
https://doi.org/10.1007/s11075-020-01051-z

ORIGINAL PAPER

Projected explicit and implicit Taylor series methods
for DAEs

Diana Estévez Schwarz1 ·René Lamour2

Received: 3 October 2019 / Accepted: 29 November 2020 /
© The Author(s) 2021

Abstract
The recently developed new algorithm for computing consistent initial values and
Taylor coefficients for DAEs using projector-based constrained optimization opens
new possibilities to apply Taylor series integration methods. In this paper, we show
how corresponding projected explicit and implicit Taylor series methods can be
adapted to DAEs of arbitrary index. Owing to our formulation as a projected opti-
mization problem constrained by the derivative array, no explicit description of
the inherent dynamics is necessary, and various Taylor integration schemes can be
defined in a general framework. In particular, we address higher-order Padé methods
that stand out due to their stability. We further discuss several aspects of our pro-
totype implemented in Python using Automatic Differentiation. The methods have
been successfully tested on examples arising from multibody systems simulation and
a higher-index DAE benchmark arising from servo-constraint problems.

Keywords Taylor series methods · Integration · DAE · Differential-algebraic
equation · Consistent initial value · Index · Derivative array · Projector-based
analysis · Nonlinear constrained optimization · Automatic differentiation

1 Introduction

Higher-index DAEs do not only represent integration problems but also differentia-
tion problems, as well (see, e.g., [4, 22, 23, 28]). Therefore, it seems worthwhile to
solve an associated ODE with classical integration schemes and the differentiation

� Diana Estévez Schwarz
estevez@beuth-hochschule.de

René Lamour
lamour@math.hu-berlin.de

1 Beuth Hochschule für Technik Berlin, Berlin, Germany

2 Humboldt Universität zu Berlin, Berlin, Germany

Published online: 29 January 2021

Numerical Algorithms (2021) 88:615–646

http://crossmark.crossref.org/dialog/?doi=10.1007/s11075-020-01051-z&domain=pdf
http://orcid.org/0000-0003-1478-075X
mailto: estevez@beuth-hochschule.de
mailto: lamour@math.hu-berlin.de

problems using Automatic Differentiation (AD). However, depending on the struc-
ture, both differentiations and integrations may be intertwined in a complex manner
such that this plausible idea may be difficult to realize in general.

In this context, different approaches have been considered for DAEs in order
to combine AD with ODE integrations schemes. By construction, the approaches
are based on corresponding index definitions and lead, therefore, to quite different
algorithms.

• In [26, 27] and the related work, the structural index was used to determine the
degree of freedom.

• In [13], we used the tractabiliy matrix sequence to solve the inherent ODE for
DAEs of index up to two. The generalization to higher-index DAEs seemed
rather complicated.

• In [17], we described briefly how an approach based on the differentiation index
defined in [14, 16] leads to an explicit Taylor series methods for DAEs. An anal-
ysis of the corresponding projected explicit ODE can be found in [18]. These
methods can be considered as projected Taylor series methods.

In this paper, we analyze more general classes of the latter mentioned projected
Taylor series methods. In particular, we discuss how projected implicit Taylor series
methods can be defined for DAEs, generalizing the approach from [17]. Here we
focus on the methods from [7, 21].

The main idea in this context is that the computation of Taylor coefficients of a
solution of an implicit ODE can be considered as the solution of a nonlinear system
of equations. In this sense, we will see that a generalization for DAEs can be obtained
by solving a nonlinear optimization problem [16]. The obtained solution corresponds
to a projected method. There are several advantages of this approach:

• We assume weak structural properties of the DAEs (1), such that ODEs and semi-
explicit DAEs are simple special cases. Theoretically, we can consider DAEs of
any index.

• An explicit description of the inherent dynamics is not required for the algo-
rithmic realization. Indeed, due to our formulation as an optimization problem,
implicitly we consider the orthogonally projected explicit ODE introduced in
[18].

• We can use higher-order integration schemes, also for stiff ODEs/DAEs.

The described methods were implemented in a prototype and first numerical tests for
DAEs up to index 5 and integration schemes up to order 8 were successful.

The purpose of our implementation is the improvement of our diagnosis software
[17]. Therefore, we do not focus on high-performance, but on information about the
reliability of the numerical result, specially with regard to higher-index issues and the
diagnosis of singularities like [19]. Due to their stability and order properties, the new
higher-order methods presented here are a considerable improvement in comparison
to [17], where only explicit Taylor series methods were considered.

The paper is organized as follows. In Section 2, we introduce DAEs and sum-
marize some of our previous results that are crucial for the approach presented
here.

616 Numerical Algorithms (2021) 88:615–646

The properties of Taylor coefficients in the derivative array of a DAE are discussed
in Section 3. Using these properties, in Section 4, we define the general projected
explicit/implicit Taylor series method that are, indeed, a generalization of the explicit
method from [17].

Within this framework, in Section 5, we present four different types of projected
methods: explicit methods, fully implicit method, two-halfstep (TH) schemes, and
higher-order Padé (HOP) schemes.

The properties of the considered optimization problems that provide the projection
are discussed in Section 6 and some practical considerations for the implementation
are addressed in Section 7.

Our prototype implementation of the proposed projected methods for DAEs
is tested on several well-known examples and benchmarks from the literature in
Section 8. An outlook discussing directions for further investigations concludes this
paper.

For completeness, in the Appendix, we summarize the stability functions and sta-
bility regions for the considered Taylor series methods, since they are essential for
the development of HOP methods. We also summarize some linear algebra results for
decoupling DAEs and provide the DAE formulation of the tested examples resulting
from servo-constraint problems for multi-body systems.

2 DAEs: index, consistent values, and decoupling

In this article, we consider general DAEs:

f (x′, x, t) = 0, (1)

for f : Gf → R
n, Gf ⊂ R

n × R
n × R, where the partial Jacobian fx′ is singular

and ker fx′(x′, x, t) is constant. For our purposes, we define the constant orthogonal
projector Q onto ker fx′ as well as the complementary orthogonal projector P :=
I − Q.

Recall that the singularity of fx′ means that (1) contains derivative-free equa-
tions, called explicit constraints, and that the differentiation of (1) may lead to further
derivative-free equations, called hidden constraints. A consistent initial value x0
has to fulfill all explicit and implicit constraints. The characterization of all these
constraints motivated the following definition for the differentiation index, cf. [4].

Definition 1 [14] The differentiation index is the smallest integer μ such that:

f (x′, x, t) = 0, (2)
d

dt
f (x′, x, t) = 0, (3)

...
dμ−1

dtμ−1
f (x′, x, t) = 0, (4)

uniquely determines Qx as a function of (Px, t).

617Numerical Algorithms (2021) 88:615–646

If μ is the differentiation index according to Definition 1, then the conventional
differentiation index (see, e.g., [4]) results to be μ as well. According to this defini-
tion, in the following we will never prescribe initial values for Qx0, since we may
compute Qx0 evaluating a function at (Px0, t0). Moreover, in the higher-index case,
the Eqs. (2)–(4) contain explicit and hidden constraints that restrict the choice for
Px0.

According to [16], for an initial guess α ∈ R
n, consistent initial values x0 can be

computed solving the following constrained optimization problem:

min ‖P(x0 − α)‖2 (5)

subject to all explicit and hidden constraints. (6)

Equivalently, we can solve the system of equations:

�(x0 − α) = 0 (7)

all explicit and hidden constraints (8)

for a suitable orthogonal projector � with rank � = d ≤ rank P , where d is the
degree of freedom of (1), cf. [15]. However, in particular for nonlinear DAEs, � may
be difficult to compute and therefore, in practice, (5) may be more convenient than
(7), cf. Appendix 2. The approach (5)–(6) was implemented in InitDAE, a Python
program to determine the index and consistent initial values for DAEs [12, 17].

Furthermore, for linear DAEs of the form:

A(t)x′ + B(t)x = q(t), (9)

in [18], it was shown that using the derivative array (2)–(4), the decoupling:

(�x)′ = ϕ1

(
�x, q, q ′, . . . , q(μ)

)
, (10)

(I − �)x = ϕ2

(
�x, q, q ′, . . . , q(μ−1)

)
, (11)

can be obtained for suitable functions ϕ1, ϕ2, where (10) is an ODE in the invariant
subspace im �. Therefore, theoretically, we can set up (10) and solve it with an
integration scheme for ODEs. Subsequently, (I − �)x can be computed at each time
point using (11). Notice that in doing so, the error in (I − �)x depends only on the
error made solving (10) and the properties of ϕ2 from (11). Moreover, the values of
(I − �)x at previous time points do not influence (10).

