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Abstract
In this paper, we study the numerical approximation of a general second order semi-
linear stochastic partial differential equation (SPDE) driven by a additive fractional
Brownian motion (fBm) with Hurst parameter 1

2 and Poisson random measure.
Such equations are more realistic in modelling real world phenomena. To the best
of our knowledge, numerical schemes for such SPDE have been lacked in the scien-
tific literature. The approximation is done with the standard finite element method
in space and three Euler-type timestepping methods in time. More precisely the
well-known linear implicit method, an exponential integrator and the exponential
Rosenbrock scheme are used for time discretization. In contract to the current litera-
ture in the field, our linear operator is not necessary self-adjoint and we have achieved
optimal strong convergence rates for SPDE driven by fBm and Poisson measure. The
results examine how the convergence orders depend on the regularity of the noise
and the initial data and reveal that the full discretization attains the optimal conver-
gence rates of order 2 for the exponential integrator and implicit schemes.
Numerical experiments are provided to illustrate our theoretical results for the case
of SPDE driven by the fBm noise.
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1 Introduction

We analyse the strong numerical approximation of an SPDE defines in ,
1 2 3 with initial value and boundary conditions (Dirichlet, Neumann, Robin

boundary conditions or mixed Dirichlet and Neumann). In Hilbert space, our model
equation can be formulated as the following parabolic SPDE

0

0 0
(1)

in Hilbert space 2 , with 0 , where is the mark set defined by
0 . Let be the smallest -algebra containing all open sets of . Let

be a -finite measurable space and (with 0) a Lévy measure on
such that

0 0 and min 2 1 . (2)

Let be the -valued Poisson distributed -finite measure on the product
-algebra and with intensity , where is the Lebesgue mea-

sure on . In our model problem (1), stands for the compensated
Poisson random measure defined by

. (3)

We denote by 0, the final time, , are deterministic mappings
that will be specified precisely later, 0 is the initial data which is random, is
a linear operator, not necessary self-adjoint, unbounded and generator of an analytic
semigroup , 0. Note that is a -valued -cylindrical frac-
tional Brownian motion of Hurst parameter 1

2 1 in a filtered probability space
0 with the covariance operator , which is positive defi-

nite and self-adjoint. The filtered probability space 0 is assumed to
fulfil the usual condition (see [31, Definition 2.2.11]). It is well known [3] that the
noise can be represented as

1
2 0 . (4)

where are respectively the eigenvalues and eigenfunctions of the
covariance operator , and are mutually independent and identically distributed
fractional Brownian motions (fBm).

In our study, we first study in details the following particular case where 0 0,
i.e. the SPDE is driven only by fBm

0 0 0 .
(5)

The self-similar and long-range dependence properties of the fBm make this process
a suitable candidate to model many phenomena like financial markets (see, e.g., [4,
11, 22]) and traffic networks (see, e.g., [17, 39]). In most cases, SPDEs of type (5)
do not have explicit solutions and therefore numerical algorithms are required for
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their approximations. It is important to mention that if 1
2 the process is

not a semi-martingale and the standard stochastic calculus techniques are therefore
obsolete while studying SPDEs of type (5). Alternative approaches to the standard
Itô calculus are therefore required in order to build a stochastic calculus framework
for such fBm. In recent years, there have been various developments of stochastic
calculus and stochastic differential equations with respect to the fBm especially for

1
2 1 (see, for example, [2, 3, 24, 25]) and theory of SPDEs driven by fractional

Brownian motion has been also studied. For example, stochastic partial differential
equations in a Hilbert space with an infinite dimensional fractional Brownian motion
are considered in [3, 6, 7, 18–20]. In contrast to standard Brownian ( 1 2)
where there are numerous literature on numerical algorithms for SPDEs, few works
have been done for numerical methods for fBm for SPDEs of type (5). Indeed, stan-
dard explicit and linear implicit schemes have been investigated in the literature for
SPDEs of type (5) (see [13, 14, 38]). The works in [13, 38] deal with self-adjoint
operator and use the spectral Galerkin method for the spatial discretization. This is
very restrictive as many concrete applications use non self-adjoint operators. Beside
numerical algorithms used for spatial discretization and time discretization in [13,
38] are limited to few applications. Our goal in this work is to extend keys time
stepping methods, which have been built for standard Brownian motion ( 1 2).
These extensions are extremely complicated due to the fact that the process is
not a semi-martingale. Our results will be based on many novel intermediate lem-
mas. Indeed, our schemes here are based on finite element method (or finite volume
method) for spatial discretization so that we gain the flexibility of these methods to
deal with complex boundary conditions and we can apply well-developed techniques
such as upwinding to deal with advection. For time discretization, we will first update
the implicit linear for finite element method and not necessarily self-adjoint. We also
provide the strong convergence of the exponential scheme [21, 34] for ( 1

2 1 ).
Note that this scheme is an explicit stable scheme, where the implementation is based
on the computation of matrix exponential functions [21]. As the linear implicit and
exponential scheme are stable only when the linear operator is stronger than the
nonlinear function ,1 we also provide the strong convergence of the stochastic expo-
nential Rosenbrock scheme (SERS) [26] for ( 1

2 1 ), which is very stable when
(5) is driven both by its linear or nonlinear parts.

However, the model (5) can be unsatisfactory and less realistic. For instance, in
finance, the unpredictable nature of many events such as market crashes, announce-
ments made by the central banks, changing credit risk, insurance in a changing risk,
changing face of operational risk [5, 30] might have sudden and significant impacts
on the stock price. As for standard Brownian motion, we can incorporate a non-
Gaussian noise such as Lévy process or Poisson random measure to model such
events. The corresponding equation is our model equation given in (1). In contrast to
SPDE driven by fBm in (5) where at least few numerical schemes exist, numerical
schemes for such SPDE of type (1) driven by fBm and Poisson measure have been
lacked in scientific literature, to the best of our knowledge. In this work, we will

1In this case the SPDE (5) is said to be driven by its linear part.
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also fill the gap by extending the implicit scheme, the exponential scheme and the
stochastic exponential Rosenbrock scheme to SPDE of type (1). For SPDE of type
(5) and SPDE of type (1), our strong convergence results examine how the conver-
gence orders depend on the regularity of the noise and the initial data and reveal that
the full discretization attains optimal convergence rates of order 2 for the
exponential integrator and implicit schemes.2

The paper is structured as follows. In Section 2, Mathematical setting for fBm is
presented, along with the well posedness and regularities results of the mild solu-
tion of SPDE (5) driven by fBm. In Section 3, numerical schemes based on implicit
scheme, stochastic exponential integrator and stochastic exponential Rosenbrock
scheme for SPDE (5) driven by fBm are presented. In Section 4, the strong conver-
gence proofs of schemes presented in Section 3 are provided. In Section 5, numerical
schemes based on semi-implicit scheme, stochastic exponential integrator scheme
and stochastic exponential Rosenbrock scheme are presented for SPDE (1) driven
by fBm and Poisson measure, along with the extension of their strong convergence
proofs. We end the paper in Section 6 with numerical experiments illustrating our
theoretical results for SPDE (5) driven by fBm noise.

