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Abstract
Bregman-type iterative methods have received considerable attention in recent years
due to their ease of implementation and the high quality of the computed solu-
tions they deliver. However, these iterative methods may require a large number
of iterations and this reduces their usefulness. This paper develops a computa-
tionally attractive linearized Bregman algorithm by projecting the problem to be
solved into an appropriately chosen low-dimensional Krylov subspace. The projec-
tion reduces the computational effort required for each iteration. A variant of this
solution method, in which nonnegativity of each computed iterate is imposed, also is
described. Extensive numerical examples illustrate the performance of the proposed
methods.
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1 Introduction

Many applications in science and engineering require the solution of minimization
problems of the form:

min
u∈Rn

‖Au − b‖2, (1)

where A ∈ R
m×n is a matrix, whose singular values gradually decay to zero with no

significant gap; the matrix may be rank deficient. Throughout this paper, ‖ ·‖2 stands
for the Euclidean vector norm. The vector b ∈ R

m represents data that is corrupted
by an unknown error e ∈ R

m, which may stem from measurement or discretization
inaccuracies. We will refer to the error e as “noise.” Problems of this kind arise,
for instance, from the discretization of Fredholm integral equations of the first kind
and are commonly referred to as linear discrete inverse ill-posed problems; see, e.g.,
[17, 22, 23] for discussions on discrete inverse ill-posed problems. We are primarily
interested in the situation when m ≤ n, but the methods described also can be applied
when m > n.

Let btrue denote the unknown error-free vector associated with b, i.e.:

b = btrue + e,

and let R(A) denote the range of A. We will assume that btrue ∈ R(A) and that a
fairly accurate bound for the error:

‖e‖2 ≤ ε, (2)

is known. This allows application of the discrepancy principle; see below.
Let A† denote the Moore–Penrose pseudo-inverse of A. We would like to deter-

mine an accurate approximation of utrue = A†btrue, i.e., of the minimum-norm
solution of:

min
u∈Rn

‖Au − btrue‖2.

We remark that the exact solution of (1) can be expressed as A†b. Due to the error e

in b and the clustering of the singular values of A at the origin, the vector:

A†b = A†btrue + A†e = utrue + A†e

typically is dominated by the propagated error A†e and, therefore, is not a useful
approximation of utrue.

A possible approach to reducing the propagation of the error e into the computed
solution when m < n and b ∈ R(A) is to seek a sparse solution of (1). This can be
achieved by minimizing the �1-norm of the computed solution, i.e., by solving the
constrained minimization problem:

min
subject to Au=b

‖u‖1, (3)

where

‖u‖1 =
n∑

i=1

|ui |, u = [u1, u2, . . . , un]T .
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Here and throughout this paper, the superscript T denotes transposition. The solution
of (3) might not be unique, since the �1-norm is not strictly convex. Uniqueness of
the solution can be ensured by replacing (3) by:

uμ = arg min
u∈Rn

{
μ‖u‖1 + 1

2δ
‖u‖22 : Au = b

}
, (4)

where μ > 0 and 0 < δ < 1/ρ(AT A) are user-defined constants, with ρ(M)

denoting the spectral radius of the square matrix M . The upper bound for δ secures
convergence of the Bregman iterations defined below. We will refer to the parameter
μ > 0 in (4) as the regularization parameter. One of the most popular algorithms for
the solution of (4) is the linearized Bregman algorithm, which is an iterative method;
see, e.g., [3, 12, 13, 32, 35] or below.

The solutions of many linear discrete ill-posed problems (1) have a sparse rep-
resentation in a suitably chosen basis. For instance, in image restoration problems,
images usually have sparse representations in terms of wavelets or framelets. To make
use of the sparsity, we transform the problem (4) so that its solution has a sparse
representation.

The iterates generated by the linearized Bregman algorithm might converge only
slowly to the solution of (4). Its application therefore may be quite expensive for
some problems. This paper describes an approach to reduce the computational cost of
Bregman iteration. Specifically, the problem to be solved is projected into a Krylov
subspace of small dimension d � min{m, n} by applying d steps of Golub–Kahan
bidiagonalization to the matrix A. The dimension d is chosen large enough so that
the space contains a vector u∗ ∈ R

n that satisfies the discrepancy principle, that is:

‖Au∗ − b‖2 ≤ τε, (5)

where ε satisfies (2) and τ ≥ 1 is a user-supplied constant that is independent of
ε. Once we have constructed the appropriate subspace, we solve (4) there. Since the
dimension d of the subspace selected is usually much smaller than min{m, n}, the
iterations with the Bregman algorithm in this space are cheaper to carry out than in
R

n.
In many applications, it is known that the desired solution utrue lies in a closed and

convex set. In this situation, it is generally beneficial to impose constraints on the
Bregman algorithm such that the generated iterates lie in this closed and convex set.
For instance, in image restoration problems, the entries of the desired solution repre-
sent pixel values of the image. Pixel values are nonnegative; therefore, it is generally
meaningful to solve the constraint minimization problem:

u+
μ = argmin

u≥0

{
μ‖u‖1 + 1

2δ
‖u‖22 : Au = b

}
(6)

instead of (4). When the desired solution utrue is nonnegative, it is usually beneficial
to impose a nonnegativity constraint on the computed solution of (1); see [1, 6, 15,
29, 33, 36] for illustrations. In particular, the vector u+

μ is usually a more accurate
approximation of utrue than uμ. We remark that a closed form for u+

μ is generally
not available. Section 3 describes a solution method for the problem (6), based on
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first projecting the problem into a Krylov subspace of fairly small dimension and
then projecting computed approximate solutions into the nonnegative cone.

This paper is organized as follows. Section 2 presents the linearized Bregman
algorithm and discusses how to include a transformation to the framelet domain. In
Section 3, we describe our projected method and discuss the use of a nonnegativity
constraint. A faster converging variant of the unconstrained Bregman iterations is
briefly discussed in Section 4, and Section 5 presents a few numerical examples that
illustrate the performance of the methods described in this paper. Finally, Section 6
contains concluding remarks.

2 The linearized Bregman algorithm

The linearized Bregman algorithm was introduced in [10, 35]. It is designed to solve
problems of the form:

min
u∈Rn

{J (u) : Au = b},
where J (u) is a continuous, convex functional. We briefly review some properties of
the linearized Bregman algorithm. Let Dp

J (u, v) denote the (nonnegative) quantity:

D
p
J (u, v) = J (u) − J (v) − 〈 p, u − v〉,

where p ∈ ∂J (v) is an element of the subgradient of the functional J at the point
v, and 〈u, w〉 denotes the standard inner product of elements u, w ∈ R

n. The quan-
tity D

p
J (u, v) is commonly referred to as the Bregman distance [5, 27] based on the

convex functional J between the points u and v. Note that the Bregman distance
in general is not a metric in the usual sense, since it does not satisfy the triangle
inequality and it is not symmetric, i.e., D

p
J (u, v) may be different from D

p
J (v, u).

Nevertheless, the Bregman distance measures the closeness between u and v, since
D

p
J (u, v) ≥ 0, and D

p
J (u, v) = 0 if u = v.1

We will assume that m ≤ n and that A is a surjective matrix. Then, the linear
system of equations Au = b has at least one solution for any right-hand side b. Given
u0 = v0 = 0, the linearized Bregman iteration can be expressed as:

{
uk+1 = argminu∈Rn{ 1

2δ ‖u − (uk − δAT (Auk − b))‖22 + μD
pk

J (u, uk)},
vk+1 = vk − 1

μδ
(uk+1 − uk) − 1

μ
AT (Auk − b)

(7)
for k = 0, 1, . . . . These iterations can be written as:

{
vk+1 = vk − AT (Auk − b),

uk+1 = δproxJ (vk+1, μ),
(8)

for k = 0, 1, . . . , where proxJ (vk+1, μ) denotes the proximal operator of the
functional J , i.e.:

proxJ (v, μ) = argmin
u

‖v − u‖22 + μJ(u);

1D
p
J (u, v) = 0 if and only if u = v when J is a strictly convex functional.
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see [11, 12] for details. The special case when J (u) = ‖u‖1 is of particular interest
to us. Then:

proxJ (v, μ) = Tμ(v),

where Tμ(v) denotes the soft-thresholding operator, i.e.:

Tμ(v) = [tμ(v1), tμ(v2), . . . , tμ(vn)]T ∈ R
n for v = [v1, v2, . . . , vn]T ,

where

tμ(x) :=
{
0 if |x| ≤ μ,

sign(x)(|x| − μ) if |x| > μ.

We summarize the linearized Bregman algorithm for J (u) = ‖u‖1 in Algorithm 1.

Algorithm 1 is concise, simple to program, and requires only matrix-vector prod-
uct evaluations, vector additions, and soft-thresholding. The iterations are terminated
when two consecutive iterates are sufficiently close; see Section 5 for details.

We note that Algorithm 1 may require many iterations to give an accurate approx-
imation of the solution of (4); see below. Moreover, in some applications, the
matrix-vector product evaluations with A and AT may be expensive. Applications of
the algorithm include basis pursuit problems, which arise in compressed sensing and
allow images and signals to be reconstructed from small amounts of data.