For nonlinear DAEs, analogous considerations can be undertaken considering the
linearization along a solution. However, of course, the properties of f are decisive in
practice. Since a detailed analysis for the nonlinear case goes far beyond the scope of
this article, we focus on a general formulation of projected Taylor methods using (5)–
(6), having in mind that at present, the theoretical basis has been developed for linear
DAEs only. At least the numerical tests from Section 8 suggest the applicability for
some classes of nonlinear DAEs.

618 Numerical Algorithms (2021) 88:615–646

3 Taylor series and DAEs

Since we wish to analyze one-step methods, we consider the computation of an
approximation of the solution x(t) of the ODE/DAE (1) at time tj+1, given an approx-
imation of the solution at time-point tj . Consequently, in order to describe our method
in terms of Taylor expansion coefficients, for kc ∈ N, we suppose that a suitable
approximation:

[(c0)j , (c1)j , (c2)j , . . . , (ckc)j] ≈ [x(tj), x
′(tj),

1

2
x′′(tj), . . . ,

1

kc!x
(kc)(tj)] (12)

is given and that we look at adequate methods to compute:

[(c0)j+1,(c1)j+1, . . . ,(ckc)j+1]≈[x(tj+1), x
′(tj+1),

1

2
x′′(tj+1),. . . ,

1

kc!x
(kc)(tj+1)].

If we suppose that the ODE/DAE is described by (1), we require that:

f ((c1)j , (c0)j , tj) = 0 and f ((c1)j+1, (c0)j+1, tj+1) = 0

are fulfilled. For our purposes, given K ≥ 1, we further consider the order (K − 1)
derivative array derivative array [4] containing (1) and K − 1 derivatives of (1):

⎛
⎜⎜⎜⎜⎜⎜⎝

f (x′, x, t)
d
dt

f (x′, x, t)
d2

dt2
f (x′, x, t)

...
d(K−1)

dt(K−1) f (x′, x, t)

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

f (x′, x, t)

fx′(x′, x, t)x′′ + fx(x
′, x, t)x′ + ft (x

′, x, t)
...
...

⎞
⎟⎟⎟⎟⎟⎟⎠
. (13)

Therefore, we suppose that for the corresponding function:

r(c0, c1, . . . , cK, t) :=

⎛
⎜⎜⎜⎝

r0(c0, c1, t)

r1(c0, c1, c2, t)
...

rK−1(c0, c1, . . . , cK, t)

⎞
⎟⎟⎟⎠

:=
⎛
⎜⎝

f (c1, c0, t)

2fx′(c1, c0, t)c2 + fx(c1, c0, t)c1 + ft (c1, c0, t)
...

⎞
⎟⎠ (14)

it holds:
r((c0)j , (c1)j , (c2)j , . . . , (cK)j , tj) = 0 (15)

and
r((c0)j+1, (c1)j+1, (c2)j+1, . . . , (cK)j+1, tj+1) = 0. (16)

In practice, the function r can be provided by automatic differentiation (AD) [17, 31].
Using this notation, the index from Definition 1 is the smallest integer μ such

that for K = μ, the derivative array r uniquely determines Qc0 as a function of
(P c0, t). For this purpose, the 1-fullness of the Jacobian of r is verified in [16,
17], cf. Appendix 2. We emphasize that the main difference to the conventional
differentiation index [4] is precisely that for 1-fullness the columns corresponding

619Numerical Algorithms (2021) 88:615–646

to c0 (and not c1) are considered. With this index definition in mind, we can define
consistency for the Taylor coefficients.

Definition 2 For K ≥ μ and 0 ≤ kc ≤ K − μ, the Taylor coefficients up to kc are
consistent if they are in the set:

T
j

kc
:=
{
[(c0)j , (c1)j , . . . , (ckc)j] ∈ R

(kc+1)·n
∣∣∣∣

There exist (c̃kc+1)j , . . . , (c̃K)j such that
r((c0)j , . . . , (ckc)j , (c̃kc+1)j , . . . , (c̃K)j , tj) = 0

}

Note thatT 0
0 corresponds to the set of consistent initial values and that if sufficient

smoothness of f is given, we can suppose that for all c0 ∈ T 0
0 in regularity regions,

there is a unique solution of the initial value problem. For a discussion of regularity
regions and singularities within a projector-based analysis, we refer to [14, 23].

For sufficiently smooth regular linear DAEs (9), Theorem 1 from [18] implies
that for any c0 ∈ T 0

0 , there is a unique solution fulfilling x(t0) = c0. Analogously,

for [(c0)j , (c1)j , . . . , (ckc)j] ∈ T
j

kc
, there exists a unique solution x(t) such that

x(k)

k! (tj) = (ck)j , 0 ≤ k ≤ kc. Indeed, Theorem 1 from [18] provides a general
description of the inherent dynamics in terms of the associated orthogonally projected
explicit ODE (10).

Let us focus on the relation between kc, K , the DAE-index μ and the computation
of consistent initial values and Taylor coefficients at a particular t0 considering:

r((c0)0, (c1)0, (c2)0, . . . , (cK)0, t0) = 0. (17)

• For initial value problems x(t0) = c0 for ODEs g(x′(t), x(t), t) = 0 with regular
gx′ , if we consider (17), then we can compute K consistent coefficients:

(c1)0, (c2)0, (c3)0, . . . , (cK)0,

at t0, since c0 is given. In the above notation, the maximal value for kc is kc = K .
• If we consider an uniquely solvable nonlinear time-dependent equation

g(x(t), t) = 0 with regular gx and a corresponding system of equations
(17), then, at t0, we cannot prescribe c0 and compute therefore K consistent
coefficients:

(c0)0, (c1)0, (c2)0, . . . , (cK−1)0.

In this case, the maximal value is kc = K − 1. For the coefficients (cK)0, no
equations are given, since in this particular case, they do not appear in (17). Note
that in principle, g(x, t) = 0 can be considered an index-1 DAE. In this sense, it
fits into the case below.

• For DAEs (1), if we consider (17) and fix the free initial conditions of c0, then in
general, we may compute K + 1 − μ consistent coefficients:

(c0)0, (c1)0, (c2)0, . . . , (cK−μ)0, (18)

cf. [17]. In this case, we have at most kc = K − μ. In general, the coefficients
cK+1−μ, . . . , cK cannot be computed considering (17). Another crucial aspect is
that not all components of c0 can be prescribed, since all the constraints have to
be satisfied.

620 Numerical Algorithms (2021) 88:615–646

Note that according to (5)–(6), for an arbitrary initial guess α that, in general, may
be not consistent, the optimization problem:

min ‖P ((c0)0 − α)‖2 (19)

subject to r((c0)0, (c1)0, (c2)0, . . . , (cK)0, t0) = 0, (20)

provides consistent initial values (18). Moreover, in terms of (7)–(8), this minimiza-
tion problem is equivalent to the system of equations:

�((c0)0 − α) = 0, (21)

r((c0)0, (c1)0, (c2)0, . . . , (cK)0, t0) = 0, (22)

where � describes an appropriate orthogonal projector, and the rank of � coincides
with the number of degrees of freedom of the DAE [15, 18]. Note further that, in
general, the coefficients [(cK+1−μ)0, . . . , (cK)0] are not uniquely determined neither
by (19)–(20) nor by (21)–(22). In our implementation from [17], the minimum norm
solution [(c̃K+1−μ)0, . . . , (c̃K)0] is computed.

Example 1 Consider the index-4 DAE:
⎛
⎜⎜⎜⎜⎝

1 0 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0

⎞
⎟⎟⎟⎟⎠

x ′ +

⎛
⎜⎜⎜⎜⎝

1 1 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎞
⎟⎟⎟⎟⎠

x =

⎛
⎜⎜⎜⎜⎝

0
0
0
0
et

⎞
⎟⎟⎟⎟⎠

(23)

with the general solution:

x(t; C) =

⎛
⎜⎜⎜⎜⎝

Ce−t − et
2−et

et

−et

et

⎞
⎟⎟⎟⎟⎠
. (24)

For this clearly structured example, the projector-based approach will lead to:

P =

⎛
⎜⎜⎜⎜⎝

1 0 0 0 0
0 0 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎞
⎟⎟⎟⎟⎠

, � =

⎛
⎜⎜⎜⎜⎝

1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎞
⎟⎟⎟⎟⎠
.

This means that Qx corresponds to x2 and according to the notation introduced
in [18], the EOPE-ODE (the essential orthogonally projected ODE describing the
dynamics) that corresponds to (10) will be formulated in terms of x1.