2 Mathematical setting

In this section, we review some standard results on fractional calculus and introduce
notations, definitions and preliminaries results which will be needed throughout this
paper.

Definition 1 [13, 23, 25, 38] The fractional Brownian motion (fBm) of Hurst param-
eter 0 1 is a centered Gaussian process 0 with the
covariance function

1

2
2 2 2 .

Notice that if 1
2 , the process is the standard Brownian motion.

Remark 1 [25, Remark 1.2.3] For 1, we set 1 , where is a
standard normal random variable.

Throughout this paper the Hurst parameter is assumed to be in the interval
1 2 1 . Let . . . be a separable Hilbert space. For 2 and for a

Banach space U, we denote by the Banach space of -integrable -valued
random variables. We denote by the space of bounded linear mapping from

to endowed with the usual operator norm . and 2
the space of Hilbert-Schmidt operators from to with

2Linear operator self-adjoint for implicit scheme
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2
2

1
2

2 (6)

where is an orthonormal basis on . The sum in (6) is independent of the
choice of the orthonormal basis in . For simplicity, we use the notation

and 2 2 . It is well known that for all and 1

2 , 1 2 and

1 2 1 2 . (7)

We denote by 0
2, the space of Hilbert-Schmidt operators from

1
2 to by 0

2
1
2 with corresponding norm . 0

2
by

0
2

1
2

1
2 2

1
2

0
2. (8)

Now, let us introduce the Wiener integral with respect to the one-dimensional fBm
. Let 0 and the linear space denotes the collection of all -valued step

functions defined on 0 , that is, , if

1

1

I 1

where 0 , and 0 1 2 . For , we define its
Wiener integral with respect to as

0

1

1

1 . (9)

Let be the Hilbert space defined as the closure of with respect to the scalar
product

I 0 I 0 .

Then, the mapping

1

1

I 1
0

is an isometry between and the linear space span 0 , which can
be extended to an isometry between and the first Wiener chaos of the fBm

span
2

0 (see [3, 18]). The image of an element by this
isometry is called the Wiener integral of with respect to . Next introduce the
square integrable Kernel

1 2 3 2 1 2
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and its derivative

3 2
1 2

.

where 2 1
2 2 1 2

1 2
, with denoting the Beta function and . Let

us define the operator from to 2 0 by

.

We easily have

I 0 I 0

and

I 0 I 0 2 0

I 0 I 0 .

Hence, the operator is an isometry between and 2 0 which can be
extended to . By definition

1I 0 0

is a Brownian sheet, and in turn the fractional noise has a representation

0
.

In addition, for any

0 0
(10)

if and only if 2 0 .
Also denoting 2 0 2 0 , since 1 2 we

have the following embedding property.

Proposition 1 [7, 25] 2 0 1 0 2 0 .

The next proposition shows the first and second moments of stochastic integral
defined for function in 2 0 .

Proposition 2 [6, 7] For 2 0 we have

0
0

and

0

2

2 1
0 0

2 2 .
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Moreover, we have the following lemma very important throughout this paper.

Lemma 1 [3, Lemma 1] For any 1 0 , the following inequality holds

2 1
0 0

2 2 2
1 0 . (11)

where 0 is a constant depending only on .

Next, we are interested in considering an fBm with values in a Hilbert space and
giving the definition of the corresponding stochastic integral.

Definition 2 Let 2 0 0
2 . Then, its stochastic integral with respect to

the fBm is defined, for 0, as follows

0 0

1
2 . (12)

As the sequence of random variables 0
1
2 are mutually

independent Gaussian random variable, by Propositions 1, 2 and Lemma 1, the mean
of random variable (12) is also zero and we have the following result for its second
moment.

Lemma 2 [3, 18] Let 2 0 0
2 and 1

2 1 , then the following holds

0

2

0

1
2

1 2

(13)

0

2
0
2

. (14)

In that follows, we will make some assumptions on , , 0 and , which will allow
us to ensure the existence and uniqueness of the mild solution of (5) represented
by (see, e.g., [38])

0
0 0

(15)

for 0 . To ensure the existence and the uniqueness of solution for SPDE (5)
and for the purpose of convergence analysis, we make the following assumptions.

Assumption 1 (Noise term) We assume that for some constant 0 1 and
2 1

2 1 , the deterministic mapping 0 0
2 satisfies

1
2

0
2

0 (16)

1
2 2 1 0

2
2 1 0 1 2 . (17)
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Assumption 2 (Non linearity) For the deterministic mapping , we
assume that there exists constant 0 such that

0 . (18)

As a consequence of (18) it holds that

1 . (19)

Assumption 3 (Initial value) We assume that 0 is a 0 -

measurable mapping and 0
2 2 1

2 .

In the Banach space 2 , , we use notation 2 and we recall

the following properties of the semigroup generated by , which will be useful
throughout this paper.

Proposition 3 (Smoothing properties of the semigroup) [29] Let 0, 0
and 0 1, then there exists a constant 0 such that

0 (20)
2 (21)

where 0 1 and . If then . Moreover,

on .

The next lemma (specially (24) and (25)) is an important result which plays a
crucial role to obtain regularity results, very useful in this work.

Lemma 3 For any 0 1, 0 2 and 0 with 1
2 1 , if the

linear operator is given by (34), there exists a positive constant such that for all
0 1 2 ,

2

1

2
2

2
2 1

1 (22)

2

1

2
2 2 1

1 2 (23)

2

1

2

1

(24)

2

1

2

1

2 1 . (25)
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Proof See [27, Lemma 2.1] for the proof of (22) and (23). Concerning the proof
of (24), the border case 1

2 if obtained using (22) with 1 and the order
border case 1 is also obtained using (23) with 2. Hence the proof of (24)
is then completed by interpolation theory. The proof of (25) for 0 is an
immediate consequence of Proposition 3. The border case is proved by (24).
This completes the proof of Lemma 3.

