Below, let us consider the preconditioning method for solv-
ing BVP. On the one hand, due to BinD

(2)
in = IN−1, the matrix Bin can be used to

precondition the ill-conditioned system by:

Bin(D
(2)
in + �rD

(1)
in + �s)f = Bin(g − fb), (4.41)

where

fb = f−(h
(2)
0 (xj )+r(xj )h

(1)
0 (xj ))+f+(h

(2)
N (xj )+r(xj )h

(1)
N (xj )), 1 ≤ j ≤ N−1.

On the other hand, recall the formula (4.27): one can directly use {Bk} as basis.
Then, the collocation scheme of BVP can be expressed as:

(IN−1 + �rB
(1)
in + �sBin)u = g − f−u− − f+u+, (4.42)

where u = (f ′′
N(x1), f

′′
N(x2), . . . , f

′′
N(xN−1))

T , and

u− =
(

− r(x1)

2
+ s(x1)

1 − x1

2
, . . . , − r(xN−1)

2
+ s(xN−1)

1 − xN−1

2

)T

,

u+ =
(

r(x1)

2
+ s(x1)

1 + x1

2
, . . . ,

r(xN−1)

2
+ s(xN−1)

1 + xN−1

2

)T

.

We can obtain u by solving the system, and then recover f =
(fN(x1), . . . , fN(xN−1))

T from

f = Binu + f−b0 + f+bN, (4.43)
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where bj = (Bj (x1), Bj (x2), . . . , Bj (xN−1))
T for j = 0, N .

Remark 8 Obviously, the new system (4.42) does not involve the direct multiplica-
tion of the preconditioner, and the round-off errors in forming differentiation matrices
can be alleviated.

Remark 9 The use of Birkhoff interpolation as basis functions for deriving pre-
condition is mimic to the preconditioning technique in [32]. However, [32] search
for the Birkhoff interpolation basis {Bj (x)} through expansion in a different finite
dimensional space, and then solving the coefficients by the interpolation conditions.
This process involves inverting a matrix of PSWF values, which is time-consuming.
My idea of constructing the basis {Bj (x)} in (4.31)–(4.32) is actually inspired by
polynomial-based algorithms in [29] and the new insights reside in two aspects.
First, in order to avoid the instability of the Lagrange interpolation, the barycentric
form was used. Second, through changing the variable, the integrals in (4.32) were
computed by the fast Gauss quadrature proposed by Hale and Townsend.

5 Numerical tests

In this section, we illustrate the numerical results in this paper. All the numerical
results in this paper are carried out by using Matlab R2014a on a desktop (4.0 GB
RAM, 2 Core2 (64 bit) processors at 3.17 GHz) with Windows 7 operating system.

Example 1 Figure 2 illustrates the convergence of the barycentric prolate interpola-
tion formulas for the two analytic functions:

f (x) = esin(6x)

and
f (x) = 2 sin(10x).

0 50 100 150 200
10-15

10-10

10-5

100 f=exp(sin(6*x))

Error of barycentric prolate interpolation c=0
Error of barycentric prolate interpolation c=n/2
Error of barycentric prolate interpolation c=n
Error of barycentric prolate interpolation c=2n/3

n

0 50 100 150 200
10-15

10-10

10-5

100 y= 2*sin(10*x)

Error of barycentric prolate interpolation c=0
Error of barycentric prolate interpolation c=n/2
Error of barycentric prolate interpolation c=n
Error of barycentric prolate interpolation c=2n/3

n

Fig. 2 Convergence rate for the barycentric prolate interpolation methods of two analytic functions using
different values of c
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Fig. 3 Convergence rate for the different interpolation methods in the semilogy scale for N = 11:6:1211

For each n, the error is defined by

max
x∈[−1,1] |f (x) − Gn(x)|,

which is measured at 1000 random points in [−1, 1]. As we can see, the convergence
is exponential and is almost indistinguishable for different c. Moreover, it is shown
that the optimal c depends on the function being approximated [7]. In the following,
we will take c = n/2 for general functions, which is recommended in [30, 32].

Example 2 For the functions:

f (x) = sin(25x), (5.44)

f (x) = 1

1 + 25x2
, (5.45)

f (x) = exp(x)/cos(x) (5.46)

and
f (x) = e−1/x2 , (5.47)

we focus on the comparison of the new barycentric prolate interpolation (c = n/2)
(3.15) with the standard interpolation (2.8) in terms of the approximation error in L∞
norm, which is measured at 1000 random points in [−1, 1]. Numerical results are
shown in Figs. 3 and 4. It is seen that the errors for these approaches decrease very
fast. Furthermore, the barycentric prolate interpolation has better stability than that
of the Lagrange formulation for a large number of points.

Example 3 For the wave functions f (x) = sin(25x)

2−x2
and f (x) = (cos(25x) +

sin(x))/(1 + 4x2), we compare the barycentric prolate interpolation (c = n/2) with
the barycentric interpolation in the polynomial case, whose nodes and barycentric
weights are computed in the chebfun system by the command legpts [24]. Figure 5
illustrates the barycentric prolate interpolation yields spectrally accurate results using
even fewer points than barycentric interpolation in the polynomial case.
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Fig. 4 Convergence rate for the different interpolation methods in the semilogy scale for N = 11:6:1211

Example 4 We compare the absolute errors of the derivatives for

f (x) = esin(3x) (5.48)

at Prolate-Gauss-Lobatto points by the barycentric prolate differentiation (3.18)–
(3.19) and standard method (2.9)–(2.10). Results of these calculations are shown in
Fig. 6. As can be seen, since the standard method (2.10) involves the first-order dif-
ferentiation value, it causes error propaganda for a large number n. There is a good
performance of prolate barycentric differentiation, which gives us the motivations for
the application.