Let us have a closer look to the derivative array with respect to the index
determination and the computation of consistent initial values, both related to the
computation of �, see Appendix 2.

621Numerical Algorithms (2021) 88:615–646

According to (12), for n = 5 and K = 4, we consider:

(c�)tj = (c1 � c2 � c3 � c4 � c5 �

)T
, � = 0, . . . , 4,

such that the equations on the left, that are formulated for functions as described in
(13), correspond to the equations on the right, that can be formulated at some t = tj

for the scalar numbers ck� = x
(�)
k (tj ;C)

� ! (cf. (14)):

The colors visualize the chains of calculation by with each entry of (I − �)c0 is
uniquely determined by the equations r = 0, cf. (15). In particular, the red equations
permit the computation of Qc0, since:

Since no representation of c20 is possible with less differentiations, the index is
μ = 4. Moreover, the violet, blue, and green expressions provide values for compo-
nents of Pc0, in particular c50, c40, and c30, respectively. This means that we cannot
prescribe initial values for (P − �)c0.

Indeed, the EOPE-ODE reads:

x′
1 + x1 = et . (25)

Summarizing, we see that to compute (c0)0, we have to prescribe a value for x1(t0)
and consider at least derivatives of order up to three (with K = μ = 4) in the
derivative array, i.e., r((c0)0, . . . , (c3)0, (c4)0, t0) = 0.

622 Numerical Algorithms (2021) 88:615–646

We emphasize that the gray items must vanish in order to satisfy r = 0, but for
K = μ − 1, they do not uniquely determine all coefficients of (c�)0 for any � > 0.
This means that the value for kc from Definition 2 is kc = 0 = K − μ.

If we increase the number of derivatives with K = μ + 1 = 5 and consider
r((c0)0, (c1)0, (c2)0, . . . , (c5)0, t0) = 0 together with an initial value for c10, then
correct values for (c0)0 and (c1)0 can be computed. In general, for K ≥ μ, consistent
(c0)0, . . . , (cK−μ)0 can be obtained.

Since with the approach (19)–(20) the projector � is not computed explicitly
and at least we consider nonlinear under-determined systems of equations, they
are solved in a minimum-norm sense. Therefore, the used solver obtains values
for all higher derivatives, whereas we cut off (c̃K−μ+1)0, . . . , (c̃K)0, since only
(c0)0, . . . , (cK−μ)0 are consistent in the sense of Definition 2.

In Table 1, we present the results of the computation of consistent initial val-
ues with InitDAE [12] that solves (19)–(20). For the considered initial value
x1(0) = 1, the solution is x1(t) = cosh(t). We can appreciate that for K =
5, only the Taylor coefficient (c0)0 and (c1)0 are consistent, i.e., kc = 1 =
K − μ. Increasing K , correspondingly more consistent Taylor coefficients could be
computed.

The numerical solution delivered by the methods defined in the following corre-
sponds to:

• the numerical solution obtained by Taylor series methods applied to the projected
explicit ODE (10) for �x, and

• corresponding values for the components (I − �)x that result from (11).

Therefore, the stability and order properties of the integration methods defined below
can be transferred from ODEs to DAEs. Due to the formulation as an optimization
problem, the inherent dynamics of the DAE that can be expressed in terms of �x is
not considered explicitly, but implicitly.

Table 1 Numerical solution of the initialization problem for system (23) from Example 1 for t0 = 0 and
α = [1, 0, 0, 0, 0] using Taylor coefficients with K = 5

Due to the index μ = 4, only c0 and c1 are consistent. In fact, the boxed values do not correspond to the
solution (24)

623Numerical Algorithms (2021) 88:615–646

4 General definition of explicit/implicit methods

Recall that:

• P = � = I holds for ODEs and that, therefore, for ODEs, the approach (19)–
(20) means to compute the Taylor coefficients if c0 is prescribed.

• We assumed that ker fx′(c1, c0, t) and therefore also P do not depend on
(c1, c0, t). Therefore, the Taylor coefficients of Px(t) at tj correspond to:

[P(c0)j , P (c1)j , P (c2)j , . . . , P (ckc)j].
With these two properties in mind, we can present a very general formulation for

implicit and explicit Taylor series methods for ODEs and DAEs defining suitable
objective functions instead of (19).

In a first step, we focus on consistency.

Lemma 1 Consider:

[(c0)j , (c1)j , (c2)j , . . . , (cK)j],
ke, ki ∈ N, 0 ≤ ke, ki ≤ K and weights ωe

�e
, ωi

�i
∈ R to define the objective function

p
(
(c0)j+1, . . . , (cki

)j+1
) :=P

⎛
⎝

ki∑
�i=0

ωi
�i

(c�i
)j+1

(−hj

)�i −
ke∑

�e=0

ωe
�e

(c�e)j
(
hj

)�e

⎞
⎠ .

Then for any solution:

[(c0)j+1, (c1)j+1, (c2)j+1, . . . , (cK)j+1], (26)

of the minimization problem:

min
∥∥p ((c0)j+1, (c1)j+1, (c2)j+1, . . . , (cki

)j+1
)∥∥

2 (27)

subject to r((c0)j+1, (c1)j+1, (c2)j+1, . . . , (cK)j+1, tj+1) = 0 (28)

the values:
[(c0)j+1, (c1)j+1, (c2)j+1, . . . , (cki

)j+1], (29)

are consistent at tj+1 for all ki ≤ K − μ .

Proof According to Definition 2, the coefficients (29) are consistent, since the
constraints (28) are fulfilled. Recall further that, under suitable assumptions, the
solvability of (27)–(28) follows from the Definition 1 of the index μ and has been
discussed in [16].

Corollary 1 Consider linear DAEs (9) and suppose that consistent values:

[(c0)j , (c1)j , (c2)j , . . . , (cke)j],
are given. Consider further an integration method defined by (27)–(28) for suitable
weights ωe

�e
, ωi

�i
. Then the following two approaches provide the same consistent

results (29):

624 Numerical Algorithms (2021) 88:615–646

• the solution of (27)–(28) for the original DAE (9),
• the solution (27)–(28) for the ODE (10) that is invariant in the subspace im �,

and the subsequent computation of the remaining components according to (11).

Proof On the one hand, according to (21)–(22), the solution of (27)–(28) for the
original DAE delivers the same result (29) as:

�(tj+1)
(
p
(
(c0)j+1, . . . , (cki

)j+1
)) = 0, (30)

r((c0)j+1, (c1)j+1, (c2)j+1, . . . , (cK)j+1, tj+1) = 0. (31)

On the other hand, the derivative array (31) for the DAE contains the derivative
array of the ODE (10) and the nonlinear equations (11).

With the notation of the objective function, different Taylor integration meth-
ods can be described with corresponding weights ωe

�e
, ωi

�i
. This provides us a very

flexible way to implement schemes with different order and stability properties.

5 Projected taylor integrationmethods

5.1 Explicit Taylor series method for DAEs

In terms of the above notation, the explicit Taylor series method for ODEs corre-
sponds to ke ≥ 1, ωe

�e
= 1 for 0 ≤ �e ≤ ke, ki = 0, ωi

0 = 1. Recall that the approach
from [17] for DAEs consists of the following steps:

• Initialization: Solve the optimization problem:

min ‖P ((c0)0 − α)‖2 (32)

subject to r((c0)0, (c1)0, (c2)0, . . . , (cK)0, t0) = 0, (33)

for an initial guess α.
• For time-points tj+1, j ≥ 0, hj = tj+1 − tj : Solve the optimization problems:

min ||P ((c0)j+1 −
ke∑

�=0

(c�)jh
�
j

︸ ︷︷ ︸
≈x(tj +hj)

)||2, (34)

subject to r((c0)j+1, (c1)j+1, (c2)j+1, . . . , (cK)j+1, tj+1) = 0, (35)

successively for ke ≤ K − μ, where ke is the order of the series in tj .

This method is called explicit, since (32) is an explicit equation for (c0)j+1 that does
not involve any value (c�)j+1 for � ≥ 1. In contrast to explicit ODEs, where Taylor
coefficients may be obtained by function evaluation, with this approach for DAEs
in general, we have to solve a nonlinear system of equations. Therefore, it seems
reasonable to consider also implicit Taylor approximations in the integration scheme.

625Numerical Algorithms (2021) 88:615–646

5.2 Fully implicit Taylor series methods for DAEs

The implicit counterpart of the explicit Taylor series method for ODEs corresponds
to ki ≥ 1, ωi

�i
= 1 for 0 ≤ �i ≤ ki , ke = 0, ωe

0 = 1. Our generalization for DAEs
consists, therefore, of the following steps.