Remark 2 Proposition 3 and Lemma 3 also hold with a uniform constant (inde-
pendent of ) when and are replaced respectively by their discrete versions

and defined in Section 3, see, e.g., [16, 21].

The well posedness result is given in the following theorem along with optimal
regularity results in both space and time.

Theorem 1 Assume that Assumptions 1–3 are satisfied, then there exists a
unique mild solution given by (15) such that for all 0 ,

2 2 1
2 with

2 1 0 2 (26)

2 1 0 2 . (27)

Moreover, if the linear operator is given by (34), the following optimal regularity
results in space and time hold

2 1
2

2
1

2 1
2 0 2

0 (28)

and for 0 1 2 ;

2 1 2

2 1
2 1

2 1
2 1

2 0 2 (29)

where is a positive constant and is the regularity parameter of
Assumption 1.

Proof [38, Theorem 3.5] gives the result of existence and uniqueness of the mild
solution . For regularity in space, we adapt from [26, Theorem 2.1 (23), (24)] by
just replacing in their case by 2 1. The difference will therefore be made
at the level of the estimate of the stochastic integral

2

0

2 1
2

2

.
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To reach our goal, we use triangle inequality, the estimate 2 2 2 2 2, (13)
and (14), Assumption 1, Proposition 3, Lemma 3 (24) to have

2

0

2 1
2

2

2
0

2 1
2

2

2
0

2 1
2

2

2
0

2 1
2

2

0
2

2
0

2 1
2

1
2

1 2

2
0

2 1
2

2

0
2

2
0

1
1

2
1
2

1 2

0

2 2 1
2

1
2

2

0

1 2

0

2 2 1
2

2

0
2 0

1 2

2 2 1 1
2

2

0
2

. (30)

For the proof of (29), triangle inequality yields

2 1 2 2 1 1 2

2

1

2
2

2

1

2
2

.
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Using the stability property of the semigroup (20) with 2 1
2 and (28)

allows to have

2 1 2

2 1
2 2 1

2 1
2 1 2

2

1

2 2

2

1

2
2

2 1
2 1

2 1
2 1

2 0 2

2 1 1 0 2

2

1

2
2

2 1
2 1

2 1
2 1

2 0 2 0 2

2

1

2
2

2 1
2 1

2 1
2 1

2 0 2 (31)

because
2 1

2 is continuously embedded in 2 and

2

1

2
2

.

For the estimate of , using triangle inequality, the estimate 2 2 2 2 2,
(13) and (14), inserting an appropriate power of , Proposition 3, Assumption 1,
Lemma 3 (25) with 1

2 0 1
2 (hence 0 ), we obtain
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2
2

1

2

2

2
2

1

2 2

2

2
2

1

2 2

2

2
2

1

2 2
2

0
2

2
2

1

2 2
1
2

1 2

2
2

1

2
1

2
2 1

2 2
2

0
2

2
2

1

2
1

2

1
1

2 2
1
2

1 2

2

1

2
1 2 2

1
2 2

1
2

2

2

1

2
1

2

1 2

2 1
2 1

2 2
2

0
2

2 1
2 1

2 1
2 2 1

2 1
2 1

2 1
2 1 . (32)

Substituting (32) in (31) completes the proof of (29) and therefore that of Theorem 1.

3 Numerical schemes

Throughout this section, we assume that is bounded and has smooth boundary or
is a convex polygon of , 1 2 3 . In the rest of this paper we consider the
SPDE (5) to be of the following form

D q

(33)

, 0 , where the function is continuously twice
differentiable and the function is globally Lipschitz with respect
to the second variable. In the abstract framework (5), the linear operator takes the
form
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1 1

D 1 (34)

q 1 , where , . We assume that there exists a
positive constant 1 0 such that

1

1
2 . (35)

The functions and 1 2 are defined by

and . (36)

for all , , 1 2 , with 2 . For an appropriate family of

eigenfunctions such that sup sup , it is well known [12, Section

4] that the Nemytskii operator related to and the operator associated to
defined in (36) satisfy Assumption 1 and Assumption 2. As in [8, 21] we introduce
two spaces and , such that ; the two spaces depend on the boundary
conditions and the domain of the operator . For Dirichlet (or first-type) boundary
conditions we take

1
0

1
1 0 on .

For Robin (third-type) boundary condition and Neumann (second-type) boundary
condition, which is a special case of Robin boundary condition, we take 1

2 v 0 0 on 0

where v is the normal derivative of and v is the exterior pointing normal
to the boundary of , given by

v
1

.

Using the Green’s formula and the boundary conditions, the corresponding bilinear
form associated to is given by

1 1

for Dirichlet and Neumann boundary conditions, and

1 1

0

for Robin boundary conditions. Using the Gårding’s inequality, it holds that there
exist two constants 0 and 0 such that

0
2

1 0
2 . (37)
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By adding and substracting 0 in both sides of (5), we have a new linear operator
still denoted by , and the corresponding bilinear form is also still denoted by .
Therefore, the following coercivity property holds

0
2
1 . (38)

Note that the expression of the nonlinear term has changed as we included the term
0 in a new nonlinear term that we still denote by . The coercivity property (38)

implies that is sectorial in 2 , i.e. there exist 1
1
2 such that

1
2

1 (39)

where 0 0 (see [10]). Then, is the
infinitesimal generator of a bounded analytic semigroup on 2 such
that

1

2
1 0 (40)

where denotes a path that surrounds the spectrum of . The coercivity prop-
erty (38) also implies that is a positive operator and its fractional powers are well
defined for any 0 by

1

0

1e

1
(41)

where is the Gamma function (see [10]). Under condition (35), it is well known
(see, e.g., [8]) that the linear operator given by (34) generates an analytic semi-
group . Following [8, 21], we characterize the domain of the operator

2 denoted by 2 , 1 2 with the following equivalence of norms, useful
in our convergence proofs

1
2 2

2 (for Dirichlet boundary conditions)
1 2 1 (for Robin boundary conditions).

