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Abstract
We study extensions of compressive sensing and low rank matrix recovery to the
recovery of tensors of low rank from incomplete linear information. While the
reconstruction of low rank matrices via nuclear norm minimization is rather well-
understand by now, almost no theory is available so far for the extension to higher
order tensors due to various theoretical and computational difficulties arising for
tensor decompositions. In fact, nuclear norm minimization for matrix recovery is a
tractable convex relaxation approach, but the extension of the nuclear norm to ten-
sors is in general NP-hard to compute. In this article, we introduce convex relaxations
of the tensor nuclear norm which are computable in polynomial time via semidef-
inite programming. Our approach is based on theta bodies, a concept from real
computational algebraic geometry which is similar to the one of the better known
Lasserre relaxations. We introduce polynomial ideals which are generated by the
second-order minors corresponding to different matricizations of the tensor (where
the tensor entries are treated as variables) such that the nuclear norm ball is the con-
vex hull of the algebraic variety of the ideal. The theta body of order k for such an
ideal generates a new norm which we call the θk-norm. We show that in the matrix
case, these norms reduce to the standard nuclear norm. For tensors of order three or
higher however, we indeed obtain new norms. The sequence of the corresponding
unit-θk-norm balls converges asymptotically to the unit tensor nuclear norm ball. By
providing the Gröbner basis for the ideals, we explicitly give semidefinite programs
for the computation of the θk-norm and for the minimization of the θk-norm under an
affine constraint. Finally, numerical experiments for order-three tensor recovery via
θ1-norm minimization suggest that our approach successfully reconstructs tensors of
low rank from incomplete linear (random) measurements.
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� Holger Rauhut
rauhut@mathc.rwth-aachen.com

Extended author information available on the last page of the article.

Published online: 27 November 2020

Numerical Algorithms (2021) 88:25–66

http://crossmark.crossref.org/dialog/?doi=10.1007/s11075-020-01029-x&domain=pdf
http://orcid.org/0000-0003-4750-5092
mailto: rauhut@mathc.rwth-aachen.com


Mathematics Subject Classification 2010 13P10 · 15A69 · 15A60 · 52A41 ·
90C22 · 90C25 · 94A20

1 Introduction andmotivation

Compressive sensing predicts that sparse vectors can be recovered from underdeter-
mined linear measurements via efficient methods such as �1-minimization [10, 20,
23]. This finding has various applications in signal and image processing and beyond.
It has recently been observed that the principles of this theory can be transferred to the
problem of recovering a low rank matrix from underdetermined linear measurements.
One prominent choice of recovery method consists in minimizing the nuclear norm
subject to the given linear constraint [22, 55]. This convex optimization problem can
be solved efficiently and recovery results for certain random measurement maps have
been provided, which quantify the minimal number of measurements required for
successful recovery [6, 7, 31, 32, 43, 55].

There is significant interest in going one step further and to extend the theory to
the recovery of low rank tensors (higher-dimensional arrays) from incomplete lin-
ear measurements. Applications include image and video inpainting [46], reflectance
data recovery [46] (e.g., for use in photo-realistic raytracers), machine learning [56],
and seismic data processing [41]. Several approaches have already been introduced
[25, 39, 46, 52, 53], but unfortunately, so far, for none of them a completely satis-
factory theory is available. Either the method is not tractable [63], or no (complete)
rigorous recovery results quantifying the minimal number of measurements are avail-
able [17, 25, 40, 42, 46, 52, 53], or the available bounds are highly nonoptimal [21,
39, 47]. For instance, the computation (and therefore, also the minimization) of the
tensor nuclear norm ([19, 57, 61]) for higher order tensors is in general NP-hard
[24]—nevertheless, some recovery results for tensor completion via nuclear norm
minimization are available in [63]. Moreover, versions of iterative hard thresholding
for various tensor formats have been introduced [52, 53]. This approach leads to a
computationally tractable algorithm, which empirically works well. However, only a
partial analysis based on the tensor restricted isometry property has been provided,
which so far only shows convergence under a condition on the iterates that cannot
be checked a priori. Nevertheless, the tensor restricted isometry property (TRIP) has
been analyzed for certain random measurement maps [52–54]. These near optimal
bounds on the number of measurements ensuring the TRIP, however, provide only a
hint on how many measurements are required because the link between the TRIP and
recovery is so far only partial [53, 54].

This article introduces a new approach for tensor recovery based on convex relax-
ation, initially suggested in slightly different form (but not worked out) in [12]. The
idea is to further relax the nuclear norm in order to arrive at a norm which can be com-
puted (and minimized under a linear constraint) in polynomial time. The hope is that
the new norm is only a slight relaxation and possesses very similar properties as the
nuclear norm. Our approach is based on theta bodies, a concept from computational
algebraic geometry [2, 27, 48] which is similar to the better known Lasserre relax-
ations [45]. We arrive at a whole family of convex bodies (indexed by a polynomial
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degree), which form convex relaxations of the unit nuclear norm ball. The resulting
norms are called theta norms. The corresponding unit norm balls are nested and con-
tain the unit nuclear norm ball. Even more, the sequence of the unit-θk-norm balls
converges asymptotically to the unit tensor nuclear norm ball. The θk-norm as well
as its minimization subject to an affine constraint can be computed via semidefinite
optimization, and also the minimization of the θk-norm subject to a linear constraint
is a semidefinite program (SDP), whose solution can be computed in polynomial
time—the complexity growing with k.

The tensor nuclear norm may be defined for both base fields R and C. In general
the resulting norms may differ for a real tensor. In this article, we restrict to relax-
ations of the real tensor nuclear norm because the concept of theta bodies is based on
real algebraic geometry and not well-defined for the complex case.

The basic idea for the construction of these new norms is to define polynomial ide-
als, where each variable corresponds to an entry of the tensor, such that its algebraic
variety consists of the rank-one tensors of unit Frobenius norm. The convex hull of
this set is the tensor nuclear norm ball. The ideals that we propose are generated by
the minors of order two of all matricizations of the tensor (or at least of a subset of the
possible matricizations) together with the polynomial corresponding to the squared
Frobenius norm minus one. Here, a matricization denotes a matrix which is gener-
ated from the tensor by combining several indices to a row index, and the remaining
indices to a column index. In fact, all such minors being zero simultaneously means
that the tensor has rank one. The k-theta body of the ideal corresponds then to a
relaxation of the convex hull of its algebraic variety, i.e., to a further relaxation of the
tensor nuclear norm. The index k ∈ N corresponds to a polynomial degree involved
in the construction of the theta bodies (a certain polynomial is required to be k-sos
modulo the ideal, see below), and k = 1 leads to the largest theta body in a family of
convex relaxations.

Our investigations have been strongly motivated by [12], where theta bodies have
first been suggested for low rank tensor recovery. The approach in [12] has not been
worked out in detail, however. It suggests a slightly different polynomial ideal that
requires additional auxiliary variables. The corresponding Gröbner basis and, hence,
also the theta basis, become much more complicated (see also Remark 2). This
would lead to very technical computations on the theoretical side and to less efficient
algorithms on the practical side.

We show that for the matrix case (tensors of order 2), our relaxation approach
does not lead to new norms. All resulting theta norms are rather equal to the matrix
nuclear norm. This fact suggests that the theta norms in the higher order tensor case
are all natural generalizations of the matrix nuclear norm.

The derivation of the semidefinite program for calculating the θk-norm requires to
compute the so-called theta basis of the related polynomial ideal which in turn needs
the reduced Gröbner basis. We prove the somewhat surprising fact that the Gröbner
basis is given by the generating set defining the polynomial ideal, i.e., the order two
minors and the polynomial related to the Frobenius norm. This is one of the core
results of this paper. Its proof is somewhat technical (and therefore we separate the
simpler order three case from the case of tensors of general order d), but it allows us
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to explicitly compute the theta basis and the so-called moment matrix, which finally
defines the semidefinite program.

We present numerical experiments which show that θ1-norm minimization suc-
cessfully recovers tensors of low rank from few random linear measurements. We
remark that we use a standard semidefinite solver which limits the size of tensors as
computation time becomes too large (despite formally being polynomial) for tensors
whose size is of the order 10 × 10 × 10, say. This may seem a severe limitation,
but we emphasize that the focus of this paper is a first investigation of the ten-
sor θk-norms with a derivation of the corresponding semidefinite programs and first
(promising) numerical tests on the recovery performance. We expect that specialized
algorithms for θk-norm minimization, for instance based on proximal splitting meth-
ods [14] such as ADMM, may lead to significantly increased computation speed with
respect to standard semidefinite solvers. A second main motivation of our work is that
the θk-norm minimization approach seems like a promising polynomially tractable
approach that allows for a theoretical analysis of the required number of random lin-
ear measurement ensuring recovery—improving over presently available bounds for
tractable algorithms. As outlined above, optimal estimates of the required number of
measurements are presently available only for tensor recovery approaches that are
NP-hard. Unfortunately, such a theoretical analysis is still missing for θk-norm mini-
mization, but will be the subject of future work. In this sense, the present article may
be seen as a contribution that hopefully paves the way for a better understanding of
the theory of low rank tensor recovery.

Contributions We summarize the main contributions of this article below.
– We show that the θk-norm reduces to nuclear norm in the matrix case for all

k ∈ N. This fact suggest that the θk-norms are natural generalizations of the
matrix nuclear norm to the tensor case.

– We provide semidefinite programs for the calculation of the θk-norms in the
case of general tensors of order d ≥ 3. We present numerical experiments
for low rank tensor recovery from a small number of random Gaussian linear
measurements which show that our approach is successful in practice.

– The derivation of the semidefinite programs requires to compute a moment
matrix based on a theta basis of the vector space of real polynomials modulo
the ideal. The computation of the theta basis in turn needs a reduced Gröbner
basis of the polynomial ideal whose real algebraic variety corresponds to the
(canonical) rank one, unit norm tensors. We prove the remarkable fact of poten-
tial independent interest that the generating set of minors of order 2 and the
squared Frobenius norm minus 1 is already a Gröbner with respect to the graded
reverse lexicographic (grevlex) ordering (Section 4.1 for third-order tensors, and
Section 4.2 for general dth-order tensors).

– We show in addition that no matter which notion of tensor rank (canonical, TT,
HOSVD) we consider, the polynomial ideal generated by the rank one (in the
corresponding notion), unit norm tensors are all the same. As a consequence, the
θk-norms corresponding to the different notions will all coincide (Section 4.2).

– Due to the fact that the theta norms are built from the polynomial ideal whose
real algebraic variety contains all rank-one unit norm tensors, it is a natural
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question to ask whether the resulting θk-norms coincide with the weighted sum
of the nuclear norms of the matricizations. In Remark 3 (Section 4.1) we show
that this is not the case at least for the largest relaxation, i.e., for the θ1-norm.

– We prove that the sequence of θk-norms convergence asymptotically to the (real)
tensor nuclear norm as k → ∞ (Section 5).

The last point should be seen as a rather theoretical result because in practice one
would rather choose k = 1 or k = 2 due to computational constraints. Therefore, one
cannot easily transfer theoretical results for tensor nuclear norm minimization to θk-
norm minimization, but one rather requires a direct analysis of our approach which
is postponed to future contributions.

1.1 Low rankmatrix recovery

Before passing to tensor recovery, we recall some basics on matrix recovery. Let
X ∈ R

n1×n2 of rank at most r � min{n1, n2}, and suppose we are given linear
measurements y = A (X), where A : R

n1×n2 → R
m is a linear map with m �

n1n2. Reconstructing X from y amounts to solving an underdetermined linear system.
Unfortunately, the rank minimization problem of computing the minimizer of

min
Z∈Rn1×n2

rank(Z) subject to A (Z) = y

is NP-hard in general. As a tractable alternative, the convex optimization problem

min
Z∈Rn1×n2

‖Z‖∗ subject to A (Z) = y (1)

has been suggested [22, 55], where the nuclear norm ‖Z‖∗ = ∑
j σj (Z) is the sum of

the singular values of Z. This problem can be solved efficiently by various methods
[3]. For instance, it can be reformulated as a semidefinite program [22], but splitting
methods may be more efficient [14, 51, 59].

A by-now standard result [6, 12] states that a matrix X of rank r can be stably
recovered from y = A (X), where A is a Gaussian measurement map, via nuclear
norm minimization (1) with probability at least 1 − e−cm provided that

m ≥ Cr(n1 + n2), (2)

where the constants c, C > 0 are universal. Other interesting measurement maps
(matrix completion and rank-one measurements) have been studied in [7–9, 13, 31,
43].

1.2 Tensor recovery

An order-d tensor (or mode-d-tensor) is an element X ∈ R
n1×n2×···×nd indexed by

[n1] × [n2] × · · · × [nd ]. Of course, the case d = 2 corresponds to matrices. For
d ≥ 3, several notions and computational tasks become much more involved than for
the matrix case. Already the notion of rank requires some clarification, and in fact,
several different definitions are available (see, for instance, [30, 36, 37, 44]). We will
mainly work with the canonical rank or CP-rank in the following. A dth-order tensor
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X ∈ R
n1×n2×···×nd is of rank one if there exist vectors u1 ∈ R

n1 , u2 ∈ R
n2 , . . . ,ud ∈

R
nd such that X = u1 ⊗ u2 ⊗ · · · ⊗ ud or elementwise

Xi1i2...id = u1
i1
u2

i2
· · · ud

id
.

The CP-rank (or canonical rank and in the following just rank) of a tensor X ∈
R

n1×n2×···×nd , similarly as in the matrix case, is the smallest number of rank-one
tensors that sum up to X.