• Initialization as in Section 5.1, Eqs. (32)–(33).
• For time-points tj+1, j ≥ 0, hj = tj+1 − tj : Solve the optimization problems:

min ||P (
ki∑

�=0

(c�)j+1(−hj)
�

︸ ︷︷ ︸
≈x(tj+1−hj)

−(c0)j
)||2 (36)

subject to r((c0)j+1, (c1)j+1, (c2)j+1, . . . , (cK)j+1, tj+1) = 0, (37)

successively for ki ≤ K − μ, where ki is the order at tj+1.

Obviously, if, instead of (34) and (36), more general conditions of the type (27)
are considered, then the dimension of the system that has to be solved remains equal.
Therefore, it seems natural to consider more general schemes with better convergence
and stability properties than the explicit and the fully implicit Taylor series methods.

5.3 Two-halfstep explicit/implicit schemes

One straightforward combination of the explicit and implicit integration schemes is
to approximate x(tj + σhj) = x(tj+1 − (1 − σ)hj) for 0 ≤ σ ≤ 1 as follows:

x(tj + σhj) ≈
ke∑

�e=0

(c�e)j
(
σhj

)�e , (38)

x(tj+1 − (1 − σ)hj) ≈
ki∑

�i=0

(c�i
)j+1

(−(1 − σ)hj

)�i , (39)

and equalize the expressions from both right-hand sides. The properties of the meth-
ods (38)–(39) are described in [21]. The choice σ = 1

2 , which can be interpreted as a
generalization of the trapezoidal rule, turns out to be convenient. For ke = ki , σ = 1

2 ,
it coincides with the one tested in [2, 9].

Remark 1 Note that another closely related implicit/explicit scheme is described in
the literature, see, e.g., [29]. There, the first step is implicit and the second one
explicit, in contrast to the approach from above. According to the extensive analysis
from [29], σ = 1

2 is convenient also in that case. However, for 0 < σ < 1, these
methods are less suitable for our DAE-scheme since the Taylor coefficients would be
considered at tj + σhj , whereas the constraints have to be fulfilled at tj and tj+1.

626 Numerical Algorithms (2021) 88:615–646

In the notation from Section 4, choosing σ = 1
2 in (38)–(39) means to consider:

p := P

(
ki∑

�i=0
(c�i

)j+1

(
−hj

2

)�i −
ke∑

�e=0
(c�e)j

(
hj

2

)�e

)
(40)

for 0 ≤ ke, ki ≤ K − μ, i.e.:

ωe
�e

=
(
1

2

)�e

, �e = 0, . . . , ke, ωi
�i

=
(
1

2

)�i

, �i = 0, . . . , ki .

For shortness, we denote these two-halfstep methods by (ke, ki)-TH.
Recall that, in general, the stability function R(z) (cf. Appendix 1) of a (ke, ki)-

TH method is not a Padé approximation of the exponential function. Consequently,
the maximally achievable order of the integration method for fixed ke and ki is not
given for these particular weights in general. Therefore, further higher-order schemes
for stiff ODEs have been developed, namely the HOP-methods described in [7].

5.4 Higher-order Padé methods

According to [7], HOP may be interpreted as Hermite-Obrechkoff-Padé or higher-
order Padé. The corresponding integration schemes may be considered as implicit
Taylor series methods based on Hermite quadratures.

In our notation, a (ke, ki)-HOP scheme means choosing:

ωe
�e

:= ke!(ke + ki − �e)!
(ke + ki)!(ke − �e)! , �e = 0, . . . , ke,

ωi
�i

:= ki !(ke + ki − �i)!
(ke + ki)!(ki − �i)! , �i = 0, . . . , ki .

These coefficients correspond to the (ke, ki)-Padé approximation of the exponential
function such that the stability function R(z) is precisely this approximation, see
Appendix 1. Indeed, (ke, ki)-HOP methods have the following properties, cf. [7]:

• the order of consistency is ke + ki ,
• the order of the local error is ke + ki + 1,
• they are A-stable for ki − 2 ≤ ke ≤ ki ,
• they are L-stable for ki − 2 ≤ ke ≤ ki − 1.

Note that also in this case, the trapezoidal rule corresponds to ke = ki = 1 and the
implicit Euler method to ke = 0, ki = 1. In this sense, the methods with ke = ki

could be viewed as a generalization of the trapezoidal rule and those with ke = ki −1
as a generalization of the implicit Euler method, cf. [7].

In Section 8, we numerically verify the outstanding properties of these methods.

6 Properties of theminimization problems

In [16], we analyzed the properties of the minimization problem obtained when com-
puting consistent initial values. That analysis can directly be applied to the explicit

627Numerical Algorithms (2021) 88:615–646

Taylor series method, cf. [17]. To appreciate the properties for implicit methods (i.e.,
ki > 0), we define, for k ≥ max {ke, ki}, the matrices:

Te :=
(
Pωe

0 Pωe
1hj Pωe

2h
2
j . . . Pωe

kh
k
j

)
∈ R

n×n·(k+1)

Ti :=
(
Pωi

0 Pωi
1(−hj) Pωi

2h
2
j . . . Pωi

k(−hj)
k
)

∈ R
n×·(k+1),

assuming ω�i
= 0 for li > ki and ω�e = 0 for �e > ke, and the vectors:

Xj = ((c0)j , . . . , (ck)j
)
, Xj+1 = ((c0)j+1, . . . , (ck)j+1

)
.

With this notation, we write:

p := P

⎛
⎝

ki∑
�i=0

ωi
�i

(c�i
)j+1

(−hj

)�i −
ke∑

�e=0

ωe
�e

(c�e)j
(
hj

)�e

⎞
⎠

= TiXj+1 − TeXj .

Therefore, as in [16], for α := TeXj , X := Xj+1, we consider the objective function:

f (X) := 1

2
‖TiX − α‖2

= 1

2
‖P(TiX − α)‖2

= 1

2
(TiX − α)T P (TiX − α)

= 1

2

(
XT (Ti)

T PTiX − 2αT PX + αT Pα
)
.

Observe that the matrix:

P̃i := (Ti)
T PTi = (Ti)

T Ti

=

⎛
⎜⎜⎜⎝

P(ωi
0)

2 Pωi
0ω

i
1(−hj)

2 . . . Pωi
0ω

i
k(−hj)

k

Pωi
0ω

i
1(−hj)

2

...
Pωi

0ω
i
k(−hj)

k Pωi
1ω

i
k(−hj)

K . . . P (ωi
k)

2(−hj)
2k

⎞
⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎝

P(ωi
0)

2 . . . Pωi
0ω

i
ki

(−hj)
ki 0

...
...

Pωi
0ω

i
ki

(−hj)
ki . . . P (ωi

ki
)2(−hj)

2ki

0 . . . 0

⎞
⎟⎟⎟⎠ ∈ R

n·(k+1)×n·(k+1)

is, by construction, positive semi-definite. However, it is not an orthogonal projector
in general. Therefore, Theorem 1 and Corollary 1 of [16] cannot be applied directly.
Hence, the solvability of the optimization problem is more difficult than for explicit
Taylor methods. More precisely, we want to emphasize that, for:

P̃ :=
(

P 0
0 0

)
∈ R

n·(k+1)×n·(k+1),

628 Numerical Algorithms (2021) 88:615–646

the nullspaces:

ker

(
P̃i GT

G 0

)
and ker

(
P̃ GT

G 0

)

may be different. However, since P̃i depends on hj , it is reasonable to assume that
a suitable stepsize hj can be found such that the optimization problem becomes
solvable in the sense discussed in [16].

7 Some practical considerations

7.1 Dimension of the nonlinear systems solved in each step

For a given K ∈ N, the Lagrange approach for solving (27)–(28) leads to a non-
linear system of equations of dimension 2n · (K + 1), cf. [16]. Thereby, consistent
coefficients:

(c0)j+1, (c1)j+1, (c2)j+1, . . . , (cK−μ)j+1

are obtained. In contrast, the coefficients cK−μ+1, . . . , cK will not be consistent in
general and the introduced Lagrange-multipliers are not even of interest.

However, increasing K by one means solving a nonlinear system containing 2n
additional variables and equations.

7.2 Setting ke and ki in a simple implementation

Dealing with automatic differentiation (AD), the number K ∈ N has to be prescribed
a priori in order to consider (K + 1) Taylor coefficients. Since 0 ≤ ke, ki ≤ K − μ

must be given in general, for the (ke, ki) TH and HOP methods, we set:

ki := K − μ and ke := ki,

by default. We further tested ki := K −μ, ke := ki − 1 for HOP methods. So far, we
considered schemes with constant order and stepsize only.