We consider the discretization of the spatial domain by a finite element triangula-
tion [34, 37]. Let be a set of disjoint intervals of (for 1), a triangulation of

(for 2) or a set of tetrahedra (for 3) with maximal length satisfying the
usual regularity assumptions.
Let denote the space of continuous functions that are piecewise linear over
triangulation . To discretise in space, we introduce the projection from 2

to define for 2 by

. (42)

The discrete operator is defined by

(43)

where is the corresponding bilinear form of A.
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Like the operator , the discrete operator is also the generator of an analytic
semigroup . The semidiscrete space version of problem (5) is to find

such that for 0

0 0 0 .
(44)

The mild solution of (44) can be represented as follows

0
0

0
(45)

and we have the following regularity results.

Lemma 4 Assume that Assumptions 1–3 are satisfied, then the unique mild solution
given by (45) satisfied

2 1
2

2
1

2 1
2 0 2

0 (46)

and for 0 1 2 ;

2 1 2 2 1
2 1

2 1
2 1

2 0 2 . (47)

Proof Since the operators and satisfy the same properties as and (see
Remark 2), then by using [34, (83)] and the boundedness of in the proof of (28)
and (29), we obtain the proof of the expression (46) and (47). The proof of Lemma 4
is thus completed.

Now applying the linear implicit Euler method [13, 37] to (44) gives the following
fully discrete scheme

0 0

1 .
(48)

Furthermore applying the stochastic exponential integrator ([21], SETD1) and
Rosenbrock scheme ([26], SERS) to (44) yields

0 0

1 1
(49)

and

0 0

1

where 1
1 1

0 , is the Frechet
derivative of at and 1. The term is the remainder
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at and defines for all by

(50)

(51)

and

1 1 .

Note that the exponential integrator scheme (49) is an explicit stable scheme when the
SPDE (5) is driven by its linear part as the linear implicit method, while the stochastic
exponential Rosenbrock scheme (SERS) (50) is very stable when (5) is driven by its
linear or nonlinear part. When dealing with SERS, the strong convergence proof will
make use of the following assumption, also used in [26, 27].

Assumption 4 For the deterministic mapping , we also assume that
there exists constant 0 such that

. (52)

3.1 Main result for SPDE driven by fBm

Theorem 2 Let be the mild solution of (5) at time , 0 rep-
resented by (15). Let be the numerical approximations through (48) and (50)
( for implicit scheme, for SERS). Under Assumptions 1–3 and (4)
(essentially for SERS), 0 1 , then the following holds

2
1
2 2 1 2 1

2 (53)

and

2 2 1 2 1
2 (54)

where is a positive constant small enough.

4 Proofs of themain result for SPDE with fBm

We introduce the Riesz representation defined by

(55)

under the regularity assumptions on the triangulation and in view of the V-ellipticity,
it is well known ([8, 16]) that the following error bound holds:

1 (56)
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for 1 2 . Let us consider the following deterministic linear problem:
Find such that

0 0 0 . (57)

The corresponding semidiscrete problem in space consists to finding such
that

0 0 0 . (58)

Let us define the following operator

. (59)

Then we have the following lemma

Lemma 5 The following estimates hold for the semidiscrete approximation of (44).
There exists a constant 0 such that

(i) For 2

2 0 2 (60)

for any 0 .

(ii) For
1

2

0

2

1
2

1 0 2 0. (61)

(iii) For 2

0

2 0 1 0. (62)

(iv) For
1

2

0

1
2

2 2 1 2
1 0 1 0. (63)

Proof See [34, Lemmas 3.1 and 3.2 (iv) and (v)] for the proofs of – . Let us
prove .

– For 1
2 , using (61) with , we obtain

0

1
2

0

2

2 2
1

2 2 1 2
1. (64)
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– For 1, using (62) with 1 , we obtain

0

1
2

0

2

2 1
1

2

2 2 2
1

2 2 1 2
1. (65)

Hence, the proof of (63) is thus completed by interpolation theory.

Lemma 6 (Space error) Let Assumptions 1–3 be fulfilled, then the following error
estimate holds for the mild solution (15) and the discrete problem (45) holds

2
2 1. (66)

Proof Using triangle inequality, we have

2

0
0 0

0
0

0
2

0 2

0 0 2

0 2

0 1 2

with

0 0 2

1
0 0 2

and 2
0 2

.
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Note that the deterministic error is already estimated, so we will mostly concentrate
our study on the stochastic error. Indeed, Lemma 5 with 2 1 yields

0 0 2
2 1 2 1

2 0 2 . (67)

Using triangle inequality, the boundedness of and , Assumption 2 (more
precisely (18)), we estimate the error 1 as follows

1
0 0 2

0 2

0 2

0 2

0 2 0
.

(68)

Applying Lemma 5 with 2 1 and 0, Assumption 2 (18), Theorem
1 (more precisely (29)) to the first term and Lemma 5 with 0, Theorem 1
(more precisely (26)) and Lemma 4 to the second term yields

1
2 1

0

2 1
2 2

2
2

0

2 1

0
. (69)

For the estimation of 2 , triangle inequality, the estimate 2 2 2 2 2,
(13) and (14), Lemma 5 ((i) with 2 1, 1, with ) and
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Assumption 1 yields

2
2

0

2

2
0

2

2
0

2

2
0

2
0
2

2
0

1
2

1 2

2 2 1

0

2 1
2

2

0
2

2 2 1 1
2

1
2

2

2 2 1

0

2 2 2 2 1 1
2

2

0
2

2 2 1 2 2 1 2 2 1

2 2 1 . (70)

Combining the estimates (67), (69), (70) and applying Gronwall inequality ends the
proof.

4.1 Proof of Theorem 2 for implicit scheme

It is important to mention that the estimates made in this section are inspired by the
results in [37, (4.7)–(4.14), (4.25)–(4.29)], when the linear operator is self-adjoint.
For our case where A is not necessarily self-adjoint, let us present some preparatory
results.

Lemma 7 For any , and the following estimates holds

(i)

1. (71)

(ii) For all
1

2 , 0 1,
2 1

2 1. (72)

(iii) For all
1

2 , 0 1,
2 1

2 1 1 (73)
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for any 1 2 .
(iv) If 2 , 0 2, then

2 . (74)

(v) For all non smooth data ,

1 . (75)

Proof See [34, Lemma 3.3] for the proof of , and . For the proof of ,
we use[34, Lemma 3.3 (88)] as follows

1
2 3 2 2

2 3
2

2 3
2

1

2 1
2 . (76)

Hence substituting (76) in [34, (84)] completes the proof of . Now for the proof
of , triangle inequality, Lemma 7 , the property of discrete semigroup and
[34, (83)] yields

2 1
2

1
2

2 1
2 1

2 1
2

1
2

2 1
2 1

2 1
2 1. (77)

The proof of Lemma 7 is thus completed.