The condition number of A with respect to the spectral matrix norm is defined
as the ratio of the largest to smallest singular values of A. A matrix is said to be
ill-conditioned when this ratio is large. When the matrix A is ill-conditioned, the con-
vergence of the sequence u1, u2, . . . generated by Algorithm 1 to the solution of (4)
may be very slow. This prompted Cai et al. [13] to propose the use of a precondi-
tioner. The preconditioner described in [13] is attractive to use for certain matrices
A. An approach based on replacing the stationary iteration in Algorithm 1 by a non-
stationary one to speed up the convergence has recently been discussed by Huang
et al. [26]. Numerical aspects of the latter kind of iterations are considered in [7].
Moreover, extensions of the method proposed in [26] were considered in [4, 14]. We
also note that when A is severely ill-conditioned and the vector b is contaminated by
noise, the iterates generated by Algorithm 1 do not converge to uexact with increas-
ing iteration number. More precisely, there is an index � such that the first � iterates
ui approach uexact as i increases and is bounded by �, but the iterates ui move away
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from uexact as i > � increases. This behavior of the iterates is commonly referred to
as semiconvergence. This difficulty can be remedied by terminating the iteration pro-
cess sufficiently early. Early termination of the iterations can be achieved with the
aid of the discrepancy principle, but other stopping criteria also can be used.

We conclude this section with a discussion on the application of framelets to rep-
resent the solution. Many solutions of interest have a sparse representation in terms
of framelets; see, e.g., [8, 12, 13, 26]. Framelets are frames with local support.

Definition 1 Let W ∈ R
r×n with n ≤ r . The set of rows of W is said to be a tight

frame for Rn if ∀u ∈ R
n it holds:

‖u‖2 =
r∑

j=1

(wT
j u)2, (9)

where wj ∈ R
n is the j -th row of W (written as a column vector), i.e., W =

[w1, w2, . . . , wr ]T . The matrix W is called an analysis operator and WT a synthesis
operator.

Equation (9) is equivalent to the perfect reconstruction formula x = WT y, y =
Wx, i.e., W is a tight frame if and only if WT W = I . In general, WWT �= I , unless
r = n and the framelets are orthogonal.

We can transform our given linear discrete ill-posed problem into the framelet
domain by using the identity WT W = I : inserting this identity into Au = b yields:

AWT Wu = b.

Let Z = AWT and y = Wu. Then, the above equation can be written as

Zy = b.

The entries of the vector y are the framelet coefficients of the solution. In many
applications, the vector y is sparse. Linearized Bregman-type iteration, which aims
to determine a sparse solution, is a suitable iterative solution method. Note that the
matrix Z is not explicitly formed when applying Algorithm 1. Since typically the
matrix W is very sparse, the evaluations of matrix-vector products with W and WT

are very cheap. Thus, the computational cost of transforming a linear discrete ill-
posed problem to a framelet domain is almost negligible.

3 Projected linearized Bregman and nonnegative linearized
Bregman algorithms

This section first introduces a projected Bregman algorithm, which is based on pro-
jecting the given linear discrete ill-posed problem into a Krylov subspace of fairly
small dimension. Subsequently, we introduce a projected Bregman algorithm with
nonnegativity constraint.
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3.1 Projection into a Krylov subspace

We seek an approximate solution of the problem (1) in a Krylov subspace:

Kd(AT A, AT b) = span{AT b, AT AAT b, (AT A)2AT b, . . . , (AT A)d−1AT b} (10)

of low-dimension d � min{m, n}. An orthonormal basis for this space is constructed
with the Golub–Kahan bidiagonalization method applied to the matrix A with initial
vector b; see, e.g., [21]. Application of � steps of Golub–Kahan bidiagonalization
gives the decompositions:

AV� = U�+1B�+1,�, AT U�+1 = V�B
T
�,�, (11)

where U�+1 ∈ R
m×(�+1) and V� ∈ R

n×� have orthonormal columns, the first column
of U�+1 is b/‖b‖2, and the matrices B�+1,� ∈ R

(�+1)×� and B�,� ∈ R
�×� are lower

bidiagonal; the matrix B�,� is the leading � × � submatrix of B�+1,�. The columns
of V�, for � = d , span the Krylov subspace (10); in particular, v1 = AT b/‖AT b‖2.
We tacitly assume that d is sufficiently small so that the decompositions (11) exist
for � = d . This is the generic situation. If this condition does not hold, then the
computations simplify. This situation is rare and we will therefore not dwell on it
further.

We would like to choose d as small as possible, but such that the discrepancy
principle (5) can be satisfied by an element in Kd(AT A, AT b), i.e., we would like d

to satisfy:

d = argmin

{
� : min

u∈K�(A
T A,AT b)

‖Au − b‖2 ≤ τε

}
.