7.3 Jacobianmatrices

To solve the optimization problems (27)–(28) numerically, we provide the corre-
sponding Jacobians.

• The Jacobian of the constraints (28) is described in [17], since it is also used for
the computation of consistent initial values.

• To describe the Jacobian of the objective function (27), which is a gradient, we
define:

q
(
(c0)j+1, . . . , (cki

)j+1
) := ∥∥p ((c0)j+1, . . . , (cki

)j+1
)∥∥

2

and realize that:
∂q

∂(c�i
)j+1

= 1

q
(
(c0)j+1,. . . ,(cki

)j+1
)(p((c0)j+1, . . . , (cki

)j+1
))T ·ωi

�i
·(−hj

)�i ,

for q
= 0, 0 ≤ �i ≤ ki .

629Numerical Algorithms (2021) 88:615–646

8 Numerical tests

8.1 Order validation

To visualize the order of the methods, we integrate Example 1 in the interval [0, 1]
with different stepsizes. The results can be found in Fig. 1. On the left-hand side, we
show the results for the index-4 DAE. On the right-hand side, we report the results
obtained for the corresponding ODE described in (25).

Summarizing, we observe that:

• For ki, ke ≤ 1, the methods coincide with the explicit and implicit Euler methods
or the trapezoidal rule. Therefore, the graphs coincide up to effects resulting from
rounding errors.

• The similarity of the overall behavior for the DAE and the ODE is remarkable.
• As expected, the HOP methods are considerably more accurate due to the higher

order.
• For smallh and large ke, ki , scaling and rounding errors impedemore accurate results

in dependence of the tolerance ftol from the module minimize from SciPy.

8.2 Numerical test for examples from the literature

8.2.1 Validation of known results

We report numerical results obtained by the methods (3,3)-HOP and (4,4)-HOP for
the following examples from the literature:

• Mass-on-car from [30], see Appendix, Section C.1,
• Extended mass-on-car from [25], see Appendix, Section C.2,
• Pendulum index 3, which can be found in almost all introductions to DAEs, in

the reduced to first-order form, with the positive y axis pointing upwards and the
parameters m = 1.0, l = 1.0, and g = 1.0. (x1, x2) are the coordinates, (x3, x4)
the corresponding velocities and x5 the Lagrange parameter. In our computation,
the system starts from rest at 45 degrees to the vertical.

• Car axis index 3 formulation with all parameters as given in [24]. In order to
avoid a disadvantageous scaling of the Taylor coefficients, we changed the inde-
pendent variable t to τ = 10 t . This is advantageous, since the time-dependent
input-function is yb = 0.1 sin(10 t). For large K , the corresponding higher Tay-
lor coefficient lead to considerable scaling differences that are avoided by the
substitution with τ . For the details of our reformulation, we refer to [17].

For all examples (see also Table 2), we used ftol for the tolerance of the module
minimize from SciPy. To estimate the error, we considered the difference between the
results obtained by (3,3)-HOP and (4,4)-HOP.

All tests confirmed the applicability of the method. The solution graphs look iden-
tical with those given in the literature [24, 25, 30]. The graphs of the estimated errors
of the (3,3)-HOP methods in Fig. 2 confirm the order expectations.

Since it is obvious that our implementation is not competitive with respect to runtime
(see Table 3), we have not made a systematic comparison with other solvers here.

630 Numerical Algorithms (2021) 88:615–646

Fig. 1 Stepsize-error diagram for the error |x1(1) − cosh(1)| for the DAE (left) and the essential ODE
(right) corresponding to Example 1 for different methods and ftol for the moduleminimize from SciPy. For
ke , ki=2, we included graphs of Chp for p = 2, 3, 4 to appreciate the order of the methods. The crossing
of the (4,4)-HOP and (3,4)-HOP methods for the DAE (left) are probably due to rounding errors, since the
error is about 1e−14

631Numerical Algorithms (2021) 88:615–646

Table 2 Overview of the examples from Section 8.2.1

No. Example Dimension Index Rank � Linear or not

1. Mass-on-car 5 3 2 Linear

2. Extended mass-on-car 7 4 3 Linear

3. Pendulum 5 3 2 Nonlinear

4. Car axis 10 3 4 Nonlinear

8.2.2 A challenging index 5 DAE

We consider now the index-5 example from [26] resulting from a model of two pen-
dula, where the Lagrangian multiplier λ1 of the first one controls the length of the
second one:

x′
1 = vx1 , x′

2 = vx2 ,

y′
1 = vy1 , y′

2 = vy2 ,

vx1
′ = −x1λ1, vx2

′ = −x2λ2,

vy1
′ = −y1λ1 + g, vy2

′ = −y2λ2 + g,

0 = x2
1 + y2

1 − L2, 0 = x2
2 + y2

2 − (L + cλ1)
2.

Note that in this formulation from [26] the positive y axis is pointing downwards. The
DAE has index 5 and four degrees of freedom. For the numerical tests, we use the
gravity constant g = 1, the length of the first pendulum L = 1, the parameter c = 0.1
and the interval [0, 80]. In [26], this example was integrated with constant stepsize
h = 0.05 and order k = 7 as well as h = 0.025 and order k = 8. For the component
x2, the two solutions were very close until about t = 30 and clearly diverging from
there to about t = 50 and totally unrelated from t = 55 on.

Our implementation leads to a very good results in the sense that two solutions
have a small difference up to much larger t . We compare the solutions for K = 9
(with HOP method ki = ke = 4 and order 8) and K = 8 (with HOP method ki =
ke = 3 and order 6) for the (numerically) consistent initial value:

c0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1
y1
x2
y2
vx1

vy1

vx2

vy2

λ1
λ2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

0

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1.000000000000000e + 00
−6.346337564282729e − 09
1.000000000000000e + 00
3.713317265246974e − 01
5.183756806486933e − 09
8.168107595885199e − 01

−9.661740336543358e − 02
9.641228990309292e − 01
6.671798106332355e − 01
8.174254817186853e − 01

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

632 Numerical Algorithms (2021) 88:615–646

Fig. 2 Numerical solutions of the examples from Section 8.2 obtained by (4,4)-HOP (left) and estimation
of the error (right) considering the difference between the solution from (3,3)-HOP and (4,4)-HOP. The
specifics of the integration can be found in Table 3

633Numerical Algorithms (2021) 88:615–646

Table 3 Overview of the computations carried out for Fig. 2 with fixed stepsize h

Time (s) Time (s)

No. Interval K ki = ke h (3,3)-HOP (4,4)-HOP

1. 0-10 6 / 7 3 / 4 0.025 55.3 80.7

2. 0-20 7 / 8 3 / 4 0.1 154.4 131.7

3. 0-20 6 / 7 3 / 4 0.1 43.7 50.9

4. 0-30 6 / 7 3 / 4 0.025 411.2 201.8

The CPU Time based on a computation with a 2.3-GHz processor

The quality of our results is visualized for x2 in Fig. 3. For slightly perturbed
initial values for x2 and y2, the obtained solutions behave analogously. For arbitrarily
perturbed initial values, convergence difficulties during the computation of consistent
initial values may appear.

8.2.3 Andrews squeezing mechanism

Finally, we want to report here the behavior we obtained for a well-known index-3
benchmark problem with an extreme scaling. According to [20, 24], the problem is
of the form:

⎛
⎜⎜⎝

q ′
v′
0
0

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

v

w

M(q)w − f (q, v) + GT (q)λ

g(q)

⎞
⎟⎟⎠

for q ∈ R
7, λ ∈ R

6. To our surprise, using for α the initial value given in the litera-
ture, which leads there to an dynamic behavior, our computation of consistent initial

Fig. 3 Difference of the result obtained with (3,3)-HOP with h = 0.05 and (4,4)-HOP with h = 0.025 for
the component x2 of the index-5 example from Section 8.2.2 in the interval [0,40] (left) and [0,80] (right)

634 Numerical Algorithms (2021) 88:615–646

values delivers a stationary solution, such that all our integration methods provide the
same constant solution for:

q =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

β
�

γ

δ

�

ε

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1.2456368688861551e − 01
4.7359420595613766e − 02
4.5493601541816081e − 01
2.2197419077471500e − 01
4.8744266257012064e − 01

−2.2197419077470643e − 01
1.2302849924800077e + 00

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (41)

(
λ1
λ2

)
=
(

9.9283318628552919e + 01
−7.6803614318109092e + 00

)
(42)

and all other components are (numerically) equal to zero. Therefore, we explain here
why this happened.