Lemma 8 (i) For any 0 1 and 2 there exists a positive
constant such that

1 1

2
2 . (78)

(ii) For any 0 1 and
1

2 the following estimate holds

1 1

1

2

2 1 2
1. (79)

Where is an arbitrary small number.
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Proof See [34, Lemma 3.5] for the proof of . For the proof of , we have

1 1

1

0

1 1

2 1

1

1 2. (80)

Using triangle inequality and the estimate 2 1 2 1 (with 1
and 0) we obtain

1 2
1 1

0

1
1

1

2
1 1

0
1

1

2
1 1

11 2
1 1

12. (81)

By Lemma 7 with we obtain

11
0

1
1

2 1
2

1

1

2 1
2

1

1. (82)

By inserting an appropriate power of , [34, (81)] and Remark 2 yields

12

0
1

1
2

1
1

2

1

0
1

2 1
2

1 1 1
2

1

0
1

2 1
2

1 1
2

1

2 1
2

1

1
0

1

2 1
2

1

1
0

1

2 1
2

1

1 . (83)

Substituting (82) and (83) in (81) yields

1
2 1

2
1

1 . (84)
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Concerning the estimate of 2, let 0 small enough, Lemma 7 with
yields

2

2 1

1

2 1

2 1
2 1

1

1

2 1

1 2 2
2 1

2
1

1

2 1

1 2 2
1

2 1
2

1

1

2 1

1 2
2 1

2
1

1

2 1
2

1

1. (85)

Adding (84) and (85) yields

1 1

1 2 1
2

1

1 (86)

hence

1 1

1

2

2 1 2
1. (87)

This completes the proof of Lemma 8.

With these two lemmas, we are now ready to prove our theorem for the implicit
scheme. In fact, using the standard technique in the error analysis, we split the fully
discrete error in two terms as

2 2 2

0 1.

Note that the space error 0 is estimated by Lemma 6. It remains to estimate the
time error 1.
We recall that the exact solution at of the semidiscrete problem (44) is given by

0
0

0
. (88)
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We also recall that the numerical solution at given by (48) can be rewritten as

0
0

0
(89)

where the notation , are defined by

and . (90)

It follows from (88) and (89) that

1 0 2

0 2

0 2

0 1 2. (91)

As we said at the beginning of this section, following closely the work done in [37,
(4.7)–(4.14)] and replacing its preparatory results with Lemma 7 , with
2 1, , Lemma 8 with 0, Remark 2 (20) with 1,
Assumptions 2-3, boundedness of and , the stability properties of a
discrete semigroup , (18) and (47), we have

0 1
2 1

2 1
1

0

2 . (92)

Note that in this work, we do not need to impose an assumption on to increase the
convergence rate as it is done in [37]. Indeed, thanks to (47) the following estimate
is largely sufficient to reach a higher rate.

11

1

0

1

2

1

0

1

2

2 1
2 . (93)
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Let us focus now on the estimate 2, using triangle inequality and the estimate
2 2 2 2 2 we split it in three terms

2
2

0

2

2

2
0

2

2

2
0

2

2

2
0

2

2

4
0

1

2

2

4
0

1

2

2

2 2
21 4 2

22 4 2
23. (94)

Firstly using (14), inserting an appropriate power of , [34, (81)], Assumption 1
(more precisely (17)) and Remark 2 ((22) with 1 ) we obtain

2
21

0

2

2

0

2
0
2

0

1
2

2 1
2

2

0
2

0

1
2

2
1

2
2

0
2

0

2
1

2
2

2

0

1
2

2

2 2 1. (95)
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Secondly (14), the change of variable and , Lemma 7
with and Assumption 1 (more precisely (17)) yields

2
22

0
1

2

2

0
1

2

0
2

1

0

1

1
2

0
2

1 1

1
2

0
2

1 1

2 1 2 1
2 1

2

0
2

2 1

1 1

2 2
1

2 1

1 1

2 2

2 1

0

2 2

2 1 2 2 1 2 1. (96)

Thirdly using (13), the change of variable and , Lemma 8
with and Assumption 1 (more precisely (16)) we obtain

2
23

0
1

2

2

0
1

1
2

1 2

1

0

1

1
1
2

1
2

1 1

1
1
2

1
2

2 1
1

1
2 2

1

2 1 1
2 1

2
0
2

2 1 . (97)
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Hence, inserting (95)–(97) in (94) and taking the square-root give

2
2 1

2 . (98)

Adding (92) and (98) we obtain

1 2

2 1
2 1 2 1

2

1

0

2 .

Applying the discrete version of the Gronwall inequality yields

1
2 1

2 . (99)

Adding (66) and (99) completes the proof.
In what follows, we will present a corollary of Theorem 2 for the implicit Euler

scheme where the linear operator is assumed to be self-adjoint. The optimal strong
convergence rate in time is reached.

Corollary 1 Let be the mild solution of (5) ( self-adjoint) at time ,
0 represented by (15). Let be the numerical approximation through (48).

Under Assumptions 1–3, 0 1 , then the following holds

2
1
2 2 1 2 1

2 . (100)

For the proof of this corollary, we need to update our preparatory results, more
precisely Lemma 8 in the self-adjoint case. The result is presented in the following
lemma:

Lemma 9 (i) For any 0 1 and 2 there exists a positive constant
such that

1 1

2
2 . (101)

(ii) For any 0 1 and
1

2 the following estimate holds

1

0

1 1

2 1 2
1 (102)
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and

1

0

1 1

2 1 2
1 (103)

where

and 2 1 2 2. (104)

Proof See [15, Proof of Lemma 4.4 ] for the proof of and [38, Lemmas 4.8 and
4.9], [34, (83)] for the proof of .

With this new lemma, we are now in position to prove our Corollary 1.