Once we have determined d , we substitute (11) with � = d into (1) to obtain:

minu∈Kd (AT A,AT b) ‖Au − b‖22 = min
y∈Rd

‖AVdy − b‖22 (a)= min
y∈Rd

‖Ud+1Bd+1,dy − b‖22
(b)= min

y∈Rd
‖Bd+1,dy − ‖b‖2e1‖22

where e1 = [1, 0, . . . , 0]T denotes the first axis vector. Here, (a) follows by sub-
stituting the decomposition (11), and (b) follows from the facts that the columns of
Ud+1 are orthonormal and UT

d+1b = ||b||e1.
Let W ∈ R

r×n be a framelet analysis operator, define:

K = Bd+1,dV T
d WT ,

and observe that V T
d WT WVd = I . We would like to apply linearized Bregman

iteration to solve:

min
z∈Rr

{
μ‖z‖1 + 1

δ
‖z‖22 : z ∈ argmin

z
‖Kz − ‖b‖2e1‖22

}
, (12)

where z = WVdy. These iterations can be expressed as:
{

vk+1 = vk − KT (Kzk − ‖b‖2e1),
zk+1 = δTμ(vk+1),

k = 0, 1, 2, . . . ,
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which can be written in the form:
{

vk+1 = vk − WVdBT
d+1,d (Bd+1,dV T

d WT zk − ‖b‖2e1),
zk+1 = δTμ(vk+1),

k = 0, 1, 2, . . . .

(13)
The sequence z1, z2, . . . converges to the solution of (12). Since the original (large)
problem has been projected into a subspace of small dimension, the iterations gen-
erally do not display semiconvergence. We observe that the large matrix K does
not have to be explicitly formed to carry out the iterations (13). In fact, all required
matrix-vector product evaluations involve only fairly small or sparse matrices. We
refer to the algorithm defined by (13) as the Projected Linearized Bregman (PLB)
algorithm. Convergence is secured for 0 < δ < 1/ρ(KT K), where we note that
ρ(KT K) = ρ(BT

d+1,dBd+1,d ) ≤ ρ(AT A). This means that the PLB algorithm
allows a wider range of δ-values than the linearized Bregman iteration (Algorithm 1).
In particular, the PLB method may give a convergent sequence of iterates also when
linearized Bregman iteration does not. Moreover, the small size of Bd+1,d makes it
easy to compute ρ(BT

d+1,dBd+1,d ) and thereby to determine a bound for the parame-
ter δ. We summarize the computations of the PLB iterations in Algorithm 2, where,
with slight abuse of notation, we use uk instead of zk . Iterations with the algorithm
are terminated when consecutive iterates are sufficiently close; see Section 5.

3.2 Nonnegativity constraint

In many applications, such as medical imaging and astronomy, the exact solution of
(1) is known to live in a closed and convex set �. Often approximations of higher
accuracy of the desired solution can be determined by constraining the iterates of the
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PLB algorithm to �. In this section, as well as in the computed examples presented
in Section 5, the set � is chosen to be the nonnegative cone:

�0 = {u ∈ R
n : ui ≥ 0, i = 1, 2, . . . , n}.

However, the theory developed in the following easily can be adapted to more general
closed and convex sets.

Define the indicator function i0 for �0:

i0(x) =
{
0 if x ∈ �0,

∞ else.

We insert the nonnegativity constraint on u = WT z into (12) to obtain:

arg min
z∈Rr

{
μ‖z‖1 + 1

δ
‖z‖22 + i0(W

T z) : z ∈ argmin
z

‖Kz − ‖b‖2e1‖22
}
.

To solve this problem, we introduce the proximal operator for

J (z) = μ‖z‖1 + i0(W
T z). (14)

Definition 2 Let � ⊆ R
n be a closed and convex set, and let u ∈ R

n. The metric
projection of u onto � is given by:

P�(u) = argmin
z∈�

‖u − z‖2.

In particular, the metric projection onto �0 can be obtained by

(P�0(u))i =
{

ui if ui ≥ 0,
0 else.

If W = I , then the proximal operator for J in (14) can be expressed as:

proxJ (z) = P�0(Tμ(z)). (15)

Eq. (15) is a known result from [30] and can be derived with the help of proximal
operator theory.

We now derive the proximal operator for J in (14) when W �= I . Let

�W = {y; y = Wỹ, ỹ ≥ 0} (16)

and let iW be the indicator function for the set �W . Then

proxJ (z) = argmin
v

{
‖v − z‖22 + μ‖v‖1 + i0(W

T v)
}

= argmin
v

{
‖v − z‖22 + μ‖v‖1 + iW (v)

}

= P�W
(Tμ(z)).
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It remains to discuss the evaluation of the operator P�W
(z). We have:

where (a) follows from the fact that the columns of the matrix W are orthonor-
mal. Hence, WWT and I − WWT are orthogonal projectors onto complementary
subspaces of Rr .