Given a linear measurement map A : Rn1×···×nd → R
m (which can represented

as a (d + 1)th-order tensor), our aim is to recover a tensor X ∈ R
n1×···×nd from

y = A (X) when m � n1 · n2 · · · nd . The matrix case d = 2 suggests to consider
minimization of the tensor nuclear norm for this task,

min
Z

‖Z‖∗ subject to A (Z) = y,

where the nuclear norm is defined as

‖X‖∗ = min
{ r∑

k=1

|ck| : X =
r∑

k=1

cku1,k ⊗ u2,k ⊗ · · · ⊗ ud,k, r ∈ N,

∥
∥
∥ui,k

∥
∥
∥

�2
= 1, i ∈ [d] , k ∈ [r]

}
.

Unfortunately, in the tensor case, computing the canonical rank of a tensor, as well as
computing the nuclear norm of a tensor is NP-hard in general (see [24, 35, 38]). Let
us nevertheless mention that some theoretical results for tensor recovery via nuclear
norm minimization are contained in [63].

We remark that, unlike in the matrix scenario, the tensor rank and consequently
the tensor nuclear norm are dependent on the choice of base field (see, for example,
[4, 18, 24]). In other words, the rank (and the nuclear norm) of a given tensor with
real entries depends on whether we regard it as a real tensor or as a complex tensor.
In this paper, we focus only on tensors with real-valued entries, i.e., we work over
the field R.

The aim of this article is to introduce relaxations of the tensor nuclear norm, based
on theta bodies, which is both computationally tractable and whose minimization
allows for exact recovery of low rank tensors from incomplete linear measurements.

Let us remark that one may reorganize (flatten) a low rank tensor X ∈ R
n×n×n

into a low rank matrix X̃ ∈ R
n×n2

and simply apply concepts from matrix recovery.
However, the bound (2) on the required number of measurements then reads

m ≥ Crn2. (3)

Moreover, it has been suggested in [25, 46, 60] to minimize the sum of nuclear norms
of the unfoldings (different reorganizations of the tensor as a matrix) subject to the
linear constraint matching the measurements. Although this seems to be a reasonable
approach at first sight, it has been shown in [50], that it cannot work with less mea-
surements than stated by the estimate in (3). This is essentially due to the fact that
the tensor structure is not represented. That is, instead of solving a tensor nuclear
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norm minimization problem under the assumption that the tensor is of low rank, the
matrix nuclear norm minimization problem is being solved under the assumption that
a particular matricization of a tensor is of low rank.

A version of the restricted isometry property for certain tensor formats in [54] is
satisfied for

m ≥ Cr2n (4)

Gaussian random measurements with high probability—precisely, this bound uses
the tensor train format [49]. (Possibly, the term r2 may even be lowered to r when
using the “right” tensor format.) Unfortunately, up to the authors knowledge, it is
open to show that an efficient (polynomial time) algorithm can recover rank r ten-
sors if the restricted isometry property is satisfied. Only partial results are known
[53, 54]: a tensor iterative hard thresholding algorithm is shown to converge to the
original rank r tensor if on top of the restricted isometry property a certain inequal-
ity is satisfied for the approximate projection of each iterate onto the rank r tensors.
Unfortunately, that inequality cannot be guaranteed for the approximate projection
and also cannot be checked throughout the iterations. The exact projection would sat-
isfy it, but is NP-hard to compute, which is the reason why one resorts to an efficient
approximate projection. (Given the empirical success of the algorithm, it seems that
the inequality usually holds at least starting from a certain iteration.) A local con-
vergence result for tensor iterative hard thresholding has been given in [53], but one
cannot guarantee that the iterates get close enough to the original low rank tensor
ensuring convergence to the original tensor by the local result.

In any case, considering that the bound (4) for an RIP adapted to certain tensor
formats is significantly better than (3) suggests that one should exploit the tensor
structure of the problem rather than reducing to a matrix recovery problem in order
to recover a low rank tensor using the minimal number of measurements. Of course,
similar considerations apply to tensors of order higher than three, where the differ-
ence between the reduction to the matrix case and working directly with the tensor
structure will become even stronger.

Unlike in the previously mentioned contributions, we consider the canonical tensor
rank and the corresponding tensor nuclear norm, which respects the tensor struc-
ture. It may be expected that the bound on the minimal number of measurements
needed for low rank tensor recovery via tensor nuclear norm minimization is opti-
mal. We conjecture that such optimal bound is of the form m ≥ Crn or possibly
m ≥ Crn log(n). (Our numerical experiments suggest that at least the latter is true,
see Fig. 3.) We note that it has been shown in [63] that tensor completion via tensor
nuclear norm minimization is successful in recovering (incoherent) n × n × n ten-
sors of rank r if m ≥ C

√
r(n log(n))3/2, which is slightly worse than the conjectured

bound (in particular,
√

rn instead of r). This deficiency may be due to the fact that
tensor completion is harder than recovery from Gaussian random matrices or that the
proof given in [63] does not give the optimal bound (or both). In any case, the draw-
back of tensor nuclear norm minimization is that the tensor nuclear norm is NP-hard
to compute so that this approach is intractable. In fact, [63] only gives a theoretical
analysis and no algorithm (not even a heuristic one) for solving tensor nuclear norm
minimization problems.
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To overcome this difficulty, we introduce what we call the tensor θk-norms in this
paper—new tensor norms which can be computed via semidefinite programming.
These norms are tightly related to the tensor nuclear norm. That is, the unit θk-norm
balls (which are defined for k ∈ N) satisfy

{
X : ‖X‖θ1

≤ 1
} ⊇ · · · ⊇ {

X : ‖X‖θk
≤ 1

} ⊇ {
X : ‖X‖θk+1

≤ 1
}

⊇ · · · ⊇ {X : ‖X‖∗ ≤ 1} .

In particular, we show that in the matrix scenario all θk-norms coincide with the
matrix nuclear norm. In case of order-d tensors (d ≥ 3), we prove that the sequence of
the unit-θk-norm balls converges asymptotically to the unit tensor nuclear norm ball.
Next, we provide numerical experiments on low rank tensor recovery via θ1-norm
minimization. We provide numerical experiments for θ1-minimization that indicate
that this is a very promising approach for low rank tensor recovery. However, we note
that standard solvers for semidefinite programs only allow us to test our method on
small to moderate size problems. Nevertheless, it is likely that specialized efficient
algorithms can be developed. Indeed, recall that θk-norms all coincide with the matrix
nuclear norm and the state-of-the-art algorithms allow us computing the nuclear norm
of matrices of large dimensions. This suggests the possibility that new algorithms
could be developed which would allow us to apply our method on larger tensors.
Thus, this paper presents the first step in a new convex optimization approach to low
rank tensor recovery.

1.3 Some notation

We write vectors with small bold letters, matrices and tensors with capital bold letters
and sets with capital calligraphic letters. The cardinality of a set S is denoted by
|S |.

For a matrix A ∈ R
m×n and subsets I ⊂ [m], J ⊂ [n] the submatrix of A with

columns indexed by I and rows indexed by J is denoted by AI ,J .
The Frobenius norm of a dth-order tensor X ∈ R

n1×n2×···×nd is defined as

‖X‖F =
(∑n1

i1=1

∑n2
i2=1 · · ·∑nd

id=1 X2
i1i2···id

)1/2
. The vectorization of a tensor X ∈

R
n1×n2×···×nd is denoted by (X) ∈ R

n1n2···nd . For k ∈ [d], the mode-k fiber of
a dth-order tensor is obtained by fixing every index except for the kth one. For a
tensor X ∈ R

n1×n2×···×nd and an ordered subset S ⊆ [d], an S -matricization
XS ∈ R

∏
k∈S nk×∏

�∈S c n� is defined as XS
(ik)k∈S ,(i�)�∈S c

= Xi1i2...id , i.e., the

indices in the set S define the rows of the matrix XS and the indices in the set
S c = [d] \S define the columns. For a singleton set S = {i}, for i ∈ [d], we call
the S -matricization the ith unfolding.

For a tensor X ∈ R
n1×n2×···×nd of order d, we write X(:, :, . . . , :, k) for the order

(d −1) subtensor in R
n1×n2×···×nd−1 obtained by fixing the last index αd to k. Instead

of writing xα1α2...αd
xβ1β2...βd

, we often use the simpler notation xαxβ . We will use
the grevlex ordering of monomials: x11...11 > x11...12 > · · · > x11...1nd

> x111...21 >

. . . > xn1n2...nd
.
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1.4 Structure of the paper

In Section 2 we will review the basic definition and properties of theta bodies.
Section 3 considers the matrix case. We introduce a suitable polynomial ideal whose
algebraic variety is the set of rank-one unit Frobenius norm matrices. We discuss
the corresponding θk-norms and show that they all coincide with the matrix nuclear
norm. The case of 2 × 2-matrices is described in detail. In Section 4 we pass to the
tensor case and discuss first the case of order-three tensors. We introduce a suitable
polynomial ideal, provide its reduced Gröbner basis and define the corresponding
θk-norms. We additionally show that considering matricizations corresponding to the
TT-format will lead to the same polynomial ideal and thus to the same θk-norms.
The general dth-order case is discussed at the end of Section 4. Here, we define the
polynomial ideal Jd which corresponds to the set of all possible matricizations of the
tensor. We show that a certain set of order-two minors forms the reduced Gröbner
basis for this ideal, which is key for defining the θk-norms. We additionally show
that polynomial ideals corresponding to different tensor formats (such as TT format
or Tucker/HOSVD format) coincide with the ideal Jd and consequently, they lead to
the same θk-norms. In Section 5 we discuss the convergence of the sequence of the
unit-θk-norm balls to the unit tensor nuclear norm ball. Section 6 briefly discusses the
polynomial runtime of the algorithms for computing and minimizing the θk-norms
showing that our approach is tractable. Numerical experiments for low rank recov-
ery of third-order tensors are presented in Section 7, which show that our approach
successfully recovers a low rank tensor from incomplete Gaussian random mea-
surements. Appendix discusses some background from computer algebra (monomial
orderings and Gröbner bases) that is required throughout the main body of the article.

2 Theta bodies

As outlined above, we will introduce new tensor norms as relaxations of the nuclear
norm in order to come up with a new convex optimization approach for low rank
tensor recovery. Our approach builds on theta bodies, a recent concept from compu-
tational algebraic geometry, which is similar to Lasserre relaxations [45]. In order to
introduce it, we first discuss the necessary basics from computational commutative
algebra. For more information, we refer to [15, 16] and to the Appendix.

For a non-zero polynomial f = ∑
α aαxα in R [x] = R [x1, x2, . . . , xn] and a

monomial order >, we denote
a) the multidegree of f by multideg (f ) = max

(
α ∈ Z

n
≥0 : aα �= 0

)
,

b) the leading coefficient of f by LC (f ) = amultideg(f ) ∈ R,
c) the leading monomial of f by LM (f ) = xmultideg(f ),
d) the leading term of f by LT (f ) = LC (f ) LM (f ) .

Let J ⊂ R [x] be a polynomial ideal. Its real algebraic variety is the set of all points
in x ∈ R

n where all polynomials in the ideal vanish, i.e.,

νR (J ) = {x ∈ R
n : f (x) = 0, for all f ∈ J }.
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By Hilbert’s basis theorem [16] every polynomial ideal in R [x] has a finite generating
set. Thus, we may assume that J is generated by a set F = {f1, f2, . . . , fk} of
polynomials in R[x] and write

J = 〈f1, f2, . . . , fk〉 = 〈{fi}i∈[k]
〉

or simply J = 〈F 〉 .

Its real algebraic variety is the set

νR (J ) = {x ∈ R
n : fi(x) = 0 for all i ∈ [k]}.

Throughout the paper, R [x]k denotes the set of polynomials of degree at most k. A
degree one polynomial is also called linear polynomial. A very useful certificate for
positivity of polynomials is contained in the following definition [27].

Definition 1 Let J be an ideal in R [x]. A polynomial f ∈ R [x] is k-sos mod J

if there exists a finite set of polynomials h1, h2, . . . , ht ∈ R [x]k such that f ≡∑t
j=1 h2

j mod J , i.e., if f − ∑t
j=1 h2

j ∈ J .

A special case of theta bodies was first introduced by Lovász in [48] and in full
generality they appeared in [27]. Later, they have been analyzed in [26, 28]. The
definitions and theorems in the remainder of the section are taken from [27].

Definition 2 (Theta body) Let J ⊆ R [x] be an ideal. For a positive integer k, the
kth theta body of J is defined as

T Hk (J ) := {
x ∈ R

n : f (x) ≥ 0 for every linear f that is k-sos mod J
}

.

We say that an ideal J ⊆ R [x] is T Hk-exact if T Hk (J ) equals conv (νR(J )), the
closure of the convex hull of νR (J ).

Theta bodies are closed convex sets, while conv (νR(J )) may not necessarily be
closed and by definition,

T H1 (J ) ⊇ T H2 (J ) ⊇ · · · ⊇ conv (νR(J )). (5)

The theta body sequence of J can converge (finitely or asymptotically), if at all,
only to conv (νR(J )). More on guarantees on convergence can be found in [27,
28]. However, to our knowledge, none of the existing guarantees applies to the cases
discussed below.

Given any polynomial, it is possible to check whether it is k-sos mod J using
a Gröbner basis and semidefinite programming. However, using this definition in
practice requires knowledge of all linear polynomials (possibly infinitely many) that
are k-sos mod J . To overcome this difficulty, we need an alternative description of
T Hk(J ) discussed next.