Proof of Corollary 1 Recall that the time error 1 is defined as

1 0 2

0 2

0 2

0 1 2. (105)

Following closely the work done in [37, (4.7)–(4.14)] and replacing its preparatory
results with Lemma 7 , with 2 1, with 0, Lemma 9

with 0, Remark 2 (20) with 1, Assumptions 2–3, boundedness of
and , the stability properties of a discrete semigroup , (18) and

(47), we have

0 1
2 1

2

1

0

2 . (106)

Concerning the estimate 2, we also split it in three terms as in (94). The estimates
2
21 and 2

22 are still the same but we need to re-estimate 2
23. In this fact, since the

sequence of random variables

0 1
1
2 is mutually

independent Gaussian random variable, using the estimate 2 2 2 2 2,
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notation (104), Assumption 1 (more precisely (16)), Lemma 9 with , we
obtain

2
23

0
1

2

2

0
1

1
2

2

2

0
1

1
2

2

2

2
0

1
1
2

2

2

2
0

1
1
2

2

2

2
0

1
1
2

2

2

2
0

1
1
2

2

2

2
0 0

1
1
2 1

1
2

2
0 0

1
1
2 1

1
2

2
1

0

1 1

1
1
2 1

1
2

2
1

0

1 1

1
1
2 1

1
2

2 1
1

1
2 2

1

2 1 1
2 1

2
0
2

2 1 (107)

hence inserting (95), (96) and (107) in (94) and taking the square-root give

2
2 1

2 . (108)

Adding (106) and (108) we obtain

1 2

2 1
2

1

0

2 .
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Applying the discrete version of the Gronwall inequality yields

1
2 1

2 . (109)

Adding (66) and (109) completes the proof.

4.2 Proof of Theorem 2 for SETD1

As usual, splitting the fully discrete error in two terms yields

2 2 2

0 2.

Since the space error 0 has been estimated by Lemma 6, we only need to estimate
the time error 2. Remember that the exact solution at is given by

0
0

0
(110)

and we recall that the numerical solution at given by (49) can be rewritten as

0
0

0
(111)

where the notations and are given by (90). By (110) and (111), we have

2
0 2

0 2

1 2. (112)

Applying the triangle inequality yields

1
0 2

0 2

11 12. (113)
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Using the boundedness of and , Lemma 3 and (47), we easily have

11

2 1
2 (114)

and

12

1

0

2 . (115)

Adding (114) and (115), we obtain

1

2 1
2

1

0

2 . (116)

We estimate at now 2. Using triangle inequality and the estimate 2 2 2

2 2, we split it in three terms

2
2

0

2

2

2
0

2

2

2
0

2

2

2
0

2

2

4
0

1

2

2

4
0

1

2

2

2 2
21 4 2

22 4 2
23. (117)

Thanks to (95) we have

2
21

2 1. (118)
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Thereafter, (14), the change of variable and , inserting
an appropriate power of , [34, (81)] and Remark 2 (more precisely (20) with

2 1
2 , (21) and Assumption 1 (more precisely (17)) yields

2
22

0
1

2

2

0
1

2
0
2

1

0

1

1
2

0
2

1 1

1
2

2

1
2

1

2

0
2

1 1

2 1
2

2 2

1
2 1

2

0
2

1 1

2 1 2 1
2 1

2

0
2

2 1

1 1

2 2
1

2 1

1 1

2 2

2 1

0

2 2

2 1 2 2 1 2 1. (119)

Finally, using (13), inserting an appropriate power of , [34, (81)] and Remark
2 (more precisely (20) with 2 1

2 , (21) and (24)), Assumption 1 (more
precisely (16)) we obtain
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2
23

0
1

2

2

0
1

1
2

1 2

0

1
2

1 2

1
2

1
1
2

2

0

2 1
2

1 1
2

1
2 1

1
2

2

0

1
2 1

2

2
1

2 1
2

0
2

2 1

0

1 2
1

2 1
2

0
2

2 1 1
2 1

2

0
2

2 1 (120)

hence inserting (118)–(120) in (117) and taking the square-root give

2

2 1
2 . (121)

Adding (116) and (121) we obtain

2
2 1

2

1

0

2 . (122)

Using the discrete version of the Gronwall inequality yields

2
2 1

2 . (123)

Combining (66) and (123) completes the proof.
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4.3 Proof of Theorem 2 for SERS scheme

Before moving to the proof, we first present some preparatory results. Thanks to
Assumption 4 and the works done in [26] we obtain

Lemma 10 [26, Lemma 5] For all and all , there is a positive constant

1 independent of , , and the sample such that

1 0 .

Lemma 11 [26, Lemma 6] The function defined by (51) satisfies the global
Lipschitz condition with a uniform constant 0, independent of , and such
that

.

Lemma 12 [26, Lemma 9] For all , the stochastic perturbed semigroup
satisfies the following properties

(i) For 1 2 1 such that 0 1 2 1,

1 2 1 2 0 .

(ii) For 1 0 we have

1 1 0 .

(iii) For 1 0 and 0 2 1such that 2 1 0, we have
1 2 1 2 0 .

(iv) For 1 2 0 such that 0 1 2 1, then the following estimate holds
1 2 1 2 0 .

Lemma 13 [26, Lemma 10] The stochastic perturbed semigroup satisfies the
following property

1 0 1

where is a positive constant independent of , , , and the sample .

We can now prove our theorem. As in the proof of the previous schemes, we split
the fully discrete error in two terms as

2 2 2

0 3. (124)

By Lemma 6 we have the estimate of the space error

0
2 1.
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Consider now the estimate of the time error 3. We recall that the semidiscrete
problem (44) can be rewritten as

(125)

for all 1 where and is given by (50) and (51). Hence, the exact
solution at time of the semidiscrete problem (125) is given by

1 1
1

1
1

1

1 (126)

and the numerical solution (50) can be rewritten as

1
1

1

1
1 1

1

1 1 . (127)

If 1 then from (126) and (127) we obtain

1 1 2

0
0

0 0 0
2

0
0 0 0

2

. (128)

By [26, (93)] we have the estimate

. (129)

Using triangle inequality and the estimate 2 2 2 2 2 we split it into three
terms

2

0
0 0 0

2

2

2
0

0 0
2

2

2
0

0 0 0
2

2

2 2
1 2 2

2 . (130)
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For the estimate 2
1 , using (14), inserting an appropriate power of , [34, (81)],

Assumption 1 (more precisely (17)) and Lemma 12 with 1
1

2 we obtain

2
1

0
0 0

2

2

0
0 0

2

0
2

0
0

1
2

2 1
2 0

2

0
2

0

1 2

2 1

0

1

2 1. (131)

We denote by a positive constant small enough, using (13), inserting an appropriate
power of , Assumption 1, [34, (83)], Lemma 12 with 1 2 , with

1 2 and 2
1

2 if 0 1 (or with 1 2 and 2 0 if
1) we have

2
2

0
0 0 0

2

0
0 0 0

1
2

1 2

0
0 0

1
2

1

1
2 0

1
2

1 2

0
0 2

1

2 0

1
2

1 2

1
2 0

1
2

2

0
2 1 2 1

2

2
1

2 0
2

0
2

2 1

0
2 1

2

2 1

2 1. (132)

350



Numerical Algorithms (2021) 88:315–363

Hence, putting (132) and (132) in (130) and taking the square-root give
2 1
2 . (133)

Adding (129) and (133) yields

1 1 2
2 1
2 . (134)

For 2, we recall that the solution at of the semidiscrete problem (125) is
given by

(135)

1 1 0

1

1
1

1

1

1

0

1 1

1

0

1 1 .