We are now in a position to formulate the Projected Nonnegative Linearized Breg-
man (PNBL) algorithm, which is presented as Algorithm 3. The stopping criterion
for the algorithm is the same as for the other algorithms.
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It is shown in [34] that linearized Bregman iteration is equivalent to gradient
descent applied to the dual problem. This result ensures the convergence of our
method to the solution of

argmin

{
μ‖u‖1 + 1

δ
‖u‖2 + iW (u) : u ∈ argmin ‖Ku − ‖b‖2e1‖2

}
, (17)

where K = Bd+1,dV T
d WT .

4 Further acceleration of the iterations

As mentioned above, the PLB algorithm is computationally cheaper than the LB
algorithm. The rate of convergence of the iterates generated with the latter algorithm
is O(1/k), where k denotes the number of iterations. Huang et al. [25] proposed
an accelerated version of the LB algorithm with a rate of convergence of O(1/k2).
This section describes a PLB algorithm that incorporates the acceleration approach of
Huang et al. [25]. We refer to this method as the Accelerated PLB (APLB) algorithm.
Its performance is illustrated in Section 5.

The convergence results in [25] can be easily extended to the APLB algorithm.
We therefore do not present a proof of its convergence properties. Furthermore, the
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acceleration approach due to Huang et al. [25] also can be applied in the PNLB algo-
rithm. This gives the Accelerated PNLB (APNLB) algorithm. The latter algorithm is
obtained by replacing uk+1 = δTμ(zk+1) by uk+1 = δP�W

(Tμ(zk+1)) in the APLB
algorithm.

5 Numerical experiments

This section presents a few numerical examples that illustrate the performance of the
methods discussed in the previous sections. We consider the restoration of images
that have been contaminated by blur and noise. Continuous space-invariant image
deblurring can be formulated as a Fredholm integral of the first kind, i.e., as an
integral equation of the form:

g(x, y) =
∫

�

K(s − x, t − y)f (s, t)dsdt, (x, y) ∈ �, (18)

where g represents a blurred, but noise-free, image, f is the unknown image that we
would like to recover, and K is a smooth kernel with compact support. The integral
operator in (18) is compact. Therefore, the solution of (18) is an ill-posed problem.
Discretizing (18) gives a problem of the form (1), with a matrix A that is the sum
of a block Toeplitz with Toeplitz block matrix and a correction of small norm due to
the boundary conditions that are imposed; see, e.g., [24] for more details on image
deblurring.

We use the same tight frames as in [7, 13, 26], i.e., the system of linear B-splines.
This system is formed by a low-pass filter W0 ∈ R

n×n and two high-pass filters
W1, W2 ∈ R

n×n, whose corresponding masks are:

w(0) = 1

4
(1, 2, 1), w(1) =

√
2

4
(1, 0, −1), w(2) = 1

4
(−1, 2, −1).

The analysis operator W in one space-dimension is derived from these masks
and by imposing reflexive boundary conditions to ensure that WT W = I . The
so-determined filter matrices are:

W0 = 1

4

⎡

⎢⎢⎢⎢⎢⎣

3 1 0 . . . 0
1 2 1
. . .

. . .
. . .

1 2 1
0 . . . 0 1 3

⎤

⎥⎥⎥⎥⎥⎦
, W1 =

√
2

4

⎡

⎢⎢⎢⎢⎢⎣

−1 1 0 . . . 0
−1 0 1

. . .
. . .

. . .
−1 0 1

0 . . . 0 −1 1

⎤

⎥⎥⎥⎥⎥⎦
,

and

W2 = 1

4

⎡

⎢⎢⎢⎢⎢⎣

1 −1 0 . . . 0
−1 2 −1

. . .
. . .

. . .
−1 2 −1

0 . . . 0 −1 1

⎤

⎥⎥⎥⎥⎥⎦
.
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The corresponding analysis operator W in two space-dimensions is given by:

W =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

W0 ⊗ W0
W0 ⊗ W1
W0 ⊗ W2
W1 ⊗ W0

...
W2 ⊗ W2

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

,

where ⊗ denotes the Kronecker product. This matrix is not explicitly formed. We
note that the evaluation of matrix-vector products with W and WT is inexpensive
because the matrix W is very sparse.

In our numerical tests, we fix δ = 0.9/ρ(BT
d+1,dBd+1,d ), where ρ(BT

d+1,dBd+1,d )

can be computed inexpensively since the matrix Bd+1,d of our projected problem is
of fairly small size. We run the algorithms for different values of the parameter μ,
and choose the μ-value that yields the smallest relative restoration error (RRE),

RRE(u) = ‖u − utrue‖2
‖utrue‖2 .