First of all, we want to mention that the indicated condition number, introduced
in [14], corresponding to the DAE at α is about 1011, such that a clear hint to the
scaling difficulties is given. In contrast, at the given stationary solution, the condition
number is about 106.

To simplify further considerations, we notice that the last four equations of g(p) =
0 are used to compute
, δ, �, ε, such that we can neglect them and consider only
g1,2 and f1,2,3 to determine β, �, γ, λ1,2. For a constant solution v = w = 0, the
relevant equations are therefore:

0 = −
⎛
⎝

mom

0
f3(γ)

⎞
⎠+ G̃T (β, �, γ)

(
λ1
λ2

)
,

0 =
(

g1(β, �, γ)

g2(β, �, γ)

)
=: g̃.

At the equilibrium point corresponding to (41)–(42), the constant drive torque mom,
the spring force f3, and the Lagrangian forces are equalized.

Therefore, it only remains to explain why the approach (19)–(20) delivers a
stationary solution. Due to the high condition, the Lagrange multipliers λ are numer-
ically difficult to compute. In fact, for other numerical computations, the accuracy
for λ is not controlled [20, p. 536ff]. In contrast, if no (numerical) full row rank of
the Jacobian G̃ is given, then (19)–(20) computes a minimal norm solution [15], that
in this case minimizes the values for λ, leading to the stationary solution. To our
knowledge, this stationary solution was not reported before in the DAE literature.

We plan further investigations on this unexpected behavior. Indeed, for some per-
turbed initial values, we obtained a solution that converge towards the stationary
solution (41)–(42). Moreover, with scaled equations and very different initial val-
ues, a nonconstant solution that behaves like the one described in [20, 24] has been
obtained.

635Numerical Algorithms (2021) 88:615–646

9 Summary and future work

In this article, we presented a projection approach that permits the extension of
explicit/implicit Taylor integrations schemes from ODEs to DAEs. As a result, we
obtained higher-order methods that can directly be applied also to higher-index
DAEs. The methods are relatively easy to implement using InitDAE and convenient
since, thanks to the formulation as an optimization problem, the inherent dynamics
of the DAE are considered indirectly. We analyzed in detail explicit, fully implicit,
two-halfstep (TH) and higher-order-Padé (HOP) methods. Particularly HOP methods
present excellent stability and order properties.

The results obtained by a prototype in Python that is based on InitDAE [12] out-
perform our expectations, in particular with regard to the accuracy for higher-index
DAEs, cf. Section 8.2.2. Until now, our focus was on the extension from ODEs
to DAEs in order to use higher-order and A-stable methods with InitDAE for our
diagnosis purposes during the integration to monitor singularities [17]. With this
promising first results, we think that further developments of these projected methods
are worthwhile.

In fact, at present, our implementation is not competitive by far. One reason is
that setting up the nonlinear equations (27)–(28) and the corresponding Jacobians
with AlgoPy, cf. [31], is still very costly. If equations (27)–(28) and the correspond-
ing Jacobians are supplied in a more efficient way, competitive solvers might be
achieved. At present, we do not even consider the sparsity of matrices. Furthermore,
an improvement seems likely if we take advantage of specific structural proper-
ties, e.g., solving subsystems step-by-step, cf. [10, 11]. Another reason for our high
computational costs is that the package minimize from SciPy often performs more
iterations than we expected (often more than 30), although a good initial guess com-
puted with the explicit Taylor series method is given in general. This behavior has
to be inspected in more detail. For linear systems, a direct implementation consid-
ering the projector � from (21) (or, more precisely, a corresponding basis) should
deliver an efficient algorithm. This could be of interest, e.g., for the applications from
[25, 30]. Last but not least, competitive solvers require adaptive order and stepsize
strategies—a broad field for future work.

Although these algorithms open new possibilities to integrate higher-index DAEs,
we want to emphasize that, in practice, a high index is often due to modelling
assumptions that should be considered very carefully. The dependencies on higher
derivatives should always be well founded.

Funding Open Access funding enabled and organized by Projekt DEAL

Appendix 1. Stability functions and stability regions of Taylor series
methods

A.1 Stability functions

The general definition (27)–(28) allows for a straightforward description of the sta-
bility function. Applied to ODEs (and therefore P = I), the stability function

636 Numerical Algorithms (2021) 88:615–646

R : C → C results if we consider the test-ODE:

y′ = λy, y(0) = y0, λ ∈ C, (43)

and describe the numerical method for constant h = hj in terms of:

yj+1 = R(hλ)yj .

For ODEs, the methods described in Section 4 imply:

ki∑
�i=0

ωi
�i

(c�i
)j+1

(−hj

)�i =
ke∑

�e=0

ωe
�e

(c�e)j
(
hj

)�e

and, for the test-equation (43), we obtain from:

(c�i
)j+1 = λ�i (c0i

)j+1 = λ�i

�i ! yj+1 and (c�e)j = λ�e (c0e)j = λ�e

�e! yj

the relationship:
⎛
⎝

ki∑
�i=0

ωi
�i

λ�i

�i !
(−hj

)�i

⎞
⎠ yj+1 =

⎛
⎝

ke∑
�e=0

ωe
�e

λ�e

�e!
(
hj

)�e

⎞
⎠ yj ,

i.e., for z = hjλ ∈ C :

R(z) =

ke∑
�e=0

1
�e!ω

e
�e

z�

ki∑
�i=0

(−1)�i 1
�i !ω

i
�i

z�

.

A.2 Stability regions

The corresponding stability regions can thus be characterized by:

S := {z ∈ C : |R(z)| ≤ 1}=
⎧⎨
⎩ z ∈ C :

∣∣∣∣∣∣
ke∑

�e=0

1

�e!ω
e
�e

z�

∣∣∣∣∣∣
≤
∣∣∣∣∣∣

ki∑
�i=0

(−1)�i
1

�i !ω
i
�i

z�

∣∣∣∣∣∣

⎫⎬
⎭.

For the methods discussed in this article, we obtain:

• Explicit Taylor:

RE
ke,0(z) =

ke∑
�e=0

z�e

�e! .

The corresponding stability regions are illustrated in Fig. 4 (top), cf. also [3, 20].
• Fully Implicit Taylor:

RFI
0,ki

(z) = 1
∑ki

�i=0(−1)�i
z�
i

�i !
.

The corresponding stability regions are illustrated in Fig. 4 (bottom).

637Numerical Algorithms (2021) 88:615–646

Fig. 4 Colored stability regions S for explicit (top) and fully implicit (bottom) Taylor series methods up
to order 6

• For the two-halfstep explicit/implicit schemes (40), we obtain:

RT H
ke,ki

(z) =

ke∑
�e=0

1
�e!
(

z
2

)�e

ki∑
�i=0

1
�i !
(− z

2

)�i

.

The corresponding stability regions for ke, ki = 0, . . . , 6 are represented in
Fig. 5.

Note that symmetry is due to:

RT H
ke,ki

(−z) = 1

RT H
ki,ke

(z)
. (44)

The schemes with ke ≤ ki seem to be A-stable or A(α)-stable for moderate α.
Indeed, according to [2, 9], the schemes provide good results for Hamiltonian
systems if ke = ki . Furthermore, A-stable schemes with ke < ki are L-stable,
since:

lim
z→−∞

∣∣∣RT H
ke,ki

(z)

∣∣∣ = 0 for ke < ki .

• For HOP-methods, from:

ωe
�e

:= ke!(ke + ki − �e)!
(ke + ki)!(ke − �e)! , �e = 0, . . . , ke

ωi
�i

:= ki !(ke + ki − �i)!
(ke + ki)!(ki − �i)! , �i = 0, . . . , ki

we obtain:

RHOP
ke,ki

(z) = ke!
ki !

ke∑
�e=0

1
�e!

(ke+ki−�e)!
(ke−�e)! z�

ki∑
�i=0

(−1)�i 1
�i !

(ke+ki−�i)!
(ki−�i)! z�

. (45)

638 Numerical Algorithms (2021) 88:615–646

Fig. 5 Colored stability regions S of two-halfstep schemes considering Rke,ki
for all combinations of

ke, ki = 0, . . . , 6, where ki corresponds to the rows and ke to the columns. The symmetry with respect to
the main diagonal of the images results from (44). We can realize that, for ki = ke = 5, 6, they are not
A-stable. This contradicts the statement in [21]

Moreover, analogously as before, we have:

RHOP
ke,ki

(−z) = 1

RHOP
ki ,ke

(z)
. (46)

Therefore, in Fig. 6, we obtain again symmetric stability regions that are in
accordance with the stability properties reported in Section 5.4.