As in [2], we assume that there are no linear polynomials in the ideal J . Oth-
erwise, some variable xi would be congruent to a linear combination of other
variables modulo J and we could work in a smaller polynomial ring R[xi] =
R[x1, x2, . . . , xi−1, xi+1, . . . , xn]. Therefore, R[x]1/J ∼= R[x]1 and {1 + J, x1 +
J, . . . , xn +J } can be completed to a basis B of R[x]/J . Recall that the degree of an
equivalence class f +J , denoted by deg(f + J ), is the smallest degree of an element
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in the class. We assume that each element in the basis B = {fi +J } of R[x]/J is rep-
resented by the polynomial whose degree equals the degree of its equivalence class,
i.e., deg fi + J = deg fi . In addition, we assume that B = {fi + J } is ordered so
that fi+1 > fi , where > is a fixed monomial ordering. Further, we define the set Bk

Bk := {f + J ∈ B : deg(f + J ) ≤ k}.

Definition 3 (Theta basis) Let J ⊆ R [x] be an ideal. A basis B = {f0 + J, f1 +
J, . . .} of the vector space R [x] /J is a θ -basis if it has the following properties

1) B1 = {1 + J, x1 + J, . . . , xn + J },
2) if deg (fi + J ) , deg

(
fj + J

) ≤ k then fifj + J is in the R-span of B2k .

As in [2, 27] we consider only monomial bases B of R [x] /J , i.e., bases B such
that fi is a monomial, for all fi + J ∈ B.

For determining a θ -basis, we first need to compute the reduced Gröbner basis G
of the ideal J (see Definitions 8 and 9). The set B will satisfy the second property
in the definition of the theta basis if the reduced Gröbner basis is with respect to an
ordering which first compares the total degree. Therefore, throughout the paper we
use the graded reverse monomial ordering (Definition 7) or simply grevlex ordering,
although also the graded lexicographic ordering would be appropriate.

A technique to compute a θ -basis B of R [x] /J consists in taking B to be the set
of equivalence classes of the standard monomials of the corresponding initial ideal

Jinitial = 〈{LT (f )}f ∈J

〉 = 〈{LT (gi)}i∈[s]
〉
,

where G = 〈g1, g2, . . . , gs〉 is the reduced Gröbner basis of the ideal J . In other
words, a set B = {f0 + J, f1 + J, . . .} will be a θ -basis of R[x]/J if it contains all
fi + J such that

1. fi is a monomial
2. fi is not divisible by any of the monomials in the set {LT (gi) : i ∈ [s]}.
The next important tool we need is the combinatorial moment matrix of J . To this

end, we fix a θ -basis B = {fi + J } of R [x] /J and define [x]Bk
to be the column

vector formed by all elements of Bk in order. Then [x]Bk
[x]TBk

is a square matrix
indexed by Bk and its (i, j)-entry is equal to fifj + J . By hypothesis, the entries
of [x]Bk

[x]TBk
lie in the R-span of B2k . Let {λl

i,j } be the unique set of real numbers

such that fifj + J = ∑
fl+J∈B2k

λl
i,j (fl + J ).

The theta bodies can be characterized via the combinatorial moment matrix as
stated in the next result from [27], which will be the basis for computing and
minimization the new tensor norm introduced below via semidefinite programming.

Definition 4 Let J,B and {λl
i,j } be as above. Let y be a real vector indexed by B2k

with y0 = 1, where y0 is the first entry of y, indexed by the basis element 1 + J .
The kth combinatorial moment matrix MBk

(y) of J is the real matrix indexed by Bk

whose (i, j)-entry is [MBk
(y)]i,j = ∑

fl+J∈B2k
λl

i,j yl .
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Theorem 1 The kth theta body of J , THk (J ), is the closure of

QBk
(J ) = πRn

{
y ∈ R

B2k : MBk
(y) � 0, y0 = 1

}
,

where πRn denotes the projection onto the variables y1 = yx1+J , . . . , yn = yxn+J .

Algorithm 1 shows a step-by-step procedure for computing THk(J ).

3 Thematrix case

As a start, we consider the matrix nuclear unit norm ball and provide hierarchical
relaxations via theta bodies. The kth relaxation defines a matrix unit θk-norm ball
with the property

‖X‖θk
≤ ‖X‖θk+1

for all X ∈ R
m×n and all k ∈ N.

However, we will show that all these θk-norms coincide with the matrix nuclear norm.
The first step in computing hierarchical relaxations of the unit nuclear norm ball

consists in finding a polynomial ideal J such that its algebraic variety (the set of
points for which the ideal vanishes) coincides with the set of all rank-one, unit
Frobenius norm matrices

νR(J ) = {
X ∈ R

m×n : ‖X‖F = 1, rank (X) = 1
}

. (6)

Recall that the convex hull of this set is the nuclear norm ball. The following lemma
states the elementary fact that a non-zero matrix is a rank-one matrix if and only if
all its minors of order two are zero.

For notational purposes, we define the following polynomials in R [x] =
R [x11, x12, . . . , xmn]

g(x) =
m∑

i=1

n∑

j=1

x2
ij − 1 and fijkl(x) = xilxkj − xij xkl

for 1 ≤ i < k ≤ m, 1 ≤ j < l ≤ n. (7)
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Lemma 1 Let X ∈ R
m×n\ {0}. Then X is a rank-one, unit Frobenius norm matrix if

and only if

X ∈ R := {X : g(X) = 0 and fijkl(X) = 0 for all i < k, j < l}. (8)

Proof If X ∈ R
m×n is a rank-one matrix with ‖X‖F = 1, then by definition there

exist two vectors u ∈ R
m and v ∈ R

n such that Xij = uivj for all i ∈ [m], j ∈ [n]
and ‖u‖2 = ‖v‖2 = 1. Thus

XijXkl − XilXkj = uivjukvl − uivlukvj = 0

and
m∑

i=1

n∑

j=1
X2

ij =
m∑

i=1
u2

i

n∑

j=1
v2
j = 1.

For the converse, let X·i represent the ith column of a matrix X ∈ R. Then, for all
j, l ∈ [n] with j < l, it holds

Xml · X·j − Xmj · X·l =

⎡

⎢
⎢
⎢
⎣

X1jXml − X1lXmj

X2jXml − X2lXmj

...
XmjXml − XmjXml

⎤

⎥
⎥
⎥
⎦

= 0,

since XijXml = XilXmj for all i ∈ [m − 1] by definition of R. Thus, the columns
of the matrix X span a space of dimension one, i.e., the matrix X is a rank-one
matrix. From

∑m
i=1

∑n
j=1 X2

ij − 1 = 0 it follows that the matrix X is normalized,
i.e., ‖X‖F = 1.

It follows from Lemma 1 that the set of rank-one, unit Frobenius norm matrices
coincides with the algebraic variety νR

(
JMmn

)
for the ideal JMmn generated by the

polynomials g and fijkl , i.e.,

JMmn = 〈GMmn〉 with

GMmn = {g(x)} ∪ {fijkl(x) : 1 ≤ i < k ≤ m, 1 ≤ j < l ≤ n} (9)

Recall that the convex hull of the set R in (8) forms the unit nuclear norm ball and
by definition of the theta bodies,

conv(νR(JMmn)) ⊆ · · · ⊆ T Hk+1(JMmn) ⊆ T Hk(JMmn) ⊆ · · · ⊆ T H1(JMmn).

Therefore, the theta bodies form closed, convex hierarchical relaxations of the
matrix nuclear norm ball. In addition, the theta body T Hk(JMmn) is symmetric,
T Hk(JMmn) = −T Hk(JMmn). Therefore, it defines a unit ball of a norm that we call
the θk-norm.

The next result shows that the generating set of the ideal JMmn introduced above
is a Gröbner basis.

Lemma 2 The set GMmn forms the reduced Gröbner basis of the ideal JMmn with
respect to the grevlex order.
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Proof The set GMmn is clearly a basis for the ideal JMmn . By Proposition 1 in the
Appendix, we only need to check whether the S-polynomial (see Definition 11) satis-
fies S (p, q) →GMmn

0 for all p, q ∈ GMmn whenever the leading monomials LM (p)

and LM(q) are not relatively prime. Here, S (p, q) →GMmn
0 means that S (p, q)

reduces to 0 modulo GMmn (see Definition 10).
Notice that LM (g) = x2

11 and LM
(
fijkl

) = xilxkj are relatively prime, for all
1 ≤ i < k ≤ m and 1 ≤ j < l ≤ n. Therefore, we only need to show that
S(fijkl, fîĵ k̂l̂

) →GMmn
0 whenever the leading monomials LM(fijkl) and LM(f

îĵ k̂l̂
)

are not relatively prime. First we consider

fijkl(x) = xilxkj − xij xkl and f
iĵ k̂l

(x) = xilxk̂ĵ
− x

iĵ
x
k̂l

for 1 ≤ i < k < k̂ ≤ m, 1 ≤ j < ĵ < l ≤ n. The S-polynomial is then of the form

S(fijkl, fiĵ k̂l
) = x

k̂ĵ
fijkl(x) − xkjfiĵ k̂l

(x) = −xij xklxk̂ĵ
+ x

iĵ
x
k̂l

xkj

= x
k̂l

f
ijkĵ

(x) − xij fkĵ k̂l
(x) ∈ JMmn

so that S(fijkl, fiĵ k̂l
) →GMmn

0. The remaining cases are treated with similar
arguments.

In order to show that GMmn is a reduced Gröbner basis (see Definition 9), we first
notice that LC(f ) = 1 for all f ∈ GMmn . In addition, the leading monomial of f ∈
GMmn is always of degree two and there are no two different polynomials fi, fj ∈
GMmn such that LM(fi) = LM(fj ). Therefore, GMmn is the reduced Gröbner basis
of the ideal JMmn with respect to the grevlex order.

The Gröbner basis GMmn of JMmn = 〈
GMmn

〉
yields the θ -basis of R[x]/JMmn . For

the sake of simplicity, we only provide its elements up to degree two,

B1 = {
1 + JMmn, x11 + JMmn, x12 + JMmn, . . . , xmn + JMmn

}

B2 = B1 ∪ {
xij xkl + JMmn : (i, j, k, l) ∈ SB2

}
,

where SB2 = {(i, j, k, l) : 1 ≤ i ≤ k ≤ m, 1 ≤ j ≤ l ≤ n} \ (1, 1, 1, 1). Given the
θ -basis, the theta body T Hk(JMmn) is well-defined. We formally introduce an
associated norm next.

Definition 5 The matrix θk-norm, denoted by ‖·‖θk
, is the norm induced by the k-

theta body T Hk

(
JMmn

)
, i.e.,

‖X‖θk
= inf

{
r : X ∈ rT Hk

(
JMmn

)}
.

The θk-norm can be computed with the help of Theorem 1, i.e., as

‖X‖θk
= min t subject to X ∈ tQBk

(JMmn).

Given the moment matrix MBk
[y] associated with JMmn , this minimization program

is equivalent to the semidefinite program

min
t∈R,y∈RBk

t subject to MBk
[y] � 0, y0 = t, yB1 = X. (10)
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The last constraint might require some explanation. The vector yB1 denotes the
restriction of y to the indices in B1, where the latter can be identified with the set
[m] × [n] indexing the matrix entries. Therefore, yB1 = X means componentwise
yx11+J = X11, yx12+J = X12, . . . , yxmn+J = Xmn. For the purpose of illustration,
we focus on the θ1-norm in R

2×2 in Section 3.1 below, and provide a step-by-step
procedure for building the corresponding semidefinite program in (10).

Notice that the number of elements in B1 is mn + 1, and in B2\B1 is m·(m+1)
2 ·

n·(n+1)
2 − 1 ∼ (mn)2

2 , i.e., the number of elements of the θ -basis restricted to the
degree 2 scales polynomially in the total number of matrix entries mn. Therefore, the
computational complexity of the SDP in (10) is polynomial in mn.

We will show next that the theta body T H1(J ) and hence, all T Hk(J ) for k ∈
N, coincide with the nuclear norm ball. To this end, the following lemma provides
expressions for the boundary of the matrix nuclear unit norm ball.

Lemma 3 Let Oc (Or ) denote the set of all matrices M ∈ R
n×m with

orthonormal columns (rows), i.e., Oc = {
M ∈ R

n×m : MT M = Im
}
and Or =

{
M ∈ R

n×m : MMT = In
}
. Then

{
X ∈ R

m×n : ‖X‖∗ ≤ 1
} = {

X ∈ R
m×n : tr (MX) ≤ 1, for allM ∈ Oc ∪ Or

}
.

(11)

Remark 1 Notice that Oc = ∅ for m > n and Or = ∅ for m < n.

Proof If suffices to treat the case m ≤ n because ‖X‖∗ = ∥
∥XT

∥
∥∗ for all matrices

X, and M ∈ Or if and only if MT ∈ Oc. Let X ∈ R
m×n such that ‖X‖∗ ≤ 1

and let X = U
VT be its singular value decomposition. For M ∈ Oc, the spectral
norm satisfies ‖M‖ ≤ 1 and therefore, using that the nuclear norm is the dual of the
spectral norm (see e.g., [1, p. 96]),

tr (MX) ≤ ‖M‖ · ‖X‖∗ ≤ ‖X‖∗ ≤ 1.

For the converse, let X ∈ R
m×n be such that tr (MX) ≤ 1, for all M ∈ Oc. Let

X = U
̄ V
T

denote its reduced singular value decomposition, i.e., U,
̄ ∈ R
m×m and

V ∈ R
n×m with UT U = UUT = V

T
V = Im. Since M := VUT ∈ Oc, it follows that

1 ≥ tr(MX) = tr(VUT U
̄ V
T
) = tr(
̄) = ‖X‖∗ .

This completes the proof.

Next, using Lemma 3, we show that the theta body T H1(J ) equals the nuclear
norm ball. This result is related to Theorem 4.4 in [28].

Theorem 2 The polynomial ideal JMmn defined in (9) is T H1-exact, i.e.,

T H1
(
JMmn

) = conv
(
x : g(x) = 0, fijkl(x) = 0 for all i < k, j < l

)
.