This makes it easy to compare the performance of the algorithms of the present paper
with other methods discussed in the literature. However, it is possible to determine
the parameter μ adaptively during the computations; see [26]. A discussion on the
roles of the parameters μ and δ can be found in [7].

We terminate the iterations with Algorithms 2 and 3 when two consecutive iterates
are sufficiently close, i.e., when

‖u(k+1) − u(k)‖2
‖u(k)‖2 < 10−4.

The error e in the data vector b is modeled by white Gaussian noise. We refer to
the ratio:

σ = ‖e‖2
‖Autrue‖2

as the noise level. We set the parameter τ in the discrepancy principle (5) to 1.01.
Algorithms 2 and 3, and their accelerated variants, are compared to the methods

IRfista, IRirn, IRhybrid fgmres, IRnnfcgls, and IRhtv using MATLAB codes pro-
vided in [18]. IRfista is a first-order optimization method that solves a minimization
problem of the form:

min
u∈C

{‖Au − b‖22 + μ‖u − u(0)‖1}, (19)

whereC denotes a constrained set defined, e.g., by box or energy constraints, and u(0)

is the initial approximate solution vector. For simplicity, it is set to be the zero vec-
tor, i.e., u(0) = 0; see [2]. IRirn implements an iteratively reweighted norm approach
with penalized restarted iterations for computing a 1-norm penalized solution; see
[31]. IRhybrid fgmres applies a flexible version of the solution subspace used in
IRhybrid gmres, and incorporates an iteration-dependent preconditioner that aims to
minimize the �1-norm of the computed solution; see [18] for more details. IRnnfcgls
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is a flexible conjugate gradient least squares method for solving nonnegatively con-
strained least squares problems; the method is proposed in [20]. IRhtv is a penalized
restarted iteration method that incorporates a heuristic total variation penalization
term described in [19].

To ensure a fair comparison, we provide all the considered methods with the same
information, including the noise level and the optimal value of the regularization
parameter μ.

Since IRnnfcgls semiconverges, one may need to tune the number of the iterations
and force the iterations to stop before the iterates converge to an unregularized least
squares solution that might be a poor reconstruction of the desired solution. We stop
the iterations as soon as the discrepancy principle is satisfied. All computations are
carried out in MATLAB R2018a with about 15 significant decimal digits running
on a desktop computer with core CPU Intel(R) Core(TM)i7-4470 @3.40GHz with
8.00GB of RAM.

Comparison of the LB and PLB algorithms We first illustrate that projection into a
Krylov subspace can be beneficial both in terms of computational efficiency and
quality of the computed restoration especially of large-scale problems. Consider the
exact telescope image in Fig. 1a. It is made up of 986 × 986 pixels. We blur this
image with a Gaussian PSF (shown in Fig. 1b). We then add 1%white Gaussian noise
and obtain the blur and noise contaminated telescope image in Fig. 1c. The iterates
computed by the standard LB method, without projection to a Krylov subspace, show
semiconvergence. We therefore terminate the iterations with this method with the
discrepancy principle, i.e., we terminate the iterations as soon as:

‖Auk − b‖2 ≤ τε.

Figure 2a shows the reconstruction with of telescope image in Fig. 1c with LB algo-
rithm, while the reconstruction by PLB is shown in Fig. 2b. Table 1 reports results
obtained with the LB and PLB methods for different noise levels. The table shows
that projection into the Krylov subspace significantly accelerates the method and
improves the quality of the reconstructed image.

(a) (b) (c)

Fig. 1 Comparison of the LB and PLB algorithms: a True image (986 × 986 pixels), b PSF (13 × 13
pixels), c blurred and noise-contaminated image with σ = 0.01‖b‖
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(a) (b)

Fig. 2 Comparison of the reconstructions obtained by LB and PLB algorithms.

Comparison of the PLB and PNLB methods We would like to illustrate the effect of
projecting onto the nonnegative cone. With this aim, we apply the PLB and PNLB
methods to restore the contaminated satellite image of Fig. 3c. It is obtained by apply-
ing motion blur described by a motion PSF (see Fig. 3b) to the “exact” image of
Fig. 3a and then adding 5% white Gaussian noise.

Table 2 displays results for the PLB and PNLB methods. We can observe that
the use of nonnegativity constraints improves the quality of the reconstruction. The
Krylov subspaces used for both methods are the same. We note that the number of
iterations needed for the PNLB method is slightly larger than for the PLB method.
This is usually the case for methods with nonnegativity constraints.

Figure 4 shows blowups of the reconstructions obtained with the two methods.
Visual inspection of the images shows the PNLB method to be able to provide a uni-
form reconstruction of the black sky behind the satellite. Moreover, the PLB method
generates ringing effects around the edges of the satellite that are not present in the
reconstruction computed by the PNLB method.