Since we obtained (44) and (46) for TH and HOP methods with k = ke = ki , it
holds for these methods that:

1 = Rk,k(it)Rk,k(−it) = Rk,k(it)Rk,k(it) = ∣∣Rk,k(it)
∣∣ for all t ∈ R.

639Numerical Algorithms (2021) 88:615–646

Fig. 6 Colored stability regions S of HOP-methods considering Rke,ki
for all combinations of ke, ki =

0, . . . , 6, where ki corresponds to the rows and ke to the columns. The symmetry with respect to the main
diagonal of the images results from (46). For ke = ki , we observe S = C

−

According to Lemma 6.20 from [8] and to the representations of the stability
regions from Fig. 5, RT H

k,k seems to have poles in C
− in general.

Appendix 2: Linear algebra toolbox for DAEs

According to [6], a linear system of equations:

A

(
s1
s2

)
= b

640 Numerical Algorithms (2021) 88:615–646

is 1-full with respect to s1, if s1 is uniquely determined for any consistent b, cf. also
[5]. Since we focus on properties of the matrix A , according to [16], we prefer the
following equivalent formulation:

A is 1-full :⇔ kerA ⊆
{(

s1
s2

)
: s1 = 0

}
. (47)

For our analysis of DAEs, we focus on 1-full matrices A of the following particular
form:

A =
(

P 0
G1 G2

)
(48)

for an orthogonal projector P . For DAEs, G1, G2 result from the derivative array and
P is the orthogonal projector introduced in Section 2.

Let W2 denote an arbitrary matrix fulfilling kerW2 = im G2. Then for N :=
W2G1, the 1-fullness of (48) implies:

ker

(
P

N

)
= 0.

For linear DAEs, N results from the constraints.
Let further W denote an arbitrary matrix fulfilling kerW = im NQ, such that

WN = WNP . Then, the orthogonal projector � onto:

ker

(
Q

WN

)
= im �

fulfills � := P − (WN)+(WN).
For linear DAEs, this projector � allows for the formulation of the orthogonally

projected explicit ODE (10) in the invariant subspace im �, cf. Theorem 1 in [18].
In practice, we can avoid the explicit computation of the orthogonal projector �

considering the constrained optimization problem (5)–(6) instead of (7)-(8).

Appendix 3: Linear examples from Section 8.2

The following two examples, which result from servo-constraint problems for
multibody systems, are linear DAEs of the form:

Ax′ + Bx = q.

641Numerical Algorithms (2021) 88:615–646

C.1 Example: mass-on-car

The DAE resulting from the spring-mass system mounted on a car from [30]
corresponds to:

A =

⎛
⎜⎜⎜⎜⎝

1 0 0 0 0
0 1 0 0 0
0 0 m1 + m2 m2 cos(α) 0
0 0 m2 cos(α) m2 0
0 0 0 0 0

⎞
⎟⎟⎟⎟⎠

,

B =

⎛
⎜⎜⎜⎜⎝

0 0 −1 0 0
0 0 0 −1 0
0 0 0 0 −1
0 k 0 d 0
1 cos(α) 0 0 0

⎞
⎟⎟⎟⎟⎠

, q =

⎛
⎜⎜⎜⎜⎝

0
0
0
0
yd

⎞
⎟⎟⎟⎟⎠

,

for x = (x1, s, vx1 , vs, F). We used the parameters m1 = 1.0, m2 = 2.0, k = 5.0,
d = 1.0, α = 5

180π . yd is a predefined trajectory for the position of the mass m2 and
reads:

yd(t) =
{

y0 + p9

(
t

tmax

)
· (yf − y0) for 0 ≤ t ≤ tmax

yf for t ≥ tmax

for y0 = 0.5, yf = 2.5, tmax = 6.0 and the polynomial p9 described in Appendix
C.3.

For 0 < α < π
2 , the DAE-index is 3 and the projector � from (21)

reads:

� = 1

1 + cos2(α)

⎛
⎜⎜⎜⎜⎝

cos(α)2 − cos(α) 0 0 0
− cos(α) 1 0 0 0

0 0 cos(α)2 − cos(α) 0
0 0 − cos(α) 1 0
0 0 0 0 0

⎞
⎟⎟⎟⎟⎠

,

i.e., it depends on α only and is independent of the other parameters.

642 Numerical Algorithms (2021) 88:615–646

C.2 Example: extendedmass-on-car system

The DAE resulting from the extension of the mass-on car systems described in [25]
corresponds to:

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
1
1

m1 + m2 + m3 m2 + m3 m3 cosα

m2 + m3 m2 + m3 m3 cosα

m3 cosα m3 cosα m3
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
1

1
−1

k1 d1
k2 d2

1 1 cosα

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, q =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
0
0
0

zd(t)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

for x = (x1, s1, s2, vx1 , vs1 , vs2 , F) and with

zd(t) =
{

z0 + p15

(
t

tmax

)
(zf − z0) for 0 ≤ t ≤ tmax,

zf for t ≥ tmax,

for z0 = 1.0, zf = 4.0, tmax = 15.0, and the polynomial p15 described in Appendix
C.3. We used the parameters m1 = 1.0, m2 = 1.0, m3 = 2.0, k1 = 5.0, k2 = 5.0,
d1 = 1.0, d2 = 1.0, α = π

4 . In this case, the index (and therefore also the rank and
shape of �) depends on the parameters α, d1, and d2.

C.3 About formulas for the prescribed path

In the examples of Sections C.1 and C.2, the prescribed path is described by a
polynomial that results to be the incomplete regularized beta function.

For a > 0, b > 0, the incomplete beta function is defined by:

Bx(a, b) =
∫ x

0
sa(1 − s)b dx

for 0 < x < 1 and

B0(a, b) = 0, B1(a, b) = �(a)�(b)

�(a + b)
.

643Numerical Algorithms (2021) 88:615–646

Moreover, the incomplete regularized beta function reads:

Ix(a, b) = Bx(a, b)

B1(a, b)
= Bx(a, b)

�(a + b)

�(a)�(b)

and has the obvious properties:

I0(a, b) = 0, I1(a, b) = 1, Ix(a, b) = 1 − I1−x(a, b).

For n ∈ N, a = b = n + 1, the polynomial p2n+1(x) := Ix(n + 1, n + 1) has order
2n + 1 and can be represented with binomial expansion:

p
(A)
2n+1(x) := (2n + 1)!

n! n!
∫ x

0

n∑
k=0

(
n

k

)
(−1)kxn+k dx

=
n∑

k=0

(
(2n + 1)!

n! n!
(

n

k

)
(−1)k

n + k + 1

)
xn+k+1. (49)

Although this formulation has often been used in literature, from a numerical point
of view, it is inconvenient due to the alternating sign.

Since the polynomial p2n+1(x)− 1
2 has a zero at

1
2 , it can be shown that for h0 = 1,

the polynomials:

h2�(x) = 2� − 1

2�
4
(
x − x2

)
h2�−2(x) and q2n(x) =

n∑
�=0

h2�(x)

allow the representation:

p
(B)
2n+1(x) = 1

2
+
(

x − 1

2

)
q2n(x). (50)

Moreover, using the formula for the relation between the incomplete regularized
beta function and the binomial expansion for integer a from [1, p. 263], the same
polynomial can also be described by:

p
(C)
2n+1(x) =

2n+1∑
k=n+1

(
2n + 1

k

)
xk(1 − x)2n+1−k . (51)

Of course, the polynomials described by (49), (50), and (51) are identical, but the
formulas from (50) and (51) have the clear advantage that they are completely numer-
ically stable since for 0 < x < 1 all the terms are positive. The error that is caused
by formulation (49) is visualized in Fig. 7.

In particular, for n = 4, we obtain:

p
(A)
9 (x) = 126x5 − 420x6 + 540x7 − 315x8 + 70x9,

p
(B)
9 (x) = 1

2
+
(

x − 1

2

)
·
(
1 + 2(x − x2)1 + 6(x − x2)2 + 20(x − x2)3

+70(x − x2)4 + 252(x − x2)5 + 924(x − x2)6 + 3432(x − x2)7
)

,

p
(C)
9 (x) = 126 x5 (1 − x)4 + 84 x6 (1 − x)3 + 36 x7 (1 − x)2 + 9 x8 (1 − x) + x9.