In other words,
{
X ∈ R

m×n : X ∈ T H1
(
JMmn

)} = {
X ∈ R

m×n : ‖X‖∗ ≤ 1
}

.
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Proof By definition of T H1(JMmn), it is enough to show that the boundary of the
unit nuclear norm can be written as 1-sos mod JMmn , which by Lemma 3 means that
the polynomial 1 − ∑m

i=1
∑n

j=1 xijMji is 1-sos mod JMmn for all M ∈ Oc ∪ Or .

We start by fixing M =
(
Im
0

)

in case m ≤ n and M = (
In 0

)
in case m > n,

where Ik ∈ R
k×k is the identity matrix. For this choice of M, we need to show that

1 − ∑�
i=1 xii is 1-sos mod JMmn , where � = min {m, n}. Note that

1 −
�∑

i=1

xii = 1

2

⎡

⎣

(

1 −
�∑

i=1

xii

)2

+
⎛

⎝1 −
m∑

i=1

n∑

j=1

x2
ij

⎞

⎠ +
∑

i<j≤�

(
xij − xji

)2

−2
∑

i<j≤�

(
xiixjj − xij xji

) +
m∑

i=1

n∑

j=m+1

x2
ij +

m∑

i=n+1

n∑

j=1

x2
ij

⎤

⎦ ,

since
(

1 −
�∑

i=1

xii

)2

= 1 − 2
�∑

i=1

xii +
�∑

i=1

�∑

j=1

xiixjj

= 1 − 2
�∑

i=1

xii + 2
∑

i<j≤�

xiixjj +
�∑

i=1

x2
ii ,

1 −
m∑

i=1

n∑

j=1

x2
ij +

m∑

i=1

n∑

j=m+1

x2
ij +

m∑

i=n+1

n∑

j=1

x2
ij = 1 −

�∑

i=1

�∑

j=1

x2
ij

= 1 −
∑

i<j≤�

(
x2
ij + x2

ji

)
−

�∑

i=1

x2
ii ,

and
∑

i<j≤�

(
xij − xji

)2 − 2
∑

i<j≤�

(
xiixjj − xij xji

)

=
∑

i<j≤�

(
x2
ij + x2

ji − 2xij xji − 2xiixjj + 2xij xji

)

=
∑

i<j≤�

(
x2
ij + x2

ji

)
− 2

∑

i<j≤�

xiixjj .

Therefore, 1 − ∑�
i=1 xii is 1-sos mod JMmn , since the polynomials 1 − ∑�

i=1 xii ,
xij − xji , xij , and xji are linear and the polynomials 1 − ∑m

i=1
∑n

j=1 x2
ij and

2
(
xiixjj − xij xji

)
are contained in the ideal, for all i < j ≤ �.

Next, we define transformed variables

x′
ij =

{∑m
k=1 Mikxkj if m ≤ n,

∑n
k=1 xikMkj if m > n.
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Since x′
ij is a linear combination of {xkj }mk=1∪{xik}nk=1, for every i ∈ [m] and j ∈ [n],

linearity of the polynomials 1 −∑�
i=1 x′

ii , x′
ij − x′

ji , x′
ij , and x′

ji is preserved, for all
i < j . It remains to show that the ideal is invariant under this transformation. For the
polynomial 1 − ∑m

i=1
∑n

j=1 x′
ij

2 this is clear since M ∈ R
n×m has unitary columns

in case when m ≤ n and unitary rows in case m ≥ n. In the case of m ≤ n the
polynomial x′

iix
′
jj − x′

ij x
′
ji is contained in the ideal J since

x′
iix

′
jj − x′

ij x
′
ji =

m∑

k=1

m∑

l=1

MikMjl

(
xkixlj − xkj xli

)

and the polynomials xkixlj − xkj xli are contained in J for all i < j ≤ m. Similarly,
in case m ≥ n the polynomial x′

iix
′
jj − x′

ij x
′
ji is in the ideal since

x′
iix

′
jj − x′

ij x
′
ji =

n∑

k=1

n∑

l=1

MkiMlj

(
xikxjl − xilxjk

)

and polynomials xikxjl − xilxjk are in the ideal, for all i < j ≤ n.

The following corollary is a direct consequence of Theorem 2 and the nestedness
property (5) of theta bodies.

Corollary 1 The matrix θ1-norm coincides with the matrix nuclear norm, i.e.,

‖X‖∗ = ‖X‖θ1
, for all X ∈ R

m×n.

Moreover,

T H1
(
JMmn

) = T H2
(
JMmn

) = · · · = conv
(
νR(JMmn)

)
.

Remark 2 The ideal (9) is not the only choice that satisfies (6). The following
polynomial ideal was suggested in [12],

J =
〈
{
xij − uivj

}
i∈[m],j∈[n] ,

m∑

i=1

u2
i − 1,

n∑

j=1

v2
j − 1

〉

(12)

in R [x, u, v] = R [x11, . . . , xmn, u1, . . . , um, v1, . . . , un]. Some tedious computa-
tions reveal the reduced Gröbner basis G of the ideal J with respect to the grevlex
(and grlex) ordering,

G =
{
g

ij

1 = xij −uivj : i ∈ [m] , j ∈ [n]
}⋃

⎧
⎨

⎩
g2 =

m∑

i=1

u2
i −1, g3 =

n∑

j=1

v2
j − 1

⎫
⎬

⎭

⋃ {
g

i,j,k

4 = xijuk − xkjui : 1 ≤ i < k ≤ m, j ∈ [n]
}

⋃ {
g

i,j,k

5 = xij vk − xikvj : i ∈ [m] , 1 ≤ j < k ≤ n
}
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⋃

⎧
⎨

⎩
gi

6 =
n∑

j=1

xij vj − ui : i ∈ [m]

⎫
⎬

⎭

⋃
{

g
j
7 =

m∑

i=1

xijui − vj : j ∈ [n]

}

⋃
{

g
i,j

8 =
n∑

k=1

xikxjk − uiuj : 1 ≤ i < j ≤ m

}

⋃
{

g
i,j

9 =
m∑

k=1

xkixkj − vivj : 1 ≤ i < j ≤ n

}

⋃

⎧
⎨

⎩
gi

10 =
n∑

j=1

x2
ij − u2

i : 2 ≤ i ≤ m

⎫
⎬

⎭

⋃
{

g
j

11 =
m∑

i=1

x2
ij − v2

j : 2 ≤ j ≤ n

}

⋃ {
g

i,j,k,l

12 = xij xkl − xilxkj : 1 ≤ i < k ≤ m, 1 ≤ j < l ≤ n
}

⋃

⎧
⎨

⎩
g13 = x2

11 −
m∑

i=2

n∑

j=2

x2
ij +

m∑

i=2

u2
i +

n∑

j=2

v2
j − 1

⎫
⎬

⎭
. (13)

Obviously, this Gröbner basis is much more complicated than the one of the ideal
JMmn introduced above. Therefore, computations (both theoretical and numerical)
with this alternative ideal seem to be more demanding. In any case, the variables
{ui}mi=1 and

{
vj

}n

j=1 are only auxiliary ones, so one would like to eliminate these
from the above Gröbner basis. By doing so, one obtains the Gröbner basis GMmn

defined in (9). Notice that
∑m

i=1
∑n

j=1 x2
ij −1 = g13+∑m

i=2 gi
10+∑n

j=2 g
j

11 together

with {gi,j,k,l

12 } form the basis GMmn .

3.1 The θ1-norm inR2×2

For the sake of illustration, we consider the specific example of 2 × 2 matrices
and provide the corresponding semidefinite program for the computation of the
θ1-norm explicitly. Let us denote the corresponding polynomial ideal in R [x] =
R [x11, x12, x21, x22] simply by

J = JM22 =
〈
x12x21 − x11x22, x

2
11 + x2

12 + x2
21 + x2

22 − 1
〉

(14)

The associated algebraic variety is of the form

νR (J ) =
{
x : x12x21 = x11x22, x

2
11 + x2

12 + x2
21 + x2

22 = 1
}

and corresponds to the set of rank-one matrices with ‖X‖F = 1. Its convex hull
consists of matrices X ∈ R

2×2 with ‖X‖∗ ≤ 1. According to Lemma 2, the Gröbner
basis G of J with respect to the grevlex order is

G =
{
g1 = x12x21 − x11x22, g2 = x2

11 + x2
12 + x2

21 + x2
22 − 1

}
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with the corresponding θ -basis B of R [x] /J restricted to the degree two given as

B1 = {1 + J, x11 + J, x12 + J, x21 + J, x22 + J }
B2 = B1 ∪ {x11x12 + J, x11x21 + J, x11x22 + J, x2

12 + J, x12x22 + J,

x2
21 + J, x21x22 + J, x2

22 + J }.

The set B2 consists of all monomials of degree at most two which are not divisible
by a leading term of any of the polynomials inside the Gröbner basis G . For example,
x11x12 +J is an element of the theta basis B, but x2

11 +J is not since x2
11 is divisible

by LT (g2).
Linearizing the elements of B2 results in Table 1, where the monomials f in the

first row stand for an element f + J ∈ B2.
Therefore, [x]B1 = (1, x11, x12, x21, x22)

T and the following combinatorial
moment matrix MB1 (x, y) (see Definition 4) is given as

MB1 (x, y) =

⎡

⎢
⎢
⎢
⎢
⎣

y0 x11 x12 x21 x22
x11 −y4 − y6 − y8 + y0 y1 y2 y3
x12 y1 y4 y3 y5
x21 y2 y3 y6 y7
x22 y3 y5 y7 y8

⎤

⎥
⎥
⎥
⎥
⎦

.

For instance, the entry (2, 2) of [x]B1 [x]TB1
is of the form x2

11 + J = −x2
12 − x2

21 −
x2

22 + 1 + J , where we exploit the second property in Definition 3 and the fact that
g2 ∈ J . Replacing x2

12 + J by y4 etc., as in Table 1, yields the stated expression for
MB1(x, y)2,2.

By Theorem 1, the first theta body T H1 (J ) is the closure of

QB1 (J ) = πx

{
(x, y) ∈ R

B2 : MB1 (x, y) � 0, y0 = 1
}

,

where πx represents the projection onto the variables x, i.e., the projection onto x11,
x12, x21, x22. Furthermore, θ1-norm of a matrix X ∈ R

2×2 induced by the T H1 (J )

and denoted as ‖·‖θ1
can be computed as

‖X‖θ1
= inf t s.t. X ∈ tQB1 (J ) (15)

Table 1 Linearization of the elements of B2 = {f + J } for matrix 2 × 2 case

1 + J x11 + J x12 + J x21 + J x22 + J x11x12 + J x11x21 + J

y0 x11 x12 x21 x22 y1 y2

x11x22 + J x2
12 + J x12x22 + J x2

21 + J x21x22 + J x2
22 + J

y3 y4 y5 y6 y7 y8
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which is equivalent to

inf
t∈R,y∈R8

t s.t. M =

⎡

⎢
⎢
⎢
⎢
⎣

t X11 X12 X21 X22
X11 −y4 − y6 − y8 + t y1 y2 y3
X12 y1 y4 y3 y5
X21 y2 y3 y6 y7
X22 y3 y5 y7 y8

⎤

⎥
⎥
⎥
⎥
⎦

� 0. (16)

Notice that trace(M) = 2t . By Theorem 2, the above program is equivalent to
the standard semidefinite program for computing the nuclear norm of a given matrix
X ∈ R

m×n

min
W,Z

1

2
(trace(W) + trace(Z)) s.t.

⎡

⎢
⎢
⎣

W11 W12 X11 X12
W12 W22 X21 X22
X11 X21 Z11 Z12
X22 X22 Z12 Z22

⎤

⎥
⎥
⎦ � 0.

Remark 3 In compressive sensing, reconstruction of sparse signals via �1-norm min-
imization is well-understood (see, for example, [10, 20, 23]). It is possible to provide
hierarchical relaxations via theta bodies of the unit �1-norm ball. However, as in the
matrix scenario discussed above, all these relaxations coincide with the unit �1-norm
ball, [58].

4 The tensor θk-norm

Let us now turn to the tensor case and study the hierarchical closed convex relaxations
of the unit tensor nuclear norm ball defined via theta bodies. Since in the matrix case
all θk-norms are equal to the matrix nuclear norm, their generalization to the tensor
case may all be viewed as natural generalizations of the nuclear norm. We focus
mostly on the θ1-norm whose unit norm ball is the largest in a hierarchical sequence
of relaxations. Unlike in the matrix case, the θ1-norm defines a new tensor norm, that
up to the best of our knowledge has not been studied before.

The polynomial ideal will be generated by the minors of order two of the
unfoldings—and matricizations in the case d ≥ 4 – of the tensors, where each vari-
able corresponds to one entry in the tensor. As we will see, a tensor is of rank one if
and only if all order-two minors of the unfoldings (matricizations) vanish. While the
order-three case requires to consider all three unfoldings, there are several possibili-
ties for the order-d case when d ≥ 4. In fact, a dth-order tensor is of rank one if all
minors of all unfoldings vanish so that it may be enough to consider only the unfold-
ings. However, one may as well consider the ideal generated by all minors of all
matricizations or one may consider a subset of matricizations including all unfold-
ings. Indeed, any tensor format—and thereby any notion of tensor rank—corresponds
to a set of matricizations and in this way, one may associate a θk-norm to a certain
tensor format. We refer to, e.g., [33, 53] for some background on various tensor for-
mats. However, as we will show later, the corresponding reduced Gröbner basis with
respect to the grevlex order does not depend on the choice of the tensor format. We
will mainly concentrate on the case that all matricizations are taken into account for
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defining the ideal. Only for the case d = 4, we will briefly discuss the case, that the
ideal is generated only by the minors corresponding to the four unfoldings.