Table 1 Comparison of the LB and PLB algorithms in terms of RRE, number of iterations, and CPU time
for different noise levels

LB

RRE Number of iterations CPU time (seconds)

Telescope 1% 0.0899 145 197

Telescope 5% 0.1316 27 25

PLB

RRE Number of iterations CPU time (seconds)

Telescope 1% 0.0867 189 42

Telescope 5% 0.1205 30 7.8
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(a) (b) (c)

Fig. 3 Comparison of the LB and PLB algorithms: a true image (246×246 pixels), b PSF (11×11 pixels),
c blurred and noisy image with ε = 0.05‖b‖

Since the PLNB method is more accurate than the PLB method, we focus on the
former method in the following.

Barbara We consider the Barbara image in Fig. 5a and blur it with the motion PSF
shown in Fig. 5b. We add 1% white Gaussian noise to the blurred image. This gives
the blurred and noise-contaminated image in Fig. 5c.

Table 3 displays results obtained with the PNLB and other methods described in
[18] for several noise levels from 0.1 to 15%. The PNLB algorithm can be seen to out-
perform the other methods in terms of quality of the reconstruction. This is confirmed
by visual inspection of the reconstructions shown in Fig. 6 with 1% noise added.

We can observe that the PNLB method is able to accurately reconstruct the exact
image.

Cameraman We turn to the cameraman image shown in Fig. 7a. The exact image
is blurred by a PSF that models out-of-focus blur; the PSF is shown in Fig. 7b. The
blurred and noise-contaminated image with 2% white Gaussian noise is shown in
Fig. 7c.

In Table 4, we report the RRE of the reconstructions obtained with the PNLB and
other methods. The PNLB method consistently outperforms the other methods, in
particular for higher noise levels. This is confirmed by visual inspection of the recon-
structions shown in Fig. 8. For anisotropic blurs, the choice of the Krylov subspace as
in IRhybrid fgmres may not suitable. A more relevant choice of the Krylov subspace
for these kinds of blurs is described in [16].

Tomography In this example, we consider a synthetic tomography problem, where
the data are the Radon transform of the attenuation coefficients of some scanned
object; for details on computerized tomography, see, e.g., [9]. We consider parallel
beam tomography, where K parallel X-ray beams are sent through an object at dif-
ferent angles φk with k = 1, 2, . . . , K . The measured data bj,k , that are known as the
sinogram, is the line integral of the attenuation coefficient of the object along the j -th
beam at angle φk . We generate the synthetic data using the Matlab program package

1192 Numerical Algorithms (2021) 87:1177–1200
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(a) (b)

Fig. 4 Comparison of the PLB and PNLB algorithms: Blowups of the reconstructions determined by a
PLB, b PNLB

(a) (b) (c)

Fig. 5 Barbara test problem: a true image (246 × 246 pixels), b the PSF (11 × 11 pixels), c blurred and
noisy image (ε = 0.01‖b‖)

Table 3 Barbara test problem: RRE for each noise level and each tested method

Noise level

0.001 0.002 0.005 0.01 0.05 0.1 0.15

PNLB 0.0832 0.0849 0.0887 0.0912 0.1126 0.1221 0.1302

IRfista 0.1623 0.1712 0.1917 0.0999 0.1144 0.1231 0.1334

IRhybrid fgmres 0.1376 0.1366 0.1369 0.1379 0.1607 0.1932 0.2182

IRirn 0.1369 0.1359 0.1362 0.1372 0.1602 0.1932 0.2177

IRhtv 0.1336 0.1346 0.1348 0.1353 0.1447 0.1531 0.1592

IRnnfcgls 0.1336 0.1337 0.1336 0.1337 0.1341 0.1354 0.1376

We report the best result in italics
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(a) (b) (c)

Fig. 6 Barbara test problem restorations computed by a PNLB, b IRfista, c IRirn

(a) (b) (c)

Fig. 7 Cameraman test problem: a true image (246 × 246 pixels), b PSF (11 × 11 pixels), c blurred and
noisy image (ε = 0.002‖b‖)

Table 4 Cameraman test problem: RRE for each noise level and for each method

Noise level

Method 0.001 0.002 0.005 0.01 0.05 0.1 0.15

PNLB 0.1014 0.1014 0.1015 0.1098 0.1522 0.1587 0.1608

IRfista 0.1091 0.1129 0.1015 0.1155 0.1511 0.1654 0.1673

IRhybrid fgmres 0.1512 0.1511 0.1516 0.1528 0.1753 0.2085 0.3651

IRirn 0.1505 0.1506 0.1509 0.1527 0.1648 0.1820 0.2031

IRhtv 0.1481 0.1482 0.1486 0.1490 0.1591 0.1665 0.1724

IRnnfcgls 0.1704 0.1704 0.1704 0.1704 0.1705 0.1715 0.1739
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(a) (b) (c)