We recall also that the numerical solution at given by (127) can be rewritten as

1 1 0

1

1
1 1

1

1 1

1

0

1 1

1

0

1 1 . (136)

Using (135), (136) and the triangle inequality, we have

2 (137)

where

1

1
1 1 1

2

1

1 1 1
2

1

0

1 1

2
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and

1

0

1 1

1 1
2

.

By Lemma 10, triangle inequality and Lemma 4 (47), we easily have

2 1
2 1 1 2 . (138)

In a similar way, using Lemma 13 with 0, Lemma 10, Lemma 11, triangle inequality and
Lemma 4 (47), we obtain

2 1
2

2

0

2 . (139)

For the estimate , using triangle inequality and the estimate 2 2 2 2 2 we split it
in two terms

2

1

1 1 1

2

2

2
1

1 1

2

2

2
1

1 1 1

2

2

2 2
1 2 2

2 . (140)

Firstly, using (14), inserting an appropriate power of , [34, (81)], Assumption 1 (more precisely
(17)) and Lemma 12 with 1

1
2 we obtain

2
1

1

1 1

2

2

1

1 1
2

0
2

1

1
1

2
2 1

2
1

2

0
2

1

1 1
2 1

2

0
2

1

1
1

2

2 1

0

1

2 1. (141)

Secondly by (13), inserting an appropriate power of , Assumption 1, [34, (81)], Lemma 12
with 1 2 , with 1 2 and 2

1
2 , we obtain
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2

1

1 1 1

2

1

1 1 1
1
2

1 2

1

1 1 1
1

2

1 2

1
2 1

1
2

2

1

1 2

1

2 1 1
1

2

1 2

1
2 1

1
2

2

1

1 2 1
2 1

2

2
1

2 1
2

0
2

2 1

1

1 2

2

2 1

2 1. (142)

Hence, substituting (141) and (142) in (140) and taking the square-root give

2 1
2 . (143)

For estimate , using triangle inequality and the estimate 2 3 2 3 2 3 2 we
split it in two terms as

2 3
1

0

1 1

2

2

3
1

0

1 1

1
2

2

3
1

0

1 1

1
2

2

3 2
1 3 2

2 3 2
3 . (144)
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Let be a sufficient small number. At first, using (14), inserting an appropriate power of ,
[34, (81)], Assumption 1 (more precisely (17)), Lemma 13 with 2 , Lemma 12

with 1 2
1

2 , the variable change 1 and [26, (169)] we have

2
1

1

0

1 1

2

2

1

0

1 1

2
0
2

1

0

1 1
1

2
2

1
2

1
2

2 1
2

2

0
2

1

0

1
1

1
2

2

0
2

1

0

1
1

2

2

0

1 1
1

2

2 1
1

1

1

2 1. (145)

Using (14), inserting an appropriate power of , Lemma 13 with , Lemma 12 with

1 2 , with 1 and 2
1

2 if 0 1 (or with 1 and 2 0 if
1), [34, (81)], Assumption 1 (more precisely (17)) the variable change 1 and

[26, (169)] yields
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2
2

1

0

1 1

1
2

2

1

0

1 1
2

2

1
2

2

1
2

1
1
2

2

1

0

2
1

2 1 1
2 1

2

0
2

2 1
1

0

2
1 1

2

2 1
2

0

1
2

1 1
2 1

2 1
2

0

1
1

2 1
1

1

1

2 1. (146)

Afterwards, (13), inserting an appropriate power of , Lemma 13 with 2 , Lemma 12

with 1 2 2 , with 1 2 and 2
1

2 if 0 1 (or with
1 2 and 2 0 if 1), [34, (81)], Assumption 1 (more precisely (16)) the variable

change 1 and [26, (169)] yields
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2
3

1

0

1 1

1
2

2

1

0

1 1 2

1

2 2

1

2
1

2

1
1

2
1

1
2

1 2

1

0

1 2
1

2 1
2

1
2 1

1
2

1 2

2 1
1

0

1 2
1

2
1

2 1
1
2

2

2 1
2

0

1 1 2
1

2
1

2 1
2

0
2

2 1
2

0

1 2
1

2

2 1
1

1

1 2

2

2 1 . (147)

Hence, inserting (145), (146) and (147) in (144) and taking the square-root give

2 1
2 . (148)

Adding (134), (138), (139), (143), (148) and applying Gronwall’s lemma yields

2
2 1

2 . (149)

Finally, adding (66) and (149) completes the proof.

5 Extension to SPDE driven simultaneously by fBm and Poisson
randommeasure

5.1 Numerical schemes

Here the goal is to show how the previous results can be extended to the following SPDE driven
simultaneously by fBm and Poisson random measure. The corresponding model equation is given
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by

[ D q ]

0 0 0 0 0 (150)

In the Hilbert space 2 , (150) is equivalent to (1) where the linear operator and the
nonlinear function are defined as in (34) and (36). The well posedness result for 1 2
presented in [1] can easily be extended to (1) for 1 2 1 by combining with [38]. The
corresponding exponential Euler (SETD1) scheme in integral form is therefore given

1

1

1

1 1

0

(151)

with 0 0. In the same way, the semi-implicit scheme is given by

1

1 1

1

0 (152)

while the stochastic exponential Rosenbrock scheme (SERS) is given by

1

1

1 (153)

1 1

0

with 0 0, where

. (154)

To obtain the optimal order in time, as in [28], we need the following assumption in Poisson
measure noise.

Assumption 5 The covariance operator and the jump coefficient satisfy the
following estimate

1
2 0 . (155)

where 2 1 with 0 1 as in Assumptions 3 and 1.