Below, we consider first the special case of third-order tensors and continue then
with fourth-order tensors. In Section 4.2 we will treat the general dth-order case.

4.1 Third-order tensors

As described above, we will consider the order-two minors of all the unfoldings of a
third-order tensor. Our notation requires the following sets of subscripts

S1 = {(α, β) : 1 ≤ α1 < β1 ≤ n1, 1 ≤ β2 < α2 ≤ n2, 1 ≤ β3 ≤ α3 ≤ n3} ,

S2 = {(α, β) : 1 ≤ α1 ≤ β1 ≤ n1, 1 ≤ β2 < α2 ≤ n2, 1 ≤ α3 < β3 ≤ n3} ,

S3 = {(α, β) : 1 ≤ α1 < β1 ≤ n1, 1 ≤ α2 ≤ β2 ≤ n2, 1 ≤ β3 < α3 ≤ n3} ,

S i = {
(α, β) : (α, β) ∈ Si and αj �= βj , for all j ∈ [3]

}
, for all i ∈ [3] .

The following polynomials f (α,β) in R [x] = R
[
x111, x112, . . . , xn1n2n3

]
correspond

to a subset of all order-two minors of all tensor unfoldings,

f (α,β)(x) = xαxβ − xα∨βxα∧β, (α, β) ∈ S := S1 ∪ S2 ∪ S3

g3(x) =
n1∑

i=1

n2∑

j=1

n3∑

k=1

x2
ijk − 1,

where [α ∨ β]i = max {αi, βi} and [α ∧ β]i = min {αi, βi}. In particular, the
following order-two minor of X{1} is not contained in

{
f (α,β) : (α, β) ∈ S

}

f = xαxβ − xα̂x
β̂
, where α̂ = (α1, β2, β3) , β̂ = (β1, α2, α3) and (α, β) ∈ S 3.

We remark that in real algebraic geometry and commutative algebra, polynomials
f (α,β) are known as Hibi relations (see [34]).

Lemma 4 A tensor X ∈ R
n1×n2×n3 is a rank-one, unit Frobenius norm tensor if and

only if
g3(X) = 0 and f (α,β)(X) = 0 for all (α, β) ∈ S . (17)

Proof Sufficiency of (17) follows directly from the definition of the rank-one unit
Frobenius norm tensors. For necessity, the first step is to show that mode-1 fibers
(columns) span one-dimensional space in R

n1 . To this end, we note that for β2 ≤ α2
and β3 ≤ α3, the fibers X·α2α3 and X·β2β3 satisfy

−Xn1α2α3

⎡

⎢
⎢
⎢
⎣

X1β2β3

X2β2β3
...

Xn1β2β3

⎤

⎥
⎥
⎥
⎦

+ Xn1β2β3

⎡

⎢
⎢
⎢
⎣

X1α2α3

X2α2α3
...

Xn1α2α3

⎤

⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎣

−X1β2β3Xn1α2α3 + X1β2β3Xn1α2α3−X2β2β3Xn1α2α3 + X2β2β3Xn1α2α3
...

−Xn1β2β3Xn1α2α3 + Xn1β2β3Xn1α2α3

⎤

⎥
⎥
⎥
⎦

= 0,
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where we used that f (α,β)(X) = 0 for all (α, β) ∈ S . From g3 (X) = 0 it follows
that the tensor X is normalized.

Using similar arguments, one argues that mode-2 fibers (rows) and mode-3 fibers
span one dimensional spaces in R

n2 and R
n3 , respectively. This completes the proof.

A third-order tensor X ∈ R
n1×n2×n3 is rank one if and only if all three unfoldings

X{1} ∈ R
n1×n2n3 , X{2} ∈ R

n2×n1n3 , and X{3} ∈ R
n3×n1n2 are rank-one matrices.

Notice that f (α,β)(X) = 0 for all (α, β) ∈ S� is equivalent to the statement that the
�-th unfolding X{�} is a rank-one matrix, i.e., that all its order-two minors vanish, for
all � ∈ [3].

In order to define relaxations of the unit tensor nuclear norm ball we introduce the
polynomial ideal J3 ⊂ R [x] = R

[
x111, x112, . . . , xn1n2n3

]
as the one generated by

G3 =
{
f (α,β) (x) : (α, β) ∈ S

}
∪ {g3 (x)} , (18)

i.e., J3 = 〈G3〉. Its real algebraic variety equals the set of rank-one third-order tensors
with unit Frobenius norm and its convex hull coincides with the unit tensor nuclear
norm ball. The next result provides the Gröbner basis of J3.

Theorem 3 The basis G3 defined in (18) forms the reduced Gröbner basis of the
ideal J3 = 〈G3〉 with respect to the grevlex order.

Proof Similarly to the proof of Theorem 2 we need to show that S (p, q) →G3 0 for
all polynomials p, q ∈ G3 whose leading terms are not relatively prime. The leading
monomials with respect to the grevlex ordering are given by

LM(g3) = x2
111

and LM(f (α,β)) = xαxβ, (α, β) ∈ S .

The leading terms of g3 and f (α,β) are always relatively prime. First we consider two
distinct polynomials f, g ∈ {f (α,β) : (α, β) ∈ S3}. Let f = f (α,β) and g = f

(
α,β

)

for (α, β) ∈ S 3, where β = (β1, α2, β3). That is,

f (x) = xαxβ − xα∨βxα∧β, g(x) = xαxβ − xα∨βxα∧β .

Since α ∧ β = α ∧ β and f
(
β,α∨β

)

∈ {f (α,β) : (α, β) ∈ S2}, then

S (f, g) = xα∧β

(
−xβxα∨β + xβxα∨β

)
= xα∧βf (β,α∨β) →G3 0.

Next we show that S (f, g) ∈ J3, for f ∈ {
f (α,β) : (α, β) ∈ S2

}
and g ∈

{
f (α,β) : (α, β) ∈ S1

}
. Let f = f

(
α,β̂

)

with β̂ = (α1, β2, β3) and g = f

(
α,β̃

)

with β̃ = (β1, β2, α3), where (α, β) ∈ S 2. Since x
α∧β̂

= xα∧β̃ , f

(
β̂,α∨β̃

)

∈
{
f (α,β) : (α, β) ∈ S3

}
, and f

(
α∨β̂,β̃

)

∈ {
f (α,β) : (α, β) ∈ S1

}

S (f, g) = x
α∧β̂

(
−xβ̃x

α∨β̂
+ x

β̂
xα∨β̃

)
= x

α∧β̂

(
f (β̂,α∨β̃) − f (α∨β̂,β̃)

)
→G3 0.
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For the remaining cases one proceeds similarly. In order to show that G3 is the
reduced Gröbner basis, one uses the same arguments as in the proof of Theorem 2.

Remark 4 The above Gröbner basis G3 is obtained by taking a particular subset of
all order-two minors of all three unfoldings of the tensor X ∈ R

n1×n2×n3 (not consid-
ering the same minor twice). One might think that the θ1-norm obtained in this way
corresponds to a (weighted) sum of the nuclear norms of the unfoldings, which has
been used in [25, 39] for tensor recovery. The examples of cubic tensors X ∈ R

2×2×2

presented in Table 2 show that this is not the case. Assuming that θ1-norm is a linear
combination of the nuclear norm of the unfoldings, there exist α, β, γ ∈ R such that
α‖X{1}‖∗ + β‖X{2}‖∗ + γ ‖X{3}‖∗ = ‖X‖θ1 . From the first and the second tensors in
Table 2 we obtain γ = 0. Similarly, the first and the third tensors and the first and
the fourth tensors give β = 0 and α = 0, respectively. Thus, the θ1-norm does not
coincide with a weighted sum of the nuclear norms of the unfoldings. In addition,
the last tensor shows that the θ1-norm does not equal maximum of the norms of the
unfoldings.

Theorem 3 states that G3 is the reduced Gröbner basis of the ideal J3 generated
by all order-two minors of all matricizations of an order-three tensor. That is, J3 is
generated by the following polynomials

f
{1}
(α,β)(x) = −xα1α2α3xβ1β2β3 + xα1β2β3xβ1α2α3 , for (α, β) ∈ T {1}

f
{2}
(α,β)(x) = −xα1α2α3xβ1β2β3 + xβ1α2β3xα1β2α3 , for (α, β) ∈ T {2}

f
{3}
(α,β)(x) = −xα1α2α3xβ1β2β3 + xβ1β2α3xα1α2β3 , for (α, β) ∈ T {3},

Table 2 Matrix nuclear norms of unfoldings and θ1-norm of tensors X ∈ R
2×2×2, which are represented

in the second column as X = [X (:, :, 1) |X (:, :, 2)]. The third, fourth and fifth columns represent the
nuclear norms of the first, second and the third unfolding of a tensor X, respectively. The last column
contains the numerically computed θ1-norm

X ∈ R
2×2×2 ‖X{1}‖∗ ‖X{2}‖∗ ‖X{3}‖∗ ‖X‖θ1

1

[
1 0

0 0

∣
∣
∣
∣
∣

0 0

0 1

]

2 2 2 2

2

[
1 0

0 1

∣
∣
∣
∣
∣

0 0

0 0

]

2 2
√

2 2

3

[
1 0

0 0

∣
∣
∣
∣
∣

0 0

1 0

]

2
√

2 2 2

4

[
1 0

0 0

∣
∣
∣
∣
∣

0 1

0 0

] √
2 2 2 2

5

[
1 0

0 1

∣
∣
∣
∣
∣

0 1

0 0

] √
2 + 1

√
2 + 1

√
2 + 1 3
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where
{
f

{k}
(α,β)(x) : (α, β) ∈ T {k}

}
is the set of all order-two minors of the kth

unfolding and

T {k} = {
(α, β) : αk �= βk, α �= β, where αk = βk = 0, α� = α�, β� = β�

}
.

For (α, β), xα{k}xβ{k} denotes a monomial where α
{k}
k = αk , β{k}

k = βk , and α
{k}
� = β�,

β
{k}
� = α�, for all � ∈ [d] \{k}. Notice that f {k}

(α,β)(x) = f
{k}
(β,α)(x) = −f

{k}
(α{k},β{k})(x) =

−f
{k}
(β{k},α{k})(x), for all (α, β) ∈ T {k}, and all k ∈ [3]. Let us now consider a TT-

format and a corresponding notion of tensor rank. Recall that a TT-rank of an order
three tensor is a vector r = (r1, r2) where r1 = rank(X{1}) and r2 = rank(X{1,2}).
Consequently, we consider an ideal J3,TT generated by all order-two minors of matri-
cizations X{1} and X{1,2} of the order-3 tensor. That is, the ideal J3,TT is generated by
the polynomials

f
{1}
(α,β)(x) = −xα1α2α3xβ1β2β3 + xα1β2β3xβ1α2α3 , for (α, β) ∈ T {1},

f
{1,2}
(α,β)(x) = −xα1α2α3xβ1β2β3 + xα1α2β3xβ1β2α3 , for (α, β) ∈ T {1,2},

where T {1,2} = {(α, β) : (α1, α2, 0) �= (β1, β2, 0) , α3 �= β3}.

Theorem 4 The polynomial ideals J3 and J3,TT are equal.

Remark 5 As a consequence, G3 is also the reduced Gröbner basis for the ideal J3,TT
with respect to the grevlex ordering.

Proof Notice that
(
X{3})T = X{1,2} and therefore

{
f

{3}
(α,β)(x) : (α, β) ∈ T {3}} =

{
f

{1,2}
(α,β)(x) : (α, β) ∈ T {1,2}} .

Hence, it is enough to show that f
{2}
(α,β) ∈ J3,TT, for all (α, β) ∈ T {2}. By definition

of T {2}, we have that α2 �= β2 and (α1, 0, α3) �= (β1, 0, β3). We can assume that
α3 �= β3, since otherwise f

{2}
(α,β) = f

{1}
(α,β). Analogously, α1 �= β1 since otherwise

f
{2}
(α,β) = f

{1,2}
(α,β). Consider the following polynomials

f (x) = −xα1α2α3xβ1β2β3 + xβ1α2β3xα1β2α3 , (α, β) ∈ T {2}

g(x) = −xβ1β2α3xα1α2β3 + xβ1α2β3xα1β2α3 , (β1, β2, α3, α1, α2, β3) ∈ T {1}

h(x) = −xα1α2α3xβ1β2β3 + xα1α2β3xβ1β2α3 , (α, β) ∈ T {1,2}.
Thus, we have that f (x) = g(x) + h(x) ∈ J3,TT.

4.2 The theta norm for general dth-order tensors

Let us now consider dth-order tensors in R
n1×n2×···×nd for general d ≥ 4. Our

approach relies again on the fact that a tensor X ∈ R
n1×n2×···×nd is of rank-one if

and only if all its matricizations are rank-one matrices, or equivalently, if all minors
of order two of each matricization vanish.
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The description of the polynomial ideal generated by the second-order minors of
all matricizations of a tensor X ∈ R

n1×n2×···×nd unfortunately requires some tech-
nical notation. Again, we do not need all such minors in the generating set that we
introduce next. In fact, this generating set will turn out to be the reduced Gröbner
basis of the ideal.

Similarly to before, the entry (α1, α2, . . . , αd) of a tensor X ∈ R
n1×n2×···×nd

corresponds to the variable xα1α2···αd
or simply xα . We aim at introducing a set of

polynomials of the form

f
(α,β)
d (x) := −xα∧βxα∨β + xαxβ (19)

which will generate the desired polynomial ideal. These polynomials correspond to
a subset of all order-two minors of all the possible dth-order tensor matricizations.
The set S denotes the indices where α and β differ. Since for an order-two minor
of a matricization XM the sets α and β need to differ in at least two indices, S is
contained in

S[d] := {S ⊂ [d] : 2 ≤ |S | ≤ d}.
Given the set S of different indices, we require all non-empty subsets M ⊂ S of
possible indices which are “switched” between α and β for forming the minors in
(19). This implies that, without loss of generality,

αj > βj , for all j ∈ M

αk < βk, for all k ∈ S \M .