Fig. 8 Cameraman test problem restoration by a PNLB, b IRfista, c IRirn

IR Tools [18]. More specifically, we use the command PRtomo(n, options), set the
dimension n of the image to 256 × 256, and consider 90 angles equispaced between
0°and 179°, and 362 beams. This gives an underdetermined system of equations with
a matrix A ∈ R

32580×65536.
We comment on the choice of the dimension of the Krylov subspace used in the

algorithms described in this paper. The algorithms illustrate the computational ben-
efits of determining an approximate solution of the problem (1) by solving (12) in
a Krylov subspace of fairly small dimension d . In all computed examples above,
we used the discrepancy principle to determine the value d , which we here will
refer to as ddp. It is illustrated in [28] that in the context of Tikhonov regulariza-
tion with the regularization parameter determined by the discrepancy principle, and
the low-dimenional Krylov subspace is determined by a few steps by the Arnoldi
process (instead of by Golub–Kahan bidiagonalization), the quality of the computed
solution may be increased somewhat by carrying out a few more Arnoldi steps
than the smallest number necessary to satisfy the discrepancy principle. Similarly,

(a) (b)

Fig. 9 Tomography test problem: a true image (256×256 pixels), b noise-free sinogram (362×90 pixels)
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Table 5 Tomo test problem:
RRE for two noise level for
d = ddp and d = ddp + 5

Noise level

Method 1% (ddp = 13) 5% (ddp = 8)

PNLB (d = ddp) 0.1712 0.2552

PNLB (d = ddp + 5) 0.1691 0.2324

it may be possible to improve the quality of the computed solution determined by
the algorithms of the present paper somewhat by taking a few more than d = ddp
bidiagonalization steps. However, it is difficult to provide simple guidelines for how
much larger the number of steps, d , should be than ddp. Moreover, the improvement
in quality of the computed solution by letting d > d is modest. The following exam-
ple provides an illustration. Figure 9a shows the exact attenuation coefficients and
Fig. 9b displays the associated noise-free sinogram. We add 1% and 5% white Gaus-
sian noise in the numerical examples reported in Table 5. The table shows small
improvements in the quality of the reconstruction by increasing the dimension of the
solution subspace. The number of iterations shown in parentheses close to the error
level shows (ddp), the number of iterations needed to satisfy the discrepancy princi-
ple. Figure 10 depicts the reconstructions of the solution obtained determined by the
PNLB method with d = ddp when adding 1% noise to the sinogram and compares
this reconstruction with the one determined by the PNLB method with d = ddp + 5.
Since the gain by choosing d > ddp is not very large, and it is poorly understood how
much larger d should be chosen than ddp, we propose to choose d = ddp.

Comparison of PLB (PNLB) and accelerated PLB (accelerated PNLB) The accelerated
PLB method is described by Algorithm 4. We also apply the PNLB and APNLB
methods; the latter is described in Section 4. These four methods are compared in
Table 6 for the Barbara, Cameraman, and Satellite test problems with 1% noise. For
the Satellite test problem, the PSF is the same as shown in Fig. 3. We can observe

(a) (b)

Fig. 10 Tomography test problem restoration by a PNLB(d = ddp), b PNLB(d = ddp + 5) with 1% noise
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Table 6 Comparison of PNLB and Accelerated PNLB in terms of RRE and CPU time for several test
problems

Example Method RRE Iterations CPU time (seconds)

Barbara PLB 0.0918 141 105

Accelerated PLB 0.0916 55 47

PNLB 0.0912 88 70.04

Accelerated PNLB 0.091 48 41.82

Cameraman PLB 0.1277 282 192

Accelerated PLB 0.1236 91 73

PNLB 0.1098 116 91.54

Accelerated PNLB 0.1082 56 49.25

Satellite PLB 0.1337 300 60.56

Accelerated PLB 13.27 83 16.5

PNLB 0.1276 300 58.75

Accelerated PNLB 0.1234 97 21

that the acceleration strategy reduces the computing time significantly. The RRE is
reduced as well, but not by much.

6 Conclusions

This paper proposes that the linearized Bregman method be a projected problem into
a Krylov subspace of fairly low dimension. This is shown to reduce the computing
time significantly, and to increase the quality of the computed solution somewhat.
Unconstrained iterations as well as iterations constrained to a convex set are consid-
ered. The imposition of convex constraints may increase the quality of the computed
solutions, and in our experience such constraints do not increase the computational
burden significantly. The constrained projected linearized Bregman iterative method
of this paper is compared with several methods from IR Tools [18] for the restoration
of 2D images and was found to be competitive.
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