Remark 3 All the regularity results in space and time, both for continuous (1) (or semidiscrete
equation) important to achieve optimal convergence orders can easily be extended from our results
on fBm in Theorem 1 and Lemma 4 by just following [28, Proposition 3.1].

5.2 Convergence results for SPDE with fBm and Poissonmeasure noise

The convergence result is exactly as for fBm when Assumption 5 is used

Theorem 3 Let be the mild solution of (1) at time , 0. Let be the
numerical approximations through (152) and (127) ( for implicit scheme, for
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SERS) and the numerical approximation through the SETD1 given in (151). If Assumptions
1–4 and Assumption 5 hold with 0 1 , then

2
1
2 2 1 2 1

2 (156)

and

2
1
2 2 1 2 1

2 (157)

where is a positive constant small enough.

Corollary 2 Let be the mild solution of (1) (A self-adjoint) at time , 0. Let
be the numerical approximations through (152). If Assumptions 1–3 and Assumption 5 hold

with 0 1 , then

2
1
2 2 1 2 1

2 . (158)

5.3 Proof of convergence results for SPDE with fBm and Poissonmeasure noise

As in [28], the proofs are based on Burkholder-Davis-Gundy Inequality where the fBm version is
given in [32, Theorem 1.2 ]. Under Assumptions 1–3 and 5, The regulatity result in time is

2 1 2 2 1
min 2 1 1

2 0 1 2 . (159)

Where is a positive constant and is the regularity parameter of Assumption
1. In all our schemes, the error can be splitted in space error 0 and the time error 1. The
space error 0 can be estimated as in Lemma 6 using results from the proof of [28, Theorem
4.1]. More precisely in the estimation of the poisson term in their case, we replace 0 2 by

2 1 defined in Assumption 5. The time error 1 will be here splitted in three terms.
More precisely the deterministic 1 related to the nonlinear function , the fBm term 2 and the
Poisson term 3. The estimation of 1 is done with the aid of Assumption 4 and (159) similarly
as the work done in [28, (77)–(88)] for implicit and exponential schemes. As in the proof of
[26, Theorem 10], we use the Taylor expansion in Banach space (see [28, (77)]) to estimate 1 for
SERS. The fBm term 2 is done exactly as in the previous section for the scheme without Poisson.
By replacing 0 2 by 2 1 defined in Assumption 5, the estimation of the Poisson
term 3 is done as in [28, Theorem 5.2] for implicit and SETD1 schemes using Burkholder-
Davis-Gundy Inequality, the work in [26, Theorem 10] and preparatory results Lemmas 10-13 for
SERS.

6 Numerical simulations

In opposite to the standard Brownian motion where the simulation is obvious, the simulation of
fBm is not obvious and is an important research field in numerical analysis. Keys methods for
simulations of fBm are Cholesky method [13] and the circulant method [32], which will be used
in this work to generate the fBm. Here we consider the stochastic advection diffusion reaction
SPDE (5)–(33) with constant diagonal diffusion tensor D 10 2I2 in (34), and mixed
Neumann-Dirichlet boundary conditions on 0 1 0 2 . The Dirichlet boundary con-
dition is 1 at 0 and we use the homogeneous Neumann boundary
conditions elsewhere. This example can be seen as an engineering application where our SPDE
(5)–(33) models the uncertainties in chemical reaction rates for stochastic transport of pollutants
in porous media due by diffusion-advection-reaction with long-range dependence. If we include
the Poisson noise term, our (1)–(150) should model the uncertainties in chemical reaction rates
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for stochastic transport with long long-range dependence and some rare high chemical reaction
rate, which can occur in the fracture networks. If we include the dispersion tensor as in [9], our
(5)–(33) models also the sub-grid fluctuations in transport velocities and uncertainties in the reac-
tion rates with long long-range dependence. In all these cases, the unknown function is the
concentration of the pollutants.

The eigenfunctions 1 2
0 of the covariance operator are taken to be the

same as for Laplace operator with homogeneous boundary condition, so we have

0
1 2

cos

where 1 2 . In the noise representation (4), we have used

2 2 0 (160)

for some small 0. We have used 2 in (33), so in Assumption 1 is obviously
satisfied for 0 1 . In our simulations, we have used 0.001. The function used in (36)
to be 1 for all . Therefore the corresponding Nemytskii operator

Fig. 1 Convergence in the root mean square 2 norm at 1 as a function of for implicit scheme
(a), exponential scheme (b) and exponential Rosenbrock scheme (c). We have used here 50 realizations.
The streamline of the velocity field q is given in (d)
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defined by (36) obviously satisfies Assumption 2. We obtain the Darcy velocity field q by
solving the following system

q 0 q k (161)

with Dirichlet boundary conditions on 1 0 1 [0 2] and Neumann boundary conditions
on 1 0 1 0 2 such that

1 in 0 [0 2]
0 in 1 [0 2]

and k x n 0 in 1 . Note that k is the permeability tensor and the presure. We use
a random permeability field as in [36, Figure 6]. The streamline of the velocity field q are given
in Fig. 1d. To deal with high Péclet number, we discretise in space using finite volume method,
viewed as a finite element method (see [33]). We take 1 3 and 2 2 and our reference
solutions samples are numerical solutions using at time step of 1 4096. The errors are
computed at the final time 1. The initial solution is 0 0, so we can therefore expect
high-order convergence, which depends only on the noise term and .

Figure 1a is the errors graph for the implicit scheme with different values of . We have
observed that the order of convergence is 0.48 in time for 0.51 and 1, 0.6476 for

0.65 and 1.
Figure 1b is the errors graph for the exponential scheme with two values of . We have

observed the order of convergence is 0.5012 in time for 0.51 and 1, 0.6653 for
0.65 and 1.

Figure 1c is the errors graph for the exponential Rosenbrock scheme with two values of .
We have observed the order of convergence is 0.5562 in time for 0.51 and 1, 0.6197
for 0.65 and 1.

As we can observe, our numerical orders in time are close to our theoretical results in
Theorem 2 even if we have only used 50 samples in our Monte Carlo simulations.

Figure 2 shows two samples of the solution for 0.65 and 0.51. Here we have fixed
1 and same Gaussian random numbers have been to generate our fBm samples. As we can

observe, the parameter has significant influence on the sample of the numerical solution. This
is independent of our timestepping methods.

Fig. 2 Numerical samples solution using exponential scheme with 0.65 in (a) and 0.51 in (b)
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