That is, the same minor is obtained if we require that αj < βj for all j ∈ M and
αk > βk for all k ∈ S \M since the set of all two-minors of XM coincides with the
set of all two-minors of XS \M .

For S ∈ S[d], we define eS := min{p : p ∈ S }. The set M corresponds to an
associated matricization XM . The set of possible subsets M is given as

PS =
⎧
⎨

⎩

{
M ⊂ S : |M | ≤ � |S |

2 �
}

\{∅}, if |S | is odd,
{
M ⊂ S : |M | ≤ � |S |−1

2 �
}

∪
{
M ⊂ S : |M |= |S |

2 , eS ∈ M
}

\{∅}, otherwise.

Notice that PS ∪ PS c ∪ {∅} ∪ S with PS c := {M : S \M ∈ PS } forms the
power set of S . The constraint on the size of M in the definition of PS is motivated
by the fact that the role of α and β can be switched and lead to the same polynomial
f

(α,β)
d .

Thus, for S ∈ S[d] and M ∈ PS , we define a set

T S ,M
d := {(α, β) : αi = βi, for all i /∈ S

αj > βj , for all j ∈ M

αk < βk, for all k ∈ S \M }.
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For notational purposes, we define

{f S
d } = ∪M∈PS

{f (α,β)
d : (α, β) ∈ T S ,M

d } for S ∈ S[d].

Since we are interested in unit Frobenius norm tensors, we also introduce the
polynomial

gd (x) =
n1∑

i1=1

n2∑

i2=1

. . .

nd∑

id=1

x2
i1i2...id

− 1.

Our polynomial ideal is then the one generated by the polynomials in

Gd =
⋃

S ∈S[d]

{f S
d } ∪ {gd} ⊂ R [x] = R

[
x11...1, x11...2, . . . , xn1n2...nd

]
,

i.e., Jd = 〈Gd〉. As in the special case of the third-order tensors, not all second-
order minors corresponding to all matricizations are contained in the generating set
Gd due to the condition ik < îk for all k ∈ S in the definition of T S

d . Nevertheless
all second-order minors are contained in the ideal Jd as will also be revealed by
the proof of Theorem 5 below. For instance, h(x) = −x1234x2343 + x1243x2334—
corresponding to a minor of the matricization XM for M = {1, 2}—does not belong
to G4, but it does belong to the ideal J4. Moreover, it is straightforward to verify that
all polynomials in Gd differ from each other.

The algebraic variety of Jd consists of all rank-one unit Frobenius norm order-d
tensors as desired, and its convex hull yields the tensor nuclear norm ball.

Theorem 5 The set Gd forms the reduced Gröbner basis of the ideal Jd with respect
to the grevlex order.

Proof Again, we use Buchberger’s criterion stated in Theorem 9. First notice that
the polynomials gd and f

(α,β)
d are always relatively prime, since LM(gd) = x2

11...1

and LM(f
(α,β)
d ) = xαxβ for (α, β) ∈ T M ,S

d , where S ∈ S[d] and M ∈ PS .
Therefore, we need to show that S(f1, f2) →Gd

0, for all f1, f2 ∈ Gd\{gd} with
f1 �= f2. To this end, we analyze the division algorithm on 〈Gd〉.

Let f1, f2 ∈ Gd with f1 �= f2. Then it holds LM(f1) �= LM(f2). If these leading
monomials are not relatively prime, the S-polynomial is of the form

S(f1, f2) = xα1xα2xα3 − xᾱ1xᾱ2xᾱ3

with
{
α1

k , α
2
k , α

3
k

} = {
ᾱ1

k , ᾱ
2
k , ᾱ

3
k

}
for all k ∈ [d].

The step-by-step procedure of the division algorithm for our scenario is presented
in Algorithm 2. We will show that the algorithm eventually stops and that step 2) is
feasible, i.e., that there always exist k and � such that line 7 of Algorithm 2 holds—
provided that Si �= 0. (In fact, the purpose of the algorithm is to achieve the condition
that in the ith iteration of the algorithm α̂

1,i
k ≤ α̂

2,i
k ≤ α̂

3,i
k , for all k ∈ [d].) This will

show then that S(f1, f2) →Gd
0.
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Before passing to the general proof, we illustrate the division algorithm on an
example for d = 4. The experienced reader may skip this example.

Let f1(x) := f
(1212,2123)
4 (x) = −x1112x2223 + x1212x2123 ∈ G4 (with the cor-

responding sets S = {1, 2, 3, 4}, M = {2}) and f2(x) := f
(3311,2123)
4 (x) =

−x2111x3323 + x3311x2123 ∈ G4 (with the corresponding sets S = {1, 2, 3, 4}, M =
{1, 2}). We will show that S(f1, f2) = −x1112x2223x3311 + x1212x2111x3323 →G4 0
by going through the division algorithm.

In iteration i = 0 we set S0 = S(f1, f2) = −x1112x2223x3311 + x1212x2111x3323.
The leading monomial is LM(S0) = x1112x2223x3311, the leading coefficient is
LC(S0) = −1, and the non-leading monomial is NLM(S0) = x1212x2111x3323.
Among the two options for choosing a pair of indexes (α1,0, α2,0) in step 2), we
decide to take α1,0 = 1112 and α2,0 = 3311 which leads to the set M0 =
{4}. The polynomial xα1,0xα2,0 − xα1,0∧α2,0xα1,0∨α2,0 then equals the polynomial
f

(1112,3311)
4 (x) = −x1111x3312 + x1112x3311 ∈ G4 and we can write

S0 = −1 ·
(
x2223 (−x1111x3312 + x1112x3311)+ x1111x2223x3312 − x1212x2111x3323︸ ︷︷ ︸

= S1

)
.

The leading and non-leading monomials of S1 are LM(S1) = x1111x2223x3312 and
NLM(S1) = x1212x2111x3323, respectively, while LC(S1) = 1. The only option for
a pair of indices as in line 7 of Algorithm 2 is α1,1 = 3312, α2,1 = 2223, so that
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the set M1 = {1, 2}. The divisor xα1,1xα2,1 − xα1,1∧α2,1xα1,1∨α2,1 in the step 4) equals
f

(3312,2223)
4 (x) = −x2212x3323 + x3312x2223 ∈ G4 and we obtain

S1 = 1 ·
(
x1111 (−x2212x3323 + x2223x3312) + x1111x2212x3323 − x1212x2111x3323︸ ︷︷ ︸

= S2

)
.

The index sets of the monomial xα1xα2xα3 = x1111x2212x3323 in S2 satisfy

α1
k ≤ α2

k ≤ α3
k for all k ∈ [4]

and therefore it is the non-leading monomial of S2, i.e., NLM(S2) =
x1111x2212x3323. Thus, LM(S2) = x1212x2111x3323 and LC(S2(f1, f2)) = −1. Now
the only option for a pair of indices as in step 2) is α1,2 = 2111, α2,2 = 1212 with
M2 = {1}. This yields

S2 = −1 ·
(
x3323 (−x1111x2212 + x2111x1212)+ x1111x2212x3323 − x1111x2212x3323︸ ︷︷ ︸

= S3 = 0

)
.

Thus, the division algorithm stops and we obtained after three steps

S(f1, f2)=S0 =LC(S0)x2223f
(1112,3311)
4 (x) + LC(S0)LC(S1)x1111f

(3312,2223)
4 (x)

+LC(S0)LC(S1)LC(S2)x3323f
(2111,1212)
4 (x).

Thus, S(f1, f2) →G4 0.
Let us now return to the general proof. We first show that there always exist indices

α1,i , α2,i satisfying line 7 of Algorithm 2 unless Si = 0. We start by setting xαi =
xα̂1,i xα̂2,i xα̂3,i with xα̂1,i ≥ xα̂2,i ≥ xα̂3,i to be the leading monomial and xβi to be
the non-leading monomial of Si . The existence of a polynomial h ∈ Gd such that
LM(h) divides LM(Si) = xα̂1,i xα̂2,i xα̂3,i = xαi is equivalent to the existence of
α1,i , α2,i ∈ {

α̂1,i , α̂2,i , α̂3,i
}

such that there exists at least one k and at least one � for

which α
1,i
k < α

2,i
k and α

1,i
� > α

2,i
� . If such pair does not exist in iteration i, we have

α̂
1,i
k ≤ α̂

2,i
k ≤ α̂

3,i
k for all k ∈ [d] . (20)

We claim that this cannot happen if Si �= 0. In fact, (20) would imply that the
monomial xαi = xα̂1,i xα̂2,i xα̂3,i is the smallest monomial xβxγ xη (with respect to the
grevlex order) which satisfies

{βk, γk, ηk} = {α̂1,i
k , α̂

2,i
k , α̂

3,i
k } for all k ∈ [d] .

However, then xαi would not be the leading monomial by definition of the grevlex
order, which leads to a contradiction. Hence, we can always find indices α1,i , α2,i

satisfying line 7 in step 2) of Algorithm 2 unless Si = 0.
Next we show that the division algorithm always stops in a finite number of steps.

We start with iteration i = 0 and assume that S0 �= 0. We choose α1,0, α2,0, α3,0 as
in step 2) of Algorithm 2. Then we divide the polynomial S0 by a polynomial h ∈ Gd

such that LM(h) = xα1,0xα2,0 . The polynomial h ∈ Gd is defined as in step 3) of the
algorithm, i.e.,

h(x) = f

(
α1,0,α2,0

)

d = xα1,0xα2,0 − xα1,0∧α2,0xα1,0∨α2,0 ∈ Gd .
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The division of S0 by h results in

S0 = LC(S0)
(
xα3,0 · f

(
α1,0,α2,0

)

d + xα1,0∧α2,0xα1,0∨α2,0xα3,0 − NLM(S0)
︸ ︷︷ ︸

= S1

)
.

Note that by construction
[
α1,0 ∧ α2,0

]

k
≤
[
α1,0 ∨ α2,0

]

k
for all k ∈ [d] . (21)

If S1 �= 0, then in the following iteration i = 1 we can assume LM(S1) =
xα1,0∧α2,0xα1,0∧α2,0xα3,0 . Due to (21), a pair α1,1, α2,1 as in line 7 of Algorithm 2 can
be either α1,0 ∧ α2,0, α3,0 or α1,0 ∨ α2,0, α3,0. Let us assume the former. Then this
iteration results in

S1 = LC(S1)
(
xα3,1 · f

(
α1,1,α2,1)

d + xα1,1∧α2,1xα1,1∨α2,1xα3,1 − NLM(S0)
︸ ︷︷ ︸

= S2

)

with
[
α1,1 ∧ α2,1

]

k
≤
[
α3,1

]

k
,
[
α1,1 ∨ α2,1

]

k
for all k ∈ [d] , and xα3,1 = xα1,0∨α2,0 .

Next, if S2 �= 0 and LM(S2) = xα1,1∧α2,1xα1,1∨α2,1xα3,1 then a pair of indices sat-
isfying line 7 of Algorithm 2 must be α1,1 ∨ α2,1, α3,1 so that the iteration ends up
with

S2 = LC(S2)
(
xα3,2 · f

(
α1,2,α2,2)

d + xα1,2∧α2,2xα1,2∨α2,2xα3,2 − NLM(S0)
︸ ︷︷ ︸

= S3

)

such that
[
α3,2

]

k
≤
[
α1,2 ∧ α2,2

]

k
≤
[
α1,2 ∨ α2,2

]

k
for all k ∈ [d] , and xα3,2 = xα1,1∧α2,1 .

Thus, in iteration i = 3 the leading monomial LM(S3) must be NLM(S0) (unless
S3 = 0).

A similar analysis can be performed on the monomial NLM(S0) and therefore the
algorithm stops after at most 6 iterations. The division algorithm results in

S(f1, f2) =
p∑

i=0

⎛

⎝
i∏

j=0

LC(Sj )

⎞

⎠ xα3,i · f

(
α1,i ,α2,i

)

d ,

where f

(
α1,i ,α2,i

)

d = −xα1,i∧α2,i xα1,i∨α2,i + xα1,i xα2,i ∈ Gd and p ≤ 5. All the cases
that we left out above are treated in a similar way. This shows that Gd is a Gröbner
basis of Jd .

In order to show that Gd is the reduced Gröbner basis of Jd , first notice that
LC(g) = 1 for all g ∈ Gd . Furthermore, the leading term of any polynomial in Gd

is of degree two. Thus, it is enough to show that for every pair of different polyno-

mials f
(α1,β1)
d , f

(α2,β2)
d ∈ Gd (related to S1, M1 and S2, M2, respectively) it holds

that LM(f
(α1,β1)
d ) �= LM(f

(α2,β2)
d ) with (αk, βk) ∈ T Sk,Mk

d for k = 1, 2. But this
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follows from the fact that all elements of Gd are different as remarked before the
statement of the theorem.

We define the tensor θk-norm analogously to the matrix scenario.

Definition 6 The tensor θk-norm, denoted by ‖·‖θk
, is the norm induced by the k-

theta body T Hk (Jd), i.e.,

‖X‖θk
= inf {r : X ∈ rT Hk (Jd)} .

The θk-norm can be computed with the help of Theorem 1, i.e., as

‖X‖θk
= min t subject to X ∈ tQBk

(Jd).