6 Application

Different from the usual collocation scheme using the standard Lagrange differen-
tiation, barycentric prolate differentiation (3.18)–(3.19), combining with the usual
spectral collocation method and GMRES, has been implemented and tested on

0 20 40 60 80 100
10-15

10-10

10-5

100

105  y=sin(25x)/(2-x2)

Error of barycentric interpolation at Legendre points
Error of barycentric prolate interpolation c=n/2

0 20 40 60 80 100 120
10-15

10-10

10-5

100

105  y=(cos(25x)+sin(x))/(1+4x2)

Error of barycentric interpolation at Legendre points
Error of barycentric prolate interpolation c=n/2

Fig. 5 Errors of Barycentric prolate interpolation formula and the barycentric interrpolation formula
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Fig. 6 Maximum absolute error of the one-order and the second-order differentiation of f (x) = esin(3x)

(c = n/2) by standard differentiation method and barycentric prolate differentiation method in the
semilogy scale for N = 1:2:1003

the highly oscillatory problem and two-dimensional Helmholtz problem. The com-
parison with CC points-based method is reminiscent when the solution is highly
oscillatory.

Example 5 The second example is one where the solution is very oscillatory

u′′(x) + 5u′(x) + 10000u(x) = −500 cos(100x)e−5x, x ∈ [0, 1], (6.49)

u(0) = 0, u(1) = sin(100)e−5. (6.50)

The exact solution is

u(x) = sin(100x)e−5x . (6.51)

The behavior of the prolate barycentric differentiation matrix is demonstrated in
Fig. 7. It is clear that this method is rapidly convergent and stable, which is better
than the usual collocation method based on CC points.
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100

 Differentiation at CC points
Differentiation at PGL points

Fig. 7 The exact solution of Example 5 (Left). The convergence rate at C-C points and PGL points (c
= N/2) when N = 46:2:100 in the log-log scale
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Fig. 8 Solution of the Helmholtz problem (N = 24, c = 12) (left) and the absolute error at u(0, 0) by
differentiation at CC points and PGL points in the semilogy scale (c = N/2)(right)

Example 6 We extend the barycentric prolate pseudospectral method to 2D
Helmholtz problem [25], which arises in the analysis of wave propagation:

uxx + uyy + k2u = f (x), −1 < x, y < 1, (6.52)

where u = 0 on the boundary and k is a real parameter. For such a problem, we
set up a grid based on Prolate-Gauss-Lobatto points independently in each direction
called a tensor product grid. To solve such a problem for the particular choices k = 9,
f (x, y) = exp(−10[(y − 1)2 + (x − 1/2)2]). The solution appears as a mesh plot
in Fig. 8. Compared with the value u(0, 0) is accurate to nine digits at Chebyshev
grid [25] when N = 24, the new barycentric prolate differentiation scheme (3.19)
achieves the accuracy to eleven digits at the same number of points. On the right side
of Fig. 8, the absolute error at u(0, 0) is illustrated when N = 4 : 2 : 38, which show
the fast convergence rate at Prolate-Gauss-Lobatto points.

Example 7 We consider

u′′(x) − (1+ sin(x))u′(x) + exu(x) = f (x), x ∈ (−1, 1); u(±1) = 1, (6.53)

with the exact solution u(x) = e(x2−1)/2. Below, Table 1 compares the condition
number and errors of the spectral collocation (SC) scheme (4.40), direct precondi-
tioned (M-PC) scheme (4.41), and the new basis preconditioned collocation (B-PC)
scheme (4.42), respectively. We also show the iteration number for solving the sys-
tems by GMRES. Table 1 clearly indicates that the two preconditioned schemes are
well-conditioned and the new basis preconditioned collocation (B-PC) scheme has
desired performance.
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Table 1 Condition number, absolute errors, and iteration steps of spectral collocation method (SC), direct
preconditioned scheme (4.41), and the new basis preconditioned collocation (B-PC) scheme (4.42)

N Condition number Error Iteration number

SC M-PC B-PC SC M-PC B-PC SC M-PC B-PC

50 4.19E+5 2.87 6.11 4.93E−14 1.56E−14 4.44E−16 49 14 15

100 6.86E+6 2.87 6.15 6.04E−13 2.16E−13 6.66E−16 99 14 15

200 1.11E+8 2.87 6.17 1.63E−12 4.38E−13 6.66E−16 199 14 15

400 1.78E+9 2.87 6.18 4.41E−12 1.68E−12 5.55E−16 399 14 15

800 2.86E+10 2.87 6.19 1.02E−11 6.05E−12 1.22E−15 799 14 15

7 Conclusion

In this paper, we have developed a new scheme for the prolate interpolation and
prolate spectral differentiation. The solver is based on the barycentric interpolation,
which allows for stable approximation and the error analysis of barycentric prolate
interpolation and differentiation are given. What’s more, the new preconditioning
skill is proposed for the usual prolate-collocation scheme. The numerical examples
demonstrate the performance of the proposed algorithms.
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