644 Numerical Algorithms (2021) 88:615–646

Fig. 7 Difference between the values obtained with the different formulatoins of p9. Obviously, p
(A)
9

introduces an error that can be avoided using p
(B)
9 or p

(C)
9 . An analogous comparison of the formulations

for n = 7 leads to an error of up to 5 · 10−11 for p
(A)
15

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons
licence, and indicate if changes were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://creativecommonshorg/licenses/by/4.
0/.

References

1. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions with Formulas Graphs and
Mathematical Tables. Dover, New York (1972)

2. Akishin, P.G., Puzynin, I.V., Vinitsky, S.I.: A hybrid numerical method for analysis of dynamics of
the classical Hamiltonian systems. Comput. Math. Appl. 34(2-4), 45–73 (1997)

3. Barrio, R.: Performance of the Taylor series method for ODEs/DAEs. Appl. Math. Comput. 163(2),
525–545 (2005)

4. Brenan, K.E., Campbell, S.L., Petzold, L.R.: Numerical Solution of Initial-Value Problems in
Differential-Algebraic Equations. Unabridged, corr. republ. Classics in Applied Mathematics, p. 14.
SIAM Society for Industrial and Applied Mathematics, Philadelphia (1996)

5. Campbell, S.L.: The numerical solution of higher index linear time varying singular systems of
differential equations. SIAM J. Sci. Stat. Comput. 6, 334–348 (1985)

6. Campbell, S.L., Gear, C.W.: The index of general nonlinear DAEs. Numer. Math. 72(2), 173–196
(1995)

7. Corliss, G.F., Griewank, A., Henneberger, P., Kirlinger, G., Potra, F.A., Stetter, H.J.: High-order stiff
ODE solvers via automatic differentiation and rational prediction. In: Vulkov, L., Waśniewski, J.,
Yalamov, P. (eds.) Numerical Analysis and Its Applications. WNAA 1996. Lecture Notes in Computer
Science, vol. 1196, pp. 114–124 (1997)

8. Deuflhard, P., Bornemann, F.: Numerical mathematics 2. Ordinary differential equations. (Numerische
Mathematik 2 Gewöhnliche Differentialgleichungen.) 4th revised and augmented ed. de Gruyter
Studium, Berlin (2013)

9. Dimova, S.N., Hristov, I.G., Hristova, R.D., Puzynin, I.V., Puzynina, T.P., Sharipov, Z.A., Shegunov,
N.G., Tukhliev, Z.K.: Combined explicit-implicit Taylor Series Methods. In: Proceedings of the VIII
International Conference “Distributed Computing and Grid-technologies in Science and Education”
(GRID 2018), Dubna, Moscow region, Russia, September 10 -14 (2018)

645Numerical Algorithms (2021) 88:615–646

http://creativecommonshorg/licenses/by/4.0/
http://creativecommonshorg/licenses/by/4.0/

10. Estévez Schwarz, D.: A step-by-step approach to compute a consistent initialization for the MNA. Int.
J. Circuit Theory Appl. 30(1), 1–6 (2002)

11. Estévez Schwarz, D.: Consistent initialization for DAEs in Hessenberg form. Numer. Algorithms
52(4), 629–648 (2009)

12. Estévez Schwarz, D., Lamour, R.: InitDAE’s documentation. Available from:
https://www.mathematik.hu-berlin.de/∼lamour/software/python/InitDAE/html/

13. Estévez Schwarz, D., Lamour, R.: Projector based integration of DAEs with the Taylor series method
using automatic differentiation. J. Comput. Appl Math. 262, 62–72 (2014)

14. Estévez Schwarz, D., Lamour, R.: A new projector based decoupling of linear DAEs for monitoring
singularities. Numer. Algorithms 73(2), 535–565 (2016)

15. Estévez Schwarz, D., Lamour, R.: Consistent initialization for higher-index DAEs using a projec-
tor based minimum-norm specification. Technical Report 1. Institut für Mathematik, Humboldt-
Universität zu Berlin (2016)

16. Estévez Schwarz, D., Lamour, R.: A new approach for computing consistent initial values and Tay-
lor coefficients for DAEs using projector-based constrained optimization. Numer. Algorithms 78(2),
355–377 (2018)

17. Estévez Schwarz, D., Lamour, R.: InitDAE: Computation of consistent values, index determina-
tion and diagnosis of singularities of DAEs using automatic differentiation in Python. Journal of
Computational and Applied Mathematics. https://doi.org/10.1016/j.cam.2019.112486 (2019)

18. Estévez Schwarz, D., Lamour, R.: A projector based decoupling of DAEs obtained from the derivative
array. In: Progress in Differential-Algebraic Equations II, Differential-Algebraic Equations Forum
(DAE-F) (2020)

19. Estévez Schwarz, D., Lamour, R., März, R.: Singularities of the Robotic Arm DAE. Progress in
Differential-Algebraic Equations II, Differential-Algebraic Equations Forum (DAE-F) (2020)

20. Hairer, E., Wanner, G.: Solving Ordinary Differential Equations II. Springer (1996)
21. Kirlinger, G., Corliss, G.F.: On implicit Taylor series methods for stiff ODEs. In: Computer Arith-

metic and Enclosure Methods. Proceedings of the 3rd International IMACS-GAMM Symposium on
Computer Arithmetic and Scientific Computing (SCAN-91), Oldenburg, Germany, 1-4 October 1991,
pp. 371–379, Amsterdam (1992)

22. Kunkel, P., Mehrmann, V.: Differential-Algebraic Equations - Analysis and Numerical Solution. EMS
Publishing House, Zürich (2006)

23. Lamour, R., März, R., Tischendorf, C.: Differential-Algebraic Equations: A Projector Based Analysis.
Differential-Algebraic Equations Forum, vol. 1. Springer, Berlin (2013)

24. Mazzia, F., Magherini, C.: Test set for initial value problems, release 2.4. Technical report, Department
of Mathematics, University of Bari and INdAM, Research Unit of Bari, February 2008. Available
from: http://pitagora.dm.uniba.it/∼testset

25. Otto, S., Seifried, R.: Applications of Differential-Algebraic Equations: Examples and Benchmarks,
chapter Open-loop Control of Underactuated Mechanical Systems Using Servo-constraints: Analysis
and Some Examples. Differential-Algebraic Equations Forum. Springer, Cham (2019)

26. Pryce, J.D.: Solving high-index DAEs by Taylor series. Numer. Algorithms 19(1–4), 195–211 (1998)
27. Pryce, J.D., Nedialkov, N.S., Tan, G., Li, X.: How AD can help solve differential-algebraic equations.

Optim. Methods Softw. 33(4–6), 729–749 (2018)
28. Riaza, R.: Differential-Algebraic Systems. Analytical Aspects and Circuit Applications. World

Scientific, Hackensack (2008)
29. Scott, J.R., Solving, O.DE.: Initial Value Problems with Implicit Taylor Series Methods. Technical

report NASA/TM-2000-209400 (2000)
30. Seifried, R., Blajer, W.: Analysis of servo-constraint problems for underactuated multibody systems.

Mech. Sci. 4, 113–129 (2013)
31. Walter, S.F., Lehmann, L.: Algorithmic differentiation in Python with AlgoPy. J. Comput. Sci. 4(5),

334–344 (2013)

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

646 Numerical Algorithms (2021) 88:615–646

https://www.mathematik.hu-berlin.de/~lamour/software/python/InitDAE/html/
https://doi.org/10.1016/j.cam.2019.112486
http://pitagora.dm.uniba.it/~testset

	Projected explicit and implicit Taylor series methods for DAEs
	Abstract
	Introduction
	DAEs: index, consistent values, and decoupling
	Taylor series and DAEs
	General definition of explicit/implicit methods
	Projected taylor integration methods
	Explicit Taylor series method for DAEs
	Fully implicit Taylor series methods for DAEs
	Two-halfstep explicit/implicit schemes
	Higher-order Padé methods

	Properties of the minimization problems
	Some practical considerations
	Dimension of the nonlinear systems solved in each step
	Setting ke and ki in a simple implementation
	Jacobian matrices

	Numerical tests
	Order validation
	Numerical test for examples from the literature
	Validation of known results
	A challenging index 5 DAE
	Andrews squeezing mechanism

	Summary and future work
	Appendix: 1. Stability functions and stability regions of Taylor series methods
	A.1 Stability functions
	A.2 Stability regions
	Appendix 2: Linear algebra toolbox for DAEs
	Appendix: 2: Linear algebra toolbox for DAEs
	Appendix 3: Linear examples from Section 8.2
	Appendix: 3: Linear examples from Section 8.2
	C.1 Example: mass-on-car
	C.2 Example: extended mass-on-car system
	C.3 About formulas for the prescribed path
	References