Given the moment matrix MBk
[y] associated with Jd , this minimization program is

equivalent to the semidefinite program

min
t∈R,y∈RBk

t subject to MBk
[y] � 0, y0 = t, yB1 = X. (22)

We have focused on the polynomial ideal generated by all second-order minors of
all matricizations of the tensor. One may also consider a subset of all possible matri-
cizations corresponding to various tensor decompositions and notions of tensor rank.
For example, the Tucker(HOSVD)-rank (corresponding to the Tucker or HOSVD
decomposition) of a dth-order tensor X is a d-dimensional vector rHOSV D =
(r1, r2, . . . , rd) such that ri = rank

(
X{i}) for all i ∈ [d] (see [29]). Thus, we can

define an ideal Jd,HOSVD generated by all second-order minors of unfoldings X{k},
for k ∈ [d].

The tensor train (TT) decomposition is another popular approach for tensor com-
putations. The corresponding TT-rank of a dth-order tensor X is a (d−1)-dimensional
vector rT T = (r1, r2, . . . , rd−1) such that ri = rank

(
X{1,...,i}), i ∈ [d − 1] (see

[49] for details). By taking into account only minors of order two of the matriciza-
tions τ ∈ {{1}, {1, 2}, . . . , {1, 2, . . . , d − 1}}, one may introduce a corresponding
polynomial ideal Jd,TT.

Theorem 6 The polynomial ideals Jd , Jd,HOSVD, and Jd,TT are equal, for all d ≥ 3.

Proof Let τ ⊂ [d] represent a matricization. Similarly to the case of order-three
tensors, for (α, β) ∈ N

2d , xατ xβτ denotes the monomial where ατ
k = αk , βτ

k = βk

for all k ∈ τ and ατ
� = β�, βτ

� = α� for all � ∈ τ c = [d] \τ . Moreover, xατ,0xβτ,0

denotes the monomial where α
τ,0
k = αk , βτ,0

k = βk for all k ∈ τ and α
τ,0
� = β

τ,0
� = 0

for all � ∈ τ c = [d] \τ . The corresponding order-two minors are defined as

f τ
(α,β)(x) = −xαxβ + xατ xβτ , (α, β) ∈ T τ .

We define the set T τ as

T τ =
{
(α, β) : ατ,0 �= βτ,0, ατc,0 �= βτc,0

}
.
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Similarly as in the case of order-three tensors, notice that f τ
(α,β)(x) = f τ

(β,α)(x) =
−f τ

(ατ ,βτ )(x)=−f τ
(βτ ,ατ )(x), for all (α, β) ∈ T τ . First, we show that Jd = Jd,HOSVD

by showing that f τ
(α,β)(x) ∈ Jd,HOSVD, for all (α, β) ∈ T τ and all |τ | ≥ 2. Without

loss of generality, we can assume that αi �= βi , for all i ∈ τ since otherwise we can
consider the matricization τ\{i : αi = βi}. Additionally, by definition of T τ , there
exists at least one � ∈ τ c such that α� �= β�. Let τ = {t1, t2, . . . , tk} with ti < ti+1,
for all i ∈ [k − 1] and k ≥ 2. Next, fix (α, β) ∈ T τ and define α0 = α and β0 = β.
Algorithm 3 results in polynomials gk ∈ J3,TT such that f τ

(α,β)(x) = ∑k
i=1 gi(x).

This follows from

k∑

i=1

gi =
k∑

i=1

(−xαi−1xβi−1 + xαi xβi

) = −xα0xβ0 + xαkxβk = f τ
(α,β)(x).

By the definition of polynomials gk it is obvious that

gi ∈
{
f

{i}
(α,β)(x) : (α, β) ∈ T {i}} , for all i ∈ [k].

Next, we show that Jd = Jd,TT. Since Jd = Jd,HOSVD, it is enough to show
that f

{k}
(α,β) ∈ Jd,TT, for all (α, β) ∈ T {k} and all k ∈ [d]. By definition of Jd,TT

this is true for k = 1. Fix k ∈ {2, 3, . . . , d}, (α, β) ∈ T {k} and consider a
polynomial f (x) = f

{k}
(α,β)(x) corresponding to the second-order minor of the matri-

cization X{k}. By definition of T {k}, αk �= βk and there exists an index i ∈
[d] \{k} such that αi �= βi . Assume that i > k. Define the polynomials g(x) ∈
R{1,2,...,k} :=

{
f

{1,2,...,k}
(α,β) (x) : (α, β) ∈ T {1,2,...,k}

}
and h(x) ∈ R{1,2,...,k−1} :=

{
f

{1,2,...,k−1}
(α,β) (x) : (α, β) ∈ T {1,2,...,k−1}

}
as

g(x) = −xαxβ + xα{1,2,...,k}xβ{1,2,...,k}

h(x) = −xα{1,2,...,k}xβ{1,2,...,k} + x
α{1,2,...,k}{1,2,...,k−1}x

β{1,2,...,k}{1,2,...,k−1}

Numerical Algorithms (2021) 88:25–66 55



Since x
α{1,2,...,k}{1,2,...,k−1}x

β{1,2,...,k}{1,2,...,k−1} = xα{k}xβ{k} , we have f (x) = g(x) + h(x)
and thus f ∈ Jd,TT. If i < k notice that f (x) = g1(x) + h1(x), where

g1(x) = −xαxβ + xα{1,2,...,k−1}xβ{1,2,...,k−1} ∈ R{1,2,...,k−1}

h1(x) = −xα{1,2,...,k−1}xβ{1,2,...,k−1} + x
α{1,2,...,k−1}{1,2,...,k}x

β{1,2,...,k−1}{1,2,...,k}

= −xα{1,2,...,k}xβ{1,2,...,k} + xα{k}xβ{k} ∈ R{1,2,...,k}.

Remark 6 Fix a decomposition tree TI which generates a particular HT-decomposition
and consider the ideal Jd,HT,TI

generated by all second-order minors corresponding
to the matricizations induced by the tree TI . In a similar way as above, one can obtain
that Jd,HT,TI

equals to Jd .

5 Convergence of the unit θk-norm balls

In this section we show the following result on the convergence of the unit θk-balls .

Theorem 7 The theta body sequence of Jd converges asymptotically to the
conv (νR(J )), i.e.,

∞⋂

k=1

T Hk(Jd) = conv (νR(Jd)) .

To prove Theorem 7 we use the following result presented in [2] which is a
consequence of Schmüdgen’s Positivstellensatz.

Theorem 8 Let J be an ideal such that νR(J ) is compact. Then the theta body
sequence of J converges to the convex hull of the variety νR(J ), in the sense that

∞⋂

k=1

T Hk(J ) = conv (νR(J )) .

Proof of Theorem 7 The set νR(Jd) is the set of rank-one tensors with unit Frobenius
norm which can be written as νR(Jd) = A1

⋂
A2 where

A1 = {
X ∈ R

n1×n2×···×nd : rank(X) = 1
}
,

and A2 = {
X ∈ R

n1×n2×···×nd : ‖X‖F = 1
}

.

It is well-known that A1 is closed [11, discussion before Definition 2.2] and
since A2 is clearly compact, νR(Jd) is compact. Therefore, the result follows from
Theorem 8.

6 Computational complexity

The computational complexity of the semidefinite programs for computing the θ1-
norm of a tensor or for minimizing the θ1-norm subject to a linear constraint depends
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polynomially on the number of variables, i.e., on the size of B2k , and on the
dimension of the moment matrix M. We claim that the overall complexity scales
polynomially in n, where for simplicity we consider dth-order tensors in R

n×n×···×n.
Therefore, in contrast to tensor nuclear norm minimization which is NP-hard for
d ≥ 3, tensor recovery via θ1-norm minimization is tractable.

Indeed, the moment matrix M is of dimension (1 + nd) × (1 + nd) (see also (16)
for matrices in R

2×2) and if a = nd denotes the total number of entries of a tensor
X ∈ R

n×···×n, then the number of the variables is at most a·(a+1)
2 ∼ O(a2) which

is polynomial in a. (A more precise counting does not give a substantially better
estimate.)

7 Numerical experiments

Let us now empirically study the performance of low rank tensor recovery via θ1-
norm minimization via numerical experiments, where we concentrate on third-order
tensors. Due to large computation times with standard semidefinite solvers, we focus
only on small tensors and leave the optimization of the algorithm for future work.
Given measurements b = A (X) of a low rank tensor X ∈ R

n1×n2×n3 , where A :
R

n1×n2×n3 → R
m is a linear measurement map, we aim at reconstructing X as the

solution of the minimization program

min ‖Z‖θ1 subject to A (Z) = b. (23)

As outlined in Section 2, the θ1-norm of a tensor Z can be computed as the minimizer
of the semidefinite program

min
t,y

t subject to M(t, y,Z) � 0,

where M(t, y,X) = MB1(t,X, y) is the moment matrix of order 1 associated to the
ideal J3 (see Theorem 3). This moment matrix for J3 is explicitly given by

M (t, y,X) = tM0 +
n1∑

i=1

n2∑

j=1

n3∑

k=1

XijkMijk +
9∑

p=2

|Mp |∑

q=1

y�M
p

hp(q),

where � = ∑p−1
r=2 |Mr | + q, Mp = {Mp

Ĩ
}, and the matrices M0,Mijk and Mp

Ĩ
are

provided in Table 3. For p ∈ {2, 3, . . . , 9}, the function hp denotes an arbitrary but
fixed bijection {1, 2, . . . , |Mp|} �→ {(i, î, j, ĵ , k, k̂)}, where Ĩ = (i, î, j, ĵ , k, k̂) is
in the range of the last column of Table 3. As discussed in Section 2 for the general
case, the θ1-norm minimization problem (23) is then equivalent to the semidefinite
program

min
t,y,Z

t subject to M (t, y,Z) � 0 and A (Z) = b. (24)

For our experiments, the linear mapping is defined as (A (X))k = 〈X, Ak〉, k ∈
[m], with independent Gaussian random tensors Ak ∈ R

n1×n2×n3 , i.e., all entries of

Ak are independent N
(

0, 1
m

)
random variables. We choose tensors X ∈ R

n1×n2×n3

of rank one as X = u ⊗ v ⊗ w, where each entry of the vectors u, v, and w is
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Table 3 The matrices involved in the definition of the moment matrix M (t, y,X). Due to the symmetry
only the upper triangle part of the matrices is specified

θ -basis Position (p, q) in the matrix Mpq Range of i, î, j, ĵ , k, k̂

M0 1 (1, 1) , (2, 2) 1

Mijk xijk (1, f (i, j, k)) 1 i ∈ [n1] , j ∈ [n2] , k ∈ [n3]

M2
f2

x2
ijk (2, 2) −1

(f (i, j, k), f (i, j, k)) 1 {i ∈ [n1] , j ∈ [n2] , k ∈ [n3]}
\ {i = j = k = 1}

M3
f3

x
iĵk

x
ij k̂

(f (i, j, k), f (i, ĵ , k̂)), 1

(f (i, j, k̂), f (i, ĵ , k)) 1 i ∈ [n1] , j < ĵ , k < k̂

M4
f4

xijkxîĵ k̂
(f (i, j, k), f (î, ĵ , k̂)) 1

(f (i, ĵ , k), f (î, j, k̂)) 1

(f (i, ĵ , k̂), f (î, j, k)), 1

(f (i, j, k̂), f (î, ĵ , k)) 1 i < î, j < ĵ , k < k̂

M5
f5

xijkxîj k̂
(f (i, j, k), f (î, j, k̂)), 1

(f (i, j, k̂), f (î, j, k)) 1 i < î, j ∈ [n2] , k < k̂

M6
f6

xijkxîĵk
(f (i, j, k), f (î, ĵ , k)) 1

(f (i, ĵ , k), f (î, j, k)) 1 i < î, j < ĵ , k ∈ [n3]

M7
f7

x
îjk

xijk (f (i, j, k), f (î, j, k)) 1 i < î, j ∈ [n2] , k ∈ [n3]

M8
f8

x
iĵk

xijk (f (i, j, k), f (i, ĵ , k)) 1 i ∈ [n1] , j < ĵ , k ∈ [n3]

M9
f9

x
ij k̂

xijk (f (i, j, k), f (i, j, k̂)) 1 i ∈ [n1] , j ∈ [n2] , k < k̂

The other non-specified entries of the matrices M ∈ R
(n1n2n3+1)×(n1n2n3+1) from the first column are

equal to zero. The matrix M corresponds to the element g + J3 of the θ -basis specified in the second
column. The index Ĩ = (i, î, j, ĵ , k, k̂) is in the range of the last column. The function f : N3 → N is
defined as f (i, j, k) = (i − 1)n2n3 + (j − 1)n3 + k + 1

taken independently from the normal distribution N (0, 1). Tensors X ∈ R
n1×n2×n3

of rank two are generated as the sum of two random rank-one tensors. With A and
X given, we compute b = A (X), run the semidefinite program (24) and compare
its minimizer with the original low rank tensor X. For a given set of parameters,
i.e., dimensions n1, n2, n3, number of measurements m and rank r , we repeat this
experiment 200 times and record the empirical success rate of recovering the original
tensor, where we say that recovery is successful if the elementwise reconstruction
error is at most 10−6. We use MATLAB (R2008b) for these numerical experiments,
including SeDuMi 1.3 for solving the semidefinite programs.

Table 4 summarizes the results of our numerical tests for cubic and non-cubic
tensors of rank one and two and several choices of the dimensions. Here, the num-
ber m0 denotes the maximal number of measurements for which not even one out
of 200 generated tensors is recovered and m1 denotes the minimal number of mea-
surements for which all 200 tensors are recovered. The fifth column in Table 4
represents the number of independent measurements which are always sufficient for
the recovery of a tensor of an arbitrary rank. For illustration, we present the aver-
age cpu time (in seconds) for solving the semidefinite programs via SeDuMi 1.3 in
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Table 4 Numerical results for
low rank tensor recovery in
R

n1×n2×n3

n1 × n2 × n3 Rank m0 m1 n1n2n3 cpu (s)

2 × 2 × 3 1 4 12 12 0.2

3 × 3 × 3 1 6 19 27 0.37

3 × 4 × 5 1 11 30 60 6.66

4 × 4 × 4 1 11 32 64 7.28

4 × 5 × 6 1 18 42 120 129.48

5 × 5 × 5 1 18 43 125 138.90

3 × 4 × 5 2 27 56 60 7.55

4 × 4 × 4 2 26 56 64 8.65

4 × 5 × 6 2 41 85 120 192.58

the last column. Alternatively, the SDPNAL+ MATLAB toolbox (version 0.5 beta)
for semidefinite programming [62, 64] allows to perform low rank tensor recovery
via θ1-norm minimization for even higher-dimensional tensors. For example, with
m = 95 measurement we managed to recover all rank-one 9×9×9 tensors out of 200
(each simulation taking about 5 min). Similarly, rank-one 11 × 11 × 11 tensors are
recovered from m = 125 measurements with one simulation lasting about 50 min.
Due to these large computation times, more elaborate numerical experiments have
not been conducted in these scenarios. We remark that no attempt of accelerating the
optimization algorithm has been made. This task is left for future research.

Except for very small tensor dimensions, we can always recover tensors of rank-
one or two from a number of measurements which is significantly smaller than the
dimension of the corresponding tensor space. Therefore, low rank tensor recovery
via θ1-minimization seems to be a promising approach. Of course, it remains to
investigate the recovery performance theoretically.

Figures 1 and 2 present the numerical results for low rank tensor recovery via
θ1-norm minimization for Gaussian measurement maps, conducted with the SDP-
NAL+ toolbox. For fixed tensor dimensions n × n × n, fixed tensor rank r , and fixed
number m of measurements 50 simulations are performed. We say that recovery is
successful if the elementwise reconstruction error is smaller than 10−3. Figures 1a,
2a, and 3a and 1b, 2b, and 3b present experiments for rank-one and rank-two tensors,
respectively. The vertical axis in all three figures represents the empirical success
rate. In Fig. 1 the horizontal axis represents the relative number of measurements,
to be more precise, for a tensor of size n × n × n, the number n̄ on the horizon-

tal axis represents m = n̄ n3

100 measurements. In Fig. 2 for a rank-r tensor of size
n×n×n and the number of measurements m, the horizontal axis represents the num-
ber m/(3nr). Notice that 3nr represents the degrees of freedom in the corresponding
CP-decomposition. In particular, if the number of measurements necessary for tensor
recovery is m ≥ 3Crn, for an universal constant C, Fig. 2 suggests that the constant
C depends on the size of the tensor. In particular, it seems to grow slightly with n

(although it is still possible that there exists C > 0 such that m ≥ 3Crn would always
be enough for the recovery). With C = 3.3 we would always be able to recover a low
rank tensor of size n × n × n with n ≤ 7. The horizontal axis in Fig. 3 represents
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Fig. 1 Recovery of rank-1 and rank-2 tensors via θ1-norm minimization

the number m/ (3nr · log(n)). The figure suggests that with the number of measure-
ments m ≥ 6rn · log(n) we would always be able to recover a low rank tensor and
therefore it may be possible that a logarithmic factor is necessary.

We remark that we have used standard MATLAB packages for convex opti-
mization to perform the numerical experiments. To obtain better performance, new
optimization methods should be developed specifically to solve our optimization
problem, or more generally, to solve the sum-of-squares polynomial problems. We
expect this to be possible and the resulting algorithms to give much better per-
formance results since we have shown that in the matrix scenario all theta norms
correspond to the matrix nuclear norm. The state-of-the-art algorithms developed for
the matrix scenario can compute the matrix nuclear norm and can solve the matrix
nuclear norm minimization problem for matrices of large dimensions. The theory
developed in this paper together with the first numerical results should encourage the
development into this direction.

Fig. 2 Recovery of rank-1 and rank-2 tensors via θ1-norm minimization
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Fig. 3 Recovery of rank-1 and rank-2 tensors via θ1-norm minimization
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Appendix Monomial orderings and Gröbner bases

An ordering on the set of monomials xα ∈ R[x], xα = x
α1
1 · x

α2
2 · · · xαn

n , is essential
for dealing with polynomial ideals. For instance, it determines an order in a mul-
tivariate polynomial division algorithm. Of particular interest is the graded reverse
lexicographic (grevlex) ordering.

Definition 7 For α = (α1, α2, . . . , αn), β = (β1, β2, . . . , βn) ∈ Z
n
≥0, we write

xα >grevlex xβ (or α >grevlex β) if |α| > |β| or |α| = |β| and the rightmost nonzero
entry of α − β is negative.
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Once a monomial ordering is fixed, the meaning of leading monomial, leading
term and leading coefficient of a polynomial (see Section 2) is well-defined. For more
information on monomial orderings, we refer the interested reader to [15, 16].

A Gröbner basis is a particular kind of generating set of a polynomial ideal. It was
first introduced in 1965 in the Phd thesis of Buchberger [5].

Definition 8 (Gröbner basis) For a fixed monomial order, a basis G =
{g1, g2, . . . , gs} of a polynomial ideal J ⊂ R [x] is a Gröbner basis (or standard
basis) if for all f ∈ R[x] there exist a unique r ∈ R[x] and g ∈ J such that f = g+r

and no monomial of r is divisible by any of the leading monomials in G , i.e., by any
of the monomials LM(g1), LM(g2), . . . , LM(gs).

A Gröbner basis is not unique, but the reduced version defined next is.

Definition 9 The reduced Gröbner basis for a polynomial ideal J ∈ R [x] is a
Gröbner basis G = {g1, g2, . . . , gs} for J such that

1) LC(gi) = 1, for all i ∈ [s].
2) gi does not belong to 〈LT (G \{gi})〉 for all i ∈ [s].

In other words, a Gröbner basis G is the reduced Gröbner basis if for all i ∈ [s] the
polynomial gi ∈ G is monic (i.e., LC(gi) = 1) and the leading monomial LM(gi)

does not divide any monomial of gj , j �= i.
Many important properties of the ideal and the corresponding algebraic variety

can be deduced via its (reduced) Gröbner basis. For example, a polynomial belongs
to a given ideal if and only if the unique r from the Definition 8 equals zero. Gröbner
bases are also one of the main computational tools in solving systems of polynomial
equations [16].

With f
F

we denote the remainder on division of f by the ordered k-tuple F =
(f1, f2, . . . , fk). If F is a Gröbner basis for an ideal 〈f1, f2, . . . , fk〉, then we can
regard F as a set without any particular order by Definition 8, or in other words,
the result of the division algorithm does not depend on the order of the polynomials.

Therefore, f
G = r in Definition 8.

The following result follows directly from Definition 8 and the polynomial
division algorithm [16].

Corollary 2 Fix a monomial ordering and let G = {g1, g2, . . . , gs} ⊂ R [x] be a
Gröbner basis of a polynomial ideal J . A polynomial f ∈ R[x] is in the ideal J if it
can be written in the form f = a1g1 + a2g2 + . . . + asgs , where ai ∈ R[x], for all
i ∈ [s], s.t. whenever aigi �= 0 we have

multideg(f ) ≥ multideg(aigi).

Definition 10 Fix a monomial order and let G = {g1, g2, . . . , gs} ⊂ R [x]. Given
f ∈ R [x], we say that f reduces to zero modulo G and write

f →G 0
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if it can be written in the form f = a1g1 + a2g2 + . . . + akgk with ai ∈ R[x] for all
i ∈ [k] s.t. whenever aigi �= 0 we have multideg(f ) ≥ multideg(aigi).

Assume that G in the above definition is a Gröbner basis of a given ideal J . Then
a polynomial f is in the ideal J if and only if f reduces to zero modulo G . In other
words, for a Gröbner basis G ,

f →G 0 if and only if f
G = 0.

The Gröbner basis of a polynomial ideal always exists and can be computed in a
finite number of steps via Buchberger’s algorithm [5, 15, 16].

Next we define the S-polynomial of given polynomials f and g which is important
for checking whether a given basis of the ideal is a Gröbner basis.

Definition 11 Let f, g ∈ R [x] be a non-zero polynomials.
1. If multideg (f ) = α and multideg (g) = β, then let γ = (γ1, γ2, . . . , γn),

where γi = max{αi, βi}, for every i. We call xγ the least common multiple of
LM(f ) and LM(g) written xγ = LCM(LM(f ), LM(g)).

2. The S-polynomial of f and g is the combination

S (f, g) = xγ

LT (f )
f − xγ

LT (g)
g.

The following theorem gives a criterion for checking whether a given basis of a
polynomial ideal is a Gröbner basis.

Theorem 9 (Buchberger’s criterion) A basis G = {g1, g2, . . . , gs} for a polynomial
ideal J ⊂ R [x] is a Gröbner basis if and only if S

(
gi, gj

) →G 0 for all i �= j .

Computing whether S
(
gi, gj

) →G 0 for all possible pairs of polynomials in the
basis G can be a tedious task. The following proposition tells us for which pairs of
polynomials this is not needed.

Proposition 1 Given a finite set G ⊂ R [x], suppose that the leading monomials of
f, g ∈ G are relatively prime, i.e.,

LCM (LM(f ), LM(g)) = LM(f )LM(g),

then S (f, g) →G 0.

Therefore, to prove that the set G ⊂ R [x] is a Gröbner basis, it is enough to show
that S

(
gi, gj

) →G 0 for those i < j where LM(gi) and LM(gj ) are not relatively
prime.

References

1. Bhatia, R.: Matrix analysis. Graduate texts in mathematics. vol. 169, Springer (1996)

Numerical Algorithms (2021) 88:25–66 63



2. Blekherman, G., Parrilo, P.A., Thomas, R.R.: Semidefinite optimization and convex algebraic
geometry SIAM (2013)

3. Boyd, S., Vandenberghe, L.: Convex optimization. Cambridge univ press (2004)
4. Brylinski, J.-L.: Algebraic Measures of Entanglement. In: Chen, G.,Brylinski, R. K., Mathematics of

Quantum Computation. CRC, Boca Raton, FL (2002)
5. Buchberger, B.: Bruno Buchberger’s phD thesis 1965: An algorithm for finding the basis elements of

the residue class ring of a zero dimensional polynomial ideal. J. Symbolic Comput. 41(3-4), 475–511
(2006)

6. Candès, E.J., Plan, Y.: Tight oracle bounds for low-rank matrix recovery from a minimal number of
random measurements. IEEE Trans. Inform. Theory 57(4), 2342–2359 (2011)

7. Candès, E.J., Recht, B.: Exact matrix completion via convex optimization. Found. Comput. Math.
9(6), 717–772 (2009)

8. Candès, E.J., Strohmer, T., Voroninski, V.: PhaseLift: exact and stable signal recovery from magni-
tude measurements via convex programming. Comm. Pure Appl. Math. 66(8), 1241–1274 (2013).
https://doi.org/10.1002/cpa.21432

9. Candès, E.J., Tao, T.: The power of matrix completion: near-optimal convex relaxation. IEEE Trans
Information Theory 56(5), 2053–2080 (2010)

10. Candès, E.J., Tao, T., Romberg, J.K.: Robust uncertainty principles: exact signal reconstruction from
highly incomplete frequency information. IEEE Trans. Inform. Theory 52(2), 489–509 (2006)

11. Cartwright, D., Erman, D., Oeding, L.: Secant varieties of P2 × Pn embedded by O(1, 2). J. London
Math. Soc. 85(1), 121–141 (2012)

12. Chandrasekaran, V., Recht, B., Parrilo, P.A., Willsky, A.: The convex geometry of linear inverse
problems. Found. Comput. Math. 12(6), 805–849 (2012)

13. Chen, Y., Bhojanapalli, S., Sanghavi, S., Ward, R.: Completing any low-rank matrix, provably. J.
Mach. Learn. Res. 16, 2999–3034 (2015)

14. Combettes, P., Pesquet, J.C., Proximal Splitting Methods in Signal Processing. In: H. Bauschke, R.
Burachik, P. Combettes, V. Elser, D. Luke, H. Wolkowicz (Eds.) Fixed-Point Algorithms for Inverse
Problems in Science and Engineering, pp. 185–212. Springer (2011)

15. Cox, D., Little, J., O’Shea, D. Using Algebraic Geometry. Graduate Texts in Mathematics, Second
edn, vol. 185. Springer, New York (2005)

16. Cox, D., Little, J., O’Shea, D. Ideals, Varieties, and Algorithms, Third edn. Undergraduate Texts in
Mathematics. Springer, New York (2007)

17. Da Silva, C., Herrmann, F.J.: Hierarchical Tucker Tensor Optimization-Applications to Tensor
Completion. In: SAMPTA 2013, pp. 384–387 (2013)

18. De Silva, V., Lim, L.-H.: Tensor rank and ill-posedness of the best low-rank approximation problem.
SIAM J. Matrix Anal. Appl. 30(3), 1084–1127 (2008)

19. Defant, A., Floret, K.: Tensor norms and operator ideals. North-holland mathematics studies elsevier
science (1992)

20. Donoho, D.L.: Compressed sensing. IEEE Trans. Inform. Theory 52(4), 1289–1306 (2006)
21. Duarte, M.F., Baraniuk, R.G.: Kronecker compressive sensing. IEEE Trans Image Proc (2011)
22. Fazel, M.: Matrix rank minimization with applications. Ph.D thesis (2002)
23. Foucart, S., Rauhut, H.: A Mathematical Introduction to Compressive Sensing, Applied and Numeri-

cal Harmonic Analysis birkhäuser (2013)
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